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Points of interest (among others) for the Tutte polynomial

property of universality

relation to the chromatic polynomial (which counts the
number of distinct ways to color a graph) - specification of
the Tutte polynomial

relations with physics (statistical physics models, quantum
field theory)
- Combinatorial Physics

etc.
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Graph theory - some definitions

loop - edge which starts and ends on the same vertex (tadpole
edge)

bridge - an edge whose removal increases by 1 the number of
connected components of the graph (1PR edge)

regular edge - edge which is neither a bridge nor a loop

spanning tree - connected subgraph with no cycle, connecting all
vertices
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2 natural operations for an edge e in a graph G :

1 deletion → G − e

2 contraction → G/e

↪→ associated to these operations - the Tutte polynomial
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Tutte polynomial

(W. T. Tutte, Graph Theory, ’84, H. H. Crapo, Aequationes Mathematicae,, ’69)

a 1st definition - deletion/contraction:

e - regular line

T (G ; x , y) := T (G/e; x , y) + T (G − e; x , y)

→ terminal forms - m bridges and n loops

T (G ; x , y) := xmyn.
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Exemple
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T (G ; x , y) = x2 + xy + x + y + y2.
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Rank, nullity and the Tutte polynomial

A ⊆ E - a subgraph of the graph G

r(A) := |V (G )| − k(A),

r(A) - the rank of the subgraph A
V (G ) - number of vertices of the graph G
k(A) - number of connected components of A

n(A) := |A| − r(A),

n(A) - nullity of the subgraph A

2nd definition of the Tutte polynomial - sum over subgraphs:

TG (x , y) :=
∑
A

(x − 1)r(E)−r(A)(y − 1)n(A).

the two definitions are equivalent
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Multivariate Tutte polynomial

(A. Sokal, London Math. Soc. Lecture Note Ser., 2005)

we , e = 1, . . . , |E | (different variable for each edge)
|E | - the total number of edges

1st definition - deletion/contraction:

Z (G ; q,w) := Z (G/e; q,w) + βeZ (G − e; q,w),

e - not necessary regular

→ terminal forms with v vertices and without edges

ZG (q,w) := qv .
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Multivariate Tutte polynomial - 2nd definition

2nd definition - sum over subgraphs:

Z (G ; q,w) :=
∑
A⊂E

qk(A)
∏
e∈A

we .

the two definitions are equivalent

The polynomial Z (G ; q,w) is directly related to the Potts model in
statistical physics
- combinatorial physics
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Quantum field theory (QFT)

QFT - graph theory and combinatorics

Φ4 model - 4-valent vertices

Φ(x) - a field, x ∈ R4 (the space-time)
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propagator (associated to each edge of the graph):

C (p`,m) =
1

p2
` + m2

, p` ∈ R4, i = 1, . . . , |E |, m ∈ R the mass

→ part of the integrands of some Feynman integral AG
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Parametric representation of the Feynman integrals

introduction of some parameters a:

1

p2
` + m2

=

∫ ∞
0

da` e
−a(p2

`+m2), ∀` = 1, . . . ,E

→ Gaussian integration over internal momenta pi

=⇒ A(G ; pext) =

∫ ∞
0

e−V (G ;pext,a)/U(G ;a)

U(G ; a)2

E∏
`=1

(e−m
2a`da`)

U, V - polynomials in the parameters a
Kirchhoff-Symanzik polynomials

U(G , a) =
∑
T

∏
6̀∈T

a` ,

T - spanning tree of the graph
Adrian Tanasă Graph polynomials and relation with physics



Theorem

U(G ; a) = aeU(G − e; a) + U(G/e; a)

terminal forms (graph formed only of tadpoles)

U(G ; a) =
∏

e tadpole

ae .

T. Krajewski, V. Rivasseau, A. T., Z. Wang, J. Noncomm. Geom. (2010)
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Proof - Grassmannian development of Pfaffians

Grassmann (anti-commuting) variables:

χiχj = −χjχi ,

=⇒ χ2
i = 0

Grassmann integration:∫
dχ = 0 and

∫
χ dχ = 1.

powerful tool to manipulate:

1 determinants (and Pfaffians):

detM =
∫ ∏n

i=1 dψ̄idψie
−

∑n
i,j=1 ψ̄iMijψj

2 minors: detMij =
∫ ∏n

i=1 dψ̄idψi (ψi ψ̄j)e
−

∑n
i,j=1 ψ̄iMijψj

S. Caracciolo, A. D. Sokal, A. Sportiello, Adv. Appl. Math. (2013) etc.
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Relation with the multivariate Tutte polynomial - the polynomial
UG satisfies the deletion/contraction relation

The Kirchoff-Symanzik polynomial can be obtained as a limit of
the multivariate Tutte polynomial:

U(G ; a) =

[(∏
e∈E

we

)
lim
q′→0

1

(q′)p(G)
lim
q→0

q−k(G)Z (G ; q, q′w)

]
w−1
e =ae

.

where p(G ) := |V (G )| − k(G ).

A. T., Sém. Loth. Comb. (2012)
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Some algebra - what is a Hopf algebra?

A bialgebra over a field K is a K−linear space endowed with an
unital associative algebra and a counital, coassociative coalgebra
structure

a product m (assembles) - an algebra structure

a coproduct ∆ (disassembles) - a coalgebra structure

such that some compatibility conditions are satisfied.

A Hopf algebra H over a field K is a bialgebra over K equipped
with an antipode map S : H → H.

Examples of combinatorial Hopf algebras:
Sym, QSym, FQSym etc. - selection-deletion rule
J.-C. Aval, A. Boussicault, ...
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A Hopf algebra of graphs

W. Schmitt, J. Pure Applied Alg. (1994)

Product: disjoint reunion of graphs

Coproduct:

∆ : H → H⊗H

∆(G ) :=
∑
A⊆E

A⊗ G/A.

same type of structure as the Connes-Kreimer Hopf algebra
encoding the combinatorics of renormalization in QFT

A. Connes and D. Kreimer, Commun. Math. Phys. (2000)
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2 liner maps

δloop, δbridge : H → K

δloop(G ) :=

1K if G = ,

0K otherwise .

δbridge(G ) :=

{
1K if G = ,

0K otherwise .

From an algebraic point of view, δloop and δbridge are
infinitesimal Hopf algebra characters

δloop and δbridge are related to one-edge graphs
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Convolution product:

f ∗ g = m ◦ (f ⊗ g) ◦∆,

Let α : H → K

α(G ; x , y , s) := exp∗s{δbridge + (y − 1)δloop}
∗exp∗s{(x − 1)δbridge + δloop}(G ).

(the non-trivial part of the coproduct is nilpotent)

From an algebraic point of view, α is a Hopf algebra character
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Relation between the map α and the Tutte polynomial

Lemma

exp∗{aδbridge + bδloop}(G ) = ar(G)bn(G).

Proposition

α(G ; x , y , s) = s |E |T (G ; x , y).
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The map α - differential equation solution

Proposition

The map α is the solution of the differential equation:

dα

ds
(G ) =

(
xα ∗ δbridge + yδloop ∗ α + [δbridge, α]∗ − [δloop, α]∗

)
(G ),

where [f , g ]∗ := f ∗ g − g ∗ f .

Differential equation of the same type as
the Renormalisation Group equation in QFT
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We take a four-variable graph polynomial Q(G ; x , y , a, b) which
has the following properties:

a multiplicative law on disjoint union and one-point joints

if e is a bridge, then

Q(G ; x , y , a, b) = xQ(G − e; x , y , a, b), (1)

if e is a loop, then

Q(G ; x , y , a, b) = yQ(G/e; x , y , a, b), (2)

if e is a neither a loop nor a bridge, then

Q(G ; x , y , a, b) = aQG−e ; x , y , a, b)+bQ(G/e; x , y , a, b). (3)

a Tutte-Grotendieck invariant
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β(G ; x , y , a, b, s) := s |E |Q(G ; x , y , a, b).

From an algebraic point of view, β is a Hopf algebra character

Proposition

The map β satisfies the following differential equation:

dβ

ds
(G ) = (xβ ∗ δbridge + yδloop ∗ β + b[δbridge, β]∗ − a[δloop, β]∗) (G ).
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Universality property - recipe theorem

Theorem
If one has a four-variable graph polynomial Q(G ; x , y , a, b)
satisfying a multiplicative law on disjoint reunions and one-poit
joints, and conditions (1) - (3), then one has:

Q(G ; x , y , a, b) = an(G)br(G)T (G ;
x

b
,
y

a
).

Proof: differential equation change of variable

Any Tutte-Grothendieck invariant must be some evaluation of the
Tutte polynomial

↪→ Universality proof using differential equations
(the usual proofs use involved edge induction arguments)

A. T., invited contribution CRC Handbook ”The Tutte polynomial”

(Editors: J. Ellis-Monaghan & I. Moffatt)
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Other results & perspectives for future work

relation between the Bollobás-Riordan polynomial (or the
topological Tutte polynomial) and the Kirchoff-Symanzik
polynomial of non-commutative QFT
↪→ non-trivial dependence on the genus

T. Krajewski, V. Rivasseau, A. T., Z. Wang, J. Noncomm. Geom. (2010)

proof of the universality of the Tutte polynomial for matroids
G. Duchamp, N. Hoang-Nghia, T. Krajewski, A. T., Adv. Appl. Math. (2014)

proof of the universality of the Bollobás-Riordan polynomial
T. Krajewski, I. Moffatt, A. T., submitted (2015)

relation with polynomials of graphs on pseudo-surfaces
T. Krajewski, I. Moffatt, A. T., work in progress

same approach for Sym, QSym, FQSym etc.;
unification under a common framework
unification of the Bollobás-Riordan definitions; topological
generalization of the graph (and matroid) Courtiel approach

J. Courtiel, thèse LABRI (oct. 2014), J. Courtiel, arXiv:1412.2081[math.CO]
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Je vous remercie pour votre
attention !
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Generalization: ribbon graphs

bc = 2

bc = 1

bc - number of connected components of the graph’s boundary
(if the graph is connected, bc - the number of faces)
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Bollobás-Riordan polynomial RG

(B. Bollobás and O. Riordan, Proc. London Math. Soc., 83 2001, Math. Ann., 323 (2002)

J. Ellis-Monaghan and C. Merino, arXiv:0803.3079[math.CO], 0806.4699[math.CO])

↪→ generalization of the Tutte polynomial for ribbon graphs

RG (x , y , z) =
∑
H⊂G

(x − 1)r(G)−r(H)yn(H)zk(H)−bc(H)+n(H).

the additional variable z keeps track of the additional topological
information (bc or the graph genus g)

↪→ some generalizations:
(S. Chumotov, J. Combinatorial Theory 99 (2009), F. Vignes-Tourneret, Discrete Mathematics 309 (2009)
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Deletion/contraction for the Bollobás-Riordan polynomial

RG (x , y , z) = RG/e(x , y , z) + RG−e(x , y , z), e semi-regular edge

terminal forms (graphs R with 1 vertex):

k(R) = V (R) = k(H) = V (H) = 1 → R(x , y , z) = R(y , z)

RR(y , z) =
∑
H⊂R

yE(H)z2g(H).
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Multivariate Bollobás-Riordan polynomial

generalization of the Bollobás-Riordan polynomial analogous to the
generalization of the Tutte polynomial

ZG (x , {βe}, z) =
∑
H⊂G

xk(H)(
∏
e∈H

βe) zbc(H).

↪→ satisfies the deletion/contraction relation
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Noncommutative quantum field theory (NCQFT)

NCQFTs - ribbon graphs

→ 1

2

3

4
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Parametric representation for a noncommutative Φ4 model

A?G (p) =

∫ ∞
0

e−V
?(p,α)/U?(α)

U?(α)
D
2

L∏
`=1

(e−m
2α`dα`)

Theorem:

U? =

(
θ

2

)bc−1+2g ∑
T ?

∏
`/∈T ?

2
α`
θ

θ - noncommutativity parameter

T ? - ?-trees (non-trivial generalization of the notion of trees)
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Relation to the multivariate Bollobás-Riordan polynomial

U?
G ({αe}) = αeU

?
G−e + U?

G/e .

for the sake of completeness ...

U?
G (α, θ) = (θ/2)E−V+1

(∏
e∈E

αe

)
× lim

w→0
w−1ZG

(
θ

2αe
, 1,w

)
.
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Conclusion et perspectives

relation between combinatorics and QFTs

other type of topological polynomials related to other QFT
models (T. Krajewski et. al., arXiv:0912.5438) - no deletion/contraction
property

generalization to tensor models (appearing in recent
approaches for a theory of quantum gravity)

1 2 3

3
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56
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1

4 4

2

(R. Gurău, Annales H. Poincaré 11 (2010), J. Ben Geloun et. al., Class. Quant. Grav. 27 (2010))
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