
Automated Extraction of Polymorphic Virus
Signatures using Abstract Interpretation

Serge Chaumette, Olivier Ly, Renaud Tabary
Laboratoire Bordelais de Recherche en Informatique

University of Bordeaux, France
{chaumette, ly, tabary}@labri.fr

Abstract—In this paper, we present a novel approach for the
detection and signature extraction for a subclass of polymorphic
computer viruses. Our detection scheme offers 0 false negative
and a very low false positives detection rate. We use context-
free grammars as viral signatures, and design a process able to
extract this signature from a single sample of a virus. Signa-
ture extraction is achieved through a light manual information
gathering process, followed by an automatic static analysis of the
binary code of the virus mutation engine.
Keywords: binary program analysis; virus detection; virus sig-
natures extraction; abstract interpretation;

I. INTRODUCTION

Since the creation of the first computer virus, virus au-
thors and antivirus vendors have constantly fought in an
evasion/detection game. Computer malwares have become
more and more sophisticated, using advanced code obfusca-
tion techniques to resist antivirus detection. Polymorphic and
metamorphic computer viruses are currently the hardest kinds
of viruses to detect. Both types of viruses are able to mutate
into an infinite number of functionally equivalent copies of
themselves. The set of all possible copies of a given virus V
is called the language of the virus, denoted by LV .

In this paper, we will only consider polymorphic viruses.
Such a malware is composed of three parts: the virus body,
the mutation engine and the decryptor (figure 1). At infection
time, a polymorphic virus V will replicate itself in a new
virus V ′ ∈ LV by picking a random symmetric encryption
key k, ciphering the virus body and the mutation engine with
this k and finally generating a new decryptor, embedding k.
Because the virus body and the mutation engine are ciphered
with a changing random key, detecting a polymorphic virus
often means detecting its clear-text decryptor. Thus, for this
kind of virus, LV is the language of the decryptor, instead of
the language of the whole virus.

In spite of the enormous industrial stakes, methods for
detecting polymorphic malwares have not significantly been
improved over the last decades. Today’s most wide-spread
malware detectors use signature-based methods to recognize
threats (see [1], [2]). Signatures are usually regular expres-
sions, mostly byte patterns which are unique to the malicious
programs to detect [3]. The goal is to match all instances of
a given virus, i.e to recognize a superlanguage of LV , but as
close as possible to it. The ease of use of such detectors as
well as their relatively low false positives rate have led to their
widespread deployment. However antiviral solutions currently
face two problems:
• the number of unique malware discovered per day is

quickly raising (∼ 8000 new signatures each day) [4];

• as viruses tend to be written by professional profit-driven
virus writers, malwares are harder to detect, due to the
wide use of sophisticated mutation engines.

The current detection methods are not effective against
highly-mutating polymorphic viruses. The problem is twofold.
On the one hand, the set of all instances of a polymorphic
malware may form a complex formal language [5] and thus
cannot be recognized by means of regular expressions. Clas-
sical regular expression based approaches have to recognize a
superlanguage of the virus, leading to high false positive rates.
Second, the signatures extraction process will eventually fail
to handle such an increasing number of new unique malwares.
In fact, the current signatures extraction process is either based
on a manual analysis, or based upon learning, as we will
see later. It has been proven that learning complex language
classes, such as context-free or even regular languages, is
not possible from only positive inputs [6]. Industrials have
managed to extract malware signatures until now thanks to the
huge manpower at their disposal and the low sophistication of
polymorphic engines. But the evolutions in the malware field
may soon make this approach untractable.

Infected file 1

g a a b c e f
j t r y u i o
o a c b q t e

Virus body

Mutation
engine

decryptor

ciphered
part

Virus v Mutated virus v′

Mutation
engine

Virus body

t r v d
s p v c
a t c s
q t y u
d s q i
o p m u

Infected file 2

mutated
decryptor

ciphered
part
(different
key)produces a

new decryptor

Figure 1: Polymorphic virus infection process
In this paper we propose a novel approach for signatures

extraction and detection of highly polymorphic self-replicating
malwares. Our work is based upon two ascertainments. First,
most mutating engines used in current malwares produce code
belonging to a language that is rather low in complexity.
Experience showed that code produced by such engines of-
ten belongs to either a regular language or a context-free
language. Some advanced polymorphic malwares are able to
produce viral code that can be modeled by a context-sensitive
language, but as we will see later they can be overapproxi-
mated by a context-free language without a significant loss of

precision. Second, self-replicating malwares have to embed
their mutation engine inside their body. It is thus easy for an
antivirus company to obtain the code of the mutation engine.

Our idea is that, under some conditions, it is feasible to
extract the grammar of the mutation engine via a static
analysis of the binary code of the engine. In other words, the
binary code of the mutation engine expresses indirectly the
grammar of the language that it produces. This grammar can
be overapproximated by a context-free grammar, and then used
as a signature able to match all instances of any virus that
uses the same mutation engine. Our contribution is twofold:
• We use context-free grammar as signature, improving

the overall detection precision. Moreover, we guarantee
that our signature can match all instances of the virus.
The matching being more precise, is also less likely to
issue false positives;

• We design a process to extract the signature of a poly-
morphic virus from a single sample of this malware. Our
process is composed of a short manual analysis (locating
the mutation engine and where mutated code is written)
followed by a static analysis to automatically extract
the viral signature.

With our solution, the amount of manpower required to detect
a polymorphic virus is limited to the malware mutation engine
identification. The rest of the process, from malware grammar
extraction to the production of a matcher program that can
match all possible variants of a polymorphic virus, is fully
automated. Note that our work can extend to the detection of
other kinds of malwares using polymorphic-alike mutation
engines, such as worms or trojan horses, provided one has
access to their mutation engine.

In the rest of this paper, we will review the recent academic
work in the field (section II), and then present the formal
model used for the static analysis of malicious executable files
and the overall idea of this new technique (section III). We will
explain the signature grammar extraction process (section IV)
and eventually show some results (section V).

II. RELATED WORK

The theoretical limits of malicious program detection has
been the subject of many research projects. It is well known
that the detection problem is undecidable in the general case
[5], [7]. As we have previously seen, sophisticated malwares
make in fact great use of software obfuscation techniques in
order to avoid detection. For polymorphic malwares, the de-
cryptor part of the virus is mutated at each infection, thanks to
common obfuscation techniques: dead-code insertion, register
reassignment, and instruction replacement. A more exhaustive
list of obfuscation operations can be found in [8], [9]. In order
to detect such high-mutating viruses, several solutions have
been developed.

A. Byte-level detection solutions
Current antiviral solutions use different techniques in order

to detect malicious files.The techniques are : pattern-matching,
emulation, dynamic behavioral detection, and various heuris-
tics [1]. Let us focus on pattern-matching techniques (heuris-
tics are aimed at new malware detection and are subject to
a high false positive rates, while emulation may not always

succeed; dynamic malware detection, while achieving good
results, is out of the scope of this paper). Because they have
time and complexity constraints, the models and detection
algorithms used in today’s antiviral products are relatively
simple. Programs are modeled as a sequence of bytes. Viral
signatures are regular expressions, approximating the language
LV of the virus. The detection algorithm consists of deter-
mining whether a given binary program is recognized by one
of the viral signature. Since regular expressions are used as
signature descriptions, antivirus products may make use of
finite state automatons to perform linear-time detection. The
counter-part of such a simple model is a relatively high false
positives rate: regular expressions are not expressive enough
to precisely model the language of the virus and may lead to
a too wide overapproximation of LV .

Most of the actual signatures extraction techniques are
based upon learning. A malicious file v is replicated inside a
controlled environment, resulting in a (possibly small) subset
of the virus instances, and the language of the virus is learnt.
Different techniques are used to achieve this process. The
most common techniques ([3], [10]) are based upon binary
diffing: the longest common pattern that appears in all infected
files is extracted. This technique, while achieving good results
against simple viruses, is not able to extract a signature from
sophisticated polymorphic viruses. For this kind of malwares,
these techniques rely on manual analysis. Work by Sung et.
al. [11] has explicitly targeted polymorphic malwares, but still
relies on the presence of a common core shared by all instances
of the virus. Other works [12] try to use multiple signatures
in order to decrease both false positives and false negatives
rates, but no implementation has been proposed.

Another emerging approach consists in using machine-
learning techniques in order to detect malicious files [13].
Several models have been tested: data-mining [14], Markov
chains on n-grams [15], [16], Naive Bayes as well as deci-
sion trees [17]. These methods provide an automatic way to
extract signature from malicious executables. But while the
experiments has shown good results, the false positive and
negative rates are still not negligible.

Both binary-diffing and machine-learning based techniques
also suffer from a common drawback. In order for these tech-
niques to have a low false negatives rate, they must replicate
the malware a large number of times. Many polymorphic
malwares are aware of this fact and use slow polymorphism:
the mutation of the virus does not happen at each infection,
but rather when a particular, hard to simulate, condition is met.

B. Structural and semantic models
The pattern-matching solutions discussed above are based

on a model vulnerable to code obfuscation techniques. If one
specific mutation has not been observed during the learning
phase, most byte-level detection schemes will be likely to
miss any malicious instance of the virus featuring this unseen
mutation [2], [18]. In order to circumvent this problem, recent
work in the academic field has focused on the design of
new, mutation-resistant, models. Malwares are not seen as a
sequence of bytes, but are abstracted as a higher-level repre-
sentation that is less likely to be defeated by code obfuscation.

In [19], [20], graphs are used as a model for malwares.
The control flow graph (CFG) of a malware is computed

(when possible) and reduced. Then, subsets of this graph
are used as a signature. Detection of a malware is done
by comparing a suspicious file against these sub-CFGs, and
seeing if any part of the CFG of the file is equivalent (with
a semantics-aware equivalence relation for [19]) to a sub-
CFG in the viral database. The idea is that most of mutation
engines’ obfuscations do not alter the control flow graph of
the malware. Unfortunately, this is not always the case (e.g.
Zmist virus [21]), and the problem of the detection falls into
the NP class.

In [22], Kinder et. al. used CTPL to detect malwares. CTPL
is a variant of CTL [23], able to handle register-renaming
obfuscation. Detection is done via model checking of API call
sequence, while signatures extraction is done manually.

A promising approach was initiated by Preda et. al [24]
and followed by [25]. It consists in using the semantics of a
metamorphic malware as a viral signature. As we have seen
previously, mutation engines produce functionally equivalent
mutated instances of a virus. In order to compare the semantics
of binary files, programs are abstracted using abstract interpre-
tation techniques, and their abstract computation tree is then
compared. Unfortunately, virus detection cost suffers from
the complexity of the analysis, and no automatic signatures
extraction algorithm is given in [24], [25].

In [5], [26] formal grammars were used as a viral signature.
Unfortunately, the design of the grammar is based on the
knowledge of the mutation transformations used by the muta-
tion engine of the virus. None of them provides an automated
process to extract this grammar for a given malware.

To the best of our knowledge, the only work similar to ours
that uses abstract interpretation for extracting the signature
of a mutating malware is by Preda et. al [27]. Their goals are
more ambitious than ours, as they model a whole metamorphic
virus. Using abstract interpretation, they overapproximate the
malware execution traces as finite state automata. Our work
differs from theirs as we only analyze the mutation engine
of polymorphic viruses and we use context-free grammars as
signature, which are potentially more precise. We also have
studied and stressed the feasibility and complexity of our
solution: we provide an implementation and test it against real
viruses.

III. IDEA AND THEORY

A. Our idea
In order to circumvent the undecidability result in the

malware detection problem [5], we restrain ourselves to the
detection of a special class of polymorphic malwares. We
will focus on polymorphic viruses using mutation engines that
can be approximated as CF-programs. These engines produce
machine code that can be recognized, or over-approximated by,
a context-free language. Our detection solution gives relatively
good results on mutation engines which have the following
three properties:

1) the produced code is written sequentially, to a statically
computable memory location;

2) no statically unresolvable dynamic call is performed, be-
sides function returns which are handled by the function
discovery.

3) context-insensitive behavior: the mutation engine makes
limited use of global input variables. Input variables
would be over-approximated to top by our numerical
analysis and would lead to imprecision in detection.
In particular, the virus mutation engine must produce
obfuscated code, and not mutate existing code.

Most of existing polymorphic viruses fall in this subclass. In
fact our solution could apply to other polymorphic malwares
(worms, trojan horses) provided we have access to the mu-
tation engine. Although the third point is the most limiting
one. The metamorphic viruses would not give good results
since their mutation engine is in fact a decompiler/compiler:
the machine code of generation n is used as input by the
mutation engine to produce the generation n+ 1 code.

We use a hybrid approach to detect the particular class of
malwares we target. First, we use syntactic matchers to detect
malwares. Using simple byte-level models for the detection
allows efficient and practical detection algorithms, unlike most
semantics-aware detection schemes. Thus our viral model and
detection algorithm is very similar to the work presented in
section II-A. Nevertheless, we use context-free grammars
as viral signatures instead of regular expressions in order to
improve detection precision.

Second, we use a semantics-aware approach to extract
the viral signature. The signature extraction schemes used in
previous work, based on learning, suffer from many drawbacks
(cf. section II-A). We propose to perform a static analysis
of the mutation engine of a malware in order to extract its
signature. A short manual analysis is first achieved, gathering
informations on the engine such as its location and the address
where mutated code is produced. Then, a static analysis of
the engine binary is performed, in order to automatically
extract the signature of the malware. Our scheme requires
one sample of the malware to infer a signature matching all
virus instances. We will base our reasoning on an abstract
model of mutation engines, called the CF-program model.

B. CF-programs semantics
CF-programs are high-level abstractions of programs behav-

ing like push-down automata. A CF-program P is defined over
an alphabet Σ: each run of a given CF-program will produce a
word w ∈ Σ∗. The set of all CF programs is denoted PCF . The
set of all words that can be produced is called the language
of the program, denoted by L(P).

Definition 1: A CF-program P ∈ PCF is a tuple P =
(F, I, e, γ,Σ) where:
• I ⊆ N∗ is the set of instruction addresses;
• F ⊆ I is the set of function entry points;
• e ∈ F is the program entry point;
• γ : I → LCF associate to each instruction address the

corresponding instruction in the LCF language;
• Σ is the alphabet of the output language of P .

Instructions I of a CF-program are defined under the program
language LCF defined figure 2. Intuitively, a CF-program is
a program where functions are clearly identified (the set F),
supporting function calls (call and ret instructions). CF-
programs are able to output tokens belonging to the Σ alphabet
via the write W instruction, that outputs a token chosen
arbitrarily in the set W of words. They also feature a jND

instruction that perform a undetermined jump to either location
j1 or j2 (see figure 2). The set StatesP of the states of a CF-

LCF ::= jmp j1 | jND j1 j2| call f | ret |
write W | end
P = (F, I, e, γ,Σ) (program) W ∈ 2Σ∗

(values)
j1, j2 ∈ I (address) f ∈ F (function)

Figure 2: The LCF language

program P ∈ PCF is defined as a set of tuples 〈i, S,B〉 where
i ∈ I ∪ {0} is the address of the next program instruction to
be executed, S ∈ I∗ is the current call stack of the program,
B ∈ Σ∗ is the sequence of output tokens generated till this
point. The operational semantics which formalizes one-step
of execution of a CF-program is given figure 3 as a relation
;, such that ;⊆ StatesP × StatesP . We let ∗; denote the
transitive closure of ;.

i: ret
〈i,t::s,b〉;〈t,s,b〉

i: jmp j
〈i,s,b〉;〈j,s,b〉

i: end
〈i,s,b〉;〈0,s,b〉

i: jND j1 j2
〈i,s,b〉;〈j1,s,b〉

i: jND j1 j2
〈i,s,b〉;〈j2,s,b〉

i: call f
〈i,s,b〉;〈f,i+1::s,b〉

i: write W, W∈2Σ∗

〈i,s,b〉;〈i+1,s,b::wi〉,wi∈W

Figure 3: CF-program operational semantics

Let P = (F, I, e, γ,Σ), we define L(P) ⊆ Σ∗ as the
language of the program P : L(P) = {b | 〈e, ∅, ε〉 ∗; 〈0, s, b〉}
The language of a CF-program is the set of all words the
executions of this program may produce. For a mutation
engine of a polymorphic virus V , it will be the set of all
decryptors, in other words the language LV .

Theorem 1: Let P = (F, I, e, γ,Σ) ∈ PCF . A context-free
grammar GP recognizing L(P) can be extracted from P using
algorithm 1.
It is easy to see that CF-programs are equivalent to push-down
automata. There is in fact a one-to-one mapping between a
CF-program state s = 〈i, S,B〉 ∈ StatesP and any word
w ∈ (V ∪ Σ)∗ such that w has been constructed from the
grammar start symbol using only leftmost derivations.

〈i, sj ...sm, b0...bn〉 ↔ b0...bnViVsi ...Vsm

Using this one to one mapping, one obtains immediately
that for each leftmost derivation chain of GP , there exists a
transition sequence producing the same word, and vice versa.

The definition of the CF-program model and the grammar
extraction algorithm allows us to design the basis of our
antiviral solution. We designed a static analysis that overap-
proximates a polymorphic engine P as a CF-program PCF .
Then, by applying algorithm 1 to the result of this analysis,
we are able to extract a signature (a context free grammar)
recognizing L(PCF) from a single sample of a virus. In
this way we avoid the drawbacks of learning-based signature
extraction solutions, and thus the problem issued by slow
polymorphic engines. Moreover, provided the static analysis is
sound, i.e L(PCF) is a superlanguage of L(P), the signature
issued by our solution will lead to no false negative. The

false positive rate depends on the precision of the analysis.
To summarize, our virus signature extraction and detection
scheme involves the following steps:

1) Extract the mutation engine P ∈ P of the virus V and
locate where mutated code is written (manual analysis);

2) Approximate (sound) P to a CF-program PCF ∈ PCF ;
3) Extract the grammar G of PCF using algorithm 1;
4) Use G as a signature to detect all variants of V .

The first step, while being manual, is just a matter of locating
and extracting the mutation engine from the virus binary code.
This kind of task is a lot quicker and easier than manual sig-
nature extraction, and should not be an issue for experimented
malware analysts. The third step has been already covered in
section III-B and algorithm 1 shows the basis of the process.
The last step, generating a push-down automaton recognizing
exactly the grammar G, is a well-known classical process (see
e.g. [28]). The difficult point in our scheme resides in step 2,
i.e. the overapproximation of the virus mutation engine by a
CF-program producing a superlanguage of the virus language.
This step is the subject of the next section.

Algorithm 1: Grammar extraction
input : P = (F, I, e, γ,Σ) ∈ PCF

output: GP = (V,Σ, R, S)

V ← {Vi, i ∈ I};
R← ∅× ∅;
foreach i ∈ I do

switch γ(i) do
case write W = {w0, ..., wn} ∈ 2Σ∗

foreach wi ∈W do
R← R ∪ {Vi → wiVi+1};

case call f
R← R ∪ {Vi → VfVi+1};

case jmp j
R← R ∪ {Vi → Vj};

case jND j k
R← R ∪ {Vi → Vj |Vk};

case return or end
R← R ∪ {Vi → ε};

return (V,Σ, R, Ve)

IV. BINARY MUTATION ENGINES AS CF-PROGRAMS

When analyzing malwares, mutation engine comes in binary
form and is sometimes obfuscated. Translating a mutation
engine from its binary form to a more abstract CF-program is
not a straightforward task. Binary machine code often comes
with a complex semantics. We propose here a static analysis
able to approximate such a complex semantics by a CF-
program through the following steps:

1) Abstraction of the machine code semantics: translation
to the Dynamic Binary Automaton [29] (DBA) model;

2) Pre-analysis (engine extraction, function discovery);
3) Numerical analysis of the binary program;
4) Translation to a CF program.

Each of these steps will be presented in this section.

A. Binary model
We use the DBA model in order to abstract the machine-

dependant assembly language of the mutation engine. DBA
programs feature a reduced instructions set whose side-effects
are explicit. A simplification of the language is presented
figure 4. Each instruction is given a unique address in PP, the

I::= Assign [E], E standard assignment lhs := rhs
| Guard E, n1, n2 guard on conditions E
| Skip no operation
| Jump E non-statically known jump to expression

E::= n[x:y[| (E op E)[x:y[| [E][x:y[

Figure 4: The DBA language

set of program points. A concrete state in the DBA semantics is
a pair 〈ip,m〉 where ip ∈ PP is the current instruction address
and m : N→ B is the memory environment of the program, a
map associating to each memory cell its content, a bitvector of
size 8. For the sake of concision we assume that the processor
registers are given a unique special address in this map. The
concrete semantics of the language is straightforward and will
not be explained there. The BINCOA framework features a set
of decoders able to translate a x86 or ARM program to this
DBA model [29].

B. Pre-analysis
In order for the signature extraction scheme to succeed, a

few preliminary steps need to be done.
a) Mutation engine extraction: The first step of our

scheme consists in locating the mutation engine inside a single
instance of the analyzed virus. This step must be performed
through manual reverse engineering of the malicious sample.
Hopefully, mutation engines are kept in the ciphered part of
the polymorphic virus that is not likely to be detected by
an antivirus, and most of the time are not obfuscated. Thus,
a simple memory dump from a debugger performed by a
qualified malware analyst once the mutation engine appears in
clear text should suffice. In the following sections, we assume
that the mutation engine has been successfully extracted and
translated to the DBA model. In order to illustrate our analysis,
we will use an extract of the ETMS engine, a mutation engine
used in Aldebaran and Antares virus families. A small
code snippet is presented figure 5 in assembly syntax. This
mutation engine sample produces x86 machine code that will
perform a stack push. The malware author uses this subroutine
of the mutation engine to produce junk code. Because of its
length, the DBA model cannot be presented here.

b) Writes identification: The next step of our pre-
analysis consists in identifying the memory location where
mutated code is written by the mutation engine. Most of
the time, mutation engines output binary code sequentially
to either a statically known memory location, or through a
predefined input register (for example the edi register in
most of x86 mutation engines). In our detection scheme, this
location (an address range or a register) must be retrieved
manually through a short manual code analysis and provided
to the analysis. We model this information as a function
IsWrite : E → {true, false} that tells us if a memory

1 ;edi--> produced
code

2 cmp ebx,0
3 je 22
4 call 26
5 shr al,1
6 jnc 17
7 mov ax,0c483h ;"

sub esp, <cst>"
8 stosw
9 call 23

10 jz 9
11 cmp al,ebx
12 ja 9
13 sub ebx,al

14 shl al,2
15 stosb
16 ret
17 call 23
18 or cl,058h ;"push

<reg>"
19 xchg al,cl
20 dec ebx
21 stosb
22 ret
23 call 26 ;[0-7] in

eax
24 and eax,7
25 ret
26 rdtsc ;random in eax
27 ret

Figure 5: Extract from ETMS mutation engine

location expressed as a DBA expression belongs to the output
buffer of the mutation engine.

The IsWrite function can either use the result of our
numerical analysis to discover if an Assign instruction writes
to the output buffer, or use simple pattern matching if, for
example, writings are done through a predefined register.
The latter case is preferred, when possible, since it does not
suffer from the overapproximation that takes place during
the numerical analysis. In figure 5, if we consider that the
produced code is written at [edi], three token outputs would
be identified, at lines 8, 15 and 21.

c) Functions discovery and dynamic jumps resolution:
The last pre-analysis step is automated and consists in identi-
fying the set of functions in the DBA-model of the virus. This
kind of information is not available in a binary program. We
try to identify sequences of DBA instructions whose behavior
is equivalent to a call or a ret in the CF-program semantics
(cf. figure 3). Once calls and rets are located, we define
functions as all the instructions located on the path from a
call target to any ret-alike instruction in the DBA model.
Function calls and rets may be identified in two ways:
• For most of the architectures (including x86), the instruc-

tion set contains call and return alike opcodes. These
can be used for call/ret identification;

• When function calls are obfuscated, we must analyze
precisely the DBA model to identify equivalent DBA-
instructions. Such techniques are presented in [30]. Most
of the times, they are imprecise (i.e. identify too many
functions) but are able to deal with obfuscated code.

Concerning the example of figure 5, the function identification
step highlights three functions at lines 2-22, 23-25 and 26-27.
Once function are identified, we modify the DBA model of
the mutation engine the following way:
• function calls are replaced with a single Skip DBA

instruction, whose successor is the instruction following
the call;

• function returns are replaced with a Skip instruction;
• dynamic jumps, if any, are resolved using state of the art

binary CFG reconstruction techniques [22];
• three sets Lfuncs, Lcalls and Lrets are computed, con-

taining respectively the function entry point locations, the
identified calls locations and the returns locations.

The result of this last step is a set of DBA programs, one for
each function of the program, featuring no dynamic jump.

C. Numerical analysis
The semantics of the DBA model is too rich to be di-

rectly translated as a CF-program. For example, the Assign
instruction in the DBA model has no image in the CF-
program semantics, as CF-programs only use the stack. To
solve this issue, we use abstract interpretation techniques [31]
to design a static analysis of the mutation engine. Our goal is
to overapproximate the DBA concrete semantics, in particular
the content of the concrete memory at each program point.
This information will be used later to discover which values
are written by the mutation engine at writing locations.

We perform a context-insensitive symbolic analysis that
overapproximates concrete memory cells content with sym-
bolic terms. The main structure of the analysis is a map Sk

that we call summary. It associates to each concrete memory
address a disjunctive formula of k expressions, where k is a
fixed analysis parameter. By appending two special elements
top (>) and bottom (⊥) to the co-domain of the summary
function, we are able to build a complete lattice.

Sk : N→ (E ∪ {>,⊥})k

The union of two summaries is defined intuitively as the
union of the disjunctive terms for each memory cell address,
or > if the resulting disjunctive formula contains more than
k elements. The abstract domain used during analysis is
also a complete lattice Ak ⊆ ℘(PP × Lk

S × F k
S) where

Lk
S = PP × Sk associates to each program point a summary

overapproximating the concrete program state at this address
and F k

S = Lfuncs × Sk associates to each function the sum-
mary approximating the concrete state at any return location
of the function. Because of space constraints, the abstract
predicate transformer P k

A : Ak → Ak cannot be presented
here. Instead, we give a few insights about the analysis:
• the analysis can be seen as alternating between intrapro-

cedural phases, where function and location summaries
are computed for each function using expression substitu-
tion, and interprocedural phases where computed function
summaries are used to refine the location summaries at
call sites;

• the intraprocedural analysis is path-insensitive: multiple
paths are merged at join nodes in the CFG, during fixpoint
computation;

• the interprocedural analysis is context-insensitive: one
unique summary is associated to each function. Although,
when context insensitiveness leads to too much impreci-
sion, some functions may be inlined;

• convergence is ensured through the use of widening on
summaries: disjunctive formulas of terms are set to top
> whenever their size exceeds k, or when any expression
of the formula exceeds a given depth;

All along the analysis, special attention is paid to the sim-
plification of formulas in summaries. In particular, mutation
engines often construct opcodes at a bit-level precision. Thus,
it is very important to compute most of the bits of each
term. The symbolic analysis is well suited for this purpose, as

expressions feature a bitfield concatenation operator. The anal-
ysis embeds several rewriting rules that focus on determining
the maximum of bits in the term. For example, in figure 5, the
symbolic evaluation process would give the following term for
the token output at line 21:

58[0:8[OR (>[0:8[AND 7[0:8[)

Instead of over-approximating the term to >, we use term-
rewriting rules to compute most of its content (figure 6).

Rewriting rules:
x[0:a[AND (2k − 1) → x[0:k[:: 0[0:a− k[
x[0:a[OR (y[0:b[:: 0[0:a−b[)→ (x[0:b[OR y[0:b[) :: x[b:a[
Result:
58[0:8[OR (>[0:8[AND 7[0:8[) → >[0:3[:: 58[3:8[

Figure 6: Bit-level term rewriting example

The result of the numerical analysis is a function V alue :
PP → Sk giving for each program point the summary
overapproximating the concrete state when the instruction at
this address has been executed.

D. Extracting the grammar and generating the decoder
In the last part of our signature extraction scheme, we

translate the mutation engine P from its DBA model repre-
sentation to a CF-program PCF . After the pre-analysis and the
numerical analysis, we have access to the IsWrite function,
the Lcalls and Lrets sets and the result of our numerical
analysis V alue : PP → Sk. We also define a concretization
function γS : Sk×E→ ℘(B) that returns for a given summary
and an expression a set of bitfields overapproximating the
expression value in the concrete semantics. Translation to a

ωJi : Assign[e1], e2K =

{
jmp i+ 1 if¬IsWrite(e1)
or write γS(V alue(i), e2)

}
ωJi : Guard e, n1, n2K = jND n1, n2

ωJi : SkipK =

 call f if(i, f) ∈ Lcalls

ret if i ∈ Lrets

jmp i+ 1 otherwise

Figure 7: DBA programs to CF-Programs

CF program PCF is done through a straightforward translation
function ω from DBA instructions to CF-program instructions,
given figure 7. Note that since we resolved dynamic jumps,
the DBA Jump instruction needs not to be translated.

Since V alue returns an overapproximation of the concrete
program state, PCF will also be an overapproximation of P ,
in the sense that L(P) ⊆ L(PCF). A grammar G recognizing
L(PCF) is then extracted using algorithm 1. A particular
care is taken when the concretization function γS returns the
whole set of bitfields B, i.e. when the numerical analysis has
approximated a value as >. In that case, a special rule will be
added to the grammar that will match the language {0, 1}k,
where k is the maximum length of the bitfields. For example,
the grammar matching the language produced by the code
figure 5 is given figure 8.

AStart = A | ε
T = 0[0:1[| 1[0:1[
A = T T T 058[3:8[| 0C483[0:16[00[0:2[T T T 00[0:3[

Figure 8: Simplified grammar for code figure 5

The grammar G is then simplified (automatically) and used
to generate a GLR parser recognizing L(PCF) on the binary
alphabet Σ = {0, 1}. This parser can be used to detect
all variants of any virus using P as mutation engine. In
the following section, we will show results concerning the
precision of this parser, when tested against real-life malwares.

V. IMPLEMENTATION AND PRELIMINARY RESULTS

A. Implementation
We have developed a proof of concept tool to apply our

analysis provided the initial conditions are met (cf. III-A).
It is written in C++ and takes as input x86 and ARM
infected executables in PE, ELF or Mach-O format. Additional
information must be given to the analyzer:

1) the mutation engine location in the executable;
2) the memory address where the mutated code is written;
3) the random number generator seed variable location, as

well as other instance-dependant input variables.
Items (1) and (2) are mandatory for the analysis to succeed,
and have already been discussed. The third information is also
important. Most mutation engines embed a pseudo-random
number generator (PRNG). Because we analyze only one
instance of a given virus, the seed of the generator will be
fixed in this instance, and may be considered as a numerical
constant by our analysis, leading to a signature matching only
this particular instance of the virus. By pinpointing the location
of the PRNG procedure in the code, the analysis makes sure
the returned value is computed as >, simulating the fact that
this value is modified at each virus infection. Other instance-
dependant values may also be concerned, e.g. virus size or
virus virtual address. Note that most of the time those instance-
dependent values are given as input to the mutation engine and
are thus automatically overapproximated to > by our analysis.

Our tool has been tested against six mutation engines:
the CRPE engine (used in some anonymous PE appenders),
the Bolzano engine (used in W32/Bolzano virus), the
NBKPE mutation engine, the Offensive Poly Engine
(used in W32/Annunaki virus), the Voltage polymorphic
engine (used in W32/Norther), the FINE mutation engine
(used in W32/Atix) and the ETMS mutation engine (used in
Aldebaran and Antares families). The mutation engines
were either gathered from live virus samples or from the
vx.netlux website [32]. Our tool was able to extract a
grammar from all these engines. The output of the tool
is a simple text file containing the extracted grammar in
EBNF notation. Resulting grammars can be found online [33].
Processing times vary between a few seconds and 10 minutes,
depending on the size of the engine and the chosen precision.
The manual analysis never exceeded one man-hour.

B. The scanner
After the analysis process, the resulting grammar is further

simplified and automatically ”beautified” by additional python

scripts. The goal of this step is to reduce the size of the
grammar and parsing time as well as to increase grammar
readability. The simplified grammar is then used by our
scanner. The scanner is a standard GLR parser (we used LEPL
[34] and Piggy [35] parsers), that is aware of the executable
file format.

Scanning is performed on binary programs, starting at the
entry point of the executable. Files are scanned against the
grammar G produced by our tool, and are flagged as infected
if there exists a word w inside the file, such that w ∈ L(G).
The actual implementation of the scanner has been written
in python and parsing performances are not optimal at the
moment.

C. Results
We tested our scanner against the seven mutation engines.

For each mutation engine, tests were run against 1000 infected
executables and 1000 different clean files taken from a Win-
dows XP developer station. The results are presented figure
9. Scanning times ranged from 2 seconds to approximately 4
minutes per binary file, except for the ETMS engine. The

Name Instrs Rules Ambgs. FP FN
CRPE 359 20 41 0 0

Bolzano 578 17 15 0 0
NBKPE 697 68 115 0 0

VoltagePE 1044 152 221 0 0
OffensivePE 1053 173 1203 22% 0

ETMS 1100 240 2792 - -

Figure 9: Scanning results
four first mutation engines have been perfectly detected by
the scanner. The Offensive Polymorphic Engine, while being
correctly detected, lead to a huge false positives rate (22%).
Our analysis was very imprecise against this mutation engine,
mainly because of the complexity of its code: many values
were computed inside loop bodies, and in a high context-
sensitive manner. The ETMS mutation engine was correctly
analyzed, and the grammar seemed correct. Nonetheless, the
complexity of the grammar (in particular the high number of
ambiguities) lead to a very long parsing time. Finally, The
FINE mutation engine was not correctly analyzed as it does
not respect our preconditions. Mutated code in FINE mutation
engine is not written sequentially, but in two passes: a first
code production step is then followed by a fix-up phase, where
the produced code is further modified.

It should be noted that both the analyser and the scanner are
proof-of-concept tools, and several improvements can be made
regarding the precision of the analysis and the performance
of the scanner. Moreover, we have not investigated grammar
disambiguation techniques to cope with the large scanning
time for the ETMS mutation engine.

VI. CONCLUSION AND FUTURE WORK

In this paper, we designed a process able to extract a sig-
nature from a given polymorphic malware respecting realistic
preconditions. Instead of learning the language of the virus, we
designed an automated static analysis able to infer the malware
signature by analyzing the binary code of its mutation engine.
Our solution requires only one sample of a malware in order

to extract its signature. The result is a context-free grammar,
matching a superlanguage of all instances of the virus (no false
negative). The false positives rate of our detection scheme
depends solely on the precision of the malware mutation
engine static analysis. Tests have been performed on seven
mutation engines, showing encouraging results for the six
polymorphic viruses that met our preconditions.

Performance problems have emerged from our tests, as very
ambiguous grammars lead to significant parsing times. These
drawbacks came from the fact that our scanner is just a proof-
of-concept, the lack of a proper grammar disambiguation pass
in the framework as well as from the inherent complexity of
parsing context-free languages.

We believe that the resulting context-free grammar should
not be used as is in deployed antiviral solutions, but could
serve as an additional security. Antivirus could use their
efficient NFA scanners for early virus detection and then
rely on GLR parser to decrease the false positives rate of
their software. Another application of our solution could be
to infer regular expression based signatures recognizing a
superlanguage of our context-free language [36]. Using regular
expressions as signature offer the great performances we
are used to in current antivirus. While the overall detection
precision may be less than GLR scanners, signatures generated
by this method would benefit from the zero false negative rate
of the original context-free signature, while suppressing the
pitfalls of learning-based signatures extraction schemes.

The grammar of a polymorphic virus could also be an
useful tool for virus classification. The obfuscation power of
a polymorphic virus could then be quantified by, for example,
counting the number of rules of its grammar in CNF form.

REFERENCES

[1] P. Szor, The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, 2005.

[2] E. Filiol, “Malware pattern scanning schemes secure against black-box
analysis,” Journal in Computer Virology, vol. 2, pp. 35–50, 2006.

[3] J. O. Kephart and W. C. Arnold, “Automatic extraction of computer
virus signatures,” in Proceedings of the 4th Virus Bulletin International
Conference. Virus Bulletin Ltd., 1994, pp. 178–184.

[4] H. Sverdlove. (2011, Feb) 20 years of malware security.
Http://blog.bit9.com/bid/40340/What-s-the-Score-20-Years-of-Malware-
Security.

[5] E. Filiol, “Metamorphism, formal grammars and undecidable code
mutation,” International Journal of Computer Science, vol. 2, pp. 70–75,
2007.

[6] E. Gold, “Language identification in the limit,” Information and control,
vol. 5, pp. 447–474, 1967.

[7] F. Cohen, “Computer viruses : Theory and experiments,” Computers &
Security, vol. 6, no. 1, pp. 22 – 35, 1987.

[8] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, Tech. Rep. 148, Jul 1997, http://www.cs.auckland.ac.nz/ coll-
berg/Research/Publications/CollbergThomborsonLow97a/index.html.

[9] J.-M. Borello and L. Mé, “Code obfuscation techniques for metamorphic
viruses,” Journal in Computer Virology, vol. 4, no. 3, pp. 211–220, 2008.

[10] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically gener-
ating signatures for polymorphic worms,” Security and Privacy, IEEE
Symposium on, vol. 0, pp. 226–241, 2005.

[11] A. H. Sung, J. Xu, P. Chavez, and S. Mukkamala, “Static analyzer of
vicious executables (save),” in Proceedings of the 20th Annual Computer
Security Applications Conference, ser. ACSAC ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 326–334. [Online]. Available:
http://dx.doi.org/10.1109/CSAC.2004.37

[12] D. P. Shaohua, W. Jau-Hwang, S. Wen-Gong, Y. Chin-Pin, and T. Cheng-
Tan, “Intelligent automatic malicious code signatures extraction,” in
Security Technology, 2003. Proceedings. IEEE 37th Annual 2003 In-
ternational Carnahan Conference, 2003, pp. 600–603.

[13] J. Z. Kolter and M. A. Maloof, “Learning to detect malicious executables
in the wild,” in Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, ser. KDD ’04.
New York, NY, USA: ACM, 2004, pp. 470–478.

[14] Y. Ye, D. Wang, T. Li, and D. Ye, “Imds: intelligent malware detection
system,” in Proceedings of the 13th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, ser. KDD ’07. New
York, NY, USA: ACM, 2007, pp. 1043–1047.

[15] K. Griffin, S. Schneider, X. Hu, and T.-c. Chiueh, “Automatic generation
of string signatures for malware detection,” in Recent Advances in
Intrusion Detection, ser. Lecture Notes in Computer Science, E. Kirda,
S. Jha, and D. Balzarotti, Eds. Springer Berlin / Heidelberg, 2009, vol.
5758, pp. 101–120.

[16] W. Yan and E. Wu, “Toward automatic discovery of malware signature
for anti-virus cloud computing,” Lecture Notes of the Institute for Com-
puter Sciences, Social Informatics and Telecommunications Engineering,
vol. 4, pp. 724–728, 2009.

[17] J.-H. Wang, P. Deng, Y.-S. F. L.-J. Jaw, and Y.-C. Liu, “Virus detection
using data mining techinques,” in Proceedings of the IEEE 37th Annual
2003 International Carnahan Conference on Security Technology, 2003.

[18] M. Christodorescu and S. Jha, “Testing malware detectors,” SIGSOFT
Softw. Eng. Notes, vol. 29, pp. 34–44, July 2004.

[19] ——, “Static analysis of executables to detect malicious patterns,” in
Proceedings of the 12th USENIX Security Symposium, 2003, pp. 169–
186.

[20] G. Bonfante, M. Kaczmarek, and J.-Y. Marion, “Control flow graphs as
malware signatures,” in International Workshop on the Theory of Com-
puter Viruses TCV’07, Eric Filiol, Jean-Yves Marion, and Guillaume
Bonfante, Eds., Nancy France, 2007.

[21] P. Ször and P. Ferrie, “Hunting for metamorphic,” in In Virus Bulletin
Conference, 2001, pp. 123–144.

[22] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, “Detecting
malicious code by model checking,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, ser. Lecture Notes in Computer
Science, K. Julisch and C. Kruegel, Eds. Springer Berlin / Heidelberg,
2005, vol. 3548, pp. 514–515.

[23] E. Clarke and E. Emerson, “Design and synthesis of synchronization
skeletons using branching time temporal logic,” in Logics of Programs,
ser. Lecture Notes in Computer Science, D. Kozen, Ed. Springer Berlin
/ Heidelberg, 1982, vol. 131, pp. 52–71.

[24] M. D. Preda, M. Christodorescu, S. Jha, and S. Debray, “A semantics-
based approach to malware detection,” ACM Trans. Program. Lang.
Syst., vol. 30, no. 5, pp. 1–54, 2008.

[25] F. Leder, B. Steinbock, and P. Martini, “Classification and detection
of metamorphic malware using value set analysis,” in Malicious and
Unwanted Software (MALWARE), 2009 4th International, 2009, pp. 39
– 46.

[26] P. Zbitskiy, “Code mutation techniques by means of formal grammars
and automatons,” Journal in Computer Virology, vol. 5, pp. 199–207,
2009.

[27] M. D. Preda, R. Giacobazzi, S. Debray, K. Coogan, and G. M. Townsend,
“Modelling metamorphism by abstract interpretation,” in Proceedings
of the 17th international conference on Static analysis, ser. SAS’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 218–235. [Online].
Available: http://portal.acm.org/citation.cfm?id=1882094.1882108

[28] J. E. Hopcroft, Introduction to Automata Theory, Languages, and
Computation, 3rd ed. Pearson Addison Wesley, 2007.

[29] S. Bardin, P. Herrmann, J. Leroux, O. Ly, R. Tabary, and A. Vincent,
“The bincoa framework for binary code analysis,” in Submitted to CAV,
2011.

[30] D. R. Boccardo, “Context-sensitive analysis of x86 obfuscated executa-
bles,” Ph.D. dissertation, Universidade Estadual Paulista, 2009.

[31] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of
fixpoints,” in Conference Record of the Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. Los
Angeles, California: ACM Press, New York, NY, 1977, pp. 238–252.

[32] Hermit. (vx.netlux.org/vx.php?id=eidx) Vx netlux website. [Online].
Available: vx.netlux.org/vx.php?id=eidx

[33] R. Tabary. (2011, May) Context-free signatures for some in-the-wild
polymorphic viruses. [Online]. Available: www.labri.fr/perso/tabary/
publis/polysigns.pdf

[34] A. Cooke. (www.acooke.org/lepl/) Lepl 4.4. [Online]. Available:
www.acooke.org/lepl/

[35] T. Newsham. (www.lava.net/ newsham/pyggy/) Pyggy glr parser.
[Online]. Available: www.lava.net/∼newsham/pyggy/

[36] M.-J. Nederhof, “Practical experiments with regular approximation of
context-free languages,” Comput. Linguist., vol. 26, pp. 17–44, March
2000. [Online]. Available: http://dx.doi.org/10.1162/089120100561610

[37] Avira. (2004) W32/bolzano virus. [Online]. Available: http://www.avira.
com/fr/support-threats-summary/tid/6061/threat/W32.Bolzano.5396

[38] DR-EF. (2004) W32/norther virus. [Online]. Available: http://vx.netlux.
org/src view.php?lang=de&file=norther.zip&view=NORTHER.ASM

[39] DarkProphet. (2010) W32/annunaki virus. [Online]. Available: http:
//vx.eof-project.net/viewtopic.php?id=451

[40] P. security. (2003) W32/aldebaran virus. [Online]. Available: http:
//www.pandasecurity.com/homeusers/security-info/39694/Aldebaran/

[41] ——. (2010) W32/antares virus. [Online]. Available: http://www.
pandasecurity.com/homeusers/security-info/219841/Antares.A

APPENDIX

ABOUT THE RESULTS

This appendix presents some of the results of our hybrid syntaxic/semantic viral detection scheme, presented in the paper
”Automated Extraction of Polymorphic Virus Signatures using Abstract Interpretation”. Our detection scheme offers 0 false

Infected file

g a a b c e f
j t r y u i o
o a c b q t e

Virus body

Mutation engine

decryptor

ciphered part

Polymorphic virus

Mutation engine

engine extraction
(manual) S → A

A → aAb
...

analysis
(semantics)

Context-free grammar

Scanner
generation

t r v d
s p v c
a t c s
q t y u
d s q i
o p m u
r t s k
o p m h

g a a b c e f
j t r y u i o
o a c b q t e

detection
(syntactic)

Figure 10: Hybrid detection scheme

negative and a very low false positives detection rate. We use context-free grammars as viral signatures, and design a process
able to extract this signature from a single sample of a virus. Signature extraction is achieved through a light manual information
gathering process, followed by an automatic static analysis of the binary code of the virus mutation engine.

For each mutation engine, tests were run against 1000 infected executables and 1000 different clean files taken from a
Windows XP developer station. A summary of the results is presented here:

Name Instructions Rules Ambiguities False positives False negatives
CRPE 359 20 41 0 0

Bolzano 578 17 15 0 0
NBKPE 697 68 115 0 0

VoltagePE 1044 152 221 0 0
OffensivePE 1053 173 1203 22% 0

ETMS 1100 240 2792 - -

Some of the results presented here have been truncated for the sake of concision. Moreover, grammars are written in
a pseudo-CNF form (where bitfields are present) in order to improve readability. The grammars are further processed and
translated into a CNF grammar matching words on the alphabet {0, 1} in order to produce the actual scanner. Also, the top
(>[0:k[) lexeme was used. It is used to represent a match of the language {0, 1}k. This special token is also translated to a
CNF-equivalent rules set during the post-processing phase.

A. Description of mutation engine
Name: CRPE Polymorphic Engine

Used in: W32/generic virus
Type of virus: Polymorphic

Size of engine: 359 assembly opcodes
False positives: 0/1000
False negatives: 0/1000

B. Polymorphic decoder samples

1 ;Sample #1
2 E8 01000000 CALL 00428E36
3 C4 DB C4
4 44 INC ESP
5 44 INC ESP
6 44 INC ESP
7 44 INC ESP
8 E8 EE070000 CALL 0042962D
9 ...

10 60 PUSHAD
11 B9 00004000 MOV ECX,00400000
12 BA 10000000 MOV EDX,10
13 2BC0 SUB EAX,EAX
14 8BD8 MOV EBX,EAX
15 81F0 49410023 XOR EAX,23004149
16 32440A FF XOR AL,BYTE PTR DS:[EDX+ECX-1]
17 83C3 08 ADD EBX,8
18 D1E0 SHL EAX,1
19 1BC3 SBB EAX,EBX
20 4B DEC EBX
21 75 F9 JNZ SHORT 00429649
22 4A DEC EDX
23 75 E9 JNZ SHORT 0042963C
24 8B5424 20 MOV EDX,DWORD PTR SS:[ESP+20]
25 BE EA070000 MOV ESI,7EA
26 03D6 ADD EDX,ESI
27 3102 XOR DWORD PTR DS:[EDX],EAX
28 33C6 XOR EAX,ESI
29 4A DEC EDX
30 ...

1 ;Sample #2
2 53 PUSH EBX
3 5B POP EBX
4 3BF9 CMP EDI,ECX
5 E8 EE070000 CALL 00429627
6 ...
7 60 PUSHAD
8 B8 00004000 MOV EAX,00400000
9 B9 10000000 MOV ECX,10

10 2BD2 SUB EDX,EDX
11 8BDA MOV EBX,EDX
12 81F2 435B0E23 XOR EDX,230E5B43
13 325401 FF XOR DL,BYTE PTR DS:[ECX+EAX-1]
14 83C3 08 ADD EBX,8
15 D1E2 SHL EDX,1
16 1BD3 SBB EDX,EBX
17 4B DEC EBX
18 75 F9 JNZ SHORT 00429643
19 49 DEC ECX
20 75 E9 JNZ SHORT 00429636
21 8B4424 20 MOV EAX,DWORD PTR SS:[ESP+20]
22 BD EA070000 MOV EBP,7EA
23 03C5 ADD EAX,EBP
24 3110 XOR DWORD PTR DS:[EAX],EDX
25 33D5 XOR EDX,EBP
26 48 DEC EAX
27 4D DEC EBP
28 79 F8 JNS SHORT 00429658
29 ...

Figure 11: Code extracts of CRPE virus decryptor

C. Analysis

1 ***
2 * Loading program and translating to microcode
3 ***
4 ***
5 * Identifying calls
6 * 5 calls found
7 ***
8 ***
9 * Extracting functions

10 * 5 functions extracted
11 ***
12 ***
13 * Computing basic blocks
14 ***
15 ***
16 * Computing graph paths as regular expressions
17 ***
18 ***
19 * Symbolic evaluation of functions
20 ***
21 ******** evaluation of function (0x401000,0) (153)
22 ******** evaluation of function (0x401323,0) (8)
23 ******** evaluation of function (0x401267,0) (4)
24 ******** evaluation of function (0x401274,0) (49)
25 ******** evaluation of function (0x40134D,0) (2)
26 ******** evaluation of function (0x401000,0) (153)
27 ******** evaluation of function (0x401323,0) (8)
28 ******** evaluation of function (0x401267,0) (4)
29 ******** evaluation of function (0x401274,0) (49)
30 ******** evaluation of function (0x40134D,0) (2)
31 ***
32 * Identify lexeme output locations
33 ***

34 Writing at Fnc:(0x401000,0) @(0x401020,0) what: E8{0:8}
35 Writing at Fnc:(0x401000,0) @(0x401029,0) what: %??{0:32}
36 Writing at Fnc:(0x401000,0) @(0x401035,0) what: (LOR
37 [[%??{0:32}]{0:32}]{0:8}
38 [(ADD [%??{0:32}]{0:32} 1{0:32}){0:32}]{0:8}
39 [(SUB [%??{0:32}]{0:32} 1{0:32}){0:32}]{0:8})
40 Writing at Fnc:(0x401000,0) @(0x401071,0) what: 60{0:8}
41 Writing at Fnc:(0x401000,0) @(0x401081,0) what: (CC %??{0:2} 2E{0:6}){0:8}
42 ...
43 Writing at Fnc:(0x401274,0) @(0x40131D,0) what: 44444444{0:32}
44 Writing at Fnc:(0x401274,0) @(0x401300,0) what: %??{0:8}
45 Writing at Fnc:(0x401274,0) @(0x4012F6,0) what: %??{0:32}
46 Writing at Fnc:(0x401274,0) @(0x4012ED,0) what: E8{0:8}
47 Writing at Fnc:(0x401274,0) @(0x4012BC,0) what: (CC 8B{0:8} (ADD (CC %??{0:3} (CC %??{0:3}

0{0:2}){0:5}){0:8} C0{0:8}){0:8}){0:16}
48 Writing at Fnc:(0x401274,0) @(0x401299,0) what: (CC (CC %??{0:3} A{0:5}){0:8} (ADD (CC

%??{0:3} A{0:5}){0:8} 8{0:8}){0:8}){0:16}
49 ***
50 * Writing grammar to crpe.grmr
51 ***
52 ***
53 * Writing each function analysis to out/
54 ***
55
56 real 0m10.380s
57 user 0m8.920s
58 sys 0m0.076s

D. Signature

S → A
A → U E8[0:8[>[0:32[K | U U E8[0:8[>[0:32[K
B → >[0:8[>[0:8[79[0:8[>[0:8[R | U >[0:8[>[0:8[79[0:8[>[0:8[R
C → 8B[0:8[>[0:8[Q | 85[0:8[>[0:8[| 3B[0:8[>[0:8[
D → >[0:8[D | >[0:8[N
E → 4[0:3[>[0:5[
F → 8B[0:8[>[0:6[3[0:2[
G → 3[0:8[>[0:6[3[0:2[
H → C3[0:8[| U C3[0:8[
I → D1[0:8[>[0:8[1B[0:8[>[0:8[>[0:8[75[0:8[>[0:8[>[0:8[75[0:8[>[0:8[8B[0:8[4[0:3[>[0:2[2[0:3[2024[0:16[O
| U D1[0:8[>[0:8[1B[0:8[>[0:8[>[0:8[75[0:8[>[0:8[>[0:8[75[0:8[>[0:8[8B[0:8[4[0:3[>[0:2[2[0:3[2024[0:16[O
J → U P | 60[0:8[>[0:2[2E[0:6[>[0:32[>[0:2[2E[0:6[>[0:32[M F T
K → >[0:8[K | >[0:8[J
L → 83[0:8[>[0:3[1[0:1[>[0:1[>[0:1[>[0:1[>[0:1[| 83[0:8[>[0:8[
M → 33[0:8[>[0:2[0[0:1[>[0:1[>[0:1[6[0:3[| 2B[0:8[>[0:2[0[0:1[>[0:1[>[0:1[6[0:3[
N → 44444444[0:32[| 83[0:8[4C4[0:16[
O → >[0:3[17[0:5[>[0:32[G 31[0:8[>[0:8[33[0:8[>[0:8[B
P → 60[0:8[>[0:2[2E[0:6[>[0:32[>[0:2[2E[0:6[>[0:32[M F T
Q → 85[0:8[>[0:8[| E8[0:8[>[0:32[D | 3B[0:8[>[0:8[
R → U 61[0:8[H | 61[0:8[H
T → 81[0:8[>[0:4[F[0:4[>[0:32[32[0:8[E >[0:8[FF[0:8[L 8[0:8[I | 1[0:1[>[0:1[1[0:1[>[0:1[3[0:2[>[0:1[>[0:1[
>[0:32[32[0:8[E >[0:8[FF[0:8[L 8[0:8[I
U → E8[0:8[>[0:32[D | 8B[0:8[>[0:8[Q | 85[0:8[>[0:8[| 3B[0:8[>[0:8[| >[0:3[A[0:5[>[0:8[C

E. Description of mutation engine
Name: Bolzano Polymorphic Engine

Used in: W32/Bolzano
Type of virus: Polymorphic

Size of engine: 578 assembly opcodes
Link: [37]

False positives: 0/1000
False negatives: 0/1000

F. Polymorphic decoder samples

1 ;Sample #1
2 60 PUSHA
3 41 INC ECX
4 B8 0A 00 00 00 MOV EAX,0A
5 42 INC EDX
6 B9 B9 00 00 00 MOV ECX,B9
7 B8 E5 1E 40 00 MOV EAX,401EE5
8 B1 17 MOV CL,17
9 8B 05 01 20 40 00 MOV EAX,DWORD PTR DS

:400201
10 BA BA 00 00 00 MOV EDX,0XBA
11 B1 24 MOV CL,0X24
12 31 00 XOR DWORD PTR [EAX],EAX
13 B9 B9 00 00 00 MOV ECX,0XB9
14 83 C0 04 ADD EAX,0X4
15 41 INC ECX
16 03 05 01 20 40 00 ADD EAX,DWORD PTR DS

:400201
17 BA BA 00 00 00 MOV EDX,0BA
18 41 INC ECX
19 C1 C8 00 ROR EAX,00
20 49 DEC ECX
21 48 DEC EAX
22 0F 84 BC FF FF FF JE 428E30
23 B5 03 MOV CH,3
24 EB D3 JMP 428E4B
25 ...

1 ;Sample #2
2 60 PUSHA
3 4A DEC EDX
4 49 DEC ECX
5 B8 0A 00 00 00 MOV EAX,0A
6 41 INC ECX
7 B8 E5 1E 40 00 MOV EAX,401EE5
8 41 INC ECX
9 8B 05 22 30 40 00 MOV EAX,DWORD PTR DS

:400322
10 4A DEC EDX
11 49 DEC ECX
12 31 00 XOR DWORD PTR [EAX],EAX
13 BA BA 00 00 00 MOV EDX,0BA
14 49 DEC ECX
15 83 C0 04 ADD EAX,0X4
16 41 INC ECX
17 03 05 22 30 40 00 ADD EAX,DWORD PTR DS

:400322
18 B9 B9 00 00 00 MOV ECX,0B9
19 C1 C0 00 ROL EAX,00
20 4A DEC EDX
21 49 DEC ECX
22 48 DEC EAX
23 0F 84 C5 FF FF FF JE 428E30
24 B9 B9 00 00 00 MOV ECX,B9
25 ...

Figure 12: Code extracts of Bolzano virus decryptor

G. Analysis

1 ***
2 * Loading program and translating to microcode
3 ***
4 ***
5 * Identifying calls
6 * 9 calls found
7 ***
8 ***
9 * Extracting functions

10 * 9 functions extracted
11 ***
12 ***
13 * Computing basic blocks
14 ***
15 ***
16 * Computing graph paths as regular expressions
17 ***
18 ***
19 * Symbolic evaluation of functions
20 ***
21 ******** evaluation of function (0x4011FE,0) (30)
22 ******** evaluation of function (0x401000,0) (2)
23 ******** evaluation of function (0x401008,0) (2)
24 ******** evaluation of function (0x40100E,0) (77)
25 ******** evaluation of function (0x4011E7,0) (5)
26 ***
27 * Identify lexeme output locations
28 ***
29 Writing at Fnc:(0x4011FE,0) @(0x40121E,0) what: (CC %??{0:3} 8{0:5}){0:8}
30 Writing at Fnc:(0x4011FE,0) @(0x401254,0) what: (CC %??{0:3} 17{0:5}){0:8}
31 Writing at Fnc:(0x4011FE,0) @(0x401255,0) what: (CC (CC %??{0:3} 17{0:5}){0:8} %??{0:24})

{0:32}
32 Writing at Fnc:(0x4011FE,0) @(0x401255,0) what: (CC (CC %??{0:3} 17{0:5}){0:8} %??{0:24})

{0:32}
33 Writing at Fnc:(0x4011FE,0) @(0x401254,0) what: (CC %??{0:3} 17{0:5}){0:8}
34 Writing at Fnc:(0x4011FE,0) @(0x401243,0) what: (ADD (CC %??{0:2} (CC (ADD %??{0:1}

%??{0:1}){0:1} (CC %??{0:3} 0{0:3}){1:6}){0:6}){0:8} B0{0:8}){0:8}
35 }
36 ...
37 Writing at Fnc:(0x40100E,0) @(0x4010A8,0) what: 60{0:8}
38 Writing at Fnc:(0x4011CF,0) @(0x4011D6,0) what: %??{0:8}
39 ***
40 * Writing grammar to bolzano.grmr
41 ***
42 ***
43 * Writing each function analysis to out/
44 ***
45
46 real 0m4.320s
47 user 0m2.889s
48 sys 0m0.030s

H. Signature

S → B 60[0:8[C >[0:3[17[0:5[>[0:32[C >[0:3[17[0:5[>[0:32[C 8B[0:8[5[0:3[>[0:3[0[0:2[>[0:32[C 31[0:8[
>[0:3[>[0:3[0[0:2[C 83[0:8[>[0:3[18[0:5[4[0:8[C >[0:8[5[0:3[>[0:3[0[0:2[>[0:32[C C1[0:8[>[0:3[>[0:1[C[0:4[
>[0:8[C >[0:3[9[0:5[840F[0:16[>[0:32[C EB[0:8[>[0:8[B
A → >[0:3[8[0:5[| >[0:3[17[0:5[>[0:3[17[0:5[>[0:24[
B → >[0:8[B | >[0:8[
C → D C | >[0:3[8[0:5[| >[0:8[>[0:8[| A | >[0:3[9[0:5[
D → >[0:3[8[0:5[| >[0:3[9[0:5[| >[0:3[17[0:5[>[0:3[17[0:5[>[0:24[| >[0:8[>[0:8[

I. Description of mutation engine
Name: CRPE Polymorphic Engine

Used in: W32/generic virus
Type of virus: Polymorphic

Size of engine: 697 assembly opcodes
False positives: 0/1000
False negatives: 0/1000

J. Polymorphic decoder samples

1 ;Sample #1
2 0FA3C2 BT EDX,EAX
3 8BC0 MOV EAX,EAX
4 BA 5C8E4200 MOV EDX,00428E5C
5 52 PUSH EDX
6 0FA3C1 BT ECX,EAX
7 33C0 XOR EAX,EAX
8 64:FF30 PUSH DWORD PTR FS:[EAX]
9 64:8920 MOV DWORD PTR FS:[EAX],ESP

10 0FA3C2 BT EDX,EAX
11 CC INT3
12 0FA3C2 BT EDX,EAX
13 8BC3 MOV EAX,EBX
14 0FA3C1 BT ECX,EAX
15 E9 602C0000 JMP 0042BAB7
16 0FA3C2 BT EDX,EAX
17 8B5424 08 MOV EDX,DWORD PTR SS:[ESP+8]
18 8BE2 MOV ESP,EDX
19 0FA3C1 BT ECX,EAX
20 33C0 XOR EAX,EAX
21 64:8F00 POP DWORD PTR FS:[EAX]
22 0FA3C1 BT ECX,EAX
23 83EC FC SUB ESP,-4
24 0FA3C3 BT EBX,EAX
25 BF 8B8E4200 MOV EDI,00428E8B
26 B9 CB020000 MOV ECX,2CB
27 8B07 MOV EAX,DWORD PTR DS:[EDI]
28 35 FC700600 XOR EAX,670FC
29 8907 MOV DWORD PTR DS:[EDI],EAX
30 ...

1 ;Sample #2
2 0FA3C3 BT EBX,EAX
3 68 548E4200 PUSH 00428E54
4 0FA3C2 BT EDX,EAX
5 33C0 XOR EAX,EAX
6 64:FF30 PUSH DWORD PTR FS:[EAX]
7 64:8920 MOV DWORD PTR FS:[EAX],ESP
8 0FA3C1 BT ECX,EAX
9 CC INT3

10 0FA3C0 BT EAX,EAX
11 E9 DB E9
12 ...
13 8BC0 MOV EAX,EAX
14 0FA3C3 BT EBX,EAX
15 8B6424 08 MOV ESP,DWORD PTR SS:[ESP+8]
16 0FA3C3 BT EBX,EAX
17 8BC1 MOV EAX,ECX
18 0FA3C3 BT EBX,EAX
19 33C0 XOR EAX,EAX
20 64:8F00 POP DWORD PTR FS:[EAX]
21 0FA3C0 BT EAX,EAX
22 83EC FC SUB ESP,-4
23 0FA3C3 BT EBX,EAX
24 BF 8B8E4200 MOV EDI,00428E8B
25 B9 CB020000 MOV ECX,2CB
26 8B07 MOV EAX,DWORD PTR DS:[EDI]
27 35 52D32B00 XOR EAX,2BD352
28 8907 MOV DWORD PTR DS:[EDI],EAX
29 83C7 04 ADD EDI,4
30 ...

Figure 13: Code extracts of NBKPE virus decryptor

K. Analysis

1 ***
2 * Loading program and translating to microcode
3 ***
4 ***
5 * Identifying calls
6 * 34 calls found
7 ***
8 ***
9 * Extracting functions

10 * 34 functions extracted
11 ***
12 ***
13 * Computing basic blocks
14 ***
15 ***
16 * Computing graph paths as regular expressions
17 ***
18 ***
19 * Symbolic evaluation of functions
20 ***
21 ******** evaluation of function (0x401440,0) (10)
22 ******** evaluation of function (0x401501,0) (12)
23 ******** evaluation of function (0x401453,0) (8)
24 ******** evaluation of function (0x40139A,0) (21)
25 ...
26 ******** evaluation of function (0x4014E4,0) (13)
27 ******** evaluation of function (0x401428,0) (8)
28 ******** evaluation of function (0x401434,0) (8)
29 ***
30 * Identify lexeme output locations
31 ***
32 Writing at Fnc:(0x401440,0) @(0x401448,0) what: F7{0:8}
33 Writing at Fnc:(0x401440,0) @(0x401450,0) what: (ADD %??{0:8} 18{0:8}){0:8}
34 Writing at Fnc:(0x401440,0) @(0x401450,0) what: (ADD %??{0:8} 18{0:8}){0:8}
35 Writing at Fnc:(0x401440,0) @(0x401448,0) what: F7{0:8}
36 Writing at Fnc:(0x401501,0) @(0x401512,0) what: EB{0:8}
37 ...
38 Writing at Fnc:(0x401428,0) @(0x40142B,0) what: 85{0:8}
39 Writing at Fnc:(0x401434,0) @(0x401437,0) what: 3B{0:8}
40 Writing at Fnc:(0x401434,0) @(0x40143D,0) what: %??{0:8}
41 Writing at Fnc:(0x401434,0) @(0x40143D,0) what: %??{0:8}
42 Writing at Fnc:(0x401434,0) @(0x401437,0) what: 3B{0:8}
43 ***
44 * Writing grammar to nbkpe.grmr
45 ***
46 ***
47 * Writing each function analysis to out/
48 ***
49
50 real 0m6.211s
51 user 0m4.670s
52 sys 0m0.061s

L. Signature

S → C BF[0:8[>[0:32[B9[0:8[>[0:32[78B[0:16[35[0:8[>[0:32[789[0:16[C783[0:16[4[0:8[E2[0:8[>[0:8[ε
A → >[0:8[| 0[0:8[
B → 5C[0:8[| 54[0:8[| 4C[0:8[| 44[0:8[
C → E >[0:8[>[0:32[>[0:8[U H | E 68[0:8[>[0:32[H
D → T T | T I
E → T T | T D
F → 36FF67[0:32[G 64[0:8[R | FF[0:8[N
G → 32[0:8[| 33[0:8[| 30[0:8[| 0[0:8[
H → E 64[0:8[F | E V
I → T T | T T T
J → 2B[0:8[>[0:8[64[0:8[X | 33[0:8[>[0:8[64[0:8[X
K → 22[0:8[| 23[0:8[| 20[0:8[| FFFFFFF0L[0:8[| F0[0:8[| 0[0:8[
L → >[0:8[L | >[0:8[
M → E EC83[0:16[FC[0:8[E | E C483[0:16[4[0:8[E
N → ε | G 64[0:8[R
O → B 824[0:16[8B[0:8[>[0:8[Q | 2464[0:16[8[0:8[Q
P → 13[0:8[>[0:8[| D3[0:8[>[0:8[| A30F[0:16[>[0:8[| A[0:8[>[0:8[| ε | 8166[0:16[>[0:8[>[0:16[| F7[0:8[>[0:8[
| 87[0:8[>[0:8[| EB[0:8[>[0:8[L | 81[0:8[>[0:8[>[0:32[
Q → E 64[0:8[X | E J
R → 268967[0:32[K E CC[0:8[E E9[0:8[>[0:32[E E 8B[0:8[O | 89[0:8[K E CC[0:8[E E9[0:8[>[0:32[E E 8B[0:8[O
T → W | B4[0:8[>[0:8[| 2B[0:8[>[0:8[| 2[0:8[>[0:8[| P
U → T T | T D | E >[0:8[
V → 33[0:8[>[0:8[64[0:8[F | 2B[0:8[>[0:8[64[0:8[F
W → 8B[0:8[>[0:8[| B8[0:8[>[0:32[| ε
X → 68F67[0:32[A M | 8F[0:8[A M

M. Description of mutation engine
Name: Voltage Polymorphic Engine

Used in: W32/Norther virus (2004)
Type of virus: Polymorphic

Size of engine: 1044 assembly opcodes
Link: [38]

False positives: 0/1000
False negatives: 0/1000

N. Polymorphic decoder samples

1 ;Sample #1
2 60 PUSHA
3 81 CD 5A EA 65 56 OR EBP,5665EA5A
4 2B F6 SUB ESI,ESI
5 51 PUSH ECX
6 59 POP ECX
7 81 CE 30 8E 42 00 OR ESI,428E30
8 C1 E5 AF SHL EBP,AF
9 8B FE MOV EDI,ESI

10 81 CA 02 80 79 4B OR EDX,4B798002
11 B9 1C F8 FF FF MOV ECX,FFFFF81C
12 81 F3 33 3A A5 6C XOR EBX,6CA53A33
13 F7 D1 NOT ECX
14 57 PUSH EDI
15 5F POP EDI
16 FF 36 PUSH DWORD PTR [ESI]
17 C1 CD E2 ROR EBP,E2
18 58 POP EAX
19 46 INC ESI
20 C1 E2 5B SHL EDX,5B
21 46 INC ESI
22 81 EB ED 2B 2C B2 SUB EBX,B22C2BED
23 81 C3 ED 2B 2C B2 ADD EBX,B22C2BED
24 46 INC ESI
25 ...

1 ;Sample #2
2 60 PUSHA
3 7F 00 JG 413E64
4 2B F6 SUB ESI,ESI
5 C1 E5 AA SHL EBP,AA
6 81 CE 30 8E 42 00 OR ESI,428E30
7 81 CD 34 D7 1B B7 OR EBP,B71BD734
8 87 F7 XCHG EDI,ESI
9 68 CF 9B 30 F2 PUSH F2309BCF

10 5B POP EBX
11 8B F7 MOV ESI,EDI
12 81 C7 19 97 52 4A ADD EDI,4A529719
13 81 EF 19 97 52 4A SUB EDI,4A529719
14 68 E3 07 00 00 PUSH 7E3
15 56 PUSH ESI
16 5E POP ESI
17 59 POP ECX
18 C1 C2 9A ROL EDX,9A
19 FF 36 PUSH DWORD PTR [ESI]
20 C1 CB 4B ROR EBX,4B
21 58 POP EAX
22 83 C6 04 ADD ESI,4
23 56 PUSH ESI
24 5E POP ESI
25 ...

Figure 14: Code extracts of W32/Norther virus decryptor

O. Analysis

1 ***
2 * Loading program and translating to microcode
3 ***
4 ***
5 * Identifying calls
6 * 41 calls found
7 ***
8 ***
9 * Extracting functions

10 * 41 functions extracted
11 ***
12 ***
13 * Computing basic blocks
14 ***
15 ***
16 * Computing graph paths as regular expressions
17 ***
18 ***
19 * Symbolic evaluation of functions
20 ***
21 ******** evaluation of function (0x4012BE,0) (6)
22 ******** evaluation of function (0x401443,0) (110)
23 ...
24 ******** evaluation of function (0x4017FA,0) (8)
25 ******** evaluation of function (0x401379,0) (6)
26 ******** evaluation of function (0x401A43,0) (9)
27
28 ***
29 * Identify lexeme output locations
30 ***
31 Writing at Fnc:(0x4012BE,0) @(0x4012CD,0) what: AD{0:8}
32 Writing at Fnc:(0x4012BE,0) @(0x4012DA,0) what: 68B{0:16}
33 Writing at Fnc:(0x4012BE,0) @(0x4012E9,0) what: 36FF{0:16}
34 Writing at Fnc:(0x401443,0) @(0x401480,0) what: 68{0:8}
35 ...
36 Writing at Fnc:(0x40111C,0) @(0x4011B1,0) what: D6F7{0:16}
37 Writing at Fnc:(0x4018A8,0) @(0x401903,0) what: (LOR
38 C023{0:16}
39 DB23{0:16}
40 C923{0:16}
41 D223{0:16}
42 FF23{0:16}
43 F623{0:16}
44 ED23{0:16}
45 E423{0:16})
46 Writing at Fnc:(0x4018A8,0) @(0x401903,0) what: (LOR
47 C023{0:16}
48 DB23{0:16}
49 C923{0:16}
50 D223{0:16}
51 FF23{0:16}
52 F623{0:16}
53 ED23{0:16}
54 E423{0:16})
55 Writing at Fnc:(0x4012B2,0) @(0x4012B2,0) what: C981{0:16}
56 Writing at Fnc:(0x4012B2,0) @(0x4012B7,0) what: %r1{0:32}
57 Writing at Fnc:(0x401379,0) @(0x40138A,0) what: AB{0:8}
58 Writing at Fnc:(0x401379,0) @(0x401397,0) what: 789{0:16}
59 Writing at Fnc:(0x401A43,0) @(0x401A5E,0) what: CD{0:8}
60 ***
61 * Writing grammar to norther.grmr
62 ***
63 ***
64 * Writing each function analysis to out/
65 ***
66
67 real 1m28.545s
68 user 1m27.077s
69 sys 0m0.061s

P. Signature

S → AL
A→ F >[0:32[| AW >[0:32[| C08B[0:16[| DB8B[0:16[| C98B[0:16[| D28B[0:16[| FF8B[0:16[| F68B[0:16[| ED8B[0:16[
| E48B[0:16[| Z | 68[0:8[>[0:32[P
B → B9[0:8[0[0:32[H F1F7[0:16[H | C933[0:16[H F1F7[0:16[H | C92B[0:16[H F1F7[0:16[H | B0F[0:16[H | CC[0:8[
H
C → >[0:3[8[0:5[>[0:8[| >[0:3[9[0:5[>[0:8[
D → C08B[0:16[| DB8B[0:16[| C98B[0:16[| D28B[0:16[| FF8B[0:16[| F68B[0:16[| ED8B[0:16[| E48B[0:16[| Z
E → AB | FF23[0:16[| C023[0:16[| C923[0:16[| DB23[0:16[| E423[0:16[| F623[0:16[| AH | D223[0:16[| ED23[0:16[
F → BB[0:8[| BA[0:8[| BD[0:8[
G → N X 8964[0:16[>[0:8[B | 8B[0:8[>[0:8[X 6764[0:16[89[0:8[>[0:8[0[0:16[B
H → M | AJ | AT >[0:32[| AX >[0:32[| AA | A | AC
I → 90[0:8[| F8[0:8[| FC[0:8[| F5[0:8[| F9[0:8[
J→ DB33[0:16[| C92B[0:16[| F633[0:16[| C033[0:16[| C933[0:16[| F62B[0:16[| D22B[0:16[| FF2B[0:16[| FF33[0:16[
| D233[0:16[| DB2B[0:16[| C02B[0:16[
K → CD[0:8[>[0:8[| CA[0:8[>[0:8[
L → H AP | H 36FF6764[0:32[0[0:16[AN
M → FC[0:8[| F5[0:8[| 90[0:8[| F8[0:8[| F9[0:8[| I
N → DB33[0:16[| C92B[0:16[| F633[0:16[| C033[0:16[| C933[0:16[| F62B[0:16[| J | D22B[0:16[| FF2B[0:16[|
FF33[0:16[| D233[0:16[| DB2B[0:16[| C02B[0:16[
O → E5[0:8[>[0:8[| E2[0:8[>[0:8[
P → 5B[0:8[| 5A[0:8[| 5D[0:8[
Q → AI | C683[0:16[4[0:8[
R → 47[0:8[H R | 47[0:8[H
T → 60[0:8[
U → 2334FF64[0:32[| 734FF64[0:32[| 34FF64[0:32[| 8B34FF64L[0:32[| 9034FF64L[0:32[| F834FF64L[0:32[|
F534FF64L[0:32[| F934FF64L[0:32[| FC34FF64L[0:32[| B734FF64L[0:32[| 1B34FF64[0:32[| 9734FF64L[0:32[
| 934FF64[0:32[| 2734FF64[0:32[| 1234FF64[0:32[| F734FF64L[0:32[| 3F34FF64[0:32[| 6734FF64[0:32[|
3634FF64[0:32[
V → EB[0:8[>[0:8[| EA[0:8[>[0:8[
W → BE[0:8[>[0:32[H D6F7[0:16[| F62B[0:16[H CE81[0:16[>[0:32[| F633[0:16[H CE81[0:16[>[0:32[| 68[0:8[
>[0:32[H 5E[0:8[| BE[0:8[>[0:32[
X → M | D | C | >[0:3[A[0:5[>[0:8[| >[0:4[7[0:12[| E
Y → R | C783[0:16[4[0:8[
Z → C08B[0:16[| DB8B[0:16[| C98B[0:16[| D28B[0:16[| FF8B[0:16[| F68B[0:16[| ED8B[0:16[| E48B[0:16[
AA → C1[0:8[AM | C1[0:8[C3[0:8[>[0:8[| C1[0:8[K | C1[0:8[CB[0:8[>[0:8[| AG | AK
AB → C023[0:16[| DB23[0:16[| C923[0:16[| D223[0:16[| FF23[0:16[| F623[0:16[| ED23[0:16[| E423[0:16[
AC → >[0:3[8[0:5[>[0:8[| >[0:3[9[0:5[>[0:8[| >[0:3[A[0:5[>[0:8[| >[0:4[7[0:12[| E
AD → >[0:3[17[0:5[>[0:32[X >[0:3[A[0:5[X 81[0:8[2434[0:16[>[0:32[>[0:3[17[0:5[>[0:32[X >[0:3[A[0:5[X
81[0:8[2434[0:16[>[0:32[AF | >[0:3[17[0:5[>[0:32[X >[0:3[A[0:5[>[0:3[17[0:5[>[0:32[X >[0:3[A[0:5[AF
AE → 50[0:8[H 78F[0:16[Y | 789[0:16[H Y | AB[0:8[
AF → H 8B[0:8[4[0:3[>[0:3[3[0:2[X >[0:3[A[0:5[L | H 54[0:8[L
AG → C1[0:8[O | C1[0:8[E3[0:8[>[0:8[
AH → FF23[0:16[| C023[0:16[| C923[0:16[| DB23[0:16[| E423[0:16[| F623[0:16[| D223[0:16[| ED23[0:16[
AI → 46[0:8[H AI | 46[0:8[H
AJ → 81[0:8[>[0:3[18[0:5[>[0:32[81[0:8[>[0:3[1D[0:5[>[0:32[| 81[0:8[>[0:3[1D[0:5[>[0:32[81[0:8[>[0:3[
18[0:5[>[0:32[
AK → C1[0:8[V | C1[0:8[ED[0:8[>[0:8[
AL → T H W H AV H AO H AQ H D0F7[0:16[AR | T H W H AV H AO H AQ H AS
AM → C5[0:8[>[0:8[| C2[0:8[>[0:8[
AN → H G | H 26896764[0:32[0[0:16[B
AO → B9[0:8[>[0:32[H D1F7[0:16[| C92B[0:16[H C981[0:16[>[0:32[| C933[0:16[H C981[0:16[>[0:32[| 68[0:8[
>[0:32[H 59[0:8[| B9[0:8[>[0:32[
AP → N X U AN | N X FF64[0:16[30[0:8[AN
AQ → 36FF[0:16[H 58[0:8[Q | 68B[0:16[Q | AD[0:8[
AR → H AE H AU H AD | H AE H AU H 68[0:8[>[0:32[H 68[0:8[>[0:32[AF
AS → 35[0:8[>[0:32[AR | 5[0:8[>[0:32[AR | 2D[0:8[>[0:32[AR
AT → F381[0:16[| F281[0:16[| F581[0:16[
AU → E2[0:8[>[0:8[| 49[0:8[H F983[0:16[0[0:8[75[0:8[>[0:8[
AV → F787[0:16[H F78B[0:16[| FE87[0:16[H F78B[0:16[| 56[0:8[H 5F[0:8[| FE8B[0:16[
AW → E381[0:16[| E281[0:16[| E581[0:16[
AX → CB81[0:16[| CA81[0:16[| CD81[0:16[

Q. Description of mutation engine
Name: Offensive Polymorphic Engine

Used in: W32/Annunaki virus (2010)
Type of virus: Polymorphic

Size of engine: 1053 assembly opcodes
Link: [39]

False positives: 219/1000
False negatives: 0/1000

R. Polymorphic decoder samples

1 ;Sample #1
2 55 PUSH EBP
3 8BEC MOV EBP,ESP
4 2B75 00 SUB ESI,DWORD PTR SS:[EBP]
5 68 08B34AE3 PUSH E34AB308
6 5F POP EDI
7 E8 03000000 CALL 00428E44
8 0B75 F0 OR ESI,DWORD PTR SS:[EBP-10]
9 5A POP EDX

10 81C2 BF71BDFF ADD EDX,FFBD71BF
11 81C2 EEF22500 ADD EDX,25F2EE
12 235D E8 AND EBX,DWORD PTR SS:[EBP-18]
13 68 27100000 PUSH 1027
14 59 POP ECX
15 037424 00 ADD ESI,DWORD PTR SS:[ESP]
16 BB 755AB787 MOV EBX,87B75A75
17 66:337424 E8 XOR SI,WORD PTR SS:[ESP-18]
18 293A SUB DWORD PTR DS:[EDX],EDI
19 8B7424 DC MOV ESI,DWORD PTR SS:[ESP-24]
20 81C7 D7A56A26 ADD EDI,266AA5D7
21 4A DEC EDX
22 49 DEC ECX
23 85C9 TEST ECX,ECX
24 75 E4 JNZ SHORT 00428E5E
25 334C24 00 XOR ECX,DWORD PTR SS:[ESP]
26 E8 AD030000 CALL 00429230
27 ...

1 ;Sample #2
2 55 PUSH EBP
3 8BEC MOV EBP,ESP
4 8D3D EEE4933E LEA EDI,DWORD PTR DS:[3

E93E4EE]
5 0355 DC ADD EDX,DWORD PTR SS:[EBP-24]
6 E8 04000000 CALL 00428E45
7 335C24 E4 XOR EBX,DWORD PTR SS:[ESP-1C]
8 59 POP ECX
9 81C1 BF71BDFF ADD ECX,FFBD71BF

10 81C1 BBAE7C00 ADD ECX,7CAEBB
11 8B5C24 00 MOV EBX,DWORD PTR SS:[ESP]
12 68 27100000 PUSH 1027
13 5E POP ESI
14 BA 54D03DC6 MOV EDX,C63DD054
15 B8 52D23DC6 MOV EAX,C63DD252
16 335C24 FC XOR EBX,DWORD PTR SS:[ESP-4]
17 3139 XOR DWORD PTR DS:[ECX],EDI
18 66:8B5424 00 MOV DX,WORD PTR SS:[ESP]
19 81EF 6E4E0ABB SUB EDI,BB0A4E6E
20 BA 53DA3DC6 MOV EDX,C63DDA53
21 49 DEC ECX
22 23D0 AND EDX,EAX
23 4E DEC ESI
24 85F6 TEST ESI,ESI
25 75 E2 JNZ SHORT 00428E66
26 8B4424 FC MOV EAX,DWORD PTR SS:[ESP-4]
27 ...

Figure 15: Code extracts of W32/Annunaki virus decryptor

S. Analysis

1 ***
2 * Loading program and translating to microcode
3 ***
4 ***
5 * Identifying calls
6 * 38 calls found
7 ***
8 ***
9 * Extracting functions

10 * 38 functions extracted
11 ***
12 ***
13 * Computing basic blocks
14 ***
15 ***
16 * Computing graph paths as regular expressions
17 ***
18 ***
19 * Symbolic evaluation of functions
20 ***
21 ******** evaluation of function (0x401383,0) (25)
22 ******** evaluation of function (0x4015CB,0) (5)
23 ******** evaluation of function (0x401813,0) (27)
24 ...
25 ******** evaluation of function (0x4018BE,0) (49)
26 ******** evaluation of function (0x401B04,0) (8)
27 ***
28 * Identify lexeme output locations
29 ***
30 Writing at Fnc:(0x4015CB,0) @(0x4015EA,0) what: 55{0:8}
31 Writing at Fnc:(0x4015CB,0) @(0x4015ED,0) what: EC8B{0:16}
32 Writing at Fnc:(0x4015CB,0) @(0x40161B,0) what: 5D{0:8}
33 Writing at Fnc:(0x4015CB,0) @(0x40161E,0) what: C3{0:8}
34 Writing at Fnc:(0x401813,0) @(0x40182A,0) what: B8{0:8}
35 Writing at Fnc:(0x401813,0) @(0x40182D,6) what: (ADD B8{0:8} %r1{0:8}){0:8}
36 Writing at Fnc:(0x401813,0) @(0x40182F,0) what: %r2{0:32}
37 Writing at Fnc:(0x401813,0) @(0x401838,0) what: 68{0:8}
38 Writing at Fnc:(0x401813,0) @(0x40183B,0) what: %r2{0:32}
39 Writing at Fnc:(0x401813,0) @(0x401841,0) what: (ADD %r1{0:8} 58{0:8}){0:8}
40 Writing at Fnc:(0x401813,0) @(0x401841,0) what: (ADD %r1{0:8} 58{0:8}){0:8}
41 Writing at Fnc:(0x401813,0) @(0x40183B,0) what: %r2{0:32}
42 Writing at Fnc:(0x401813,0) @(0x401838,0) what: 68{0:8}
43 Writing at Fnc:(0x401813,0) @(0x40184D,0) what: (LOR
44 (ADD (CC %r1{0:1} (CC 0{0:1} (CC 0{0:1} %r1{1:14}){0:14}){0:15}){0:16} 58D{0:16}){0:16}
45 (ADD (CC %r1{0:1} (CC 0{0:1} %r1{1:15}){0:15}){0:16} 58D{0:16}){0:16}
46 (ADD %r1{0:16} 58D{0:16}){0:16})
47 ...
48 Writing at Fnc:(0x4018BE,0) @(0x40193D,0) what: C3{0:8}
49 Writing at Fnc:(0x4018BE,0) @(0x40192D,0) what: %??{0:32}
50 Writing at Fnc:(0x4018BE,0) @(0x401921,0) what: E8{0:8}
51 ***
52 * Writing grammar to annunaki.grmr
53 ***
54 ***
55 * Writing each function analysis to out/
56 ***
57
58 real 0m57.243s
59 user 0m55.811s
60 sys 0m0.030s

T. Signature

S → Y ε
A → AK A | AK 5D[0:8[C3[0:8[
B → >[0:8[| >[0:3[18[0:5[
C → >[0:1[34[0:7[X | FF[0:8[P | >[0:3[A[0:5[
D → >[0:8[O | >[0:8[P
E → ε | U AH >[0:3[9[0:5[85[0:8[B AI
F → >[0:8[P | 89[0:8[P
G → E8[0:8[>[0:32[AK >[0:8[>[0:16[>[0:32[81[0:8[>[0:8[>[0:32[Q AK C3[0:8[| U Q AK C3[0:8[
H → >[0:8[24[0:8[>[0:8[>[0:8[| >[0:8[>[0:32[| >[0:8[>[0:8[| >[0:8[J
I → B8[0:8[>[0:8[>[0:32[| 68[0:8[>[0:32[>[0:8[| >[0:16[>[0:32[| E8[0:8[>[0:32[AK >[0:8[>[0:16[>[0:32[
81[0:8[>[0:8[>[0:32[
J → >[0:8[>[0:32[| >[0:8[>[0:8[| ε
K → 1[0:1[1[0:1[0[0:1[0[0:2[>[0:11[| 1[0:1[1[0:1[0[0:2[>[0:12[| 3[0:2[>[0:14[
L → 75[0:8[>[0:8[AK AN | 850F[0:16[>[0:32[AK AN
M → 75[0:8[>[0:8[| 850F[0:16[>[0:32[P
N → ε | EB[0:8[AH | D >[0:4[7[0:4[AH
O → P >[0:8[| P >[0:32[
P → >[0:3[18[0:5[| >[0:8[| AB | H | >[0:8[24[0:8[>[0:8[>[0:8[| >[0:8[>[0:8[
Q → >[0:3[A[0:5[| >[0:8[
R → >[0:8[24[0:8[>[0:8[>[0:8[| >[0:8[J | >[0:8[>[0:32[| >[0:8[>[0:8[
T → W T | 55[0:8[EC8B[0:16[A
U → B8[0:8[>[0:8[>[0:32[| 68[0:8[>[0:32[>[0:8[| >[0:16[>[0:32[
V → C V | C E8[0:8[>[0:32[AA
W → 55[0:8[EC8B[0:16[A
X → >[0:32[| >[0:8[
Y → AC 55[0:8[EC8B[0:16[AK AF U AK P | AC 55[0:8[EC8B[0:16[AK AF U AK I AK U AK AK AM >[0:8[AK
81[0:8[>[0:8[>[0:32[AK >[0:8[AK >[0:8[85[0:8[>[0:8[L
Z → ε | E8[0:8[>[0:32[AA | V | >[0:8[AE
AA → ε | K >[0:8[AL | >[0:8[
AB → >[0:8[>[0:32[| >[0:8[24[0:8[>[0:8[>[0:8[| >[0:8[>[0:8[
AC → ε | T
AD → C AH >[0:8[| C AH C483[0:16[4[0:8[
AE → E8[0:8[>[0:32[AA | V
AF → AK I AK I AK U AK >[0:16[>[0:16[AK >[0:16[4[0:8[AK >[0:16[4[0:8[AK >[0:8[AK >[0:16[M | ε
AG → ε | I | >[0:8[| >[0:8[>[0:32[| U P
AH → AD AJ | N AJ | E AJ | Z AJ | AG AJ | AO AJ
AI → 75[0:8[>[0:8[| 850F[0:16[>[0:32[
AJ → ε | AD AJ | N AJ | E AJ | Z AJ | AG AJ | AO AJ
AK → N AJ | Z AJ | E AJ | AG AJ | AD AJ | AO AJ
AL → ε | >[0:8[
AM → 0[0:8[| 31[0:8[
AN → E8[0:8[>[0:32[AK AK C3[0:8[| R | G | P | >[0:8[| B
AO → >[0:8[P | 66[0:8[F | 89[0:8[P

U. Description of mutation engine
Name: ETMS Polymorphic Engine

Used in: W32/Aldebaran & W32/Antares virues (2010)
Type of virus: Polymorphic

Size of engine: 1100 assembly opcodes
Link: [40] & [41]

False positives: ?/1000
False negatives: ?/1000

Note: due to the high ambiguities in the grammar, parsing times were to long to perform viral detection. This signature has only been verified
manually, ona small subset of viral instances.

V. Polymorphic decoder samples

1 ;Sample #1
2 55 PUSH EBP
3 68 A6000000 PUSH 0A6
4 58 POP EAX
5 68 C0000000 PUSH 0C0
6 FF35 888E4200 PUSH DWORD PTR DS:[428E88]
7 E8 05000000 CALL 00428E4C
8 E9 01000000 JMP 00428E4D
9 C3 RETN

10 58 POP EAX
11 6A 53 PUSH 53
12 52 PUSH EDX
13 68 06000000 PUSH 6
14 51 PUSH ECX
15 BE 00000000 MOV ESI,0
16 BA 597A3D00 MOV EDX,3D7A59
17 B8 88F0FFFF MOV EAX,-0F78
18 83C4 0C ADD ESP,0C
19 83C4 04 ADD ESP,4
20 56 PUSH ESI
21 83C4 04 ADD ESP,4
22 50 PUSH EAX
23 59 POP ECX
24 ...

1 ;Sample #2
2 B8 9E9F4200 MOV EAX,00429F9E
3 E8 05000000 CALL 00428E3F
4 E9 03000000 JMP 00428E42
5 83C4 04 ADD ESP,4
6 57 PUSH EDI
7 5A POP EDX
8 57 PUSH EDI
9 5D POP EBP

10 B9 00000000 MOV ECX,0
11 68 07000000 PUSH 7
12 54 PUSH ESP
13 5E POP ESI
14 83C4 04 ADD ESP,4
15 53 PUSH EBX
16 5D POP EBP
17 BB 840F0000 MOV EBX,0F84
18 57 PUSH EDI
19 5D POP EBP
20 8BE8 MOV EBP,EAX
21 E8 05000000 CALL 00428E6A
22 E9 03000000 JMP 00428E6D
23 83C4 04 ADD ESP,4
24 ...

Figure 16: Code extracts of W32/Aldebaran virus decryptor

W. Analysis

1 ***
2 * Loading program and translating to microcode
3 ***
4 ***
5 * Identifying calls
6 * 38 calls found
7 ***
8 ***
9 * Extracting functions

10 * 38 functions extracted
11 ***
12 ***
13 * Computing basic blocks
14 ***
15 ***
16 * Computing graph paths as regular expressions
17 ***
18 ***
19 * Symbolic evaluation of functions
20 ***
21 ******** evaluation of function (0x4018CF,0) (39)
22 ******** evaluation of function (0x401811,0) (33)
23 ******** evaluation of function (0x401694,0) (14)
24 ******** evaluation of function (0x40199D,0) (8)
25 ******** evaluation of function (0x401766,0) (45)
26 ...
27 ******** evaluation of function (0x401428,0) (80)
28 ******** evaluation of function (0x40136B,0) (58)
29 ******** evaluation of function (0x4018B6,0) (8)
30 ******** evaluation of function (0x401AFB,0) (5)
31 ******** evaluation of function (0x401981,0) (5)
32 ***
33 * Identify lexeme output locations
34 ***
35 Writing at Fnc:(0x4018CF,0) @(0x4018EF,0) what: (CC (CC 3{0:3} (CC %??{0:3} 0{0:2}){0:5})

{0:8} (CC %??{0:3} (CC %??{0:3} 0{0:2}){0:5}){0:8}){0:16}
36 Writing at Fnc:(0x4018CF,0) @(0x40183F,0) what: F{0:8}
37 Writing at Fnc:(0x4018CF,0) @(0x40184E,0) what: (LOR
38 (CC (ADD %??{0:4} %??{0:4}){0:4} %??{0:4}){0:8}
39 %??{0:8})
40 Writing at Fnc:(0x4018CF,0) @(0x40184F,0) what: (LOR
41 (CC (ADD %??{0:4} %??{0:4}){0:4} %??{0:4}){0:8}
42 %??{0:8})
43 Writing at Fnc:(0x4018CF,0) @(0x401856,0) what: (LOR
44 (CC (CC (ADD %??{0:4} %??{0:4}){0:4} %??{0:4}){0:8} 0{0:24}){0:32}
45 (CC %??{0:8} 0{0:24}){0:32})
46 ...
47 Writing at Fnc:(0x4018B6,0) @(0x40194C,0) what: 66{0:8}
48 Writing at Fnc:(0x4018B6,0) @(0x401950,0) what: [%??{0:32}]{0:32}
49 Writing at Fnc:(0x4018B6,0) @(0x4018CB,0) what: (CC 8B{0:8} (CC %??{0:3} (CC %??{0:3}

3{0:2}){0:5}){0:8}){0:16}
50 Writing at Fnc:(0x401981,0) @(0x401994,0) what: (CC %??{0:3} (CC %??{0:1} 4{0:4}){0:5}){0:8}
51 Writing at Fnc:(0x401981,0) @(0x401994,0) what: (CC %??{0:3} (CC %??{0:1} 4{0:4}){0:5}){0:8}
52 ***
53 * Writing grammar to etms.grmr
54 ***
55 ***
56 * Writing each function analysis to out/
57 ***
58
59 real 1m52.729s
60 user 1m51.155s
61 sys 0m0.124s

X. Signature

S → ε AW ε ε ε ε BA
A → AW BF | AW AF
B → ε | 0[0:2[>[0:3[0[0:3[| >[0:3[B[0:5[| BB | C483[0:16[Y | E8[0:8[E8[0:32[AW E9[0:8[E9[0:32[AZ
C → >[0:8[>[0:8[AR | F[0:8[>[0:8[>[0:8[AR | >[0:8[
D → >[0:16[| >[0:8[| >[0:32[| AI H
E → >[0:16[| >[0:8[
F → 83[0:8[>[0:3[>[0:3[3[0:2[| 81[0:8[>[0:3[>[0:3[3[0:2[
G→ 8B[0:8[>[0:3[>[0:3[3[0:2[66[0:8[>[0:32[R | 3[0:3[>[0:3[0[0:2[>[0:3[>[0:3[0[0:2[BI R | AD R | 3[0:3[>[0:3[
0[0:2[5[0:3[>[0:3[0[0:2[AE >[0:32[AV R | X R | F AE O R | C1[0:8[>[0:3[>[0:3[3[0:2[I R | F AE D R | N | 8B[0:8[
5[0:3[>[0:3[0[0:2[AE >[0:32[AU R
H → >[0:8[| ε | >[0:8[>[0:8[AC | F[0:8[>[0:8[>[0:8[AC
I → AE >[0:32[| AE E
J → >[0:8[| >[0:8[0[0:8[>[0:8[
K→ >[0:8[0[0:8[| C0[0:16[| 80[0:16[| C1[0:16[| 81[0:16[| >[0:8[>[0:3[0[0:5[| C0[0:8[>[0:3[0[0:5[| 80[0:8[>[0:3[
0[0:5[| C1[0:8[>[0:3[0[0:5[| 81[0:8[>[0:3[0[0:5[
L → 0[0:8[| 0[0:16[0[0:8[
M → ε | >[0:8[J | >[0:8[
N → F7[0:8[>[0:3[1E[0:5[AE R | >[0:3[17[0:5[I R | >[0:3[>[0:1[4[0:4[AE R | 87[0:8[>[0:3[>[0:3[0[0:2[66[0:8[
>[0:32[R | 85[0:8[>[0:8[AE R | AA R | BD
O → >[0:16[| >[0:8[| >[0:32[| AI AD
P→ >[0:1[0[0:1[>[0:1[0[0:8[AM | >[0:16[AM | 840F[0:16[840F[0:16[>[0:16[AW E9[0:8[>[0:32[AW AW AW AW
Q → ε | 0[0:8[L | 0[0:8[
R → AP 0[0:2[>[0:6[| C483[0:16[Y | 0[0:2[>[0:3[0[0:3[| ε | AW | >[0:3[B[0:5[
T → ε | >[0:8[AW >[0:8[| >[0:8[>[0:8[BE | AK | >[0:8[AE
U → 0[0:8[| 0[0:8[L
V → >[0:16[BC | 66[0:8[>[0:16[BC
W → 4[0:8[| >[0:3[B[0:5[| CC[0:8[
X → ε | >[0:8[| 68[0:8[>[0:32[| 6A[0:8[>[0:8[| 35FF[0:16[>[0:32[| B
Y → >[0:3[B[0:5[| 0[0:2[>[0:3[0[0:3[
Z → 48[0:8[| 40[0:8[
AA → ε | >[0:3[0[0:5[>[0:6[3[0:2[AW >[0:3[0[0:5[>[0:6[3[0:2[
AB → 8B[0:8[5[0:3[>[0:3[0[0:2[AE >[0:32[AU R | 3[0:3[>[0:3[0[0:2[5[0:3[>[0:3[0[0:2[AE >[0:32[AV R | F AE
O R | F AE D R | 3[0:3[>[0:3[0[0:2[>[0:3[>[0:3[0[0:2[BI R | C1[0:8[>[0:3[>[0:3[3[0:2[I R | N
AC → AD R | 8B[0:8[>[0:3[>[0:3[3[0:2[66[0:8[>[0:32[R | AB | >[0:8[0[0:24[G | X R
AD → >[0:8[| ε | >[0:8[>[0:8[AR | F[0:8[>[0:8[>[0:8[AR
AE → ε | 66[0:8[>[0:32[
AF → F881[0:16[>[0:32[P | F883[0:16[0[0:8[P
AG → ε | 0[0:8[| U | 0[0:32[Q | 0[0:8[AQ
AH → 40[0:8[| 48[0:8[
AI → >[0:16[| >[0:8[| >[0:32[
AJ → AD R | 8B[0:8[>[0:3[>[0:3[3[0:2[66[0:8[>[0:32[R | AB | X R | >[0:8[0[0:24[G
AK → >[0:8[>[0:8[BE | F[0:8[>[0:8[>[0:8[BE
AL → AW BF | >[0:3[0[0:5[>[0:6[3[0:2[AW AL
AM → AW E9[0:8[>[0:32[AW AW AW AW | AW E9[0:8[>[0:32[AW P
AN → 0[0:8[AQ | ε | >[0:8[AG | U | 0[0:32[Q
AO → X R | AD R | 8B[0:8[>[0:3[>[0:3[3[0:2[66[0:8[>[0:32[R | 8B[0:8[5[0:3[>[0:3[0[0:2[AE >[0:32[AU R |
3[0:3[>[0:3[0[0:2[5[0:3[>[0:3[0[0:2[AE >[0:32[AV R | F AE O R | F AE D R | 3[0:3[>[0:3[0[0:2[>[0:3[>[0:3[
0[0:2[BI R | C1[0:8[>[0:3[>[0:3[3[0:2[I R | N | AY
AP → C483[0:16[| FFFFC483L[0:16[
AQ → ε | 0[0:8[L | 0[0:8[| 0[0:32[Q
AR → 8B[0:8[>[0:3[>[0:3[3[0:2[66[0:8[>[0:32[R | 3[0:3[>[0:3[0[0:2[5[0:3[>[0:3[0[0:2[AE >[0:32[AV R | 3[0:3[
>[0:3[0[0:2[>[0:3[>[0:3[0[0:2[BI R | AD R | X R | F AE O R | C1[0:8[>[0:3[>[0:3[3[0:2[I R | >[0:8[0[0:24[G |
F AE D R | N | 8B[0:8[5[0:3[>[0:3[0[0:2[AE >[0:32[AU R
AS → W AW | C483[0:16[W AW
AT → ε | U | 0[0:32[Q | 0[0:8[AQ | >[0:8[AG | AN
AU → ε | >[0:8[>[0:8[AJ | >[0:8[| F[0:8[>[0:8[>[0:8[AJ
AV → ε | >[0:8[>[0:8[AC | F[0:8[>[0:8[>[0:8[AC | >[0:8[
AW → X R | AD R | 8B[0:8[>[0:3[>[0:3[3[0:2[66[0:8[>[0:32[R | 8B[0:8[5[0:3[>[0:3[0[0:2[AE >[0:32[AU R |
3[0:3[>[0:3[0[0:2[5[0:3[>[0:3[0[0:2[AE >[0:32[AV R | F AE O R | F AE D R | 3[0:3[>[0:3[0[0:2[>[0:3[>[0:3[
0[0:2[BI R | C1[0:8[>[0:3[>[0:3[3[0:2[I R | N
AX → ε | K M | 66[0:8[K M
... (output troncated)

