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Enumerative combinatorics of lattice walks

. Nearest-neighbor walks in the quarter plane = walks in N2 starting at
(0, 0) and using steps in a prefixed subset S of

{↙,←,↖, ↑,↗,→,↘, ↓}.

. Example with n = 45, i = 14, j = 2 for:

S =

. fn;i,j = number of walks of length n ending at (i, j).

. fn;0,0 = number of walks returning to (0, 0), a.k.a. “excursions”, of length n.

. fn = ∑i,j≥0 fn;i,j = number of total walks with length n.
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Generating series and combinatorial problems

. Complete generating series:

F(t; x, y) =
∞

∑
n=0

( ∞

∑
i,j=0

fn;i,jx
iyj
)

tn ∈ Q[x, y][[t]].

. Special, combinatorially meaningful specializations:

F(t; 0, 0) counts excursions;

F(t; 1, 1) = ∑n≥0 fntn counts walks with prescribed length;

F(t; 1, 0) counts walks ending on the horizontal axis.

Combinatorial questions: Given S, what can be said about F(t; x, y),
resp. fn;i,j, and their variants?

Properties of F: algebraic? transcendental? D-finite?

Explicit form: of F? of f ?

Asymptotics of f ?

Our goal: Use computer algebra to give computational answers.
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Small-step walks of interest

From the 28 step sets S ⊆ {−1, 0, 1}2 \ {(0, 0)}, some are:

trivial, simple, intrinsic to the
half plane,

symmetrical.

One is left with 79 interesting distinct models.
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The 79 models
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Two important models: Kreweras and Gessel walks

S = {↓,←,↗} FS(t; x, y) ≡ K(t; x, y)

S = {↗,↙,←,→} FS(t; x, y) ≡ G(t; x, y)
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Example: A Kreweras excursion.
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Important classes of univariate power series

algebraic

hypergeom

D-finite series

Algebraic: S(t) ∈ Q[[t]] root of a polynomial P ∈ Q[t, T], i.e., P
(
t, S(t)

)
= 0.

D-finite: S(t) ∈ Q[[t]] satisfying a linear differential equation with
polynomial coefficients cr(t)S(r)(t) + · · ·+ c0(t)S(t) = 0.

Hypergeometric: S(t) = ∑∞
n=0 sntn such that sn+1

sn
∈ Q(n). E.g.,

2F1

(
a b
c

∣∣∣∣ t
)
=

∞

∑
n=0

(a)n(b)n

(c)n

tn

n!
, (a)n = a(a + 1) · · · (a + n− 1).
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Important classes of multivariate power series

algebraic series

D-finite series

S ∈ Q[[x, y, t]] is algebraic if it is the root of a P ∈ Q[x, y, t, T].

S ∈ Q[[x, y, t]] is D-finite if the set of all partial derivatives of S spans a
finite-dimensional vector space over Q(x, y, t).
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Main results (I): algebraicity of Gessel walks

Theorem [Kreweras 1965; 100 pages combinatorial proof!]

K(t; 0, 0) = 3F2

(
1/3 2/3 1

3/2 2

∣∣∣∣ 27 t3
)
=

∞

∑
n=0

4n(3n
n )

(n + 1)(2n + 1)
t3n.

Theorem [Gessel’s conjecture; Kauers, Koutschan & Zeilberger 2009]

G(t; 0, 0) = 3F2

(
5/6 1/2 1

5/3 2

∣∣∣∣ 16t2
)
=

∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n.

Question: What about K(t; x, y) and G(t; x, y)?

Theorem [Gessel 1986, Bousquet-Mélou 2005] K(t; x, y) is algebraic.

. G(t; x, y) had been conjectured to be non-D-finite.

Theorem [B. & Kauers 2010] G(t; x, y) is D-finite, even algebraic.

. Computer-driven discovery and proof; no human proof yet.
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Theorem [B. & Kauers 2010] G(t; x, y) is D-finite, even algebraic.

. Guess’n’Prove method, using Hermite-Padé approximants.
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Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers & van Hoeij 2010]
Let V = 1 + 4t2 + 36t4 + 396t6 + · · · be a root of

(V− 1)(1 + 3/V)3 = (16t)2,

let U = 1 + 2t2 + 16t4 + 2xt5 + 2(x2 + 83)t6 + · · · be a root of

x(V− 1)(V + 1)U3 − 2V(3x + 5xV− 8Vt)U2

−xV(V2 − 24V− 9)U + 2V2(xV− 9x− 8Vt) = 0,

let W = t2 + (y + 8)t4 + 2(y2 + 8y + 41)t6 + · · · be a root of

y(1−V)W3 + y(V + 3)W2 − (V + 3)W + V− 1 = 0.

Then G(t; x, y) is equal to

64(U(V+1)−2V)V3/2

x(U2−V(U2−8U+9−V))2 − y(W−1)4(1−Wy)V−3/2

t(y+1)(1−W)(W2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)
.

. Computer-driven discovery and proof; no human proof yet.

.Proof uses guessed minimal polynomials for G(t; x, 0) & G(t; 0, y)
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Main results (II): Explicit form for G(t; x, y)

Theorem [B., Kauers & van Hoeij 2010]
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Main results (III): Conjectured D-Finite F(t; 1, 1) [B. & Kauers 2009]

OEIS S Pol size ODE size OEIS S Pol size ODE size

1 A005566 — 3, 4 13 A151275 — 5, 24
2 A018224 — 3, 5 14 A151314 — 5, 24
3 A151312 — 3, 8 15 A151255 — 4, 16
4 A151331 — 3, 6 16 A151287 — 5, 19
5 A151266 — 5, 16 17 A001006 2, 2 2, 3
6 A151307 — 5, 20 18 A129400 2, 2 2, 3
7 A151291 — 5, 15 19 A005558 — 3, 5
8 A151326 — 5, 18
9 A151302 — 5, 24 20 A151265 6, 8 4, 9

10 A151329 — 5, 24 21 A151278 6, 8 4, 12
11 A151261 — 4, 15 22 A151323 4, 4 2, 3
12 A151297 — 5, 18 23 A060900 8, 9 3, 5

Equation sizes = {order, degree}@(algeq, diffeq)

. Computerized discovery by enumeration + Hermite–Padé

. 1–22: Confirmed by human proofs in [Bousquet-Mélou & Mishna 2010]

. 23: Confirmed by a human proof in [B., Kurkova & Raschel 2014]
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Main results (III): Conjectured D-Finite F(t; 1, 1) [B. & Kauers 2009]

OEIS S alg asympt OEIS S alg asympt

1 A005566 N 4
π

4n

n 13 A151275 N 12
√

30
π

(2
√

6)n

n2

2 A018224 N 2
π

4n

n 14 A151314 N
√

6λµC5/2

5π
(2C)n

n2

3 A151312 N
√

6
π

6n

n 15 A151255 N 24
√

2
π

(2
√

2)n

n2

4 A151331 N 8
3π

8n

n 16 A151287 N 2
√

2A7/2

π
(2A)n

n2

5 A151266 N 1
2

√
3
π

3n

n1/2 17 A001006 Y 3
2

√
3
π

3n

n3/2

6 A151307 N 1
2

√
5

2π
5n

n1/2 18 A129400 Y 3
2

√
3
π

6n

n3/2

7 A151291 N 4
3
√

π
4n

n1/2 19 A005558 N 8
π

4n

n2

8 A151326 N 2√
3π

6n

n1/2

9 A151302 N 1
3

√
5

2π
5n

n1/2 20 A151265 Y 2
√

2
Γ(1/4)

3n

n3/4

10 A151329 N 1
3

√
7

3π
7n

n1/2 21 A151278 Y 3
√

3√
2Γ(1/4)

3n

n3/4

11 A151261 N 12
√

3
π

(2
√

3)n

n2 22 A151323 Y
√

233/4

Γ(1/4)
6n

n3/4

12 A151297 N
√

3B7/2

2π
(2B)n

n2 23 A060900 Y 4
√

3
3Γ(1/3)

4n

n2/3

A = 1 +
√

2, B = 1 +
√

3, C = 1 +
√

6, λ = 7 + 3
√

6, µ =

√
4
√

6−1
19

. Computerized discovery by enumeration + Hermite–Padé + LLL/PSLQ.
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The group of a walk: an example

The characteristic polynomial χS := x +
1
x
+ y +

1
y

is left invariant under

ψ(x, y) =
(

x,
1
y

)
, φ(x, y) =

(
1
x

, y
)

,

and thus under any element of the group

〈
ψ, φ

〉
=

{
(x, y),

(
x,

1
y

)
,
(

1
x

,
1
y

)
,
(

1
x

, y
)}

.

Alin Bostan Efficient Experimental Mathematics for Lattice Path Combinatorics



16 / 45

The group of a walk: an example

The characteristic polynomial χS := x +
1
x
+ y +

1
y

is left invariant under

ψ(x, y) =
(

x,
1
y

)
, φ(x, y) =

(
1
x

, y
)

,

and thus under any element of the group

〈
ψ, φ

〉
=

{
(x, y),

(
x,

1
y

)
,
(

1
x

,
1
y

)
,
(

1
x

, y
)}

.

Alin Bostan Efficient Experimental Mathematics for Lattice Path Combinatorics



16 / 45

The group of a walk: an example

The characteristic polynomial χS := x +
1
x
+ y +

1
y

is left invariant under

ψ(x, y) =
(

x,
1
y

)
, φ(x, y) =

(
1
x

, y
)

,

and thus under any element of the group

〈
ψ, φ

〉
=

{
(x, y),

(
x,

1
y

)
,
(

1
x

,
1
y

)
,
(

1
x

, y
)}

.

Alin Bostan Efficient Experimental Mathematics for Lattice Path Combinatorics



17 / 45

The group of a walk: the general case

The polynomial χS := ∑
(i,j)∈S

xiyj =
1

∑
i=−1

Bi(y)x
i =

1

∑
j=−1

Aj(x)y
j

is left

invariant under

ψ(x, y) =
(

x,
A−1(x)
A+1(x)

1
y

)
, φ(x, y) =

(
B−1(y)
B+1(y)

1
x

, y
)

,

and thus under any element of the group

GS :=
〈
ψ, φ

〉
.
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Examples of groups

Order 4,

order 6, order 8, order ∞.
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The 79 models: finite and infinite groups

79 models

23 admit a finite group
[Mishna’07]

56 have an infinite group
[Bousquet-Mélou & Mishna’10]

all F(t; x, y) D-finite

19 transcendental
[Gessel & Zeilberger’92]

[Bousquet-Mélou’02]

4 algebraic
(3 Kreweras-type + Gessel)

[BMM’10] + [B. & Kauers’10]

−→ all non-D-finite
• [Mishna & Rechnitzer’07] and

[Melczer & Mishna’13] for 5 singular models

• [Kurkova & Raschel’13] and

[B., Raschel & Salvy’13] for all others
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The 23 models with a finite group

(i) 16 with a vertical symmetry, and group isomorphic to D2
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�
�
@I
?@
��

�
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-�
�	
@I
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��
�	
@
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6
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�
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@I
?
6
@
��

�	
�@6
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-�
�
�@I
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-��
�	
@I6
@R
��
�	
@I
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�@I
?
6
@
-��
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6
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�	
@I
?
6
@R
��

�	
�@I6
@R
-��
�	
�@I
?@R
-��

�	
�@I
?
6
@R
-��

(ii) 5 with a diagonal or anti-diagonal symmetry, and group isomorphic to D3

�
�@6
@R
�
�
�@
?@
��
�	
@6
@
-�

�
�@I
?
6
@R
-�
�	
�@
?
6
@
-��

(iii) 2 with group isomorphic to D4

�
�@I
@R
-�
�	
�@
@
-��

(i): vertical symmetry; (ii)+(iii): zero drift ∑
s∈S

s

In red, models with algebraic generating functions
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D-Finiteness via the finite group [Bousquet-Mélou & Mishna 2010]

J = − 1
t + ∑(i,j)∈S xiyj = x + 1

x + y + 1
y − 1

t is invariant under
the change of (x, y) into, respectively:( 1

x , y
)
,
( 1

x , 1
y
)
,
(
x, 1

y
)
.

“Kernel equation”:

J(t; x, y)xytF(t; x, y) = txF(t; x, 0) + tyF(t; 0, y)− xy

− J(t; x, y) 1
x ytF(t; 1

x , y) = − t 1
x F(t; 1

x , 0)− tyF(t; 0, y) + 1
x y

J(t; x, y) 1
x

1
y tF(t; 1

x , 1
y ) = t 1

x F(t; 1
x , 0) + t 1

y F(t; 0, 1
y )− 1

x
1
y

− J(t; x, y)x 1
y tF(t; x, 1

y ) = − txF(t; x, 0)− t 1
y F(t; 0, 1

y ) + x 1
y

Summing up yields:

xyt F(t; x, y) =
−xy + 1

x y− 1
x

1
y + x 1

y

J(t; x, y)
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Summing up yields:

xyt F(t; x, y) = [x>][y>]
−xy + 1

x y− 1
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1
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. Implies D-finiteness of F(t; x, y), but does not yield easily an ODE for it
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Main results (IV): explicit expressions for the 19 D-finite
transcendental models

Theorem [B., Chyzak, van Hoeij, Kauers & Pech 2014]

Let S be one of the 19 models with finite group GS, and such that the
generating series F = FS(t; x, y) is not algebraic.
Then F is expressible using iterated integrals of 2F1 expressions.

Example (King walks in the quarter plane, A025595)

F

�	
�@I
?
6
@R
-��

(t; 1, 1) =
1
t

∫ t

0

1
(1 + 4x)3 · 2F1

(
3
2

3
2

2

∣∣∣∣ 16x(1 + x)
(1 + 4x)2

)
dx

= 1 + 3t + 18t2 + 105t3 + 684t4 + 4550t5 + 31340t6 + 219555t7 + · · ·

. Computer-driven discovery and proof; no human proof yet.

. Proof uses creative telescoping, ODE factorization, ODE solving.
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Main results (V): non-D-finiteness in models with an infinite group

Theorem [B., Rachel & Salvy 2013]

Let S be one of the 51 non-singular models with infinite group GS.
Then FS(t; 0, 0), and in particular FS(t; x, y), are non-D-finite.

. Algorithmic proof . Uses Gröbner basis computations, polynomial
factorization, cyclotomy testing.
. Based on two ingredients: asymptotics + irrationality.

. [Kurkova & Raschel 2013] Human proof that FS(t; x, y) is non-D-finite.

. No human proof yet for FS(t; 0, 0) non-D-finite.
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The 56 models with infinite group
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In blue, non-singular models, solved by [B., Raschel & Salvy 2013]
In red, singular models, solved by [Melczer & Mishna 2013]
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Example: the scarecrows

[B., Raschel & Salvy 2013]: FS(t; 0, 0) is not D-finite for the models

For the 1st and the 3rd, the excursions sequence [tn] FS(t; 0, 0)

1, 0, 0, 2, 4, 8, 28, 108, 372, . . .

is ∼ K · 5n · n−α, with α = 1 + π/ arccos(1/4) = 3.383396 . . .

The irrationality of α prevents FS(t; 0, 0) from being D-finite.
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Summary – classification of 2D non-singular walks

The Main Theorem Let S be one of the 74 non-singular models. The
following assertions are equivalent:

(1) The full generating series FS(t; x, y) is D-finite

(2) the excursions generating series FS(t; 0, 0) is D-finite

(3) the excursions seq. [tn] FS(t; 0, 0) is ∼ K · ρn · nα, with α ∈ Q

(4) the group GS is finite (and |GS| = 2 ·min{` ∈N? | `
α+1 ∈ Z})

(5) the step set S has either an axial symmetry, or zero drift and cardinal
different from 5.

Moreover, under (1)–(5), FS(t; x, y) is algebraic if and only if the step set S
has positive covariance ∑

(i,j)∈S
ij− ∑

(i,j)∈S
i · ∑

(i,j)∈S
j > 0.

In this case, FS(t; x, y) is expressible using nested radicals. If not, FS(t; x, y)
is expressible using iterated integrals of 2F1 expressions.
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Main methods

(1) for proving algebraicity / D-finiteness
(1a) Guess’n’Prove
(1b) Diagonals of rational functions

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics

. All methods are algorithmic.
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Main methods

(1) for proving algebraicity / D-finiteness
(1a) Guess’n’Prove Hermite-Padé approximants
(1b) Diagonals of rational functions Creative telescoping

(2) for proving non-D-finiteness
(2a) Infinite number of singularities, or lacunary
(2b) Asymptotics

. All methods are algorithmic.
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Guess’n’Prove
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Methodology for proving algebraicity

Experimental mathematics –Guess’n’Prove– approach:

(S1) Generate data
compute a high order expansion of the series FS(t; x, y);

(S2) Conjecture
guess candidates for minimal polynomials of FS(t; x, 0) and FS(t; 0, y),
using Hermite-Padé approximation;

(S3) Prove
rigorously certify the minimal polynomials, using (exact) polynomial
computations.

+ Efficient Computer Algebra
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Step (S1): high order series expansions

fS(n; i, j) satisfies the recurrence with constant coefficients

fS(n + 1; i, j) = ∑
(u,v)∈S

fS(n; i− u, j− v) for n, i, j ≥ 0

+ init. cond. fS(0; i, j) = δ0,i,j and fS(n;−1, j) = fS(n; i,−1) = 0.

Example: for the Kreweras walks,

k(n + 1; i, j) = k(n; i + 1, j)
+ k(n; i, j + 1)

+ k(n; i− 1, j− 1)

. Recurrence is used to compute FS(t; x, y) mod tN for large N.

K(t; x, y) = 1 + xyt + (x2y2 + y + x)t2 + (x3y3 + 2xy2 + 2x2y + 2)t3

+ (x4y4 + 3x2y3 + 3x3y2 + 2y2 + 6xy + 2x2)t4

+ (x5y5 + 4x3y4 + 4x4y3 + 5xy3 + 12x2y2 + 5x3y + 8y + 8x)t5 + · · ·
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Step (S2): guessing equations for FS(t; x, y), a first idea

In terms of generating series, the recurrence on k(n; i, j) reads(
xy− (x + y + x2y2)t

)
K(t; x, y)

= xy− xt K(t; x, 0)− yt K(t; 0, y) (KerEq)

. A similar kernel equation holds for FS(t; x, y), for any S-walk.

Corollary. FS(t; x, y) is algebraic (resp. D-finite) if and only if FS(t; x, 0) and
FS(t; 0, y) are both algebraic (resp. D-finite).

. Crucial simplification: equations for G(t; x, y) are huge (≈30Gb)
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Step (S2): guessing equations for FS(t; x, 0)& FS(t; 0, y)

Task 1: Given the first N terms of S = FS(t; x, 0) ∈ Q[x][[t]], search for a
differential equation satisfied by S at precision N:

cr(x, t) · ∂rS
∂tr + · · ·+ c1(x, t) · ∂S

∂t
+ c0(x, t) · S = 0 mod tN .

Task 2: Search for an algebraic equation Px,0(S) = 0 mod tN .

Both tasks amount to linear algebra in size N over Q(x).
In practice, we use modular Hermite-Padé approximation
(Beckermann-Labahn algorithm) combined with (rational)
evaluation-interpolation and rational number reconstruction.

Fast (FFT-based) arithmetic in Fp[t] and Fp[t]〈 t
∂t 〉.
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Step (S2): guessing equations for G(t; x, 0) and G(t; 0, y)

Using N = 1200 terms of G(t; x, y), we guessed candidates

Px,0 in Z[x, t, T] of degree (32, 43, 24), coefficients of 21 digits

P0,y in Z[y, t, T] of degree (40, 44, 24), coefficients of 23 digits

such that
Px,0(x, t, G(t; x, 0)) = P0,y(y, t, G(t; 0, y)) = 0 mod t1200.

. We actually first guessed differential equations†, then computed their
p-curvatures to empirically certify them. This led to suspect the algebraicity
of G(t; x, 0) and G(t; 0, y), using a conjecture of Grothendieck (on differential
equations modulo p) as an oracle.

. Guessing Px,0 by undetermined coefficients would require solving a dense
linear system of size ≈ 100 000, and ≈1000 digits entries!

†of order 11, and bidegree (96, 78) for G(t; x, 0), and (68, 28) for G(t; 0, y)
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Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: Guess a polynomial P(t, T) in Q[t, T], then prove that P admits the
power series g(t) = ∑∞

n=0 gntn as a root.

1. Such a P can be guessed from the first 100 terms of g(t).

2. Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3. r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.
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(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: Guess a polynomial P(t, T) in Q[t, T], then prove that P admits the
power series g(t) = ∑∞

n=0 gntn as a root.

1. Such a P can be guessed from the first 100 terms of g(t).

2. Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3. r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):
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(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

Alin Bostan Efficient Experimental Mathematics for Lattice Path Combinatorics



36 / 45

Step (S3): warm-up – Gessel excursions are algebraic

Theorem. g(t) := G(
√

t; 0, 0) =
∞

∑
n=0

(5/6)n(1/2)n

(5/3)n(2)n
(16t)n is algebraic.

Proof: Guess a polynomial P(t, T) in Q[t, T], then prove that P admits the
power series g(t) = ∑∞

n=0 gntn as a root.

1. Such a P can be guessed from the first 100 terms of g(t).

2. Implicit function theorem: ∃! root r(t) ∈ Q[[t]] of P.

3. r(t)=∑∞
n=0 rntn being algebraic, it is D-finite, and so is (rn):

(n + 2)(3n + 5)rn+1 − 4(6n + 5)(2n + 1)rn = 0, r0 = 1

⇒ solution rn = (5/6)n(1/2)n
(5/3)n(2)n

16n = gn, thus g(t) = r(t) is algebraic.

Alin Bostan Efficient Experimental Mathematics for Lattice Path Combinatorics



37 / 45

Step (S3): rigorous proof for Kreweras walks �
�@
?@
��

1. Setting y0 =
x−t−
√

x2−2tx+t2(1−4x3)
2tx2 = t + 1

x t2 + x3+1
x2 t3 + · · · in the kernel

equation

︸ ︷︷ ︸
!
= 0

(xy− (x + y + x2y2)t)K(t; x, y) = xy− xtK(t; x, 0)− ytK(t; 0, y)

shows that U = K(t; x, 0) satisfies the reduced kernel equation

x · y0 − x · t ·U(t, x) = y0 · t ·U(t, y0) (RKerEq)

2. U = K(t; x, 0) is the unique solution in Q[[x, t]] of (RKerEq).

3. The guessed candidate Px,0 has one solution H(t, x) in Q[[x, t]].

4. Resultant computations + verification of initial terms
=⇒ U = H(t, x) also satisfies (RKerEq).

5. Uniqueness: H(t, x) = K(t; x, 0) =⇒ K(t; x, 0) is algebraic!
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Algebraicity of Kreweras walks: our Maple proof in a nutshell
[bostan@inria ~]$ maple

|\^/| Maple 19 (APPLE UNIVERSAL OSX)
._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2014
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.

# HIGH ORDER EXPANSION (S1)
> st,bu:=time(),kernelopts(bytesused):
> f:=proc(n,i,j)

option remember;
if i<0 or j<0 or n<0 then 0
elif n=0 then if i=0 and j=0 then 1 else 0 fi
else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:
> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

# GUESSING (S2)
> libname:=".",libname:gfun:-version();

3.62
> gfun:-seriestoalgeq(S,Fx(t)):
> P:=collect(numer(subs(Fx(t)=T,%[1])),T):

# RIGOROUS PROOF (S3)
> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:
> pol := unapply(P,T,t,x):
> p1 := resultant(pol(z-T,t,x),ker(t*z,t,x),z):
> p2 := subs(T=x*T,resultant(numer(pol(T/z,t,z)),ker(z,t,x),z)):
> normal(primpart(p1,T)/primpart(p2,T));

1

# time (in sec) and memory consumption (in Mb)
> trunc(time()-st),trunc((kernelopts(bytesused)-bu)/1000^2);

7, 617
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Step (S3): rigorous proof for Gessel walks �	
�@
@
-��

Same philosophy, but several complications:
stepset diagonal symmetry is lost: G(t; x, y) 6= G(t; y, x);
G(t; 0, 0) occurs in (KerEq);
equations are ≈ 5 000 times bigger.

−→ replace equation (RKerEq) by a system of 2 reduced kernel equations.

−→ fast algorithms needed (e.g., [B., Flajolet, Salvy & Schost 2006] for
computations with algebraic series).
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Summary

, 2D classification of F(t; 0, 0) and F(t; x, y) is fully completed
, robust algorithmic methods, based on computer algebra algorithms:

• Guess’n’Prove
• Creative Telescoping for integration of rational functions

, Brute-force and/or use of naive algorithms = hopeless.
E.g. size of algebraic equations for G(t; x, y) ≈ 30Gb.

, Remarkable properties discovered experimentally. E.g.:
all algebraic models have solvable Galois groups

G(t; 1, 1) = − 3
6t

+

√
3

6t

√√√√U(t) +

√
16t(2t + 3) + 2
(1− 4t)2U(t)

−U(t)2 + 3

where U(t) =
√

1 + 4t1/3(4t + 1)1/3/(4t− 1)4/3 .

/ lack of “purely human” proofs for many results. E.g.:
2F1s expressions for F(t; 1, 1); asymptotics of fn

/ still missing a unified proof of: finite group↔ D-finite

/ open: is F(t; 1, 1) non-D-finite in the 51 non-singular models with
infinite group?
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Extensions

. 3D walks [B., Bousquet-Mélou, Kauers & Melczer 2014]
Many distinct models: 11 074 225 (instead of 79)
• We focus on the 20 804 models with at most 6 steps.
• [B. & Kauers, 2009] conjectured 35 D-finite. Now proved.
• 116 new D-finite models: guessed, then proved.
• New phenomenon (empirically discovered, no proof yet): 19 models

(e.g. 3D Kreweras) with finite group, but possibly non-D-finite GF (?!)

. Longer 2D steps [B., Bousquet-Mélou & Melczer 2014]
• 680 models with one large step, 643 proved non D-finite, 32 of 37 have

differential equations guessed.
• 5910 models with two large steps, 5754 proved non D-finite, 69 of 156 have

differential equations guessed.
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Thanks for your attention!
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