Graph polynomials and relation with physics

ADRIAN TANASĂ

LIPN, Univ. Paris XIII

J. Noncomm. Geom. 4 (2010) (in collaboration with T. Krajewski, V. Rivasseau and Z. Wang)

Adv. Applied Math. **51** (2013) (in collaboration with G. Duchamp, N. Hoang-Nghia and T. Krajewski)

> submitted. (2015) (in collaboration with T. Krajewski and I. Moffatt)

Bordeaux, 5th of February 2015

- Tutte polynomial some definitions
- QFT and Feynman integrals; parametric representation
- Relation Tutte polynomial parametric representation
- Graph linear maps and differential equations
- Proof of the universality of the Tutte polynomial
- Perspectives

Points of interest (among others) for the Tutte polynomial

- property of universality
- relation to the chromatic polynomial (which counts the number of distinct ways to color a graph) - specification of the Tutte polynomial
- relations with physics (statistical physics models, quantum field theory)
 - Combinatorial Physics
- etc.

loop - edge which starts and ends on the same vertex (*tadpole edge*)

bridge - an edge whose removal increases by 1 the number of connected components of the graph (*1PR edge*)

regular edge - edge which is neither a bridge nor a loop

spanning tree - connected subgraph with no cycle, connecting all vertices

2 natural operations for an edge e in a graph G:

 \hookrightarrow associated to these operations - the Tutte polynomial

(W. T. Tutte, Graph Theory, '84, H. H. Crapo, Aequationes Mathematicae,, '69)

a 1st definition - deletion/contraction:

e - regular line

$$T(G; x, y) := T(G/e; x, y) + T(G - e; x, y)$$

 \rightarrow terminal forms - *m* bridges and *n* loops

$$T(G; x, y) := x^m y^n.$$

Exemple

Rank, nullity and the Tutte polynomial

 $A \subseteq E$ - a subgraph of the graph G

$$r(A) := |V(G)| - k(A),$$

r(A) - the rank of the subgraph AV(G) - number of vertices of the graph Gk(A) - number of connected components of A

$$n(A):=|A|-r(A),$$

n(A) - nullity of the subgraph A

2nd definition of the Tutte polynomial - sum over subgraphs:

$$T_G(x,y) := \sum_A (x-1)^{r(E)-r(A)} (y-1)^{n(A)}$$

the two definitions are equivalent

(A. Sokal, London Math. Soc. Lecture Note Ser., 2005)

 w_e , $e = 1, \dots, |E|$ (different variable for each edge) |E| - the total number of edges

1st definition - deletion/contraction:

$$Z(G; q, \mathbf{w}) := Z(G/e; q, \mathbf{w}) + \beta_e Z(G - e; q, \mathbf{w}),$$

e - not necessary regular

 \rightarrow terminal forms with v vertices and without edges

$$Z_G(q,\mathbf{w}):=q^{v}.$$

2nd definition - sum over subgraphs:

$$Z(G; q, \mathbf{w}) := \sum_{A \subset E} q^{k(A)} \prod_{e \in A} w_e.$$

the two definitions are equivalent

The polynomial $Z(G; q, \mathbf{w})$ is directly related to the *Potts model* in statistical physics

- combinatorial physics

QFT - graph theory and combinatorics

 $\Phi^4 \mod - 4$ -valent vertices $\Phi(x)$ - a field, $x \in \mathbb{R}^4$ (the space-time)

propagator (associated to each edge of the graph):

$$\mathcal{C}(p_\ell,m)=rac{1}{p_\ell^2+m^2},\,\,p_\ell\in\mathbb{R}^4,\,\,i=1,\ldots,|\mathcal{E}|,\,\,\,m\in\mathbb{R}$$
 the mass

ightarrow part of the integrands of some Feynman integral \mathcal{A}_{G}

Parametric representation of the Feynman integrals

introduction of some parameters a:

$$\frac{1}{p_{\ell}^2 + m^2} = \int_0^{\infty} da_{\ell} \, e^{-a(p_{\ell}^2 + m^2)}, \qquad \forall \ell = 1, \dots, E$$

 \rightarrow Gaussian integration over internal momenta p_i

$$\implies \mathcal{A}(G; p_{\text{ext}}) = \int_0^\infty \frac{e^{-V(G; p_{\text{ext}}, \mathbf{a})/U(G; \mathbf{a})}}{U(G; \mathbf{a})^2} \prod_{\ell=1}^E (e^{-m^2 a_\ell} da_\ell)$$

U, *V* - polynomials in the parameters *a* Kirchhoff-Symanzik polynomials

$$U(G,\mathbf{a}) = \sum_{\mathcal{T}} \prod_{\ell \notin \mathcal{T}} a_{\ell} ,$$

 ${\mathcal T}$ - spanning tree of the graph

Theorem

$$U(G;\mathbf{a}) = a_e U(G - e;\mathbf{a}) + U(G/e;\mathbf{a})$$

terminal forms (graph formed only of tadpoles)

$$U(G; \mathbf{a}) = \prod_{e \text{ tadpole}} a_e.$$

T. Krajewski, V. Rivasseau, A. T., Z. Wang, J. Noncomm. Geom. (2010)

Proof - Grassmannian development of Pfaffians

Grassmann (anti-commuting) variables:

$$\chi_i \chi_j = -\chi_j \chi_i,$$

$$\Longrightarrow \chi_i^2 = 0$$

Grassmann integration:

$$\int d\chi = 0$$
 and $\int \chi \, d\chi = 1.$

powerful tool to manipulate:

determinants (and Pfaffians): det M = \$\int \Pi_{i=1}^n d\vec{\pi}_i d\pi_i e^{-\sum_{i,j=1}^n \vec{\pi}_i M_{ij} \pi_j}\$
minors: det M_{ij} = \$\int \Pi_{i=1}^n d\vec{\pi}_i d\pi_i d\pi_i (\pi_i \vec{\pi}_j) e^{-\sum_{i,j=1}^n \vec{\pi}_i M_{ij} \pi_j}\$

S. Caracciolo, A. D. Sokal, A. Sportiello, Adv. Appl. Math. (2013) etc.

Relation with the multivariate Tutte polynomial - the polynomial U_G satisfies the deletion/contraction relation

The Kirchoff-Symanzik polynomial can be obtained as a limit of the multivariate Tutte polynomial:

$$U(G; \mathbf{a}) = \left[\left(\prod_{e \in E} w_e \right) \lim_{q' \to 0} \frac{1}{(q')^{p(G)}} \lim_{q \to 0} q^{-k(G)} Z(G; q, q' \mathbf{w}) \right]_{w_e^{-1} = a_e}.$$

where $p(G) := |V(G)| - k(G).$

A. T., Sém. Loth. Comb. (2012)

A bialgebra over a field $\mathbb K$ is a $\mathbb K-linear$ space endowed with an unital associative algebra and a counital, coassociative coalgebra structure

- a product m (assembles) an algebra structure
- a coproduct Δ (disassembles) a coalgebra structure

such that some compatibility conditions are satisfied.

A **Hopf algebra** \mathcal{H} over a field \mathbb{K} is a bialgebra over \mathbb{K} equipped with an **antipode** map $S : \mathcal{H} \to \mathcal{H}$.

Examples of combinatorial Hopf algebras: Sym, QSym, FQSym etc. - selection-deletion rule

J.-C. Aval, A. Boussicault, ...

A Hopf algebra of graphs

W. Schmitt, J. Pure Applied Alg. (1994)

Product: disjoint reunion of graphs

Coproduct:

 $\Delta: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$

$$\Delta(G) := \sum_{A \subseteq E} A \otimes G/A.$$

same type of structure as the Connes-Kreimer Hopf algebra encoding the combinatorics of renormalization in QFT

A. Connes and D. Kreimer, Commun. Math. Phys. (2000)

2 liner maps

 $\delta_{\text{loop}}, \ \delta_{\text{bridge}} : \mathcal{H} \to \mathbb{K}$

$$\delta_{ ext{loop}}(G) := egin{cases} 1_{\mathbb{K}} ext{ if } G = igcar{0}, \ 0_{\mathbb{K}} ext{ otherwise }. \end{cases}$$

$$\delta_{\mathrm{bridge}}({\it G}):=egin{cases} 1_{\mathbb K} ext{ if } {\it G}=egin{array}{c} \bullet& \bullet & \bullet \ 0_{\mathbb K} ext{ otherwise }. \end{array}$$

- From an algebraic point of view, δ_{loop} and δ_{bridge} are infinitesimal Hopf algebra characters
- $\bullet~\delta_{\rm loop}$ and $\delta_{\rm bridge}$ are related to one-edge graphs

Convolution product:

$$f * g = m \circ (f \otimes g) \circ \Delta,$$

Let α : $\mathcal{H} \to \mathbb{K}$

$$egin{aligned} &lpha({\mathcal G};x,y,s) := \exp_* s\{\delta_{ ext{bridge}} + (y-1)\delta_{ ext{loop}}\}\ & *\exp_* s\{(x-1)\delta_{ ext{bridge}} + \delta_{ ext{loop}}\}({\mathcal G}). \end{aligned}$$

(the non-trivial part of the coproduct is nilpotent) From an algebraic point of view, α is a Hopf algebra character

Lemma

$$exp_*{a\delta_{bridge} + b\delta_{loop}}(G) = a^{r(G)}b^{n(G)}.$$

Proposition

$$\alpha(G; x, y, s) = s^{|E|} T(G; x, y).$$

Proposition

The map α is the solution of the differential equation:

$$\frac{d\alpha}{ds}(G) = \left(x\alpha * \delta_{\text{bridge}} + y\delta_{\text{loop}} * \alpha + \left[\delta_{\text{bridge}}, \alpha\right]_* - \left[\delta_{\text{loop}}, \alpha\right]_*\right)(G),$$

where $[f,g]_* := f * g - g * f$.

Differential equation of the same type as the Renormalisation Group equation in QFT

We take a four-variable graph polynomial Q(G; x, y, a, b) which has the following properties:

- a multiplicative law on disjoint union and one-point joints
- if e is a bridge, then

$$Q(G; x, y, a, b) = xQ(G - e; x, y, a, b),$$
(1)

• if e is a loop, then

$$Q(G; x, y, a, b) = yQ(G/e; x, y, a, b),$$
(2)

• if e is a neither a loop nor a bridge, then

$$Q(G; x, y, a, b) = aQ_{G-e}; x, y, a, b) + bQ(G/e; x, y, a, b).$$
(3)

a Tutte-Grotendieck invariant

$$\beta(G; x, y, a, b, s) := s^{|E|}Q(G; x, y, a, b).$$

From an algebraic point of view, β is a Hopf algebra character Proposition The map β satisfies the following differential equation:

$$\frac{d\beta}{ds}(G) = (x\beta * \delta_{\text{bridge}} + y\delta_{\text{loop}} * \beta + b[\delta_{\text{bridge}},\beta]_* - a[\delta_{\text{loop}},\beta]_*)(G).$$

Theorem

If one has a four-variable graph polynomial Q(G; x, y, a, b) satisfying a multiplicative law on disjoint reunions and one-poit joints, and conditions (1) - (3), then one has:

$$Q(G; x, y, a, b) = a^{n(G)}b^{r(G)}T(G; \frac{x}{b}, \frac{y}{a}).$$

Proof: differential equation change of variable

Any Tutte-Grothendieck invariant must be some evaluation of the Tutte polynomial

 \hookrightarrow Universality proof using differential equations (the usual proofs use involved edge induction arguments)

A. T., invited contribution CRC Handbook "The Tutte polynomial" (Editors: J. Ellis-Monaghan & I. Moffatt)

Other results & perspectives for future work

- relation between the Bollobás-Riordan polynomial (or the topological Tutte polynomial) and the Kirchoff-Symanzik polynomial of non-commutative QFT
 - \hookrightarrow non-trivial dependence on the genus
 - T. Krajewski, V. Rivasseau, A. T., Z. Wang, J. Noncomm. Geom. (2010)
- proof of the universality of the Tutte polynomial for matroids
 - G. Duchamp, N. Hoang-Nghia, T. Krajewski, A. T., Adv. Appl. Math. (2014)
- proof of the universality of the Bollobás-Riordan polynomial
 T. Krajewski, I. Moffatt, A. T., submitted (2015)
- relation with polynomials of graphs on pseudo-surfaces
 - T. Krajewski, I. Moffatt, A. T., work in progress
- same approach for Sym, QSym, FQSym etc.;
- unification under a common framework
- unification of the Bollobás-Riordan definitions; topological generalization of the graph (and matroid) Courtiel approach

J. Courtiel, thèse LABRI (oct. 2014), J. Courtiel, arXiv:1412.2081[math.CO]

Je vous remercie pour votre attention !

Generalization: ribbon graphs

bc = 1

bc - number of connected components of the graph's boundary (if the graph is connected, bc - the number of faces)

Bollobás-Riordan polynomial R_G

(B. Bollobás and O. Riordan, Proc. London Math. Soc., 83 2001, Math. Ann., 323 (2002)

J. Ellis-Monaghan and C. Merino, arXiv:0803.3079[math.CO], 0806.4699[math.CO])

\hookrightarrow generalization of the Tutte polynomial for ribbon graphs

$$R_G(x, y, z) = \sum_{H \subset G} (x - 1)^{r(G) - r(H)} y^{n(H)} z^{k(H) - bc(H) + n(H)}.$$

the additional variable z keeps track of the additional topological information (*bc* or the graph genus g)

\hookrightarrow some generalizations:

(S. Chumotov, J. Combinatorial Theory 99 (2009), F. Vignes-Tourneret, Discrete Mathematics 309 (2009)

 $R_G(x, y, z) = R_{G/e}(x, y, z) + R_{G-e}(x, y, z), e$ semi-regular edge terminal forms (graphs \mathcal{R} with 1 vertex):

 $k(\mathcal{R}) = V(\mathcal{R}) = k(H) = V(H) = 1 \rightarrow R(x, y, z) = R(y, z)$

$$R_{\mathcal{R}}(y,z) = \sum_{H \subset \mathcal{R}} y^{E(H)} z^{2g(H)}.$$

generalization of the Bollobás-Riordan polynomial analogous to the generalization of the Tutte polynomial

$$Z_G(x, \{\beta_e\}, z) = \sum_{H \subset G} x^{k(H)} (\prod_{e \in H} \beta_e) z^{bc(H)}.$$

 \hookrightarrow satisfies the deletion/contraction relation

Noncommutative quantum field theory (NCQFT)

NCQFTs - ribbon graphs

Adrian Tanasă Graph polynomials and relation with physics

Parametric representation for a noncommutative Φ^4 model

$$\mathcal{A}_{G}^{\star}(p) = \int_{0}^{\infty} \frac{e^{-V^{\star}(p,\alpha)/U^{\star}(\alpha)}}{U^{\star}(\alpha)^{\frac{D}{2}}} \prod_{\ell=1}^{L} (e^{-m^{2}\alpha_{\ell}} d\alpha_{\ell})$$

Theorem:

$$U^{\star} = \left(\frac{\theta}{2}\right)^{bc-1+2g} \sum_{\mathcal{T}^{\star}} \prod_{\ell \notin \mathcal{T}^{\star}} 2\frac{\alpha_{\ell}}{\theta}$$

 $\boldsymbol{\theta}$ - noncommutativity parameter

 \mathcal{T}^{\star} - \star -trees (non-trivial generalization of the notion of trees)

$$U_G^{\star}(\{\alpha_e\}) = \alpha_e U_{G-e}^{\star} + U_{G/e}^{\star}.$$

for the sake of completeness ...

$$U_{G}^{\star}(\alpha,\theta) = (\theta/2)^{E-V+1} \Big(\prod_{e \in E} \alpha_{e}\Big) \times \lim_{w \to 0} w^{-1} Z_{G}\Big(\frac{\theta}{2\alpha_{e}}, 1, w\Big).$$

relation between combinatorics and QFTs

- other type of topological polynomials related to other QFT models (Τ. Krajewski et. al., arXiv:0912.5438) - no deletion/contraction property
- generalization to tensor models (appearing in recent approaches for a theory of quantum gravity)

(R. Gurău, Annales H. Poincaré 11 (2010), J. Ben Geloun et. al., Class. Quant. Grav. 27 (2010))