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Abstract. We consider the inequationXA ⊆ BX whereA, B andX are for-
mal languages,X is unknown. It has been proved in [9] that ifB is a regular
language then the maximal solution is also regular. However, the proof, based on
Kruskal’s Tree Theorem, does not give any effective construction of the solution.
Here we give such an effective construction in the case whereA andB are both
finite and are such thatmaxb∈B |b| < mina∈A |a|. Moreover, the complexity of
our construction is elementary.
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Introduction

Language equations arise in a natural way in computer science. Let us just think
about Arden’s lemma for instance, or context-free languages which are compo-
nents of the least solutions of systems of polynomial equations.

However, even very simple questions may appear very difficult. For in-
stance, one can think about the equationXL = LX whereX is unknown;
this is the long-standing Conway problem which asks whetherthe maximal lan-
guage commuting with a given rational language is also rational or not ([2], see
also [6, 1, 4, 5]).

Many advances have been done in this domain this last few years ([6, 4, 5]).
But Conway’s problem has got a solution very recently, actually a negative solu-
tion. It has been proved in [11] (see also [3]) that there exists afinite languageL
such that the maximal solution ofXL = LX is not recursively enumerable even
for some finiteA andB. In addition, many natural classes of formal languages
have got characterizations in terms of equations (see [12, 13]).

In [9], it has been proved that the maximal solution ofXA ⊆ BX is regular
if B is regular, whateverA is. But the situation is tight: if one imposes toX
to be contained in some given star-free language, then the maximal solution of
XA ⊆ BX can become non recursively enumerable (see [8]). This is a variation
of the negative result of [11]. Besides, the proof that the maximal solution of
XA ⊆ BX is regular is based on the Kruskal’s Tree Theorem (see [7]). It is



non constructive, i.e., it does not give any effective construction of the maximal
solution.

In this article, we give such aneffective constructionin the case whereA
andB are both finite and are such thatmaxb∈B |b| < mina∈A |a|: we set up
an algorithm to construct an automaton recognizing the maximal solution of
XA ⊆ BX. Moreover, the complexity of our algorithm is elementary.

Like in [9], our proof takes the point of view of games. We consider a game
with two players: the attacker and the defender. Positions of the game are words.
The game consists of a succession of turns as follows: first, the attacker chooses
a worda ∈ A and appends it tow, wherew is the current position of the game.
If w.a has no prefix inB then the attacker wins and the game stops. Otherwise
the defender chooses a prefix ofw.a which belongs toB, and cuts it fromw.a,
driving the game to a new positionb\w.a for next turn. The defender wins if the
game consists of infinitely many turns. Membership of the maximal solution of
XA ⊆ BX can be translated into the existence of a winning strategy for the
defender (see [9]).

The main ingredient of our proof is a shrinking lemma for words having a
winning strategy, it shall be detailled in the text (see Section 2). The hypothesis
on lengths of words ofA andB is used only for it.

The author wants to thank Professor G. Sénizergues for very helpful dis-
cussions; and the anonymous referee for indicating large simplifications of the
proof.

Preliminaries

In all the paper,Σ is a finite alphabet.A andB are finite languages overΣ such
that

max
b∈B

|b| < min
a∈A

|a|

Letw be a word, we denote by|w| the length ofw. Letv be a prefix (respectively
a suffix) ofw. We denote byv\w (respectivelyw/v) the unique wordv′ such
thatw = vv′ (respectivelyw = v′v).

The set of finite sequences of elements ofA is denoted byTA, this is the
completeA-determinitic tree. “A-deterministic” because each node has one and
only one son associated to eacha ∈ A; the edge associated to this son can be
considered asa-labeled. The empty sequence, i.e., the root, is denoted byρ.

1 The Game ofXA ⊆ BX

In a classical way, the equationXA ⊆ BX can be translated into the game
framework as follows.



We are supposed to be given with two languagesA andB. We consider a
game with two players:AttackerandDefender. The game consists in a possibly
infinite sequence of turns. At the beginning of each turn, theposition of the
game is a word. One turn on a positionw goes as follows:

1. Attackerchooses a worda ∈ A and appends it to the right ofw.
2. If no prefix ofw.a does belong toB, thenDefenderlooses, the game stops

andAttackerwins. Otherwise,Defenderchooses a prefixb of w.a belonging
to B and erases it fromw.a. And the game continues in the positionb\w.a.

So,Attackerwins if he manages to blockDefender; andDefenderwins if the
game consists of an infinite number of turns in which he never looses. We say
that Defenderhas a winning strategy on a wordw if he has a strategy which
makes the game starting onw continue forever whateverAttackerdoes.

Lemma 1 (Equation and Game).A wordw belongs to the maximal solution
of XA ⊆ BX if and only if Defender has a winning strategy.

Proof. See [10].

2 A Shrinking Lemma on Attacker’s Strategies

2.1 The Shrinking Lemma

Let us denote byS the set of strict prefixes of words ofB, including the empty
word. Let us consider a wordw. We say that somes ∈ S is accessible through
w by Defenderif w can be written asb1...bns where all thebi’s are words of
B. The set of all elements ofS which are accessible throughw is called the
visibility of Defenderthroughw. It is denoted by Vis(w).

Remark 1.If Vis(w) = ∅ thenAttackerhas a winning strategy onw. But the
converse is false. Such aw is said to beterminal.

Definition 1 (B-relation). Let us be given with two wordsw and w′. We say
that w and w′ are B-related, which is denoted byw ↔B w′, if there exist 4
wordsv1, v2, v3 andv′2 such that:

• w = v1v2v3 andw′ = v1v
′
2v3.

• For anys ∈ Vis(v1), Vis(sv2) = Vis(sv′2).
• |v1| ≥ N1.

where we define

N1 = p2
(mina∈A |a|)(maxb∈B |b|)

mina∈A |a| − maxb∈B |b|
(2|S|

2
+ 1)q



Let us note thatv3 is superfluous in this definition. We just keep it for con-
venience of notations.

Remark 2.For any two wordsw and w′, w ↔B w′ implies that Vis(w) =
Vis(w′).

Lemma 2. The relation↔B is a right congruence of finite index over the set of
words of length greater thanN1.

Proof. To see that↔B is a right congruence, only transitivity is not straight-
forward: Letw ↔B w′ andw ↔B w′′. Let us note according to the previous
notations:

– w = v1v2 andw′ = v1v
′
2 (here we omitv3 which is supposed to be added

at the right ofv2).
– w′ = v̄1v̄2 andw′′ = v̄1v̄

′
2

Let us assume that|v̄1| > |v1|. Therefore,v1 is a prefix ofw′′. Let us pick
somes ∈ Vis(v1). Then Vis(sv2) = Vis(sv′2). Let S̄ = Vis(s.(v1\v̄1)). Then
Vis(sv′2) is the union of all the Vis(s̄v̄2) for s̄ ∈ S̄. Besides, anȳs ∈ S̄ be-
longs also to Vis(v̄1). And so, by assumption, Vis(s)v̄2 = Vis(s)v̄′2. Thus,
Vis(sv2) is the union of all the Vis(s̄v̄′2) for s̄ ∈ S̄, which is in turn equal to
Vis(s(v1\v̄1).v̄

′
2). This proves thatw andw′′ are B-related withv′2 = (v1\v̄1).v̄

′
2.

To verify that↔B is of finite index, it suffices to note that any sufficiently
large word is equivalent to a shorter word, prefix of it, and ofbounded length.
To get that, one uses a simple counting argument, based on thefact thatS is a
finite set and therefore has a finite number of subsets.

Let us mention that the congruence is computable.

Let σ be a strategy forAttacker (respectivelyDefender ) over a wordw. A
finite σ-sequence of playsin the game is a finite sequence of plays
(a1, b1), (a2, b2), . . . , (an, bn) whereAttacker (respectivelyDefender ) has play-
ed according toσ. This means that eachai of the sequence has been chosen ac-
cording to the previousbj for j < i andσ. Thebi are unspecified and variable.

A strong strategyfor Attacker(respectivelyDefender) is a strategy in the
game modified in such order thatAttacker (respectivelyDefender) can play
several words ofA (respectivelyB) at the same turn. Formally, a strong strategy
for Attacker(respectivelyDefender) is a strategy in the game defined by the pair
(A+, B) (respectively(A,B+)) instead of(A,B). Let us note that ifAttacker
has a winning strong strategy, then he has a winning strategy, and this is the
same thing forDefender. Indeed, provided with a winning strong strategy, one
can win in the normal game by maintaining a (FIFO) queue of plays. We just use
the concept of strong strategy in order to be more confortable when describing
winning strategies.



Lemma 3 (Shrinking Lemma). Let us be given with twoB-related wordsw
andw′, and a strategyσ for Attacker overw. Then there exists an integerL and
a strong strategyσ′ for Attacker overw′ with the following property: Whatever
the plays ofDefender , by followingσ′, in less thanL turns:

– EitherAttacker wins
– Or he drives the game fromw′ to a new wordv′ such that there exists a

non-void finiteσ-sequence of plays driving the game fromw to a new word
v which isB-related tov′.

The integerL andσ′ depend onσ, w andw′.

Before going into its proof, let us state the main consequence of this result:

Theorem 1. Let w andw′ be twoB-related words. ThenAttacker has a win-
ning strategy overw if and only if he has one onw′.

Proof. Indeed, let us suppose thatAttacker has a winning strategy overw. We
can construct a winning strategy overw′ as follows:

Lemma 3 provides us a strategyσ′ and an integerL. Let Attacker start
playing according to this strategy. According to the Lemma,after a finite number
of turns, less thanL:

– EitherAttacker wins. That is what we wanted andσ′ stops here.
– Or else, he drives the game to a wordv′1 and the lemma provides usσ-

sequence of plays driving the game fromw to a new wordv1 which isB-
related tov′1.

The strategyσ is still winning over this new wordv1, we then start again the
process with the wordsv1 andv′1. And so on.

Following that, we construct a sequencev1, v2, . . . , vk, . . . of words which
are positions of a play in the game whereAttacker follows σ. Let us note that
each pairvi, vi+1 are separated by at least one turn, and in fact, several turns.
In particular, when the game arrives to the wordvk, at leastk turns have been
played. Besides, let us observe thatσ, as a winning strategy ofAttacker , is fi-
nite. This implies that there exists an integerLσ such thatAttacker wins for
sure in less thanLσ turns fromw. Therefore,k is also bounded byLσ. This im-
plies that our process stops after at mostLσ cycles, which means thatAttacker

wins within at mostLσ cycles.

In the proof of Lemma 3 we need the following concept:

Definition 2 (Waiting Loop). Letw be a word. We define awaiting loopto be a
decompositionw = w1w2w3w4 of w in 4 factors such that for anys ∈ Vis(w1),
Vis(sw2) = Vis(sw2w3) andw3 not empty.



Lemma 4 (Waiting Loops and B-Relation).Let w be a word, and letw =
w1w2w3w4 be a waiting loop such that|w1| ≥ N1. Thenw is B-related to any
word ofw1w2w

∗
3w4.

Proof. So, letw′ = w1w2w
k
3w4 for some integerk. According to the notations

of Definition 1, let us definev1 = w1, v2 = w2w3, v′2 = w2w
k
3 andv3 = w4.

First, let us note that|v1| > N1 is true, it is an hypothesis of the lemma.
We prove that for anys ∈ Vis(v1), Vis(sv2) = Vis(sv′2) by induction onk.

Fork = 0, there is nothing to prove: this is the hypothesis of the lemma. Let us
thus suppose that it is true for somek ≥ 0. By induction, we just have to prove
that for anys ∈ Vis(v1), Vis(sw2w

k
3) = Vis(sw2w

k+1
3

).
So lets ∈ Vis(v1). Lets′ ∈ Vis(sw2w

k
3). Let us show thats′ ∈ Vis(sw2w

k+1
3

).
Let b1, . . . , bn ∈ B be such thatb1 . . . bns′ = sw2w

k
3 . Let n′ be the greatest

index such thatb1 . . . bn′ is a prefix ofsw2. And let s′′ = b1 . . . bn′\sw2; s′′

belongs to Vis(sw2). Besides, by assumption, Vis(sw2) = Vis(sw2w3). There-
fore, there existsb′1, . . . , b

′
n′′ such thatb′1 . . . b′n′′\sw2w3 = s′′. Finally, we ob-

tain that
b′1 . . . b′n′′bn′+1 . . . bns′ = sw2w3w

k
3 = sw2w

k+1

3

which means thats′ ∈ Vis(sw2w
k+1
3

). That is what we wanted. The converse is
similar.

Existence of waiting loop is given by the following simple result based on a
simple counting argument based on the fact that visibility sets are subsets ofS.

Lemma 5 (Existence of waiting loops, Version 1).For any wordw and any
prefixw1 of w such that the length ofw1\w is greater than2|S|

2
, there exists a

waiting loop of formw = w1w2w3w4.

We actually will use a more precise version:

Lemma 6 (Existence of waiting loops, Version 2).Let w be a word, and let
w = c1c2 . . . cn be a decomposition ofw into n factors, where theci’s are
words. Letn1 be such thatn − n1 ≥ 2|S|

2

. Thenw has a waiting loopw =
w1w2w3w4 such thatw1 = c1c2 . . . cn1

and the otherwi’s are concatenations
of someci’s. Formally: for i = 1, . . . , 4, wi = cni−1+1 . . . cni

, wheren0, n2, n3

andn4 are such that0 < n1 < n2 < n3 ≤ n, n0 = 0 andn4 = n.

Proof ( of Lemma 3).
We describe the strategyσ′ from w′ turns after turns. In order to do that,

we describe a gameG′ whereDefender’s plays are generic, and doing that we
describe turns after turns howAttackerhas to play. During this description, we
shall useσ as anoracle to which we provide plays ofDefenderand which tells
us whatσ suggests forAttacker’s plays.



First of all, let us observe thatDefender must play at leastx N1

maxb∈B |b|y turns
before completely erasingv1 (here we keep notations of Definition 1 where
w = v1v2v3 andw′ = v1v

′
2v3). And besides, from the definition ofN1 and the

fact thatmina∈A |a| > maxb∈B |b| we get:

N1

maxb∈B |b|
≥

N1

mina∈A |a|
+ 2(2|S|

2

+ 1) (1)

Let us define
N ′

1 = pmax
b∈B

|b|(2|S|
2

+ 1)q

There are 3 stages in the strategy:

1. Informally, the first stage starts at the beginning and goes on until the word ob-
tained by concatenating all plays ofAttackeris sufficiently long, actually more
thanN1 + N ′

1.
According to the preliminary remark, during this stage, plays of Defender

remains intov1, becausev1 is supposed to be great enough (see below). For
these plays thus, there is no difference betweenw andw′ which both havev1

as a common prefix. ThenG′ can be considered as a gameG onw andAttacker
follows σ.

So, precisely, the first stage consists of then1 first plays of the game
(a1, b1), (a2, b2), . . . , (an1

, bn1
) wheren1 is such that|a1a2 . . . an1−1| ≤ N1 +

N ′
1 < |a1a2 . . . an1

|. Let us note thatn1, i.e., the moment at which Stage 1
ends, depends on the plays ofDefenderand onσ which tellsAttackerhow to
play. However, we can say thatn1 ≤ (N1 + N ′

1)/mina∈A |a| + 1. This implies
that

n1 ≤
N1

mina∈A |a|
+

maxb∈B |b|

mina∈A |a|
(2|S|

2
+ 1) ≤

N1

mina∈A |a|
+ 2|S|

2
+ 1

Together with Equation 1 of the preliminary remark, one can conclude thatv1

has not been totally erased, and even more than that: It remains at least2|S|
2
+ 1

turns before that, this means that there exists a wordv of length greater than
maxb∈B |b|(2|S|

2
+ 1) such thatv1 = b1b2 . . . bn1

v. In particular, this justifies
the fact thatAttackercan useσ to play during this stage.

2. In Stage 2,Attacker looks for a waiting loop. Formally: Attackerplays ac-
cording toσ until Turnn2 such that there existsn′

2 such that

[wa1 . . . an1
][an1+1 . . . an′

2
][an′

2
+1 . . . an2

]ε

is a waiting loop. We choosen2 to be minimal for this property. Thanks to
Lemma 6, because the length ofv is greater thanmaxb∈B |b|.(2|S|

2
+ 1), we



are sure thatn2 occurs beforev has been totally erased. In particular,Attacker
can still useσ to play during this stage.

3. During Stage 3,Attackerno longer followsσ. He plays the sequence
an′

2
+1, . . . , an2

in loop until Defenderhas almost erasedv′2, i.e., until Turnn3

which is such that(b1 . . . bn3
)\v1.v

′
2 ∈ Vis(v1.v

′
2) wherebn2+1, . . . , bn3

are
all the plays ofDefenderduring Stage 3. In the following,(b1 . . . bn3

)\v1.v
′
2 is

denoted bys′. Let us note that at this point,Attackermay be inside the loop,
i.e., he maybe playing someai with n′

2 + 1 ≤ i < n2. Then whatever the plays
of Defender, Attackerfinishes the current loop. This drives the game to some
Turnn4 such thatan4

= an2
.

Let us note that whileAttacker is finishing his loop, which takes at most
2|S|

2
+ 1 turns, it may happen thatDefendererasesv3 and starts erasing the

first plays ofAttacker, i.e., the plays of Stage 1. However, Stage 1 above ensures
that the firstn1 plays ofAttackermake a word of length greater thanN1 + N ′

1.
Therefore,Defendermust leave at least a word of lengthN1 from a1a2 . . . an1

.
Now, the succession of plays which have been done is

(a1, b1), (a2, b2), . . . , (an1
, bn1

), . . . , (an′

2
, bn′

2
), . . .

. . . (an2
, bn2

), . . . , (an3
, bn3

), . . . , (an4
, bn4

).

Let n′
3 be the greatest integer such thatn2 ≤ n′

3 ≤ n3 and(b1 . . . bn′

3
)\v1 ∈

Vis(v1). In the following(b1 . . . bn′

3
)\v1 is denoted bys. We have that

(bn′

3
+1 . . . bn3

)\s.v′2 = s′. Therefores′ ∈ Vis(s.v′2). Besides, by the definition
of B-relation, Vis(s.v′2) = Vis(s.v2). Therefores′ ∈ Vis(s.v2), and thus there
exist b̄1, . . . , b̄m such that̄b1 . . . b̄ms′ = s.v2.

Now, let us consider the gameG on w defined as follows: in this game, we
consider the sequence ofDefender’s plays defined by

b1, . . . , bn2
, . . . , bn′

3
, b̄1, . . . , b̄m, bn3+1, . . . , bn4

Let us consider the sequence ofAttacker’s plays corresponding to it according
to σ: ā1, . . . , ¯am′ wherem′ = n′

3 + m + n4−n3 + 1. The firstn2 playsāi’s are
exactly theai’s that we have been just defined forσ′ in Stages 1 and 2, since in
these stages,Attackeractually usedσ.

Let us go back to the definition ofσ′ on the gameG′. Let us recall that we
are at Turnn4 + 1, andAttackeris going to play. We define his play to be the
concatenation of̄an2+1 . . . ām′ , let us denote it byan4+1. Let us recall that we
defineσ′ as a strong strategy. This means thatAttackerplays inG′ just like if it
were inG. Let bn4+1 be the next play ofDefender.



Now, let us observe that ifw′ has not been totally erased, it remains the same
word in G and inG′ to complete the pass, which is(b1 . . . bn4

bn4+1)\w
′, let us

denote it byu.
The description ofσ′ ends here. To conclude, let us remark that if at some

point,Defendercannot play any more because the current word has no prefix in
B, thenAttackerwins the game andσ′ ends.

It remains to show that the positions of the gamesG andG′ areB-related
words. To see that, we apply Lemma 4.

Let us suppose thatw′ has not been totally erased and that it remains the
wordu defined as above. Altogether, we get forG′ a position of form:

w1

︷ ︸︸ ︷

ua1a2 . . . an1

w2

︷ ︸︸ ︷

an1+1 . . . an′

2
. . .

. . .

w∗

3

︷ ︸︸ ︷

(an′

2
+1 . . . an2

).(an′

2
+1 . . . an2

) . . . (an′

2
+1 . . . an2

)

w4

︷ ︸︸ ︷

ān2+1 . . . ā′m (2)

wherev̄′2 ∈ an1+1 . . . an′

2
(an′

2
+1 . . . an2

)+. In G we get a position of form:

ua1a2 . . . an1
︸ ︷︷ ︸

w1

an1+1 . . . an′

2
︸ ︷︷ ︸

w2

an′

2
+1 . . . an2

︸ ︷︷ ︸

w3

ān2+1 . . . ā′m
︸ ︷︷ ︸

w4

(3)

The wordsw1, w2, w3 andw4 defined above satisfy by construction the con-
dition of Lemma 4. They have been indeed chosen just in order to construct a
waiting loop. In addition, as we have seen during the description of σ′, if w′ has
been totally erased, then this part remaining froma1a2 . . . an1

is still of length
greater thanN1.

To conclude the proof, we have to give a bound on the number of turns which
have been done. Observe that during the 3 stages of plays,w′ can be erased and
at most2|S|

2
+ 1 turns can be played after (in order to end the loop). This gives

the following bound:

L =
|w′|

min
b∈B

|b|
+ 2|S|

2
+ 1

3 Effective construction of the solution

To conclude, we consider the right congruence of Lemma 2 overwords of length
greater thanN1. It can be extended easily to a right congruence over all words
by setting any word of length less thanN1 equivalent to itself only. One gets
a new right congruence which still is of finite index. By Theorem 1, any two



congruent words both belong in the greatest solution ofAX ⊂ XB or both do
not.

Let us consider an automaton associated to it; and let us select the largest
subset of states of this automaton such that if we consider this set as the set of
final states; then we get a language which is solution ofAX ⊂ XB.
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