
Compositional Verification : Decidability issues using

graph substitutions.

Olivier Ly

LaBRI – Bordeaux I University

Abstract. This paper deals with the compositional verification of se-
quential programs. This consists in deciding whether or not a given set
of local structural properties of the functions of a program implies a given
global behavioural property of the program. Here we consider properties
expressed in monadic second-order logic dealing with the control flow of
the program and the function calls occuring during its execution. This
problem has been investigated in relation with the security of open multi-
application smart cards. We show that the compositionality is decidable
for sequential programs whose control-flow graphs are of tree-width less
than a fixed integer value, which includes in particular structured pro-
grams. Formally, we prove the decidability of MSO theories of families
of hypergraphs obtained by uniform substitution of hyperedges by hy-
pergraphs specified by MSO formulas.

Keywords. Compositional Verification, Tree Automata, Monadic Second-
Order Logic

Introduction

This paper deals with the compositional verification of sequential programs. This
consists in deciding whether or not a given set of local structural properties of
the functions of a program implies a given global behavioural property of the
program. This aims at reducing the verification of a global property of a program
to the verifications of some independent local properties of its components.

Compositional verification is a long standing problem in the area of concur-
rent systems (see e.g. [9, 1, 13]). Here we rather consider sequential programs
and we restrict our study to behavioural and structural properties dealing with
the control flow of the program and the function calls occurring during exe-
cution. This framework relies on the language-independent model of programs
introduced in [12] in order to catch some classical security properties. It has
been studied in [4, 3, 18] (see also [7]) for compositional reasoning about secu-
rity of open multi-application smart cards. Like e.g. [19, 2, 15] for concurrent
systems, a proof system dealing with modal µ-calculus has been set up in [4]
for the framework that we consider. But the question of decidability was left
open. Then a decision procedure has been proposed in [18] by restricting the
study to properties expressed in simulation logic. Here we consider properties
expressed in monadic second-order logic (see e.g. [10]) and we prove that for any
fixed integer value k, the compositionality is a decidable problem for sequential
programs whose control-flow graphs are of tree-width less than k.

This contributes to the studies mentioned above seeing that monadic second-
order logic contains modal µ-calculus and a fortiori simulation logic. The limita-
tion of our solution concerns the tree-width of the control-flow graphs. Roughly
speaking, the tree-width is an integer value measuring how far a graph is from
being a tree (see [17]). We claim that this limitation is reasonable, because rea-
sonable programs are indeed of bounded tree-width as it has been shown in [21]:
the tree-width of the control-flow graph of any goto-free C program is at most
6. Moreover, a study reported in [11] showed that the tree-width for control-flow
graphs of the functions of the Java API source code does not exceed 5, and the
average of it is only 2.7.

All the paper is devoted to the proof of the decidability result (Theorem 1),
which relies on a variation of the classical link between monadic second-order
logic and automata (see e.g. [20]). First, we remark that the compositionality
problem as described above can be reformulated into the satisfiability problem
for families of infinite hypergraphs (actually HR-equational hypergraphs) ob-
tained by uniform substitution of hyperedges by hypergraphs specified by MSO
formulas, which we call MSO uniform expansions. These families actually are the
sets of transition systems which encode the behaviours of the programs made
of functions satisfying a given set of structural properties. Second, we prove the
decidability of MSO theories of MSO uniform expansions in the case of bounded
tree-width. The first step of the proof is to translate the problem into a tree
language problem, introducing for that a new kind of automata on infinite trees
called composite automata. These automata encode MSO uniform expansions
via the the concept of syntactic expressions, which is possible because of the
bounded tree-width. Finally we prove the decidability of the emptyness of the
intersection of the languages of a composite automaton and a Rabin automaton.
We do that by using a variation of the classical point view of runs of automata
in terms of games (see e.g. [20]). This result allows us to give out a bound for
the length of solutions, and therefore to solve the problem by an enumeration
method.

Acknowledgements. The author thanks B. Courcelle and G. Sénizergues for
many helpful comments and suggestions.

1 Formal Definitions

Hypergraphs. A hypergraph, also called relational structure, is a tuple of the
form (V, L, {R`}`∈L) where V is the set of vertices; L is the finite set of labels,
and for each ` ∈ L, R` is a relation over V , i.e., a subset of V n for some strictly
positive integer n. An element of R` of form (v1, ..., vn) defines a hyperedge whose
vertex list is v1, ..., vn; n is called the arity of the hyperedge. Let us note that
the labelling of vertices is encoded by hyperedges of arity 1. Graphs are the
hypergraphs whose hyperedges are all of arity 1 or 2. Here we actually deal with
hypergraphs with sources which generalise pointed graphs; such a hypergraph
is a hypergraph provided with a finite ordered list of pairwise distinct vertices.
These distinguished vertices are called the sources of the hypergraph, the other
ones are said to be internal. The sequence of sources of a hypergraph H is

denoted by src(H). The number of sources of a hypergraph is called its type.
Let G be a hypergraph. A tree-decomposition is a pair (U, f) where U is an
undirected tree and f : VU → 2VG such that: VG =

⋃
i∈VU

f(i); if a list of
vertices v1 . . . vn of G are connected by a hyperedge, then there exists i ∈ VU

such that v1, . . . , vn ∈ f(i); if i, j, k ∈ VU are such that j belongs to the shortest
path between i and k, then f(i) ∩ f(k) ⊆ f(j). The tree-width (see [17]) of
such a decomposition is defined to be max{card(f(i)) | i ∈ VU} − 1. The tree-
width of G, denoted by twd(G), is the minimum of the tree-widths of all its
tree-decompositions.
HR-equational Graphs. The concept of HR-equational hypergraph extends those
of context-free graphs (see [14]). It has been introduced in [6]. Such a hyper-
graph, possibly infinite, is defined according to a deterministic hyperedge replace-
ment graph grammar (see [8]). Such a grammar is defined according to a finite
set of symbols L which is divided into two subsets L1 and L2 whose elements are
respectively called terminal symbols and non-terminal symbols. A deterministic
hyperedge replacement grammar1 is a tuple (`0, {H`}`∈L2

) where `0 ∈ L2 is the
initial symbol and for each ` ∈ L2, H` is a finite L-labelled hypergraph with
source, such that for each ` ∈ L, the arities of all the `-labelled hyperedges of
any H`′ are equal; and if ` ∈ L2, this arity must be equal to the type of H`.
The construction of the HR-equational hypergraph generated by such a gram-
mar is as follows: First, one starts from H`0 . Then, according to the grammar,
one replaces each hyperedge labelled by a non-terminal symbol by the associated
hypergraph, gluing the sources of the hypergraph in place of the vertices of the
hyperedge. One gets a new hypergraph, with possibly new hyperedges labelled
by a non-terminal symbols. One replaces again these last ones as above, and so
on, possibly infinitely many times, until there is no more such hyperedge.

Graph Grammar Compositionality Problem. We consider monadic second-
order formulæ on hypergraphs (MSO-formulæ for short, see e.g. [10]). These
formulæ are constructed using individual variables and set variables, taking
their values in the set of vertices. Atomic formulæ are of the forms x ∈ A,
A ⊂ B, or else edgη(x1, . . . , xn) which encodes the fact that x1, . . . , xn are
connected by an η-labelled hyperedge. Syntax is not restricted: we allow ex-
istential and universal quantifiers over individual and set variables, conjunc-
tions and negations. The set of finite models (respectively infinite) of a for-
mula ϕ is denoted by M(ϕ) (respectively M∞(ϕ)). We shall also use the set
Mtwd<k(ϕ) (respectively M∞

twd<k(ϕ)) of finite (respectively infinite) models of ϕ

whose tree-width is less than a fixed value k. The MSO-theory of a family F of
hypergraphs, i.e., the set of MSO-formulæ which are satisfied by all the graphs
of F, shall be denoted by ThMSO(F). Let us consider a finite set of symbols
M given with an arity mapping α : M → N. Let us call M-vector of typed-
graph languages any tuple (Lm)m∈M of sets of finite graphs such that for each
m ∈ M, all the graphs of Lm are of type α(m). Any pair S = (m0, (Lm)m∈M)

1 Seeing that the grammars that we consider are deterministic, i.e., it associates to
each non-terminal symbol one and only one hypergraph, a production of form ` → H`

is just denoted by H`.

made of a distinguished symbol m0 ∈ M and a M-vector of typed-graph lan-
guages (Lm)m∈M defines a family of deterministic graph grammars as follows:
Gr(S) = {(m0, {gm}m∈M) | ∀m ∈ M : gm ∈ Lm}. Let us now consider the set
of all the HR-equational hypergraphs generated by any such graph grammar:

Exp(S) = {G | there exists (m0, {gm}m∈M) ∈ Gr(S) which generates G}

Informally, a graph of Exp(S) is obtained by picking up one graph gm in each
Lm, once for all, and gluing the gm’s to each others infinitely many times. Such
a graph shall be said to be obtained by uniform expansion from S and the
family Exp(S) shall be called the uniform expansion of S. The compositionality
problem consists in determining the theory of Exp(S) from the theories of the
Lm’s.

The Lm’s are a priori infinite2. A way to give a constructive version of the
problem is to consider the case where M-vectors of typed-graph languages are
defined by logical formulæ, i.e., M-vectors of the form (M(ϕm))m∈M, where the
ϕm’s are MSO-formulæ. The family of hypergraphs obtained by uniform expan-
sion from such a M-vector shall be called the MSO uniform expansion of the M-
vector (ϕm)m∈M according to m0, it shall be denoted by Exp(m0, (ϕm)m∈M).
It is easy to see that in general theories of MSO uniform expansions are not
computable. However, if we bound the tree-width of the considered graphs, i.e.,
if we consider M-vectors of the form (Mtwd<k(ϕm))m∈M for some fixed k, one
gets uniform expansions of form Exp(m0, (Mtwd<k(ϕm))m∈M), called bounded-
tree-width MSO uniform expansions, whose MSO-theories are decidable; this is
the main point of this paper:

Theorem 1. Let M be a set of symbols, m0 ∈ M, k a positive integer and
(ϕm)m∈M an M-vector of MSO-formulæ, then ThMSO(Exp(m0, (Mtwd<k(ϕm)m∈M)))
is effectively computable.

In other words, seeing that MSO logic is closed by negation, the following prob-
lem is effectively decidable:

Problem 1 (Bounded Tree-Width MSO-Compositionality). Given an integer k,
a distinguished symbol m0, a vector of MSO-formulæ (ϕm)m∈M and a MSO-
formula Ψ , does there exist G ∈ Exp(m0, (Mtwd<k(ϕm))m∈M) such that G |= Ψ?

2 Motivation: Program Models

Here we define program models. They generalise3 the concepts introduced in [4]
which was inspired by [12]. In particular, this model allows us to catch security
properties considered in [4], see also [12, 3, 18].
Let M be a set of symbols whose elements are the names of functions. A function
is a pair (m, Gm) where m ∈ M is the name of the function and Gm is its
control-flow graph, i.e., a tuple (Vm,→m, λm) such that Vm is the finite set of
program points of m. The relation →m⊂ Vm × Vm encode the transfer edges

2 If all the Lm’s are finite, then the problem relies to the MSO-satisfiability of HR-
equational hypergraphs, which is already known to be decidable (see [6]).

3 We kept the formalism used in [4] to encode control-flow graphs and transition
systems. However these concepts can be easily defined as relational structures.

of m. λm : Vm → {entry, seq, ret} ∪ {call m}m∈M associates to each program
point of m a program point type. The entry points are the entry points of the
function. The call points are the points where the function calls an other function.
The ret points are the returning points of the function. The seq points are all
the other ones, which are not distinguished. A program P consists of a set of
functions {(m, Gm)}m∈M. Let VP denote the set of all the program points of all
the functions of P. A state of P is a pair (c, σ) consisting of a program point,
i.e., an element of VP, and a call stack σ ∈ V ∗

P
. A program P induces a labelled

transition system, i.e., a graph TP = (SP,LP,→P) defined as follows: The set of
states SP is the set of the states of P as defined above. The set of edge labels LP

is defined to be {τ, call, ret}. The call-labelled edges encode function calls. The
ret-labelled edges encode function returns. Any other transition of the system is
labelled by τ which is called the silent action (see [4]).

For each function name m ∈ M, we consider the labelled transition system
TP,m defined to be the subgraph of all the vertices of TP which are accessible
from a state of the form (ci, ε) where ci is an entry point of m.

Lemma 1. TP,m is a HR-equational graph.

Remark 1. This result could actually be refined seeing that TP,m is of finite de-
gree: this implies that it is a context-free graph. Therefore, it can be constructed
as the configuration graph of a pushdown automaton (see [14]), recovering the
result of [4].

Any M-vector (ϕm)m∈M of MSO-formulæ specifies a set of programs
P((ϕm)m∈M) = {(m, Gm)m∈M | ∀ m ∈ M : Gm |= ϕm}.

Problem 2 (Program Models Compositionality). Given a set of formulæ (ϕm)m∈M,
a method name m0, and a formula Ψ , does there exist4 a program P ∈ P((ϕm)m∈M)
such that TP,m0

|= Ψ ?

This problem is Turing reductible to ThMSO(Exp(m0, (ϕm)m∈M)); and actually,
it is also undecidable. However, if we restrict the study to control flow graph of
bounded tree-width, we get a problem which is Turing reductible to Problem 1,
i.e. to the theory of a bounded-tree-width MSO uniform expansion, and therefore
decidable.

3 Decidability of Compositionality Problem

Here we introduce some tools for dealing with decidability issues concerning
monadic second-order logic: HR-syntactic expressions and tree automata.

HR-syntactic expressions are the expressions based on the following opera-
tions on hypergraphs (see [6] for complete definitions): the redefinition of the
sources of a hypergraph, and the fusion of the sources of a hypergraph. These
operators are typed by the types of hypergraphs considered (see [6] for details).
We consider the set TL,k (respectively T∞

L,k) made of well-formed finite terms
(respectively infinite) on the set of operators dealing with hypergraphs of type

4 We state the compositionality problem in an existential form for convenience. In
our framework, this is equivalent to the classic statement seeing that the monadic
second-order logic is closed by negation of formulæ.

bounded by k, and L-labelled hyperedges. The finite hypergraph denoted by a
finite term of TL,k, i.e. the value of this term, is defined inductively according to
the definitions of the semantics of each operator which has been given above (see
[6]). The value of an infinite term t ∈ T∞

L,k, which is an infinite hypergraph, can
be defined in two ways: as the inductive limit of a sequence of finite hypergraphs
defined from an increasing sequence of sub-terms of t, or as the quotient of a
graph constructed from the set of leaves of t (see [6]). The value of a term is
denoted by t. Any finite hypergraph is the value of a term of some TL,k, and
any HR-equational hypergraph5 is the value of a (regular) term of some T∞

L,k

(cf. [6]). Besides, the concept of syntactic expressions allows to give an alterna-
tive definition of the tree-width: the tree-width of a hypergraph is the smallest
k such that it is the value of a term of TL,k (see [6]). The syntactic expression
operators are of arity 0, 1 or 2. Therefore, the terms on these operators can be
encoded by possibly infinite ordered binary trees labelled by operators. Here we
use automata on such trees: top-down tree automata (see [5]) and Rabin automata
(see [16]). The classical link between automata and monadic second-order logic
applies in this framework according to the following result (see [6]): For any
formula ϕ and any integer k, there exists a top-down automaton (respectively
a Rabin automaton) A such that Mtwd<k(ϕ) = {t | t ∈ TL,k and t ∈ L(A)}
(respectively M∞

twd<k(ϕ) = {t | t ∈ T∞
L,k and t ∈ L(A)}). One can compute A

from ϕ and conversely. Therefore Problem 1 can be reformulated in terms of
automata as follows:

Problem 3 (Automata Compositionality). Given a distinguished symbol m0, a
M-vector of top-down automata (Am)m∈M and a Rabin automaton A′, does
there exist G ∈ Exp(m0, (L(Am))m∈M) such that G = t for some t ∈ L(A′) ?

3.1 Composite Automata.

Here we introduce the concept of composite automata. It is intended to catch
sets of form Exp(m0, (L(Am))m∈M) used in Problem 3 (see Lemma 2 below).

As in Problem 3, let us consider a pair S = (m0, (Am)m∈M). Without loss of
generality, one can assume that each Am is such that no transition of it has an
initial state in its target vector. Let us consider the automaton A(S) constructed
from the Am’s as follows:
1) First, one takes the disjoint union of all the Am’s. 2) The terms recognized
by Am represents elements of M(ϕm). In such terms, the hyperedges encoding
gluings regarding the grammar are encoded by sub-terms of form Em′ for some
m′. Since these last ones are of arity 0, these sub-terms actually are leaves of the
complete term, when this last one is seen as a tree. Therefore, if we consider a
run ρ of Am on such a term, then ρ associates a terminal state to any sub-term of
form Em′ . Let us consider such a terminal state qf . Without loss of generality,
one can assume that Am is such that in any of its run, all the sub-terms to
which qf is associated are of the form Em′ for a particular fixed m′ depending

5 However, some infinite hypergraphs such as the infinite grid have no syntactic ex-
pression in any T∞

L,k (see [6].)

only of qf . One deletes qf and replaces its occurrences in the target vector of
any transition by an initial state of Am′ , duplicating the transition in question
for each initial state. 3) The initial states are those of Am0

. 4) The accepting
condition for A(S) shall be defined in Definition 1 below.

We distinguish in A(S) all the states which are initial states of some Am;
such a state is called a boundary state. A(S) is called a composite automaton.

Induced Partitions. Roughly speaking, a run of a composite automaton on a
given infinite tree induces a partition of the tree into finite subtrees, each of them
being recognized by a composant of the automaton, i.e., the states coming from a
particular Am. Such a run is accepting if, during the whole run, each composant
of the automaton recognizes always the same finite tree (see Definition 1 below).
Formally, let T be an infinite tree. A partition of T is a set {ti}i∈I of finite
subtrees of T such that the ti’s are pairwise disjoint and T =

⋃
i ti. Let {ti}i∈I

be such a partition. For any i ∈ I , let ri denote the root of ti. Let us note that I

has a canonical non-ordered tree structure in which, for any pair i, i′ ∈ I , i is the
father of i′ if and only if ri′ is the son of some node of ti. The set {ri}i∈I is called
the internal boundary of {ti}i∈I , it is denoted by F({ti}i∈I). We say that {ti}i∈I

is a tiling if there exists a finite subset K ⊂ I , assumed to be minimal, such
that there exists a mapping λ : I → K such that for any i ∈ I , there exists an
isomorphism σi : ti → tλ(i). The tk’s are called the tiles. |K| is called the index
of the tiling, it is denoted by idx(K). Such a tiling is said to be deterministic6

if for any k ∈ K there exists a mapping δk : tk → (K ∪ ⊥)∗ where ⊥ is a new
symbol not belonging to K defined as follows: for any x̄ ∈ tk, the n-th element
of δk(x̄), denoted by δk(x̄)n, is equal to ⊥ if and only if for any i ∈ λ−1(k) and
any x ∈ σ−1

i (x̄): the n-th son of x still is in ti. And δk(x̄)n = k′ if and only if for
any i ∈ λ−1(k) and any x ∈ σ−1

i (x̄), the n-th son of x does not belong to ti and
is equal to some ri′ with λ(i′) = k′. Let dmax = maxk,x{|δk(x)|}. Let us assume
that there exists an run ρ : T → QA(S) of A(S) on T such that there exists a
partition made of finite trees defined by the property that F(P(ρ)) is the inverse
image by ρ of the set of boundary states of A(S) This partition is called the
induced partition of T regarding ρ, it is denoted by P(ρ). Let us consider the
mapping τ : QA(S) → M defined by τ(q) = m if and only if q belongs to Am.

Definition 1 (Rigid Accepting Condition). A run ρ : T → QA(S) is said
to be accepting if P(ρ) is a tiling (K, λ, {σi}i∈I), and for any pair i1, i2 ∈ I,
τ(ρ(ri1)) = τ(ρ(ri2)) implies that λ(i1) = λ(i2). The language of A(S), denoted
by L∞(A(S)), is defined to be the set of trees for which such a run exists.

Lemma 2. A graph G belongs to Exp(m0, (L(Am))m∈M) if and only if it has
a syntactic expression tree T ∈ L∞(A(S)).

Simplification of Accepting Runs. Let ρ : T → QA(S) be an accepting run. Here
we keep the notations of Definition 1. For any m ∈ M, let km ∈ K be such
that τ(ρ(rkm

)) = m. Let us note that km is unique because K is assumed to be
minimal. In particular idx(P(ρ)) ≤ |M|. In order to simplify notations, let tm

6 A tree provided with a deterministic tiling is not necessarily deterministic it-self.
Indeed, several patterns could occur inside a particular tile.

(respectively rm) denote tkm
(respectively rkm

). Let us define σ : T →
⋃

m tm the
canonical extension of all the σi defined for any n ∈ T by σ(n) = σi(n) where ti
is the subtree of P(ρ) which contains n. Let us now consider for any m ∈ M the
mapping ρm = ρ|tm

: tm → QAm
⊂ QA(S). The family {ρm}m∈M is denoted by

∆ρ. Let λρ : I → M be defined by λρ(i) = τ(ρ(ri)) for any i ∈ I . Finally, let us
consider the mapping ρ̄ : T → QA(S) defined by ∀n ∈ T : ρ̄(n) = ρτ(ρ(n))(σ(n)).

Lemma 3. ρ̄ is an accepting run of A(S), called a simplified accepting run.

3.2 Tree Tilings and Rabin Automata

By Lemma 2, Problem 1 is equivalent to decide whether the intersection of
the languages of a given composite automaton and a given Rabin automaton is
empty or not. Here we study the runs of a Rabin automaton on trees which are
recognized by some composite automaton. We focus on the proof of Lemma 4
below which aims at simplifying such runs. This is a corner-stone of the proof of
the Theorem 1. Roughly speaking, it says that if a tree which has a deterministic
tiling is recognized by a Rabin automaton, then there is a run which uses a
bounded number of partial runs on each tile; the bound only depending on
the number of tiles (and not on their sizes) and on the number of states of
the automaton. This applies to trees which are simultaneously recognized by a
composite automaton and a Rabin automaton.

Formally, let us consider a Rabin automaton A′. Let T ∈ L(A′), let us assume
that there exists a tiling T = {ti}i∈I of T defined by a tuple (K, λ, (σi)i∈I). Let
ρ′ : T → QA′ be an accepting run of A′ on T . Let us consider the collection of
mappings of the form ρ′ ◦σ−1

i : tλ(i) → QA′ for i ∈ I . Since all the tk’s are finite
and their number is also finite, this collection of mappings is actually finite. Let
us index it by a finite set J and denote it by ∆′

T,ρ′ = {ρ′j : tkj
→ QA′}j∈J where

kj ∈ K. According to this notation, let λ′
T,ρ′ : I → J be the mapping such

that for any i ∈ I : ρ′|ti
≡ ρ′

λ′
T,ρ′ (i)

◦ σi. |∆
′
T,ρ′ | is called the regularity index of ρ′

regarding T, it is denoted by reg(T, ρ′).
Lemma 4. Let A′ be a Rabin automaton and let T ∈ L(A′) having a determin-
istic tiling T. Then there exists an accepting run ρ′ : T → QA′ on T such that

reg(T, ρ′) is bounded by 22×|QA′ |×|ΣA′ |×max{idx(K),|QA′ |}dmax×2|Q
A′ |

.

The Game Point of View. Let us be given with T ∈ L(A′) and a deterministic
tiling T = {ti}i∈I defined by a tuple (K, λ, {σi}i∈I , {δk}k∈K). Let us consider a
finite set of mappings ∆ = {ρ′

j : tkj
→ QA′}j∈J where kj ∈ K such that for any

j ∈ J , ρ′j is a partial run of A′ on tkj
. For each j ∈ J and for each node x of tkj

, let

us consider the tuple ξj,x = (q, η, w, p) ∈ QA′ ×ΣA′ × (K∪QA′)∗<dmax ×P(QA′)
defined as follows: q = ρ′

j(x) and η is the label of x. The word w is obtained as
follows: by definition of δkj

(x), for any position n such that δkj
(x)

n
= ⊥, the n-th

son of x is defined in tkj
, let us denote it by x′. Then one puts ρ′

j(x
′) at the n-th

position in δkj
(x) in the place of ⊥. Finally p = {ρ′

j(y) | y ∈ α} where α denotes
the path of tkj

starting at the root and ending at x. Let ξj denote the set of all the
(q, η, w, p) = ξj,x such that x ∈ tkj

and w contains at least one element of K.
For any transition τ = (q, η, (q1, . . . , qn′)) of A′ and any w ∈ (K∪QA′)∗<dmax ,

let χτ,w ⊂ J∗<dmax be the set of words of form j0 . . . jn where n is the number of
positions where some element of K occurs in w, and for any ` ∈ [1...n], j` ∈ J is
such that kj`

is equal to the `-th element of K occurring in w and (q1, . . . , qn′) is
obtained from w by replacing the `-th element of K occurring in w by ρ′

j`
(rkj`

).

Let G∆ be the finite two-players game defined by the finite game graph
Γ∆ = (V0, V1, E, c, C) and the winning ω-language W where V0 = QA′ × ΣA′ ×
(K ∪QA′)∗<dmax ×P(QA′) is the set of positions for player1, V1 = J∗<dmax is the
set of positions for player0, the set of transitions E groups transitions of the form
(q, η, w, p) → w′ such that w′ ∈ χτ,w where τ is a transition of A′ of origin (q, η),
and transitions of the form j0 . . . jn → (q, η, w, p) such that ∃e ∈ [1...n] such that
(q, η, w, p) ∈ ξje

, the colour set is C = QA′
∗ and c : V → C is defined by c(v) = ε

for any v ∈ V1, and c(q, η, w, p) = p̃, where p̃ ∈ QA′
∗ is defined to be the ordered

sequence of all the elements of p according to a linear ordering of QA′ fixed in
advance once for all, finally, W is defined to be the language of infinite words
accepted according to the acceptance condition of A′ and starting at some initial
state of A′. Following the standard schema, we identify runs and strategies: Let
ρ′ be a run of A′ on T . Let ∆′

T,ρ′ and λ′
T,ρ′ be as defined page 8. Then ρ′ defines

a strategy Sρ′ in the game G∆′
T,ρ′

associated to ∆′
T,ρ′ . Here we define Sρ′ by de-

scribing how it drives a play: 1) The first move of player0 is j0,0 = ρ′(root(T)). 2)
Next, the first move of player1 is defined as follows: According to the definition of
G∆′

T,ρ′
, player1 picks a node x̄1 ∈ tkj

0,0
such that ξj0,0 ,x̄1

∈ ξj0,0
; and he plays the

tuple (q1, η1, w1, p1) = ξj0,0 ,x̄1
. 3) Let us consider the play at the turn number

` ≥ 1 : let γ` = j0,0| (q1, η1, w1, p1)| . . . j`−1,0j`−1,1 . . . j`−1,n`−1
| (q`, η`, w`, p`)

be the successive positions which have appeared before. By induction on ` ≥ 0,
let us assume that a) there exists a sequence ti0 , . . . , ti`−1

of ` elements of P(ρ)
such that i0 is the root of I according to the natural tree structure of I , i.e.,
ri0 is the root of T (cf. page 7), and for any h ∈ [1...` − 2]: ih is the father of
ih+1; in particular, the concatenation of all the αh’s is also a path of T ; b) there
exists a sequence of paths α1 ⊂ ti0 , . . . , α` ⊂ ti`−1

such that for any h ∈ [1...`],
αh starts at the root rih−1

of tih−1
and ends at a node xh which is the father of

rih
if h ≤ ` − 1; c) for any h ∈ [0...`− 1]: there exists eh ∈ [1...nh] such that

(qh+1, ηh+1, wh+1, ph+1) = ξjh,eh
,σih

(xh+1).

The move of player0. The strategy Sρ′ defined by ρ′ is defined here: player0
plays a word j`,0j`,1 . . . j`,n`

defined as follows: n` is the number of elements
of K occurring in w`. For any h ∈ [1...n`], let lh be the position of the h-th
element of K occurring in w`, and let sh ∈ I be such that rsh

is h-th son of
x`. Then for any h ∈ [1...n`], we define jh = λ′

T,ρ′(sh). This move is correct:
Let τ be the transition of A′ used by ρ′ at x`. Then by construction we have
that η` is the label of x` and q` = ρ′(x`). Therefore (q`, η`) is indeed the origin
of τ . By a detailed checking of the definition of χτ,w`

, one also can verify that
j`,0j`,1 . . . j`,n`

∈ χτ,w`
. The move is indeed correct.

The move of player1. According to the definition of G∆′
T,ρ′

, player1 picks an
integer e` ∈ [1...n`] and a node x̄`+1 ∈ tkj`,e`

such that ξj`,e`
,x̄`+1

∈ ξj`,e`
; and

he plays the tuple (q`+1, η`+1, w`+1, p`+1) = ξj`,e`
,x̄`+1

.

Construction of α`+1 and ti`
. Let ᾱ`+1 be the path going from the root of tkj`,e`

to x̄`+1. Let e′` be position in w` of the e`-th element of K occurring in it. Then i`
is defined by the condition that ri`

is the e′`-th son of x`. Let us note that we have
λ(i`) = (w`)e′

`
. Finally α`+1 is defined to be σ−1

i`
(ᾱ). And x`+1 = σ−1

i`
(x̄`+1). The

induction hypothesis are obviously verified by construction.

Lemma 5. For any run ρ′ of A′, if ρ′ is an accepting run then Sρ′ is a winning
strategy.

Let us turn to the converse. Let S be a strategy in G∆. Let j0 = S(ε). Let
us suppose that ρ′

j0
(rkj

0
) is an initial state of A′. Such a strategy is said to

have the property Pinit. Assuming that, S defines a run ρ′
S

of A′ such that
∆′

T,ρ′
S

⊂ {ρ′j ∈ ∆ | j ∈ Dom(S)}. To define ρ′
S
, we shall construct the mapping

λ′
T,ρ′

S

: I → J associated to ρ′
S
.

Let i ∈ I . Let β be the path starting at the root of T and ending at
ri, the root of ti. Let ti0 , ..., tiθ

be the sequence of elements of P(ρ) across
which β goes; β ends at riθ

. For each h ∈ [1...θ], let xh ∈ tih−1
be the fa-

ther of rih
. Then xh ∈ β. Let eh be such that rih

is the eh-th son of xh

which does not belong to tih−1
; and let e′h ∈ [1...nh] be such that rih

is the
e′h-th son of xh. Let us consider the partial play defined as follows: According
to S, the first move of player0 is j0,0 = S(ε). Then, inductively, let us con-
sider the play at the turn number ` ≤ θ : let γ` = j0,0| (q1, η1, w1, p1)| . . .

|(q`, η`, w`, p`)| j`,0j`,1 . . . j`,n`
be the successive positions which have appeared

before. We assume that the successive game positions j0,0| j1,0j1,1 . . . j1,n1
| . . .

|j`,0j`,1 . . . j`,n`
have been played by player0 according to S. If ` = θ, then the

construction is finite. Otherwise, we define the next moves of player0 and player1:
First, let us deal with the next move of player1. Let us note that λ(i`) = kj`,e`

.
Therefore x̄`+1 = σi`

(x`+1) belongs to tkj`,e`

. Then we define the next move of
player1 to be (q`+1, η`+1, w`+1, p`+1) = ξj`,e`

,x̄`+1
. Second, player0 plays accord-

ing S: j`+1,0j`+1,1 . . . j`+1,n`+1
= S((q1, η1, w1, p1) . . . (q`+1, η`+1, w`+1, p`+1)) By

induction, we construct a play γθ. And finally, we set: λ′
T,ρ′(i) = jθ,eθ

.

Lemma 6. For any strategy S of player0 in G∆, if S is a winning strategy and
has the property Pinit, then ρ′

S
is an accepting run.

Lemma 7 (Strategy Reduction). Let G be a game defined by a game graph
Γ = (V0, V1, E, c, C) with |V1| and |C| finite. Let us suppose that there exists a
winning strategy S for player0 in G. Then there exists an other strategy S′ for
player0 in G such that |S′(Dom(S′))| ≤ |c(V1)| × 22×|V0|. Moreover, S′ can be
computed in an effective way from S.

Proof of Lemma 4. Let us be given with an accepting run ρ̃′ on T ∈ L(A′).
By Lemma 5, ρ̃′ defines a winning strategy Sρ̃′ for player0 in G∆′

T,ρ̃′
. More-

over, Sρ̃′ has the property Pinit. By Lemma 7, we can construct from Sρ̃′ a
new winning strategy S′ for player0 such that |S′(Dom(S′))| is bounded by
22×|QA′ |×|ΣA′ |×max{idx(K),|QA′ |}dmax×2|Q

A′ |

. Taking into account Remark 8, one
can assume that S′ has the property Pinit. By Lemma 6, S′ defines an accepting
run ρS′ which satisfies the conditions of Lemma 4 �

3.3 Decidability

Decidability results from a pumping property obtained from Lemma 4: if the
langages of a composite automaton and a Rabin automaton are not disjoint,
then there is a tree in their intersection which has a deterministic tiling with
bounded tiles (Lemma 8 below). Deciding if such a tree exists is therefore possible
by enumeration.

Let (Am)m∈M and A(S) be such as in Section 3.1. Let T ∈ L∞(A(S)). Let
ρ : T → QA(S) be an accepting run of A(S) on T , and let P(ρ) = {ti}i∈I

be the induced partition of T associated to ρ. P(ρ) is a deterministic tiling, let
(K, λ, {σi}i∈I , {δk}k∈K) be a tuple associated to it. We also consider the families
{tm}m∈M and ∆ρ = {ρm : tm → QAm

}m∈M, and the mapping λρ : I → M
as defined at page 8. Let A′ be a Rabin automaton, let us assume that T ∈
L(A′). Let ρ′ : T → QA′ be an accepting run satisfying Lemma 4 regarding the
deterministic tiling defined by P(ρ). We keep the notations of Section 3.3. Let
us consider ∆′

P(ρ),ρ′ = {ρ′j : tkj
→ QA′}j∈J defined in Section and the associated

mapping λ′
P(ρ),ρ′ : I → J .

Path Collapsing. Let α = x0...xn be a depth-increasing path in T ; x0 is the
higher node and xn the lower one. Collapsing α in T consists in deleting Tx0

and gluing Txn
in place of it in T . The resulting tree is denoted by ζα(T). Let

πα : T → ζα(T) be the associated projection. Let ρ : T → Q′
A

be a run. The
operation of collapsing α in T is said to be compatible with ρ if ρ(x0) = ρ(xn). If
this holds, then ρ induces a run on ζα(T) which shall be denoted by ζα(ρ). For
any family P of pairwise disjoint paths of T , possibly infinite, the operation of
collapsing all the paths of P simultaneously in T , denoted by ζP, is well defined
by considering the equivalence relation made of the union of all the equivalence
relations (seen as subsets of T ×T) associated to the paths of P: RP =

⋃
α∈P

Rα.
Let πP : T → ζP(T) denote the associated projection. If ζα is compatible with ρ

for any α ∈ P, then one consider the canonical run ζP(ρ) of A′ on ζP(T). Let α

be a path of tm for some fixed m. Such a path defines a family of pairwise disjoint
paths in T defined by σ−1(α) = {σ−1

i (α) ⊂ T | λρ(i) = m}. Let us consider the
simultaneous collapsing of all the paths of σ−1(α) in T , i.e., ζσ−1(α); let it be
denoted by ζ∞α . We also consider the associated projection π∞

α : T → ζσ−1(α)(T)
and the associated run ζ∞α (ρ). Similarly, ζ∞α is compatible with ρ′ if and only if
ζα is compatible with ρ′

j for any j ∈ J such that λρ(kj) = m. In this case ζ∞α (ρ′)
still is a run of A′ on ζ∞α (T), but non necessarily accepting.

Lemma 8. Let B(M, A′) = 22×|QA′ |×|ΣA′ |×max{|M|,|QA′ |}dmax×2|Q
A′ |

. If the hei-
ght of tm for some m ∈ M is greater than (B(M, A′)|QA′ | + 2)|QAm ||QA′ |B(M,A′)

then there exists a depth-increasing path α ⊂ tm such that ζ∞α is compatible with
ρ and ρ′, and such that ζ∞α (ρ′) is a Rabin-accepting run of A′ on ζ∞α (T).

This lemma gives us a bound for enumeration and thus, allows us to decide
Problem 3 in an effective way. This achieves the proof of Theorem 1.

References

1. M. Abadi and L. Lamport. Composing Specifications. ACM Transactions on Prog.
Lang. and Systems (TOPLAS), 15(1):73–132, 1993.

2. H. R. Andersen, C. Stirling, and G. Winskel. A compositional proof system for
the modal mu-calculus. In 9th Symp. on Logic in Comp. Sci. (LICS’94), pages
144–153. IEEE Comp. Soc. Press, 1994.

3. G. Barthe, P. Courtieu, G. Dufay, M. Huisman, S. Mello de Sousa, G. Chugunov,
L.-A. Fredlund, and D. Gurov. Temporal Logic and Toolset for Applet Verifica-
tion: Compositional Reasoning, Model Checking, Abstract Interpretation. Tech-
nical report, VERIFICARD Project, http://www.verificard.org/, Sept 2002.
Deliverable 4.1.

4. G. Barthe, D. Gurov, and M. Huisman. Compositional Verification of Secure
Applet Interactions. In Fundamental Approaches to Soft. Eng. (FASE’02), volume
LNCS 2306, pages 15–32, 2002.

5. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree Automata Techniques and Applications. Technical report,
LIFL – France, 2003. http://www.grappa.univ-lille3.fr/tata/.

6. B. Courcelle. The Monadic Second-order Logic of Graphs II : Infinite Graphs of
Bounded Width. Math. Syst. Theory, 21:187–221, 1989.

7. M. Dam and D. Gurov. Compositional Verification of CCS processes. In Proceed-
ings of PSI’99, volume LNCS 1755, pages 247–256, 1999.

8. F. Drewes, H.-J. Kreowski, and Habel A. Hyperedge Replacement Graph Gram-
mars. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by
Graph Transformation, volume 1, pages 95–162. World Scientific, 1997.

9. O. Grumberg and D. Long. Model Checking and Modular Verification. ACM
Trans. on Prog. Lang. & Syst., 16(3):843–871, 1994.

10. Y. Gurevich. Monadic Second-Order Theories. In J. Barwise and S. Feferman,
editors, Model Theoretic Logic, pages 479–506. Springer, 1985.

11. J. Gustedt, O.A. Maehle, and J.A. Telle. The treewidth of java programs. In Proc.
of the 4th Workshop on Algorithm Engineering and Experiments (ALENEX’02),
San Francisco, 2002. To appear in LNCS.

12. T. Jensen, D. Le Métayer, and T. Thorn. Verifying Security Properties of Control-
Flow Graphs. In Proc. of the 20th Symposium on Security and Privacy, Berkeley,
pages 89–103. IEEE Computer Society Press, 1999.

13. Clarke E. M., D. E. Long, and K. L. McMillan. Compositional Model Checking.
In Proc. of the 4th Symp. on Logic in Comp. Sci. (LICS’89, pages 353–362, 1989.

14. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theoretical Comp. Sci., 37:51–75, 1985.

15. Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional
reasoning. In Proc. of the 12th Int. Conference on Computer Aided Verification
(CAV’00), number 1855, pages 139–153. Springer-Verlag, 2000.

16. M. O. Rabin. Decidability of Second-Order Theories and Automata on Infinite
Trees. Trans. of the A.M.S., 141:1–35, 1969.

17. N. Robertson and P. Seymour. Some New Results on the Well-Quasi Ordering of
Graphs. Annals of Discrete Math., 23:343–354, 1984.

18. C. Sprenger, D. Gurov, and M. Huisman. Simulation Logic, Applets and Compo-
sitional Verification. Technical Report 4890, INRIA, 2003.

19. C. Stirling. A complete compositional modal proof system for a subset of CCS.
LNCS, 194:475–486, 1985.

20. W. Thomas. Languages, automata, and logic. In Rozenberg and Salomaa ed.,
Handbook of Formal Languages. Springer Verlag, volume 3, pages 389–455, 1997.

21. M. Thorup. All structured programs have small tree-width and good register
allocation. Inf. and Comp., 142(2):159–181, 1998.

