
A Note about Compositional Verification of Sequential Programs

Olivier Ly

LaBRI – Bordeaux I University

April 2, 2004

Abstract. This paper deals with the compositional verification of sequential programs. This consists in de-
ciding whether or not a given set of local structural properties of the functions of a program implies a given
global behavioural property of the program. Here we consider properties expressed in monadic second-order
logic dealing with the control flow of the program and the function calls occuring during its execution. This
problem has been investigated in relation with the security of open multi-application smart cards. We prove
that the compositionality is a decidable problem for sequential programs whose control-flow graphs are of
tree-width less than a fixed integer value, which includes in particular structured programs.

Keywords. Compositional Verification, Tree Automata, Monadic Second-Order Logic

Introduction

This paper deals with the compositional verification of sequential programs. This consists in deciding
whether or not a given set of local structural properties of the functions of a program implies a given
global behavioural property of the program. This aims at reducing the verification of a global property
of a program to the verifications of some independent local properties of its components.

Compositional verification applies to modular systems whose components are intended to be up-
dated frequently: once we have a compositionality result dividing the verification of a given global
property of the system into several local properties of its components, when a component is updated,
it is sufficient to verify only the component in question to ensure the validity of the whole system.
This applies in particular to embedded systems which must ensure their own validity themselves with
a limited amount of computing resources1 .

Compositional verification is a long standing problem in the area of concurrent systems (see e.g.
[12, 1, 16]). Here we rather consider sequential programs and we restrict our study to behavioural and
structural properties dealing with the control flow of the program and the function calls occurring
during execution. This framework relies on the language-independent model of programs introduced
in [15] in order to catch some classical security properties. It has been studied in [4, 3, 22] (see also
[10]) for compositional reasoning about security of open multi-application smart cards. Like e.g. [23,
2, 18] for concurrent systems, a proof system dealing with modal µ-calculus has been set up in [4]
for the framework that we consider. But the question of decidability was left open. Then a decision
procedure has been proposed in [22] by restricting the study to properties expressed in simulation
logic. Here we consider properties expressed in monadic second-order logic (see e.g. [13]) and we
prove that for any fixed integer value k, the compositionality is a decidable problem for sequential
programs whose control-flow graphs are of tree-width less than k.

This contributes to the studies mentioned above seeing that monadic second-order logic contains
modal µ-calculus and a fortiori simulation logic. The limitation of our solution concerns the tree-
width of the control-flow graphs. Roughly speaking, the tree-width is an integer value measuring
how far a graph is from being a tree (see [20]). We claim that this limitation is reasonable, because
reasonable programs are indeed of bounded tree-width as it has been showed in [25]: the tree-width
of the control-flow graph of a goto-free C program is at most 6. Moreover, a study reported in [14]
showed that the tree-width of the control-flow graphs of the functions of the Java API source code
does not exceed 5, and the average of it is only 2.7.

All the paper is devoted to the proof of the decidability result (Theorem 1), which relies on a
variation of the classical link between monadic second-order logic and automata (see e.g. [24]). First,
we translate the compositionality problem into a recognisable tree language problem, introducing a
new kind of automata on infinite trees called composite automata. Via the concept of syntactic ex-
pressions, these automata encode the transition systems which encode the behaviours of the programs
made of functions satisfying a given set of structural properties. Then, we set up an encoding of these
transition systems by regular infinite graphs, i.e., infinite graphs generated by graph grammars. This
allows us to translate behavioural properties into Rabin automata. Finally we obtain a pumping lemma
concerning trees recognised simultaneously by a composite automaton and a Rabin automaton. This
lemma is proved by using a variation of the classical point view of runs of automata in terms of games
(see e.g. [24]). This result allows us to give out a bound for the length of solutions, and therefore to
solve the problem by an enumeration method.

Preliminaries

A hypergraph, also called relational structure, is a tuple of the form (V,L, {R`}`∈L) where V is the
set of vertices; L is the finite set of labels. And for each ` ∈ L, R` is a relation over V , i.e., a subset
of V n for some strictly positive integer n. An element of R` of form (v1, ..., vn) defines a hyperedge
whose vertex list is v1, ..., vn; n is called the arity of the hyperedge. Let us note that the labelling of
vertices is encoded by hyperedges of arity 1. Graphs are the hypergraphs whose hyperedges are all of
arity 1 or 2. Here we actually deal with hypergraphs with sources which generalise pointed graphs;
such a hypergraph is a hypergraph provided with a finite ordered list of pairwise distinct vertices.
These distinguished vertices are called the sources of the hypergraph, the other ones are said to be
internal. The sequence of sources of a hypergraph H is denoted by src(H). The number of sources of
a hypergraph is called its type.

LetΣ be a finite set. AΣ-labelled n-ary ordered tree (a tree for short) is a mapping t : Dom(t) ⊂
{0, . . . , n − 1}∗ −→ Σ such that Dom(t) is prefix-closed. The elements of Dom(t) are called the
nodes of t. Let x ∈ Dom(t) be a node of t, the elements of Dom(t) of the form x.s with s integer are
called the sons of x; a node without any son is called a leaf of t, the other ones are called the internal
nodes; t(x) is called the label of x. In order to simplify notations, Dom(t) is also denoted by t when
it is clear according to the context. A subtree of a tree t is a mapping t′ : Dom(t′) ⊂ Dom(t) → Σ
such that there exists a node r ∈ Dom(t) and a prefix-closed set W ⊂ {0, . . . , n − 1}∗ such that
Dom(t′) = r.W , and for any x ∈ Dom(t′): t′(x) = t(x).

Let G be a hypergraph. A tree-decomposition is pair (U, f) where U is an undirected tree and
f : VU → 2VG such that: VG =

⋃

i∈VU
f(i); if a list of vertices v1 . . . vn of G are connected by a

hyperedge, then there exists i ∈ VU such that v1, . . . , vn ∈ f(i); if i, j, k ∈ VU are such that j belongs
to the shortest path between i and k, then f(i)∩f(k) ⊆ f(j). The tree-width of such a decomposition
is defined to be max{card(f(i)) | i ∈ VU} − 1. The tree-width of G, denoted by twd (G), is the
minimum of the tree-widths of all its tree-decompositions.

1 Program Models

1.1 Definition

Here we define our model of programs. It generalises2 the concepts introduced in [4] which was
inspired by [15]. In particular, our model allows us to catch security properties considered in [4], see
also [15, 3, 22].

Let M be a set of symbol whose elements are the names of functions. A function is a pair (m,Gm)
wherem ∈ M is the name of the function andGm is its control-flow graph, i.e., a tuple (Vm,→m, λm)
such that Vm is the finite set of program points of m. The relation →m⊂ Vm×Vm encode the transfer
edges of m. λm : Vm → {entry, seq, ret} ∪ {call m}m∈M associates to each program point of m a
program point type. The entry points are the entry points of the function. The call points are the points
where the function calls an other function. The ret points are the returning points of the function. The
seq points are all the other ones, which are not distinguished. A program P consists of a set of function
{(m,Gm)}m∈M. Let VP denotes the set of all the program points of all the functions of P. A state of
P is a pair (c, σ) consisting of a program point, i.e., an element of VP, and an call stack σ ∈ V ∗

P
.

A program P induces a labelled transition system, i.e., a graph TP = (SP,LP,→P) defined as
follows: The set of states SP is the set of the states of P as defined above. The set of edge labels LP is
defined to be {τ, call, ret}. The call-labelled edges encode function calls. The ret-labelled edges encode
function returns. Any other transition of the system is labelled by τ which is called the silent action.
Formally, the edge relation →P is defined by the following rules:

c : {entry, seq}, c, c′ ∈ Vm, c →m c′

(c, σ)
τ

−→P (c′, σ)
(local transfer)

c1 : call m2, c1, c
′
1 ∈ Vm1

, c1 →m1
c′1

c2 : entry, c2 ∈ Vm2

(c1, σ)
call
−→P (c2, c

′
1 · σ)

(call)

c1 ∈ Vm1

c2 : ret, c2 ∈ Vm2

(c2, c1 · σ)
ret

−→P (c1, σ)
(return)

For each function name m ∈ M, we consider the labelled transition system TP,m defined to be
the subgraph of all the vertices of TP which are accessible from a state of the form (ci, ε) where ci is
an entry point of m.

1.2 Regular Graphs

The concept of regular hypergraph3 extends those of context-free graphs (see [17]). It has been in-
troduced in [8]. Such a hypergraph, possibly infinite, is defined according to a deterministic hyper-
edge replacement graph grammar (see [11]). Such a grammar is defined according to a finite set of
symbols L which is divided into two subsets L1 and L2 whose elements are respectively called termi-
nal symbols and non-terminal symbols. A deterministic hyperedge replacement grammar4 is a tuple
(`0, {H`}`∈L2) where `0 ∈ L2 is the initial symbol and for each ` ∈ L2, H` is a finite L-labelled
hypergraph with source, such that for each ` ∈ L, the arities of all the `-labelled hyperedges of any
H`′ are equal; and if ` ∈ L2, this arity must be equal to the type of H`.

The construction of the regular hypergraph generated by such a grammar is as follows: First, one
starts from H`0 . Then, according to the grammar, one replaces each hyperedge labelled by a non-
terminal symbol by the associated hypergraph, gluing the sources of the hypergraph in place of the
vertices of the hyperedge. One gets a new hypergraph, with possibly new hyperedges labelled by a
non-terminal symbols. One replaces again these last ones as above, and so on, possibly infinitely many
times, until there is no more such hyperedge.

Formally, let (`0, {H`}`∈L2) be a deterministic graph grammar. First, for each ` ∈ L2, let us de-
note by e`1, ..., e`n`

the non-terminal hyperedges of H`, i.e. the hyperedges labelled by non-terminal
symbols. Second, let us consider the ordered regular tree t, whose nodes are labelled over L2, con-
structed inductively as follows: the root of t is labelled by `0; and for each ` ∈ L2, each `-labelled
node of t has exactly n` sons and for i = 1...n`, its i-th son has the same label than e`i. Finally the
regular hypergraph Γ associated to the grammar (`0, {H`}`∈L2) is defined as follows: for each ` ∈ L2

and each `-labelled node µ of t, let us consider the hypergraph Hµ obtained from a copy of H` by
deleting all its non-terminal hyperedges. Let Γ =

⋃

µHµ be the disjoint union of the Hµ’s. Let us
consider the binary relation R over vertices of Γ defined as follows: for each pair (x, x ′) of vertices
of Γ , (x, x′) ∈ R if and only if there exists a pair of nodes µ and µ′ of t such that µ′ is the j-th son
of µ for some j, x ∈ Hµ, x′ ∈ Hµ′ and there exists i such that x corresponds to the i-th vertex of e`j

in H`, where ` denotes the label of µ, and x′ is the i-th source of Hµ′ . Then the regular hypergraph Γ
associated to (`0, {H`}`∈L2) is defined as a quotient of

⋃

µHµ by the transitive symmetric closure of
R. For each vertex x of Γ , the vertex of Γ represented by x shall be denoted by ν(x). The sources of
Γ are defined to be those of Hµ0 where µ0 denotes the root of t.

Here we prove that the labelled transition system associated to a program is a regular graph5 . For
any m,m′ ∈ M, and for any c ∈ Vm, let us consider the set Dm′,c = {c1 ∈ Vm | c1 →m c and c1 :
callm′} and let d = maxm′,c |Dm′,c|. Here we keep the notations of Section 1.1. For each m ∈ M, let
us consider the graph Hm obtained from the control-flow graph Gm of m as follows: Vertices of Hm

are those of Gm. They are not labelled. Edges are labelled over the set {τ} ∪M× [1...d]. Each edge
of Gm whose origin is a vertex which is not labelled by call is kept in Hm. The other edges are not
considered. For each c ∈ Vm which is a successor of a call point c′ : call m′, we add a non-terminal
hyperedge em′,c of arity a = |Dm′,c|+ 1 whose first a− 1 vertices are the elements of Dm′,c in some
arbitrary order, and whose last vertex is c. This new edge em′,c is labelled by the tuple (m′, a − 1).
No source is defined. Then, for each tuple (m′, n) ∈ M × [1...d], let us consider the graph Hm′,n

constructed from Hm′ as follows: Vertices of Hm′,n are not labelled. Its edges are labelled over the

set {τ} ∪ {call, ret} ∪M× [1...d]. Starting from Hm′ , one adds n new vertices s1...sn, and for each
vertex of Hm′ corresponding to an entry point c : entry of Gm′ and for each i ∈ [1...n], one adds an
edge from si to c labelled by call. Then one adds an other new vertex denoted by r, and for each vertex
of Hm′ corresponding to a return point cr of Gm′ , one adds a edge from cr to r labelled by ret. The
sequence of sources of Hm′,n is defined to be (s1, ..., sn, r). Hm′,n is of type n+ 1.

Lemma 1. TP,m is isomorphic to the regular graph defined by the deterministic graph grammar
(m, {H`}`∈X) where the set of non-terminal symbols X is defined to be M∪M× [1...d].

Proof. Let Γ be the regular graph defined by (m, {H`}`∈X). On the one hand, keeping the notations
of Section 1.2, let us consider the ordered regular tree t and the graph Γ =

⋃

µ∈tHµ. On the other
hand, let us consider the set t′ of all possible values of the stack for the states of TP,m. The set t′ has
a natural tree structure.

Then t and t′ are isomorphic. Indeed, keeping the notations of Section 1.2, for any ` ∈ X , each
`-labelled node of t has n` sons, each one being associated to a non-terminal hyperedge of H`. There-
fore, each node n of t defines a finite sequence s of such hyperedges. By construction, the last vertex
of such a hyperedge is actually a return point. Therefore, by associating to such a hyperedge this re-
turn point. Each sequence of such hyperedges defines a sequence of return point in a natural way, i.e.
a stack value. Altogether, this define a mapping σ associating each node µ of t to a stack value σ(µ),
i.e. the node of t′. This mapping is one-to-one.

We now define a mapping βµ : Hµ → TP,m, for any node µ of t as follows: Let µ be the root of
t. Let us note that σ(µ) = ε. For each vertex c of Hµ, βµ(c) is defined to be the state (c, ε). Let µ be
a node of t distinct from the root. For each vertex c of Hµ, except the sources, βµ(c) is associated to
the state (c, σ(µ)). Let (s1, ..., sn, r) be the sequence of sources of Hµ. Let µ′ be the father of µ, and
e the hyperedge of Hµ′ to which is associated Hµ. For each i ∈ [1...n], let ci be the i-th vertex of e
in Hµ′ . Then βµ(si) is defined to be the state (ci, σ(µ′)). Let cr be the last vertex of e, then βµ(r) is
defined to be the state (cr, σ(µ′)). Let us now consider β =

⋃

µ βµ. Then β : Γ → TP,m is a graph
morphism. And its quotient β : Γ → TP,m by the relation R defined in Section 1.2 is an isomorphism.
2

2 Decidability of Compositionality Problem

2.1 Compositionality Problem

We consider monadic second-order formulæ on hypergraphs (MSO-formulæ for short, see e.g. [13]).
These formulæ are constructed using individual variables and set variables. Atomic formulæ are of
the forms x ∈ A, A ⊂ B, or edgη(x1, . . . , xn) which encodes the fact that x1, . . . , xn are connected
by an η-labelled hyperedge. Syntax is not restricted: we allows existential and universal quantifiers
over individual and set variables, conjunctions and negations. The set of finite models (respectively
infinite) of a formula ϕ is denoted by M(ϕ) (respectively M∞(ϕ)).

Remark 1. This generalises the framework of [4] which considered temporal logic and modal µ-
calculus whose expression powers are less than the one of monadic second-order logic.

In the following, we firstly state the compositionality problem for program models. It is unde-
cidable. Then we give a more general statement in terms of graph grammars. Finally, we state the
sub-problem that we prove to be decidable, i.e., the bounded tree-width compositionality problem.

Program Models. Let M be a finite set of names. Let us consider a finite set (ϕm)m∈M of MSO-
formulæ which specifies a set of programs P((ϕm)m∈M) = {(m,Gm)m∈M | ∀m ∈ M : Gm |=
ϕm}. As defined above, to each pair (P,m) made of a program and a function name is associated a
labelled transition system TP,m.

Problem 1 (Program Models Compositionality).
Being given with a set of formulæ (ϕm)m∈M, a method name m0, and a formula Ψ , does exist6 a
program P ∈ P((ϕm)m∈M) such that TP,m0

|= Ψ ?

Proposition 1. Problem 1 is undecidable.

Proof. The method is classical: Let M = {m} and let the unique ϕm be a MSO-formula whose
models are the grids. Then one consider a MSO-formula Ψ specifying a finite computation of a given
Turing machine on a grid specified by ϕm. This reduces Problem 1 to the Turing machine halting
problem. 2

Graph Grammar Specifications. Lemma 1 established a bridge between program models and graph
grammars. Here we extend this link by translating the concept of program specification to graph
grammar framework. Let us now consider a finite set of symbol M together with an arity mapping
α : M → N. A graph grammar specification is a pair S = (m0, {ϕm}m∈M) where m0 ∈ M and
for any m ∈ M, ϕm is a MSO-formula such that any g ∈ M(ϕm) is of type α(m); and for any
m,m′ ∈ M, any m′-labelled hyperedge of any g ∈ M(ϕm) is of arity α(m′). Such a specification
defines a family of deterministic graph grammars defined by Gr(S) = {(m0, {gm}m∈M) | ∀m ∈
M : gm |= ϕm}. Seeing that each deterministic graph grammar generates a regular possibly-infinite
hypergraph, S defines in turn a family of regular hypergraphs:
Rg(S) = {G | there exists (m0, {gm}m∈M) ∈ Gr(S) which generates G}

Problem 2 (Graph Grammars Compositionality).
Being given with a graph grammar specification S = (m0, {ϕm}m∈M) and a formula Ψ . Does exist
G ∈ Rg(S) such that G |= Ψ ?

On the base of Lemma 1, one gets the following result:

Lemma 2. Problem 1 can be reduced to Problem 2.

Proof. By Lemma 1, for a given program P = (m,Gm)m∈M and a given name m, the associated
labelled transition system TP,m is defined by the graph grammar (m, {H`}`∈X) as defined in Section
1.2. Here we keep the notation of Section 1.2.

Being given with a set of formulæ (ϕm)m∈M, one can construct a partial graph grammar speci-
fication S = (ψ`)`∈X without axiom such that each graph grammar (H`)`∈X ∈ Gr(S) is the graph
grammar constructed from some program P ∈ P((ϕm)m∈M) as described in Section 1.2; and con-
versely the graph grammar constructed from any program P ∈ P((ϕm)m∈M) belongs to Gr(S).

Therefore to decide whether there exists or not a program P ∈ P((ϕm)m∈M) such that TP,m |= Ψ
is equivalent to decide whether there exists G ∈ Rg(S) such that G |= Ψ . Up to the construction of
S = (ψ`)`∈X , this ends the proof.

The construction of S = (ψ`)`∈X is based on the fact that for each m (respectively for each pair
(m,n)) there exists a definable transduction (see [9]) which definesGm inHm (respectively inHm,n).
For each m (respectively each pair (m,n)) the formula ψm (respectively ψm,n) expresses firstly that
its model has been constructed according to the function described in Section 1.2 which is generic,
and secondly, by using the definable transduction, that it has been constructed from a graph (a Gm)
satisfying ϕm. We shall not give the details of this construction. 2

Now, let us fix an integer k. Let Rgk(S) = Rg(S) ∩ {G | twd (G) < k} (see [20] or Section 1
for the definition of twd(G)). We now state the central problem of this paper which we prove to be
decidable (Theorem 1):

Problem 3 (Bounded Tree-Width Compositionality).
Being given with a graph grammar specification S = (m0, {ϕm}m∈M), an integer k, and a formula
Ψ . Does exist G ∈ Rgk(S) such that G |= Ψ ?

Remark 2. Control flow graphs of structured programs have been showed to be of bounded tree-width
(see [25]). For instance the tree-width of the control flow graph of a goto-free C program is at most 6.
Moreover, a concrete study reported in [14] showed that the tree-width of the control flow graphs of
the programs of the Java API does not exceed 5, and the average of it is only 2.7. Therefore, we claim
that Problem 3 is a reasonable sub-case of Problem 2.

2.2 Specifications & Automata

Basics. First, we introduce the main tools we use for dealing with decidability issues concerning
monadic second-order logic: HR-Syntactic expressions and tree automata.

HR-Syntactic expressions are the expressions based on the following operations on hypergraphs
(see [8]):

– Disjoint sum. The disjoint sum of a hypergraph H1 of type n and a hypergraph H2 of type m,
denoted by H1 ⊕n,m H2, is defined to be the hypergraph resulting from the disjoint union of H1

and H2. Sources of H1 ⊕n,mH2 are defined to be the concatenation of the sources of H1 with the
ones of H2: src(H1 ⊕H2) = src(H1).src(H2).

– Redefinition of sources. Let α : [1...p] → [1...m]. And let H be a hypergraph of type m. Then
we consider σp,m,α(H), the hypergraph obtained from H by redefinition of sources according to
α. It is defined to be the same hypergraph than H , except for the sources: let src(H) = s1s2...sm,
then src(σp,m,α(H)) = sα(1)sα(2)...sα(p).

– Source fusion. Let δ be an equivalence relation on [1...m], and let H be a hypergraph of type
m. Then δm,δ(H) is obtained from H by gluing the sources of H according to δ, i.e. for any
i, j ∈ [1...m], si and sj are glued together if and only if i ≡δ j, where si and sj respectively
denote the i-th and the j-th source of H . The sources of δm,δ(H) are defined to be the vertices
resulting from the gluing of sources of H . They are ordered in a natural way by defining si < sj

if and only if min[i]δ < min[j]δ .

– Discrete graphs. Dm denotes a graph with m sources, no internal vertex and no hyperedge.
– Hyperedges. E`,m denotes a graph with m sources and no internal vertex, connected by a `-

labelled hyperedge in the same ordering.

These operators are typed by the types of hypergraphs considered.
We consider the set TL,k (respectively T∞

L,k) made of well-formed finite terms (respectively infi-
nite) on the set of operators dealing with hypergraphs of type bounded by k, and L-labelled hyper-
edges. The finite hypergraph denoted by a finite term of TL,k, i.e. the value of this term, is defined
inductively according to the definitions of the semantics of each operator which has been above (see
[8]). The value of an infinite term t ∈ T∞

L,k, which is an infinite hypergraph, can be defined in two
ways: as the inductive limit of a sequence of finite hypergraphs defined from an increasing sequence
of sub-terms of t, or as the quotient of a graph constructed from the set of leaves of t (see [8]). The
value of a term is denoted by t. Any finite hypergraph is the value of a term of some TL,k, and any
regular hypergraph7 is the value of a (regular) term of some T∞

L,k (cf. [8]). Besides, the concept of
syntactic expressions allows to give an alternative definition of the tree-width (cf. [20] or Section 1
for original definition of the tree-width): the tree-width of a hypergraph is the smaller k such that it is
the value of a term of TL,k (see [8]).

The syntactic expression operators are of arity 0, 1 or 2. Therefore, the terms on these operators
can be encoded by possibly infinite binary trees labelled by operators. Here we use automata on such
trees: top-down tree automata (see [7]) and Rabin automata (see [19]).

A non-deterministic tree automaton (a tree automaton for short) is a tuple A = (Q,Σ,∆, I)
where Q is a set whose elements are the states of A, Σ is the alphabet of A, ∆ ⊂ Q × Σ × Q∗ is
the set of transitions of A, and I ⊂ Q is the set of initial states. At the moment, we do not define
any accepting condition; we will do it bellow for each kind of automaton. A run of an automaton
A = (Q,Σ,∆, I) on a Σ-labelled tree t is a mapping ρ : t→ QA such that for any internal node x of
t there exists a transition (q, a, q0 . . . qn−1) ∈ ∆ such that ρ(x) = q, t(x) = a, x has exactly n sons
and for each s ∈ [0...n − 1], ρ(x.s) = qs. A partial run of A on a tree t is a mapping ρ : t → QA

such that for any node x of t there exists a transition (q, a, q0 . . . qn−1) ∈ ∆ such that ρ(x) = q,
t(x) = a, the number of sons of x is less or equal than n, and for any s ∈ [0...n− 1] such that x.s
belongs to t, ρ(x.s) = qs. A top-down automaton is a tuple A = (Q,Σ,∆, I, F) where (Q,Σ,∆, I)
is an automata as defined above and F ⊂ Q is the set of final states. A tree t is recognised by A

if and only if it is finite and there exists a run ρ : t → Q such that ρ(root (t)) ∈ I and for any
leaf x ∈ t, ρ(x) ∈ F . The language of the trees which are recognised by A is denoted by L(A). A
Rabin Automaton is a tuple A = (Q,Σ,∆, I, {(E1, F1) . . . (En, Fn)}) where for any i ∈ [1...n],
Ei, Fi ⊂ Q. A tree T is recognised by A if and only if it is infinite and there exists a run ρ : T → Q
such that ρ(root (T)) ∈ I and for any infinite path β in T , for any i ∈ [1...n], Ei ∩ In(ρ|β) = ∅ and
Fi ∩ In(ρ|β) 6= ∅, where In(ρ|β) = {q ∈ Q | |{x ∈ β | ρ(x) = q}| = ∞}.

The classical link between automata and monadic second-order logic applies in this framework
according to the following result (see [8]): For any set F of finite graphs (respectively infinite graphs)
of bounded tree-width k, there exists a MSO-formula ϕ such that F = M(ϕ) (respectively F =
M∞(ϕ)) if and only if there exists a top-down automaton A (respectively a Rabin automaton) such
that F = {t | t ∈ TL,k and t ∈ L(A)} (respectively F = {t | t ∈ T∞

L,k and t ∈ L(A)}). One can

compute A from ϕ and conversely. When ϕ is given, the associated automaton shall be denoted by
Ak(ϕ).

Composite Automata. Here we introduce the concept of composite automata. It translates the con-
cept of graph grammar specification in terms of automata (Lemma 3 bellow). This is the first step for
proving Theorem 1.

Let us fix an integer k. Let S = (m0, {ϕm}m∈M) be a graph grammar specification. Let (Ak(ϕm))m∈M

be some automata associated to the ϕm’s as above. Without loss of generality, one can assume that
each Ak(ϕm) is such that no transition of it has an initial state in its target vector. Let us consider the
automaton Ak(S) constructed from the Ak(ϕm)’s as follows:
1. First, one consider the disjoint union of all the Ak(ϕm)’s.
2. The terms recognised by Ak(ϕm) represents elements of M(ϕm). In such terms, the hyperedges
encoding gluings regarding the grammar are encoded by sub-terms of form Em′ for some m′. Since
these last ones are of arity 0, these sub-terms actually are leaves of the complete term, when this last
one is seen as a tree. Therefore, if we consider a run ρ of Ak(ϕm) on such a term, then ρ associates
a terminal state to any sub-term of form Em′ . Let us consider such a terminal state qf . Without loss
of generality, one can assume that Ak(ϕm) is such that in any of its run, all the sub-terms to which qf

is associated are of the form Em′ for a particular fixed m′ depending only of qf . One deletes qf and
replaces its occurrences in the target vector of any transition by an initial state of Ak(ϕm′), duplicating
the transition in question for each initial state.
3. The initial states are those of Ak(ϕm0).
4. The accepting condition for Ak(S) shall be defined in Definition 1 bellow.

We distinguish in Ak(S) all the states which are initial states of some Ak(ϕm); such a state is
called a boundary state. Ak(S) is called a composite automaton.

Induced Partitions. Roughly speaking, a run of a composite automaton on a given infinite tree induces
a partition of the tree into finite subtrees, each of them being recognized by a composant of the
automaton, i.e., the states coming from a particular Ak(ϕm). Such a run is accepting if, during the
whole run, each composant of the automaton recognizes always the same finite tree (see Definition
1 bellow). Formally, let T be an infinite tree. A partition of T is a set {ti}i∈I of finite subtrees of T
such that the ti’s are pairwise disjoint and T =

⋃

i ti. Let {ti}i∈I be such a partition. For any i ∈ I ,
let ri denote the root of ti. Let us note that I has a canonical non-ordered tree structure in which, for
any pair i, i′ ∈ I , i is the father of i′ if and only if ri′ is the son of some node of ti. The set {ri}i∈I is
called the internal boundary of {ti}i∈I , it is denoted by F({ti}i∈I). We say that {ti}i∈I is a tilling if
there exists a finite subset K ⊂ I , assumed to be minimal, such that there exists a mapping λ : I → K
such that for any i ∈ I , there exists an isomorphism σi : ti → tλ(i). The tk’s are called the tiles. |K|

is called the index of the tilling, it is denoted by idx(K). Such a tilling is said to be deterministic8 if
for any k ∈ K there exists a mapping δk : tk → (K ∪⊥)∗ where ⊥ is a new symbol not belonging to
K defined as follows: for any x̄ ∈ tk, the n-th element of δk(x̄), denoted by δk(x̄)n, is equal to ⊥ if
and only if for any i ∈ λ−1(k) and any x ∈ σ−1

i (x̄): the n-th son of x still is in ti. And δk(x̄)n = k′

if and only if for any i ∈ λ−1(k) and any x ∈ σ−1
i (x̄), the n-th son of x does not belong to ti and is

equal to some ri′ with λ(i′) = k′. Let dmax = maxk,x{|δk(x)|}. Let us assume that there exists an run

ρ : T → QAk(S) of Ak(S) on T such that there exists a partition made of finite trees defined by the
property that F(P(ρ)) is the inverse image by ρ of the set of boundary states of Ak(S) This partition
is called the induced partition of T regarding ρ, it is denoted by P(ρ). Let us consider the mapping
τ : QAk(S) → M defined by τ(q) = m if and only if q belongs to Ak(ϕm).

Definition 1 (Rigid Accepting Condition). A run ρ : T → QAk(S) is said to be accepting if P(ρ) is
a tilling (K,λ, {σi}i∈I), and for any pair i1, i2 ∈ I , τ(ρ(ri1)) = τ(ρ(ri2)) implies that λ(i1) = λ(i2).
The language of Ak(S), denoted by L∞(Ak(S)), is defined to be the set of trees for which such a run
exists.

Lemma 3. A graph G belongs to Rgk(S) if and only if it has a syntactic expression tree T ∈
L∞(Ak(S)).

Proof. Let us be given with a run ρ : T → QAk(S) such as considered in Definition 1. By construction
of Ak(S), T is indeed obtained by gluing some finite pieces recognised by the ϕm’s: each maximal
sub-runs of ρ only using states of some Ak(ϕm) actually recognises, up to the leaves, a term encoding
a finite model of ϕm. Here we consider sub-runs using some initial state only one time. The induced
partition P(ρ) cuts T into pieces which are these maximal sub-runs of the Ak(ϕm). Definition 1 im-
poses that all the tiles associated to Ak(ϕm) are the same, i.e., all along the run ρ, Ak(ϕm) recognises
always the same term. Keeping the notation of Section 2.1, up to the leaves, this term encodes gm. T
indeed encodes a solution.

Conversely, being given with a solution of Rgk(S), one consider the grammar (gm)m∈M which
has been used to construct it. This last one belongs to Gr(S). For eachm, one chooses a term encoding
gm. And by gluing copies of these terms, one constructs an infinite term T , which finally satisfies
Definition 1. This completes the proof.

Let us note however that some infinite terms encoding a solution in Rgk(S) are not recognised by
the composite automaton. Such a term can be constructed by choosing several distinct terms for one
gm. 2

Remark 3. In particular L∞(Ak(S)) only depends on S and m0.

Remark 4. The tilling is deterministic because the transitions between tiles are determined by the
grammar which is deterministic. So, the accepted trees are regular.

Simplification of Accepting Runs. Let ρ : T → QAk(S) be an accepting run. Here we keep the
notations of Definition 1. For any m ∈ M, let km ∈ K be such that τ(ρ(rkm

)) = m. Let us
note that km is unique because K is assumed to be minimal. In particular idx(P(ρ)) ≤ |M|. In
order to simplify notations, let tm (respectively rm) denote tkm

(respectively rkm
). Let us define

σ : T →
⋃

m tm the canonical extension of all the σi defined for any n ∈ T by σ(n) = σi(n)
where ti is the subtree of P(ρ) which contains n. Let us now consider for any m ∈ M the mapping
ρm = ρ|tm : tm → QAk(ϕm) ⊂ QAk(S). The family {ρm}m∈M is denoted by ∆ρ. Let λρ : I → M
be defined by λρ(i) = τ(ρ(ri)) for any i ∈ I . Finally, let us consider the mapping ρ̄ : T → QAk(S)

defined by ∀n ∈ T : ρ̄(n) = ρτ(ρ(n))(σ(n)). We admit the following result which is easy.

Lemma 4. ρ̄ is an accepting run of Ak(S).

Such a run is called a simplified accepting run.

Remark 5. Simplified Runs are Constructive. T is completely determined by the family {tm}m∈M.
And {(tm, ρm)}m∈M completely defines ρ̄. Moreover, being given with a set of such pairs, one can
effectively decide whether it defines an accepting run or not.

2.3 Tree Tillings and Rabin Automata

By Lemma 3, Problem 3 is equivalent to decide whether the intersection of the languages of a given
composite automaton and a given Rabin automaton is empty or not. Here we study the runs of a
Rabin automaton on trees which are recognized by some composite automaton. We focus on the proof
of Lemma 5 bellow which aims at simplifying such runs. This is a corner-stone of the proof the
Theorem 1. Roughly speaking, it says that if a tree which has a deterministic tilling is recognized by
a Rabin automaton, then there is a run which uses a bounded number of partial runs on each tile; the
bound only depending on the number of tiles (and not on their sizes) and on the number of states of
the automaton. By Remark 4 above, this applies to trees which are simultaneously recognized by a
composite automaton and a Rabin automaton.

Formally, let us consider a Rabin automaton A′. Let T ∈ L(A′), let us assume that there exists a
tilling T = {ti}i∈I of T defined by a tuple (K,λ, (σi)i∈I). Let ρ′ : T → QA′ be an accepting run of
A′ on T . Let us consider the collection of mappings of the form ρ′◦σ−1

i : tλ(i) → QA′ for i ∈ I . Since
all the tk’s are finite and their number is also finite, this collection of mappings is actually finite. Let
us index it by a finite set J and denote it by ∆′

T,ρ′ = {ρ′j : tkj
→ QA′}j∈J where kj ∈ K . According

to this notation, let λ′
T,ρ′ : I → J be the mapping such that for any i ∈ I: ρ′|ti ≡ ρ′

λ′
T,ρ′

(i) ◦ σi. |∆′
T,ρ′ |

is called the regularity index of ρ′ regarding T, it is denoted by reg(T, ρ′).

Lemma 5. Let A′ be a Rabin automaton and let T ∈ L(A′) having a deterministic tilling T. Then
there exists an accepting run ρ′ : T → QA′ on T such that reg(T, ρ′) is bounded by 22×|Q

A′ |×|Σ
A′ |×max{idx(K),|Q

A′ |}
dmax×2|QA′ | .

The Game Point of View. The proof is based on the concept of games. A game G is defined according
to a game graph and a winning language. A game graph is a tuple (V0, V1, E, c, C) where V0 and V1

are disjoint at most countable sets of vertices, their union V = V0 ∪ V1 is the set of game positions;
E ⊂ (V0 × V1) ∪ (V1 × V0) is an edge relation such that for each vertex the set of outgoing edges is
non-empty and finite, the elements ofE are called the moves; C is a set and c : V → C is a map called
the colouring. A winning language W is a ω-language of infinite words over C , i.e., W ⊂ C ω. A
play in G is a ω-word γ ∈ (V1V0)

ω; player0 wins γ if cω(γ) ∈ W , where cω : V ω → Cω denotes the
canonical extension of c. A strategy for player0 is a mapping S : DS ⊂ V ∗

0 → V1 where DS satisfies
the following condition: ε ∈ DS and for any (w, v) ∈ V ∗

0 × V0, w.v ∈ DS if and only if w ∈ DS

and there is a move from S(w) to v. In this case, there must be a move from v to S(w.v). We say that
player0 follows S in γ if for each i ≥ 0 : γ(2i) = S(γ(1)γ(3)...γ(2i − 1)). We say that S is a winning
strategy if any play in which player0 follows S is winning.

Let us be given with T ∈ L(A′) and a deterministic tilling T = {ti}i∈I defined by a tuple
(K,λ, {σi}i∈I , {δk}k∈K). Let us consider a finite set of mappings ∆ = {ρ′j : tkj

→ QA′}j∈J where
kj ∈ K such that for any j ∈ J , ρ′j is a partial run of A′ on tkj

. For each j ∈ J and for each node x of

tkj
, let us consider the tuple ξj,x = (q, η, w, p) ∈ QA′ ×ΣA′ × (K∪QA′)∗<dmax ×P(QA′) defined as

follows: q = ρ′j(x) and η is the label of x. The word w is obtained as follows: by definition of δkj
(x),

for any position n such that δkj
(x)

n
= ⊥, the n-th son of x is defined in tkj

, let us denote it by x′.
Then one puts ρ′j(x

′) at the n-th position in δkj
(x) in the place of ⊥. Finally p = {ρ′j(y) | y ∈ α}

where α denotes the path of tkj
starting at the root and ending at x. Let ξj denote the set of all the

(q, η, w, p) = ξj,x such that x ∈ tkj
and w contains at least one element of K .

For any transition τ = (q, η, (q1, . . . , qn′)) of A′ and any w ∈ (K ∪ QA′)∗<dmax , let χτ,w ⊂
J∗<dmax be the set of words of form j0 . . . jn where n is the number of positions where some element
of K occurs in w, and for any ` ∈ [1...n], j` ∈ J is such that kj`

is equal to the `-th element of K
occurring in w and (q1, . . . , qn′) is obtained from w by replacing the `-th element of K occurring in
w by ρ′j`

(rkj`
).

Let G∆ be the finite two-players game defined by the finite game graph Γ∆ = (V0, V1, E, c, C) and
the winning ω-language W where V0 = QA′×ΣA′×(K∪QA′)∗<dmax×P(QA′) is the set of positions
for player1, V1 = J∗<dmax is the set of positions for player0, the set of transitions E groups transitions
of the form (q, η, w, p) → w′ such that w′ ∈ χτ,w where τ is a transition of A′ of origin (q, η), and
transitions of the form j0 . . . jn → (q, η, w, p) such that ∃e ∈ [1...n] such that (q, η, w, p) ∈ ξje , the
colour set is C = QA′

∗ and c : V → C is defined by c(v) = ε for any v ∈ V1, and c(q, η, w, p) = p̃,
where p̃ ∈ QA′

∗ is defined to be the ordered sequence of all the elements of p according to a linear
ordering ofQA′ fixed in advance once for all, finally, W is defined to be the language of infinite words
accepted according to the acceptance condition of A′ and starting at some initial state of A′.

Following the standard schema, we show that the concepts of runs and strategies coincide. Let ρ ′

be a run of A′ on T . Let ∆′
T,ρ′ and λ′

T,ρ′ be as defined page 11. Then ρ′ defines a strategy Sρ′ in the
game G∆′

T,ρ′
associated to ∆′

T,ρ′ . Here we define Sρ′ by describing how it drives a play:
• The first move of player0 is j0,0 = ρ′(root (T)).
• Next, the first move of player1 is defined as follows: According to the definition of G∆′

T,ρ′
, player1

picks a node x̄1 ∈ tkj0,0
such that ξj0,0,x̄1 ∈ ξj0,0 ; and he plays the tuple (q1, η1, w1, p1) = ξj0,0,x̄1 .

• Let us consider the play at the turn number ` ≥ 1 :
let γ` = j0,0

︸︷︷︸

player0

(q1, η1, w1, p1)
︸ ︷︷ ︸

player1

j1,0j1,1 . . . j1,n1
︸ ︷︷ ︸

player0

(q2, η2, w2, p2)
︸ ︷︷ ︸

player1

. . .

. . . j`−1,0j`−1,1 . . . j`−1,n`−1
︸ ︷︷ ︸

player0

(q`, η`, w`, p`)
︸ ︷︷ ︸

player1

be the successive positions which have appeared before. By induction on ` ≥ 0, let us assume that
• there exists a sequence ti0 , . . . , ti`−1

of ` elements of P(ρ) such that i0 is the root of I according to
the natural tree structure of I , i.e., ri0 is the root of T (cf. page 9), and for any h ∈ [1...` − 2]: ih is
the father of ih+1; in particular, the concatenation of all the αh’s is also a path of T ;
• there exists a sequence of paths α1 ⊂ ti0 , . . . , α` ⊂ ti`−1

such that for any h ∈ [1...`], αh starts at
the root rih−1

of tih−1
and ends at a node xh which is the father of rih if h ≤ `− 1;

• for any h ∈ [0...`− 1]: there exists eh ∈ [1...nh] such that (qh+1, ηh+1, wh+1, ph+1) = ξjh,eh
,σih

(xh+1).

The move of player0. The strategy Sρ′ defined by ρ′ is defined here: player0 plays a word j`,0j`,1 . . . j`,n`

defined as follows: n` is the number of elements of K occurring in w`. For any h ∈ [1...n`], let lh be
the position of the h-th element ofK occurring in w`, and let sh ∈ I be such that rsh

is h-th son of x`.
Then for any h ∈ [1...n`], we define jh = λ′

T,ρ′(sh). This move is correct: Let τ be the transition of
A′ used by ρ′ at x`. Then by construction we have that η` is the label of x` and q` = ρ′(x`). Therefore
(q`, η`) is indeed the origin of τ . By a detailed checking of the definition of χτ,w`

, one also can verify
that j`,0j`,1 . . . j`,n`

∈ χτ,w`
. The move is indeed correct.

The move of player1. According to the definition of G∆′
T,ρ′

, player1 picks an integer e` ∈ [1...n`] and
a node x̄`+1 ∈ tkj`,e`

such that ξj`,e`
,x̄`+1

∈ ξj`,e`
; and he plays the tuple (q`+1, η`+1, w`+1, p`+1) =

ξj`,e`
,x̄`+1

.
Construction of α`+1 and ti` . Let ᾱ`+1 be the path going from the root of tkj`,e`

to x̄`+1. Let e′` be
position in w` of the e`-th element of K occurring in it. Then i` is defined by the condition that ri`

is the e′`-th son of x`. Let us note that we have λ(i`) = (w`)e′
`
. Finally α`+1 is defined to be σ−1

i`
(ᾱ).

And x`+1 = σ−1
i`

(x̄`+1).
The induction hypothesis are obviously verified by construction. Finally, we get the following

result:

Lemma 6. For any run ρ′ of A′, if ρ′ is an accepting run then Sρ′ is a winning strategy.

Proof. It remains to verify that Sρ′ is winning if ρ′ is accepting. Let us then suppose that ρ′ is accept-
ing. Let us consider a whole play

let γ` = j0,0 (player0)
(q1, η1, w1, p1) (player1)
j1,0j1,1 . . . j1,n1 (player0)
(q2, η2, w2, p2) (player1)
. . .
j`−1,0j`−1,1 . . . j`−1,n`−1

(player0)
(q`, η`, w`, p`) (player1)
. . .

Then γ is winning if and only if cω(γ) belongs to the winning language, i.e., the satisfying the ac-
cepting condition of A′. But this last one only depends on the set of states which appear infinitely in
cω(γ).

Let us write
cω(γ) = c((q1, η1, w1, p1)) . . . c((q`, η`, w`, p`)) . . .

Then
cω(γ) = p̃1p̃2 . . . p̃` . . .

But as we have seen above, p` = ρ′(α`) for any `. And thus, p̃` and ρ′(α`) have the same set of
states. Therefore any state appearing infinitely many times in p̃1p̃2 . . . p̃` . . . also appears infinitely
many times in ρ′(α1)ρ

′(α2) . . . ρ
′(α`) . . . , i.e.,

In(p̃1p̃2 . . . p̃` . . .) = In(ρ′(α1)ρ
′(α2) . . . ρ

′(α`) . . .)

And thus In(cω(γ)) = In(ρ′(α1)ρ
′(α2) . . . ρ

′(α`) . . .) = In(ρ′(α1α2 . . . α` . . .)).
Since ρ′ is accepting, In(ρ′(α1α2 . . . α` . . .)) satisfies the accepting condition. And therefore, so

does In(cω(γ)). This completes the proof. 2

Let us turn to the converse. Let S be a strategy in G∆. Let j0 = S(ε). Let us suppose that ρ′j0(rkj0
) is

an initial state of A′. Such a strategy is said to have the property Pinit. Assuming that, S defines a run
ρ′

S
of A′ such that ∆′

T,ρ′
S

⊂ {ρ′j ∈ ∆ | j ∈ Dom(S)}. To define ρ′
S
, we shall construct the mapping

λ′
T,ρ′

S

: I → J associated to ρ′
S
.

Let i ∈ I . Let β be the path starting at the root of T and ending at ri, the root of ti. Let ti0 , ..., tiθ
be the sequence of elements of P(ρ) across which β goes; β ends at riθ (see Figure 1). For each

ti
θ

ri0

T

β

xθ

x
θ−1

ti0

ti1

ti
θ−2

ti
θ−1

ri
θ

Fig. 1. Construction of ρ′

h ∈ [1...θ], let xh ∈ tih−1
be the father of rih . Then xh ∈ β. Let eh be such that rih is the eh-th son of

xh which does not belong to tih−1
; and let e′h ∈ [1...nh] be such that rih is the e′h-th son of xh. Let us

consider the partial play defined as follows: According to S, the first move of player0 is j0,0 = S(ε).
Then, inductively, let us consider the play at the turn number ` ≤ θ :
let γ` = j0,0

︸︷︷︸

player0

(q1, η1, w1, p1)
︸ ︷︷ ︸

player1

j1,0j1,1 . . . j1,n1
︸ ︷︷ ︸

player0

(q2, η2, w2, p2)
︸ ︷︷ ︸

player1

. . .

. . . j`−1,0j`−1,1 . . . j`−1,n`−1
︸ ︷︷ ︸

player0

(q`, η`, w`, p`)
︸ ︷︷ ︸

player1

j`,0j`,1 . . . j`,n`
︸ ︷︷ ︸

player0

be the successive positions which have appeared before. We assume that the successive game positions
j0,0 – j1,0j1,1 . . . j1,n1 – . . . – j`,0j`,1 . . . j`,n`

have been played by player0 according to S.
If ` = θ, then the construction is finite. Otherwise, we define the next moves of player0 and

player1: First, let us deal with the next move of player1. Let us note that λ(i`) = kj`,e`
. Therefore

x̄`+1 = σi`(x`+1) belongs to tkj`,e`

. Then we define the next move of player1 to be (q`+1, η`+1, w`+1, p`+1) =
ξj`,e`

,x̄`+1
. Second, player0 plays according S:

j`+1,0j`+1,1 . . . j`+1,n`+1
= S((q1, η1, w1, p1) . . . (q`+1, η`+1, w`+1, p`+1)) (1)

By induction, we construct a play γθ. And finally, we set: λ′
T,ρ′(i) = jθ,eθ

.

Lemma 7. For any strategy S of player0 in G∆, if S is a winning strategy and has the property Pinit,
then ρ′

S
is an accepting run.

Proof. First, ρ′
S

is indeed a run of A′. The previous construction defines the pair (∆′
T,ρ′ , λ

′
T,ρ′) which

defines the mapping ρ′ : T =
⋃

i ti → QA′ . Concerning initial condition, ρ′(root (T)) is indeed an
initial state of A′ because S has the property Pinit. Concerning transitions, at any node x of T which
is internal to some ti, i.e., such that x and its sons are all included in one ti, ρ′ uses the transition of
A′ that ρ′

λ′
T,ρ′

(i) uses at σi(x); let us recall that ρ′
λ′

T,ρ′
(i) is a partial run of A′. If x is not internal, then

one consider the previous construction of ρ′ by choosing the path from the root of T to a son of x not
belonging to ti as β. Then x = xθ. Let us consider the last move of player0 in γθ as defined in (1).
Let us recall that player0 always plays according to S in γθ. Then according to the definition of G∆,
there exists a transition τ such that this last move has the form (qθ, ηθ, wθ, pθ) → w′ with w′ ∈ χτ,wθ

.
Finally, according to the definition of χτ,wθ

, one can verify that ρ′ exactly uses the transition τ at
x = xθ.

The verification that ρ′ is accepting is similar to the function used in proof of Lemma 6, we shall
not detail it. 2

Lemma 8 (Strategy Reduction). Let G be a game defined by a game graph Γ = (V0, V1, E, c, C)
with |V1| and |C| finite. Let us suppose that there exists a winning strategy S for player0 in G. Then
there exists an other strategy S′ for player0 in G such that |S′(Dom(S′))| ≤ |c(V1)| × 22×|V0|. More-
over, S′ can be computed in an effective way from S.

Proof. For any v ∈ V1, let Predv = {v′ ∈ V0 | (v′, v) ∈ E} and let Succv = {v′ ∈ V0 | (v, v′) ∈ E}.
Let us consider the equivalence relation ∼Γ on V0 ∪V1 defined by: for any pair of vertices v and v ′ of
V0 ∪ V1, v ∼Γ v′ if and only if c(v) = c(v′) and Predv = Predv′ and Succv = Succv′ .

Let us consider v ∈ V0 ∪ V1. Then it is equivalent to play v instead of any game position which
is equivalent to it. Formally, let us consider the mapping πv from V0 ∪ V1 onto V0 ∪ V1 \ {v′ |
v′ ∼Γ v and v′ 6= v} defined by πv(w) = v if w ∼Γ v, and πv = w otherwise. Let us con-
sider the canonical extension πω

v : (V0 ∪ V1)
ω → (V0 ∪ V1)

ω defined by πω
v (w0w1 . . . wn . . .) =

πv(w0)πv(w1) . . . πv(wn) Then for any play γ of G, πω
v (γ) is also a play of G, and πω

v (γ) is win-
ning for player0 if and only if γ is. And for any strategy S, πv ◦ S is also a strategy. Moreover πv ◦ S

is winning if and only if S is.

Let us consider a strategy S for player0 in G. Let us pick v1, v2, . . . , vh ∈ V1 a collection of
pairwise non ∼Γ -equivalent vertices such that V1 =

⋃

n=1...h[vn]∼Γ
, i.e., a set of representatives of

∼Γ -classes. And let us consider S′ = πv1 ◦ πv2 ◦ . . . πv1 ◦ S. Then S′(Dom(S′)) ⊂ {v1, v2, . . . , vh},
and therefore |S′(Dom(S′))| is less than the number of equivalence classes regarding ∼Γ .

Let us note that the equivalence class of a vertex v ∈ V1 is determined by the tuple (c(v),Predv,Succv)
of c(V1)×P(V0)×P(V0). Therefore, the number of equivalence class is bounded by |c(V1)| × 22|V0 |,
which concludes the proof of the lemma. 2

Remark 6. Taking the framework of G∆, if S has the property Pinit, then S′ can be constructed in such
a way that it also the property Pinit. Indeed, the construction of S′ is based on the choice of a system
of representatives of ∼Γ -classes. In this process, one can choose j0,0 as the representative of its class,
assuring in this way the property Pinit.

Corollary 1. If there exists a winning strategy S for player0 in G∆, then there also exists a winning
strategy S′ for player0 in G∆ such that |S′(Dom(S′))| is bounded by 22×|Q

A′ |×|Σ
A′ |×max{idx(K),|Q

A′ |}
dmax×2|QA′ | .

Proof. First, let us note that |c(V1)| = |{ε}| = 1. Second, we have that |V0| is bounded by |QA′ | × |ΣA′ | × max{idx(K), |QA′ |}dmax × 2|QA′ |.
We get then the result by Lemma 8. 2

Proof of Lemma 5. Let us be given with an accepting run ρ̃′ on T ∈ L(A′). By Lemma 6, ρ̃′ defines
a winning strategy Sρ̃′ for player0 in G∆′

T,ρ̃′
. Moreover, Sρ̃′ has the property Pinit. By Lemma 8, we

can construct from Sρ̃′ a new winning strategy S′ for player0 such that |S′(Dom(S′))| is bounded by
22×|Q

A′ |×|Σ
A′ |×max{idx(K),|Q

A′ |}
dmax×2|QA′ | . Taking into account Remark 8, one can assume that S′

has the property Pinit. By Lemma 7, S′ defines an accepting run ρS′ which satisfies the conditions of
Lemma 5 2

2.4 Decidability

Decidability results from a pumping property obtained from Lemma 5: if the langages of a composite
automaton and a Rabin automaton are not disjoint, then there is tree in their intersection which has a
deterministic tilling with bounded tiles (Lemma 9 bellow). Deciding if such a tree exists is therefore
possible by enumeration.

Formally, let S = (m0, {ϕm}m∈M) be a graph grammar specification. Let (Ak(ϕm))m∈M and
Ak(S) be such as in Section 2.2. Let T ∈ L∞(Ak(S)). Let ρ : T → QAk(S) be an accepting
run of Ak(S) on T , and let P(ρ) = {ti}i∈I be the induced partition of T associated to ρ. P(ρ) is
a deterministic tilling, let (K,λ, {σi}i∈I , {δk}k∈K) be a tuple associated to it. We also consider the
families {tm}m∈M and ∆ρ = {ρm : tm → QAk(ϕm)}m∈M, and the mapping λρ : I → M as defined
at page 10.

Let A′ a Rabin automaton, let us assume that T ∈ L(A′). Let ρ′ : T → QA′ be an accepting
run satisfying Lemma 5 regarding the deterministic tilling defined by P(ρ). We keep the notations of
Section 2.4. Let us consider ∆′

P(ρ),ρ′ = {ρ′j : tkj
→ QA′}j∈J defined in Section and the associated

mapping λ′
P(ρ),ρ′ : I → J .

Path Collapsing Let α = x0...xn be a depth-increasing path in T ; x0 is the higher node and xn the
lower one. Collapsing α in T consists in deleting Tx0 and gluing Txn in place of it in T . The resulting
tree is denoted by ζα(T). Formally, ζα(T) is defined to be the quotient of T regarding the following
equivalence relation, denoted by Rα: for any two nodes x and x′, xRαx

′ if and only if they are equal
or if they both belong to Tx0 \ (Txn \ {xn}). For any x ∈ T , let [x] denote the Rα-equivalence class
of x. Let πα : T → ζα(T) be the associated projection.

Let ρ : T → Q′
A

be a run. The operation of collapsing α in T is said to be compatible with ρ if
ρ(x0) = ρ(xn). If this holds, then ρ induces a run on ζα(T) which shall be denoted by ζα(ρ) defined
by ζα(ρ)([x]) = ρ(x) for any x ∈ (T \ Tx0) ∪ Txn . Let us note that ζα(ρ)([x]) can be alternatively
defined to be the image by ρ of the highest node belonging to [x], i.e. x0. For any family P of pairwise
disjoint paths of T , possibly infinite, the operation of collapsing all the paths of P simultaneously in
T , denoted by ζP, is well defined by considering the equivalence relation made of the union of all
the equivalence relations (seen as subsets of T × T) associated to the paths of P: RP =

⋃

α∈P
Rα.

Let πP : T → ζP(T) denote the associated projection. If ζα is compatible with ρ for any α ∈ P,
then one defines a canonical run ζP(ρ) of A′ on ζP(T) as follows: ζP(ρ)([x]) = ρ(x′) where x′ is the
highest node belonging to [x]. Let α be a path of tm for some fixed m. Such a path defines a family
of pairwise disjoint paths in T defined by σ−1(α) = {σ−1

i (α) ⊂ T | λρ(i) = m}. Let us consider the
simultaneous collapsing of all the paths of σ−1(α) in T , i.e., ζσ−1(α); let it be denoted by ζ∞α . We also
consider the associated projection π∞

α : T → ζσ−1(α)(T) and the associated run ζ∞α (ρ). Similarly,
ζ∞α is compatible with ρ′ if and only if ζα is compatible with ρ′j for any j ∈ J such that λρ(kj) = m.
In this case ζ∞α (ρ′) still is a run of A′ on ζ∞α (T), but non necessarily accepting.

Lemma 9 (Pumping). Let us consider B(M,A′) = 22×|Q
A′ |×|Σ

A′ |×max{|M|,|Q
A′ |}

dmax×2|QA′ | . If
the height of tm for somem ∈ M is greater than M = (B(M,A′)|QA′ | + 2)|QAk(ϕm)||QA′ |B(M,A′)

then there exists a depth-increasing path α ⊂ tm such that ζ∞α is compatible with ρ and ρ′, and such
that ζ∞α (ρ′) is a Rabin-accepting run of A′ on ζ∞α (T).

Proof. The proof of Lemma 9 uses the following classical result:

Lemma 10. Let X,X1, ..., Xn be a collection of finite sets, let ck = |Xk| and c = |X|. For each
k ∈ [1...n], let fk : X → Xk be a collection of mappings. Let A > 0. Then if |X| > A×

∏

k ck, then
there exists A pairwise distinct elements x1, ..., xA ∈ X such that for any (k, `) ∈ [1...n] × [2...A]:
fk(x`) = fk(x0).

Proof. Let f : X →
∏

k Xk defined by f = (f1, ..., fn). We have |X| > A×
∏

k ck = A×|
∏

k Xk|.
One shows by induction on A that there exists A pairwise distinct elements x1, x2, . . . , xA ∈ X such
that f(x1) = f(x2) = · · · = f(xA). This implies the conclusion of the lemma. 2

Let us now turn to the proof of Lemma 9. Let Jm = {j ∈ J | kj = m} where J is the index set of
∆′

P(ρ),ρ′ . This set is finite, let us denote its elements by j1, . . . , j|Jm|. By Lemma 5, |Jm| ≤ B(M,A′).
Let us consider a path α in tm of length greater than (|Jm|× |QA′ |+2)×|QAk(ϕm)|× |QA′ ||Jm|.
We consider Lemma 10 with n = 1 + |Jm|, X = α, X1 = QAk(ϕm) and for k ∈ [2...n],

Xk = QA′ . Let f1 = ρm|α and for h ∈ [1...n], fh = ρ′jh
|α. Let us recall that the values of ρm

and of ρ′jh
for jh ∈ Jm are indeed in QAk(ϕm). Let A = |Jm| × |QA′ | + 2. Then there exists a

sub-sequence x1, ..., xA of pairwise distinct nodes of α such that for any (h, `) ∈ [1...n] × [2...A]:
fh(x`) = fh(x1).

For each i ∈ [1...|Jm| × |QA′ | + 1], let us consider αi the factor of α starting at xi and ending at
xi+1.

Fact 1 For each i ∈ [1...|Jm| × |QA′ | + 1], ζ∞αi
is compatible with ρ and ρ′.

We have that for any ` ∈ [2...A]: f1(x`) = f1(x1) and f1 = ρm|α. Thus, in particular for any
i ∈ [1...|Jm| × |QA′ | + 1], ρm(xi) = ρm(xi+1). This implies that ζ∞αi

is compatible with ρ. A
argument similar applies to show that ζ∞αi

is compatible with ρ′.
Let us consider the mapping f : P(tm) → P(Jm ×QA′) defined by

f(X) =
⋃

x∈X, j∈Jm

{(j, ρ′j(x))}

For each ` ∈ [1...|Jm| × |QA′ | + 1], let us consider the path β` starting at the root of tm and ending
at x`. Let us consider δ` = |f(α`) \ f(β`)|.

Fact 2 ∃ `0 ∈ [1...|Jm| × |QA′ | + 1] such that δ`0 = 0.

Let us suppose that for any ` ∈ [1...|Jm| × |QA′ | + 1], δ` > 0. For any ` ∈ [1...|Jm| × |QA′ | + 1],
let us pick an element z` ∈ f(α`) \ f(β`). Let us note that for any ` ∈ [1...|Jm| × |QA′ | + 2], we
have that

⋃

`′<` α` ⊂ β`. Therefore, the z`’s are pairwise distinct. But |{z`}`| = |Jm| × |QA′ | + 1,
and z` belongs to Jm ×QA′ whose number of element is |Jm| × |QA′ |. This is a contradiction.

Fact 3 ζ∞α`0
(ρ′) is a Rabin-accepting run of A′ on ζ∞α`0

(T).

Let us consider an infinite path ω′ starting at the root of ζ∞α`0
(T). There exists a unique infinite

path ω of T such that π∞
α`0

(ω) = ω′.
Let us consider the sequence i0, i1, . . . , ih . . . of elements of I such that ω crosses successively

the sequence ti0 , ti1 , . . . , tih , . . . of finite trees of P(ρ). Let us consider the decomposition ω =
ω0ω1 . . . ωh . . . such that ωh = ω ∩ tih . Then

ω′ = π∞α`0
(ω0)π

∞
α`0

(ω1) . . . π
∞
α`0

(ωh) . . . (2)

We have also that
For any h: ζ∞α`0

(ρ′)(π∞α`0
(ωh)) = ρ′(ωh) (3)

On the one hand, if λρ(ih) 6= m, then ωh ∩σ
−1
ih

(α`0) = ∅, and thus ωh is not modified by ζ∞α`0
. So the

above property holds. On the other hand, if λρ(ih) = m, then σ−1
ih

(α`0) ⊂ ωh or else σ−1
ih

(α`0)∩ωh =

∅. Indeed, let us suppose that σ−1
ih

(α`0) ∩ ωh 6= ∅ but σ−1
ih

(α`0) * ωh. Then α`0 has a strict prefix
α′

`0
such that σ−1

ih
(α`0) ∩ ωh = α′

`0
. Let x be the last node of α′

`0
. Then ωh contains x and then goes

across a son x′ of x which does not belong to α`0 . Let ωx′ denote the end of ω from x′. ωx′ belongs
to Tx′ . But Tx′ is deleted by ζ∞α`0

, and so is ωx′ . This is a contradiction because the image of ω by

ζ∞α`0
which is ω′ is infinite. Finally, we indeed have that σ−1

ih
(α`0) ⊂ ωh or else σ−1

ih
(α`0) ∩ ωh = ∅.

If σ−1
ih

(α`0) ∩ ωh = ∅, then the property holds as above. So let us assume that σ−1
ih

(α`0) ⊂ ωh.
This implies that ζ∞α`0

(ρ′)(π∞α`0
(ωh)) ⊂ ρ′(ωh). Let us suppose that there exists x ∈ ωh such that

ρ′(x) /∈ ζ∞α`0
(ρ′)(π∞α`0

(ωh)). This implies that x ∈ σ−1
ih

(α`0). Let x̄ = σih(x), x̄ ∈ α`0 , and ρ′(x) =

ρ′
λP(ρ),ρ′(ih)(x̄). Let kh = λP(ρ),ρ′(ih). The pair (kh, ρ

′
kh

(x̄)) belongs to f(α`0). Since δ`0 = 0,

we have that f(α`0) ∈ f(β`0). Therefore, (kh, ρ
′
kh

(x̄)) ∈ f(β`0). But β`0 is totally included in
ωh \ α`0 . Therefore, (kh, ρ

′
kh

(x̄)) ∈ f(ωh \ α`0). By definition of f , this means that there exists x̄′ ∈
ωh \ α`0 such that ρ′kh

(x̄′) = ρ′kh
(x̄), and thus, such that ρ′kh

(x̄′) = ρ′(x). Since x̄′ /∈ α`0 , σ−1
ih

(x̄′)

is not deleted by ζ∞α`0
(ρ′). And thus ρ′(x) = ρ′kh

(x̄) = ρ′(σ−1
ih

(x̄′)) = ζ∞α`0
(ρ′)(π∞α`0

(σ−1
ih

(x̄′)) ∈

ζ∞α`0
(ρ′)(π∞α`0

(ωh)), this is a contradiction. Finally we have indeed ζ∞α`0
(ρ′)(π∞α`0

(ωh)) = ρ′(ωh).
From (2) and (3), we get In(ζ∞αi0

(ρ′)(w′)) = In(ρ′(w)). Seeing that ρ′ is an accepting run, it satisfies
the Rabin condition of A′ on w, then so does ζ∞αi0

(ρ′) on w′. This ends the proof of the fact, and thus
of the expected result. 2

Theorem 1 (Decidability). The bounded tree-width compositionality problem (Problem 3) is decid-
able.

Proof. Let M be a finite set of function name. Let us be given with a graph grammar specification
S = (m0, {ϕm}m∈M), an integer k, and a formula Ψ . The problem consists in deciding whether
there exists G ∈ Rgk(S) such that G |= Ψ or not.

On the one hand, let Ak(S) be as constructed in Section 2.2. By Lemma 3, a graph G belongs to
Rgk(S) if and only if it has a syntactic expression tree T ∈ L∞(Ak(S)). On the other hand, let A′

be the Rabin automaton associated to Ψ , i.e., such that L(A′) = {T ∈ T∞
L,k | T |= Ψ}. The problem

is to decide whether L∞(Ak(S)) ∩ L(A′) = ∅ or not.
Let us suppose that there exists T ∈ L∞(Ak(S))∩L(A′). Let us consider the family {tm}m∈M as

constructed in Section 2.2. By applying Lemma 9 inductively, we can reduce the tm’s and obtain a new
family {t′m}m∈M such that each t′m is of height less than M and that the infinite tree T ′ constructed
from the t′m’s as in Remark 7 is still in L∞(Ak(S)) ∩ L(A′). Therefore, L∞(Ak(S)) ∩ L(A′) 6= ∅
if and only if there exists a tree T ′ ∈ L∞(Ak(S))∩L(A′) such that the associated family {t′m}m∈M

is such that each t′m is of height less than M .
Let us be given with a family {tm}m∈M of finite trees. Let us consider the infinite tree T obtained

from the tm’s as in Remark 7.
• One can decide in an effective way whether T ∈ L∞(Ak(S)) or not. To do that, one looks at each
tuple of partial runs {ρm : tm → QAk(S)}m∈M and checks whether or not it can be used to construct
a full run of Ak(S).
• One also can decide in an effective way whether T ∈ L(A′) or not. T is actually a regular tree; and
the recognisability by Rabin automaton is decidable for regular trees (see [21]).

Finally, we enumerate all the families {tm}m∈M of finite trees of height less than M ; and check
for each of them if it give rise to an element of L∞(Ak(S)) ∩ L(A′); if no family satisfies this
condition, we can conclude that L∞(Ak(S))∩L(A′) = ∅ This can be done in a finite time; this ends
the proof. 2

References

1. M. Abadi and L. Lamport. Composing Specifications. ACM Transactions on Prog. Lang. and Systems (TOPLAS),
15(1):73–132, 1993.

2. H. R. Andersen, C. Stirling, and G. Winskel. A compositional proof system for the modal mu-calculus. In 9th Symp.
on Logic in Comp. Sci. (LICS’94), pages 144–153. IEEE Comp. Soc. Press, 1994.

3. G. Barthe, P. Courtieu, G. Dufay, M. Huisman, S. Mello de Sousa, G. Chugunov, L.-A. Fredlund, and D. Gurov. Tem-
poral Logic and Toolset for Applet Verification: Compositional Reasoning, Model Checking, Abstract Interpretation.
Technical report, VERIFICARD Project, http://www.verificard.org/, Sept 2002. Deliverable 4.1.

4. G. Barthe, D. Gurov, and M. Huisman. Compositional Verification of Secure Applet Interactions. In Fundamental
Approaches to Soft. Eng. (FASE’02), volume LNCS 2306, pages 15–32, 2002.

5. D. Caucal. On infinite transition graphs having decidable monadic theory. In ICALP’96 - LNCS, volume 1099, pages
194–205, 1996.

6. C. Colby, P. Lee, and G. C. Necula. A proof-carrying code architecture for java. In Computer Aided Verification
(CAV’00) LNCS, volume 1855, pages 557–560, 2000.

7. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques
and Applications. Technical report, LIFL – France, 2003. http://www.grappa.univ-lille3.fr/tata/.

8. B. Courcelle. The Monadic Second-order Logic of Graphs II : Infinite Graphs of Bounded Width. Math. Syst. Theory,
21:187–221, 1989.

9. B. Courcelle. Graph Rewriting: An algebraic and Logic Approach. In Handbook of Theoretical Computer Science vol.
B, Van Leeuwen J. ed. Elsevier Science Publishers, 1990.

10. M. Dam and D. Gurov. Compositional Verification of CCS processes. In Proceedings of PSI’99, volume LNCS 1755,
pages 247–256, 1999.

11. F. Drewes, H.-J. Kreowski, and Habel A. Hyperedge Replacement Graph Grammars. In G. Rozenberg, editor, Hand-
book of Graph Grammars and Computing by Graph Transformation, volume 1, pages 95–162. World Scientific, 1997.

12. O. Grumberg and D. Long. Model Checking and Modular Verification. ACM Trans. on Prog. Lang. & Syst., 16(3):843–
871, 1994.

13. Y. Gurevich. Monadic Second-Order Theories. In J. Barwise and S. Feferman, editors, Model Theoretic Logic, pages
479–506. Springer, 1985.

14. J. Gustedt, O.A. Maehle, and J.A. Telle. The treewidth of java programs. In Proc. of the 4th Workshop on Algorithm
Engineering and Experiments (ALENEX’02), San Francisco, 2002. To appear in LNCS.

15. T. Jensen, D. Le Métayer, and T. Thorn. Verifying Security Properties of Control-Flow Graphs. In Proc. of the 20th
Symposium on Security and Privacy, Berkeley, pages 89–103. IEEE Computer Society Press, 1999.

16. Clarke E. M., D. E. Long, and K. L. McMillan. Compositional Model Checking. In Proc. of the 4th Symp. on Logic in
Comp. Sci. (LICS’89, pages 353–362, 1989.

17. D. E. Muller and P. E. Schupp. The theory of ends, pushdown automata, and second-order logic. Theoretical Comp.
Sci., 37:51–75, 1985.

18. Kedar S. Namjoshi and Richard J. Trefler. On the completeness of compositional reasoning. In Proc. of the 12th Int.
Conference on Computer Aided Verification (CAV’00), number 1855, pages 139–153. Springer-Verlag, 2000.

19. M. O. Rabin. Decidability of Second-Order Theories and Automata on Infinite Trees. Trans. of the A.M.S., 141:1–35,
1969.

20. N. Robertson and P. Seymour. Some New Results on the Well-Quasi Ordering of Graphs. Annals of Discrete Math.,
23:343–354, 1984.

21. G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transformation, volume 1. World Scientific,
1997.

22. C. Sprenger, D. Gurov, and M. Huisman. Simulation Logic, Applets and Compositional Verification. Technical Report
4890, INRIA, 2003.

23. C. Stirling. A complete compositional modal proof system for a subset of CCS. LNCS, 194:475–486, 1985.
24. W. Thomas. Languages, automata, and logic. In Rozenberg and Salomaa ed., Handbook of Formal Languages. Springer

Verlag, volume 3, pages 389–455, 1997.
25. M. Thorup. All structured programs have small tree-width and good register allocation. Inf. and Comp., 142(2):159–

181, 1998.

3 Notes

1. Compositional verification have been studied in relation with the security model of open multi-
application smart cards, actually Java Card based smart cards (cf. [4, 22]). After issuance, such a
device can download applications coming from possibly untrusted providers. It must then verify that
such an application does not corrupt its security. A compositionality result is used to limit the veri-
fication process to some local properties of the application to be downloaded, and doing this, ensure
however the validity of some global security properties of the card, whose other components are sup-
posed to have been already checked. This allows the card to check only the new component without
checking again all the system, which would be actually impossible regarding the computing resources
of a smart card. This is particularly adapted to the security model based on the concept of proof car-
rying code (cf. [6]). This last one advocates that the application provider provides with its application
a proof that this last one does not corrupt the global security of the card. The proof is downloaded
together with the code of the application, and it is checked by the card itself during downloading.

2. We kept the formalism used in [4] to encode control-flow graphs and transition systems. However
these concepts can be easily defined as relational structures as defined Section 1.

3. Regular hypergraphs were initially called equational hypergraphs in the original paper [8]; the term
“regular” appeared in [5] in order to refer to the fact that the concept of regular graph is a natural gen-
eralisation of the concept of regular tree (see e.g. [8]): the regular trees are exactly the regular graphs
which are trees.

4. Seeing that the grammars that we consider are deterministic, i.e., it associates to each non-terminal
symbol one and only one hypergraph, a production of form `→ H` is just denoted by H`.

6. We state the compositionality problem in an existential form for convenience. In our framework,
this is equivalent to the classic statement seeing that the monadic second-order logic is stable by nega-
tion of formulæ.

7. However, some infinite hypergraphs such as the infinite grid have no syntactic expression in any
T∞

L,k (see [8].)

8. A tree provided with a deterministic tilling is not necessarily deterministic it-self. Indeed, several
patterns could occur inside a particular tile.

5. Applying results of [8], this proves in particular that the satisfiability of monadic second-order
properties is decidable for such transition systems.

