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Abstract

A transition matrix [Ui,j]i,j≥0 on N is said to be almost upper triangular if Ui,j > 0 ⇒ j ≥

i − 1, so that the increments of the corresponding Markov chains are at least −1; a transition

matrix [Li,j]i,j≥0 is said to be almost lower triangular if Li,j > 0 ⇒ j ≤ i + 1, and then, the

increments of the corresponding Markov chains are at most +1.

In the present paper, we characterize the recurrence, positive recurrence and invariant dis-

tribution for almost triangular transition matrices class. The upper case appears to be the

simplest in many ways, with existence and uniqueness of invariant measures, when in the lower

case, existence, as well as uniqueness, are not guaranteed. We present the time-reversal connec-

tion between upper and lower almost triangular transition matrices, which provides classes of

integrable lower triangular transition matrices.

These results encompass the case of birth and death processes (BDP) that are famous (dis-

crete or continuous time) Markov processes taking their values in N, which are simultaneously

almost upper and almost lower triangular, and whose study has been initiated by Karlin & Mc-

Gregor in the 1950’s. They found invariant measures, criteria for recurrence, null recurrence,

among others; their approach relies on some profound connections they discovered between the

theory of BDP, the spectral properties of their transition matrices, the moment problem, and the

theory of orthogonal polynomials. Our approach is mainly combinatorial and uses elementary

algebraic methods; it is somehow more direct and does not use the same tools.

1 Introduction

Notation and conventions.

The set of non-negative integers is denoted N. For two integers a < b, [a, b] will be the set of integers
{a, a + 1,⋯, b}. The word “interval” will be added when standard real intervals are considered.

A transition matrix over a finite or countable state space S is a matrix [Mi,j]i,j∈S indexed by
S, such that the Mi,j are non-negative real numbers and sum to one on each row of the matrix.

The set of non-negative measures over S (equipped with the power set sigma field), with total
mass being strictly positive, or infinite, is written M+

S .
A measure π ∈M+

S is said to be invariant by M if

∑
a∈S

πaMa,b = πb, for all b ∈ S. (1.1)

Often, we will see π as a row matrix π ∶= [πx, x ∈ S], and (1.1) will be written πM = π.

We denote by M+,∼
S the set of equivalence classes of positive measures consisting of those which

are equal up to a positive factor. Since the invariance by M is a class property, we will say that a

1



transition matrix M has a single (resp. several) invariant measure in M+,∼
S , when there is a single

(resp. several) class of invariant measures.
The adjectives “recurrent”, “irreducible”, “aperiodic”, and “positive recurrent” will qualify in-

differently transition matrices and Markov chains.
For any subset F of S, MF is the matrix obtained by keeping only the lines and columns of M

indexed by elements of F (that is MF = [Mi,j]i,j∈F ).

The identity matrix is denoted Id, and this, whatever its size is (which will be however clear
from the context). For example, we will simply write (Id − M)F = Id − MF , without adding the
precision that in the left-hand side, Id has size the cardinality of S, and in the right-hand size, that
of F .

—————————
A transition matrix U = [Ui,j]0≤i,j≤+∞ on N is said to be almost upper-triangular ( ) if

Ui,j > 0⇒ j ≥ i − 1 (1.2)

and a transition matrix L = [Li,j]0≤i,j≤+∞ is said to be almost lower-triangular ( ) if

Li,j > 0⇒ j ≤ i + 1. (1.3)

Here are some “pictures” explaining the iconographic notation and of the main objects:

U ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U0,0 U0,1 U0,2 U0,3 U0,4 ⋯
U1,0 U1,1 U1,2 U1,3 U1,4 ⋯

0 U2,1 U2,2 U2,3 U2,4 ⋯
0 0 U3,2 U3,3 U3,4 ⋯
⋮ ⋮ ⋮ ⋱ ⋱ ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, L ∶=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L0,0 L0,1 0 0 0 ⋯
L1,0 L1,1 L1,2 0 0 ⋯
L2,0 L2,1 L2,2 L2,3 0 ⋯
L3,0 L3,1 L3,2 L3,3 L3,4 ⋯
⋮ ⋮ ⋮ ⋱ ⋱ ⋯

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This paper aims to provide a first systematic study of Markov chains following a or a
transition matrix. Our results will appear to generalize birth and death (BD) processes results.
These latter form the famous model of Markov chains on N having tridiagonal transition matrices,
often represented as

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r0 p0 0 0 ⋯
q1 r1 p1 0 0 ⋯
0 q2 r2 p2 0 ⋯
0 0 q3 r3 p3 ⋯
⋮ ⋮ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1.4)

where qi = Ti,i−1, ri = Ti,i, pi = Ti,i+1. Tridiagonal means that Ti,j > 0⇒ ∣i− j∣ ≤ 1, and then, this
is the class of transition matrices that are simultaneously and : the increments of a chain with
such a transition matrix belong to {−1,+1, 0}.

Two very influential papers published in 1956 by Karlin & McGregor [13, 12] showed that the
main characteristics of BD models can be exactly computed, and this is a consequence of some
particular features of the algebra that comes into play.

We review some of the results they obtained here. Consider T a tridiagonal transition matrix
and ` the maximal l with the following property: Ti,i+1 and Ti+1,i are positive for all 0 ≤ i ≤ l with
l ∈ {0, 1,⋯, } ∪ {+∞}. If ` is finite, a Markov chain with transition matrix M is irreducible when
restricted to the finite state space [0, `]. This case can be studied using the finite Markov chains
tools (even if BDP on compact sets are interesting from the combinatorial point of view on their
own, see Flajolet & Guillemin[7]). Karlin & McGregor results concern the irreducible case over N
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(case ` = +∞). In this case, they establish the following results: The Markov chain is reversible
(πk−1Tk−1,k = πkTk,k−1) with respect to the measure

π0 = 1, and for a ≥ 1, πa =
p0⋯pa−1
q1⋯qa

=

a

∏
j=1

Tj−1,j
Tj,j−1

, (1.5)

so that this measure is invariant by T. Moreover, this measure is the unique invariant measure for
T (in M+,∼

N ). There exists an invariant probability distribution if and only if

∑
k≥1

k

∏
j=1

Tj−1,j
Tj,j−1

< +∞, (1.6)

and then, this is also a necessary and sufficient condition for positive recurrence. A Markov chain
with transition matrix T is recurrent if and only if

∑
k≥0

k

∏
j=1

Tj,j−1
Tj,j+1

= +∞. (1.7)

There is also a connection with the theory of orthogonal polynomials (see Section 5.2 in which
the connection established by Karlin & McGregor is discussed; we refer to Schoutens [21] for more
information on the connections between probability and orthogonal polynomials theories). In their
papers, Karlin & McGregor study mainly the continuous-time version of these Markov processes,
whose behaviour is similar (up to a random time change) to the discrete version preferred here.
The continuous setting is important in their study since differentiation with respect to time of some
quantities is considered at many steps of their study. This is not the case in our approach, and we
prefer to stick with the discrete-time which makes more natural the use of combinatorial tools: we
will discuss the continuous case in Section 5.1 only.

1.1 Main results and contents of the paper

The nature and behaviour of almost upper or lower triangular chains are different from those of
BDP. The first difference is that if M is (or ) but not tridiagonal, then M is not reversible with
respect to any positive measure π. The reason is that for such an M, there exists a pair of indices
(a, b) such that Ma,b > 0 and Mb,a = 0, which implies that πaMa,b = πbMb,a is not possible (when M
is irreducible).

In this paper, we will add the irreducibility hypothesis virtually everywhere: consider the
strongly connected components in the graph with vertex set V = N and directed edge set E =

{(i, j),Mi,j > 0} for M being either or . It is easy to see that the (resp. ) structure imposes
all strongly connected components to be intervals of N, since the only down-steps are −1 (resp.
the only up steps are +1). Hence, there is at most one infinite connected component (which is,
in this case, equivalent, up to change of origin to [0,+∞)), and the Markov chain on each finite
component reduces to the study of a Markov chain over a finite state space (we refer to [18, 19]
for more information on Markov chain techniques). Hence, requiring irreducibility in this setting is
natural.

Convention: Unless otherwise stated, all the Markov chains considered will be irreducible on N.

Let us recall a fact concerning finite irreducible Markov chains which is important to have
in mind before starting the description of our results. Let M = [Ma,b]0≤a,b≤N be an irreducible
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transition matrix over [0, N] for some finite N . Such a Markov chain is positive recurrent, and,
by the Perron-Frobenius theorem (see for example [16]), M possesses a unique invariant probability
distribution in M+

[0,N] which is

ρk = det (Id −M
dep(k)) /αN , for k ∈ [0, N] (1.8)

where:
. for a matrix A, the notation A

dep(k)
represents the matrix A deprived of its k-th column and line,

. αN is the only normalising constant making of ρ a probability distribution.

As a consequence of the matrix tree theorem (see e.g. [25]), or as a consequence of the properties

of the Markov chain tree theorem ([24, 5, 2, 10, 8]), for any vertex r of G, det (Id −M
dep(r)) is

the total weight of the set SpanningTrees
•(r) of rooted spanning trees (t, r) of the oriented graph

G = (V,E) where V = [0, N], and E = {(a, b) ∶ Ma,b > 0}. More precisely it states that each

spanning tree (t, r) is an oriented graph (V t,r
, E

t,r), whose edges e = (u, v) ∈ E
t,r

are oriented
towards the root r and the weight of this rooted spanning tree is defined as

Weight(t, r) = ∏
e=(u,v)∈Et,r

Mu,v, (1.9)

and the matrix tree theorem in these settings writes as

det (Id −M
dep(r)) = ∑

(t,r)∈SpanningTrees•(r)
Weight(t, r). (1.10)

1.2 Content of the paper

Section 2.1 collects the main results concerning transition matrices.

In Theorem 2.1 we establish that each irreducible transition matrix U has a single invariant
measure (πa, a ≥ 0) in M+,∼

N where π0 > 0 and

πa = π0
det(Id − U[0,a−1])

∏a
j=1 Uj,j−1

, a ≥ 1,

which provides a characterization for positive recurrence (∑a πa < +∞). A necessary and sufficient

condition for recurrence is given in Theorem 2.8: limb→∞ U1,0
det(Id−U[2,b−1])
det(Id−U[1,b−1]) = 1. This is done thanks

to some explicit formulas for the distribution of the hitting time τS(Y ) of a set S by a Markov chain
(Yi, i ≥ 0) with transition matrix U (Theorem 2.8 and Proposition 2.9), notably, it is established

that P(τ{0}(Y ) < τ[b,+∞)(Y ) ∣ Y0 = 1) = U1,0
det(Id−U[2,b−1])
det(Id−U[1,b−1]) .

In Remark 2.11 we will abandon locally the irreducibility assumption to treat the case where
absorption at 0 occurs with a positive probability at each passage, and we compute the probability
of eventual absorption.

For each n ≥ 0, the projection transition matrix U
(n)

is defined by restricting U to [0, n] (up

to some boundary details, see (2.11)). Since U
(n)

is a finite state space transition matrix, when

irreducible, it possesses a unique invariant distribution ρ
(n)

. In Theorem 2.13, the convergence of

ρ
(n)

(after normalisation if necessary) to the unique invariant measure π of U in M+,∼
N is established.

Last, in Proposition 2.3, it is established that some irreducible transition matrices U have
several non-proportional right eigenvectors associated with the eigenvalue 1; the subspace generated
by the eigenvectors with positive coordinates may have any finite dimension, and even, can be
infinite-dimensional.
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Section 2.2 collects the main results concerning transition matrices.

First of all, the class of transition matrices appears to be more complex to study than transition
matrices. Probably, the simplest explanation is the role played more or less directly by the invariant
measures π in the study of a transition matrix L. In the case, an invariant measure is a solution
of πa = ∑b∶b≥a−1 πbLb,a, so that it relates πa−1 with an infinite number of πb with larger indices,
while in the case, πa = ∑b∶b≤a+1 πbUb,a allows expressing πa+1 with the πb with smaller indices: a
triangular system, easy to solve, with a unique solution.

Hence, in the case, neither uniqueness nor existence of invariant measures is guaranteed
(Theorem 2.14), and the cone of invariant measures in the case can have any dimension, ranging
from 0 to +∞. In Theorem 2.15, we give a characterization of transition matrices L that are

recurrent (the condition is limb→+∞
∏b−1
j=1 Lj,j+1

det(Id−L[1,b−1]) = 0). This is done also by the study of the

distribution of the hitting times τ{j}(Y ) of a Markov chain with transition matrix L. The case
where absorption at 0 occurs with a certain probability is discussed in Remark 2.18, and the
probability of absorption is computed. In Theorem 2.19, it is shown that the invariant distribution
of a transition matrix L on the finite set [0, s], is proportional to (ηa, a ∈ [0, s]) where ηa =
η0 det (Id − L[a+1,s]) ∏a

i=1 Li−1,i. This result allows stating Proposition 2.20 and Proposition 2.21

which provide some conditions for the convergence of the (rescaled) invariant distribution η
(m)

of

the projected transition matrix L
(m)

to an invariant measure η of L.

Connections between and transition matrices

The time-reversal of a trajectory with jumps bounded from above by 1, is a trajectory with jumps
bounded from below by −1... so it is tempting to guess that the time-reversal of a Markov chain
is a Markov chain, and vice-versa (under their stationary regime). It turns out that the complete
picture is more complex than that because transition matrices have a single invariant measure,
when the existence and uniqueness of invariant measures is not guaranteed in the case. Hence:
– time-reversal of transition matrices are transition matrices,
– time-reversal to transition matrices, may exist or not, and in the case where L possesses several
invariant measures, several time-reversals of L can be defined, all being transition matrices (see
Theorems 3.1 and 3.3). Recurrence and positive recurrence of any associated time-reversal transition
matrices are shown to be equivalent to those of L.

The spectral properties of and matrices are quite rich, and they are scattered in vari-
ous theorems (already cited above): Theorem 3.8 states that each complex number is a simple
left-eigenvalue of all infinite transition matrices, and also simple right-eigenvalues of infinite
transition matrices: eigenvectors are totally explicit. For and transition matrices U and L that
are time-reversal of each other, for each Λ, there is an explicit linear map which sends the right
eigenspace of U associated with the eigenvalue Λ (the set {v ∶ Uv = Λv} possibly reduced to {0}),
to the left eigenspace of L.

Sub-stochastic almost triangular matrices have some comparable properties to stochastic almost
triangular matrices in terms of spectral properties (Proposition 3.11 and Proposition 3.12).

Since transition matrices are in general more difficult to study than transition matrices,
finding the time-reversal U of a transition matrix L provides at once an important tool to study the
behaviour of L-Markov chains. We then provide some results allowing one to better understand the
algebraic relation between pairs (L,U), time-reversal of each other with respect to some measures
(Proposition 3.5, and Remark 3.6).

In Section 3.3, we will make a slight change in the representation of transition matrices L
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using the so-called descent kernel

{ Lb,a = vbDb,a, for b ≥ a,
Lb,b+1 = 1 − vb, b ≥ 0.

Hence, vb is the probability to “go down” from level b, and Db,a is the probability to descent from
b to a, when the “go down” direction is chosen. This representation, of course, equivalent to the
initial representation of transition matrices, provides some different formulas for the researched
time-reversal transition matrix U (which involves D too, see Proposition 3.14).

In Section 3.3.2, we will change a bit of perspective – fix D but let (vi, i ≥ 0) be freely chosen: this
will provide a way to construct many integrable transition matrices L (Theorem 3.16), meaning
that the invariant measure associated to these L can be expressed in the form of a closed formula.
This point of view is reminiscent of “catastrophe transition matrices” in which the descent transition
matrix is the important feature of the model. This allows us to revisit some known results of the
literature (see Section 3.3.3).

In Section 4.1 we show that our results are equivalent to the results of Karlin & McGregor in
the tridiagonal case (our formulas use determinants when it is not the case for those of Karlin &
McGregor so that proofs are needed).

In Section 4.2, we provide a family of integrable transition matrices: in words, when the
columns of L are almost proportional (see Definition 4.1), then the system which allows computing
the invariant distribution is triangular (in some sense), and then can be solved.

In Section 4.3, another family of integrable models is given: these are some models of and
that can be expressed in terms of birth-death processes decomposed between some stopping times.

In Section 4.4, a fourth list of integrable models, called the repair shop Markov chain, is revisited,
and treated with our main theorems (criteria of recurrence and positive recurrence are found using
new methods).

Section 5.1 is devoted to continuous-time counterparts of our models of and Markov chains.
Finally, since many proofs we give use combinatorial facts (notably matrix tree theorem and

heap of pieces techniques), Section 1.3 recalls these tools.

1.3 Tools for the proofs of the main theorems

About the determinants of almost triangular matrices

Lemma 1.1. Let A = [Ai,j]0≤i,j≤N be a finite matrix (transition matrix or not, with complex

coefficients). Denote by S
N

the set of increasing integer valued sequences s = (s0,⋯, sk) with

1 ≤ k ≤ N , s0 = −1 and sk = N . For such a sequence denote by `(s) = k its final index. We have

det(A) =
N

∑
j=0

A0,j (
j

∏
i=1

(−Ai,i−1)) det(A[j+1,N]). (1.11)

As a consequence,

det(A) = ∑
s∈SN

⎛
⎜
⎝

`(s)
∏
j=1

Asj−1+1,sj
⎞
⎟
⎠

∏
j∈[0,N−1]\s

(−Aj+1,j) (1.12)

where [0, N − 1] \ s is the set obtained by removing the elements of s from the set [0, N].
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Remark 1.2. If A is a finite matrix, then it is immediate by transposition that

det(A) = ∑
s∈SN

⎛
⎜
⎝

`(s)
∏
j=1

Asj ,sj−1+1
⎞
⎟
⎠

∏
j∈[0,N−1]\s

(−Aj,j+1) .

Proof. Expand the determinant along the first line: det(A) = ∑N
j=0(−1)jA0,j det(Adep(0,j)) where

the matrix A
dep(0,j)

is obtained by removing line 0 and column j of A. Now, the conclusion follows

from the fact that in the matrix H ∶= Adep(0,j)
the j first columns have non-zero entries only above

the diagonal, i.e. (Ha,b > 0, b < j) ⇒ a ≥ b. Hence when one expands the determinant, to get

a non-zero result, the diagonal entries of the first j columns must be selected, and then they are

multiplied by det(A[j+1,N]), this concludes (1.11). Formula (1.12) is proved by recursively applying

(1.11) on j for det(A[j,N]).

1.3.1 The matrix tree theorem and related facts

Let (G,W ) be a weighted oriented graph, where G ∶= (V,E) is a graph, V is the set of nodes and
E ⊂ V

2
is the set of edges. As usual, the (oriented) edge e = (u, v) is oriented toward v, and its

weight is Wu,v. The matrix tree theorem asserts that

∑
(t,r)∈SpanningTrees•(r)

∏
e∈Et

We = det (Laplacian(W )dep(r)) ,

where each edge of the tree (t, r) is oriented toward the root r, and where Laplacian(W )dep(r) is the
Laplacian matrix of W , in which the rth line and column have been removed. When Wu,v = Mu,v

for a transition matrix M, Laplacian(M) = (Id −M) (this is equivalent to (1.10)).

1 2

4

36

5

0.3

0.2

0.2
0.5 0.8

0.4

0.3

0.3

0.50.3

0.4

0.7

0.6

0.5

Figure 1: Example for the Matrix tree theorem. Here matrices rows and columns are indexed from

1 to 6 as the vertices of the graph. To the left we give the description of a Markov transition

matrix as the weights of the (oriented) edges and to the right the Laplacian matrix associated to

this Markov chain. In gray the column and row suppressed to compute the total weight of spanning

trees rooted at vertex 1, which is equal to det (Laplacian(M)dep(1)) = 0.171.

Definition 1.3. Let Roots ⊂ V be a set of roots, and Nodes ⊂ V a set of nodes (“of other nodes”,

we should say). We denote by Forests(Nodes,Roots) the set of forests, a forest being a sequence of

rooted trees {(t1, r1),⋯, (tk, rk)}, satisfying the following constraints:
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– at least one tree (k ≥ 1), and each tree is not reduced to its root,

– the set of nodes V (ti) of the ti are disjoint, and all of them are included in Nodes ∪ Roots,

– each element of Nodes belongs to (exactly) a single tree,

– the set of roots {r1,⋯, rk} is a subset of Roots (the ri are distinct),

– each tree ti has ri as the unique vertex belonging to Roots.

Roots

9 10

Nodes

232110 2 3 4 65 7 118 22

Figure 2: Representation of forests as in Definition 1.3 where Nodes = [0, 7] and Roots = [8,+∞).
The figure illustrates a forest with three trees (not reduced to their root); their sets of vertices are:

{0, 1, 2, 4, 8}, {3, 5, 6, 22} and {7, 11}.

For any forest f = {(t1, r1),⋯, (tk, rk)}, set

WeightW (f) =
k

∏
i=1

Weight(ti, ri),

where Weight(ti, ri) is as in (1.9) with W in place of M (the edges of each tree are oriented toward
their root).

Proposition 1.4. Consider the graph G = (N, {(i, j) ∶ Ui,j > 0}), weighted by the transition matrix

U, that is W = U. We have

∑
F∈Forest([0,x−1],[x,+∞))

WeightU(F ) = det((Id − U)[0,x−1]). (1.13)

Proof. This can be viewed as a consequence of the matrix tree theorem in which the set Roots is

identified with one node.

1.3.2 Heap of cycles

We recall some aspects of the theory of heaps of pieces [23, 14], and more specifically heap of cycles,
which will be a useful tool to prove some of our results.

Consider M a transition matrix on a finite or infinite countable graph G = (V,E), meaning that
M = (Mu,v, u, v ∈ V ), Mu,v > 0⇒ {u, v} ∈ E, and as usual, for all u ∈ V , ∑v∈V Mu,v = 1.

Attribute to each (oriented) path w = (w0,⋯, w∣w∣) on G, the weight

Weight(w) =
∣w∣
∏
j=1

Mwj−1,wj .

A path w is a cycle if w∣w∣ = w0 and if moreover, for all 0 ≤ i < j < ∣w∣, wi ≠ wj then, it is called a
simple cycle. We extend the map Weight to collections of paths C ∶= (w(1),⋯, w(∣C∣)) in which
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case we set

Weight(C) =
∣C∣
∏
j=1

Weight(w(i)). (1.14)

Path decomposition.

A standard result from combinatorics which has proved its importance notably in the study of
loop-erased random walks (see e.g. Tyler [9, Appendix A], Lawler [15], Wilson [24], Marchal [17]),
is that

Lemma 1.5. There exists a weight-preserving bijective map that sends the set of paths on G starting

at some point v onto the set of pairs (saw, hc) where saw is a self-avoiding walk on G starting at v,

and hc is a heap of cycles with maximal pieces incident to saw.

(The notion of maximal pieces is recalled below). See e.g. Prop. 6.3. in Viennot [23] for
additional details (and proof). A self-avoiding path is a path w such that wi = wj ⇒ i = j. A
heap of cycles, is a particular instance of the concept of heap of pieces, an important combinatorial
concept. We refer to Viennot [23], Krattenthaler [14], Cartier & Foata [6], Zeilberger [25], to Tyler
[9, Appendix A] for details, and just recall some aspects below.

A heap of pieces is, informally, a collection of pieces, that are placed on a discrete space (E×N,
where E is a set of elements, and N is the height space). The definition uses a reflexive and
symmetric relation R on the set of pieces E. Some pieces are said to be in relation, which implies
that they cannot be placed at the same height (if pRp′, then (p, i) and (p′, i) cannot belong to the
same heap); moreover, a piece p at height i with i ≥ 1 must be supported by a piece p at height
i−1, which is related to it (that is, if (p, i) is in a heap H and i ≥ 1, then H must contain (p′, i−1)
with p

′Rp).

There are several ways to define formally the notion of heap of pieces:
– as an element of a partially commutative monoid: if this point of view is adopted, a heap of pieces
is a word w1 . . . wm, where the letters wi belong to E, and in which pairs of non-related letters with
respect to R commute (Cartier & Foata [6]),
– more geometrically (Viennot [23]), in which heaps of pieces H are viewed as finite sets of pairs
{(p, i) ∶ p ∈ E, i ∈ N}, such that

1. If (p, i), (p′, j) ∈ H and pRp′, then i ≠ j (pieces in relation cannot be put at the same height).

2. If (p, i) ∈ H and i > 0, then there exists (p′, i − 1) ∈ H with pRp′ (each piece must be
supported).

These points of view are equivalent (Viennot [23], Krattenthaler [14]); each heap of pieces H
can also be viewed as a poset (H,≤), where:
– in the geometric point of view, (p, i) ≤ (p′, j) if i ≤ j and pRp′ (and ≤ is the transitive closure of
this relation),
– in the Cartier-Foata point of view, for two letters a and b in a word, a ≤ b if aRb and a is at the
left of b, (and ≤ is the transitive closure of this relation).

A pair (p, i) in H is said to be maximal in H, if H does not contain any pair (p′, j) such that
p
′Rp and j ≥ i (there are no pieces in relation, above it).

Each heap, as a poset, possesses some maximal pair. We say that a piece p is maximal if the
pair (p, i) is maximal for some height i.
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A trivial heap of pieces is a heap in which all pieces are at level 0, which means that the pieces
it contains are not in relation. If one uses the partially commutative monoid point of view, a trivial
heap of pieces is a heap (a word) in which all the pieces (the letters) commute.

Proposition 1.6. [Prop.5.3 [23]] Let M be a subset of the pieces B. Let W be a multiplicative

weight function on heaps, such that for all heap H its weight W (H) is the product of the elementary

weights W (p) of the pairs (p, i) it contains (the weight of a piece is independent of “its place or

height” in the heap). Then, the total weight of the heap of pieces having their maximal pieces

included in M is given by

∑
H heaps in (B,R)

maximal pieces⊂M

W (H) = ( ∑
T trivial

heap in (B,R)

(−1)∣T ∣
W (T ))

−1
( ∑

T trivial

heap in (B\M,R)

(−1)∣T ∣
W (T ))

Viennot [23, Proposition 5.3] gave this result at the level of combinatorial objects; here, we
preferred a projected version, in terms of their weights (which is what we need). (See also Theorem
4.1 [14], Tyler [9, Appendix A]).

In a heap of cycles, the pieces are oriented cycles on a given graph G, and two cycles are in
relation if they share a vertex. The weight of a heap of cycles, according to a transition matrix M,
is identified with the weight of the collection of cycles it contains. A heap of cycles is then trivial
when all the cycles it contains are non-intersecting. Denote by AG the alternating weight of trivial
heaps of cycles

AG = ∑
C=(C(1),⋯,C(∣C∣)∈Trivial heap of cycles on G

(−1)∣C∣
∣C∣
∏
j=1

Weight(C(j)),

where W (C(j)) is as in (1.14). A simple expansion of the determinant using the cycles present on
a permutation allows us to get

AG = det (Id −M) = 0 (1.15)

and the reason for that is that M has 1 as an eigenvalue; hence the set of heaps of cycles on G has
total weight +∞. What is of greater interest is the value of AG\S , the alternating weight of trivial
heaps of cycles avoiding some set of vertices S, which is

AG\S = det (Id −MG\S) , (1.16)

as well as its inverse corresponding to the total weight of heaps of cycles on G \ S:

∑
H∈Heap of Cycles on G\S

Weight(H) = det (Id −MG\S)−1 . (1.17)

2 Main theorems in the almost triangular cases

2.1 Almost upper triangular cases

In the irreducible case, there exists a unique invariant measure:

10



Theorem 2.1. If U is an irreducible transition matrix, then U admits a unique positive invariant

measure (πa, a ≥ 0) ∈M+,∼
N , which is defined (up to a constant factor π0 > 0) by

πa ∶= π0
det(Id − U[0,a−1])

∏a
j=1 Uj,j−1

, a ≥ 1.

The transition matrix U is positive recurrent if and only if

∞

∑
a=1

det (Id − U[0,a−1])
∏a

j=1 Uj,j−1
<∞. (2.1)

Remark 2.2. (i) The measure π is a positive measure on N, this is a consequence of Proposi-

tion 1.4 and can be seen using (1.10) too, even if the matrix U[0,a−1] is not a transition matrix

deprived of a line and a column (but it can be obtained as such).

(ii) We have πa = ∑b≤a+1 πbUb,a so that there is a second algorithmic method to compute directly

(πa, a ≥ 0): fix freely a value π0 > 0, and then for a ≥ 1 use the following recursion:

πa+1 = (πa −∑
b≤a

πbUb,a)/Ua+1,a, (2.2)

which provides immediately the uniqueness of the invariant measure. The equivalence of this

formula with Theorem 2.1 is not obvious, and it is even not obvious that (2.2) produces a

positive sequence (πa, a ≥ 0).

(iii) The theorem applies in the tridiagonal case even if the formula seems different from Karlin &

McGregor’s formula (1.5) (see Section 4.1 for a complete explanation).

The next proposition gives a property of the right eigenspace of a -transition matrix, associated
with the eigenvalue 1. Remark 2.4 announces a maybe unexpected link with the recurrence of this
chain.

Proposition 2.3. There exist some irreducible transition matrices U with several positive, non-

proportional right eigenvectors associated with the eigenvalue 1: there exist cases for which the cone

generated by the right eigenvectors with positive coordinates is infinite-dimensional, and cases for

which it is finite-dimensional, all dimensions ≥ 1 being possible.

Of course, the vector R = [1 ⋯ 1]t is a right eigenvector of U associated with the eigenvalue
1.

Remark 2.4. We will see in Theorem 3.1, that a matrix U having various linearly independent

positive right eigenvectors (associated with the eigenvalue 1) is transient.

Remark 2.5. The right eigenspace associated with the eigenvalue 1 is a vector space; here we

are interested in the cone generated by the vectors with positive coordinates (the cone being the set

of linear combinations with non-negative coefficients of these vectors). The cone of eigenvectors

with positive coordinates is a convex set, but not a vector space (except when it is reduced to {0}).

However, we can still define the dimension of a cone, as the dimension of the vector space it
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generates. A basis of this vector space (which can be taken in the cone itself) characterizes the

cone of vectors with positive coordinates (these are the linear combination of these vectors with all

positive coordinates).

By the way, the existence of right eigenvectors for U has a martingale interpretation:

Remark 2.6. We claim the following: if (Xk, k ≥ 0) is a Markov chain with irreducible tran-

sition matrix M , and let F = (Fn, n ≥ 0) = (σ(Xi, i ≤ n), n ≥ 0) be the filtration generated

by the Xi’s. Consider a function R ∶ N → [0,+∞) (which we want to view also as a vector

R = [R0, R1, R2, ⋯]t). The process (RXk , k ≥ 0) is F-martingale iff R is a right eigenvector

of M associated with the eigenvalue 1.

The proof of the claim is simple: Since (Xk, k ≥ 0) is a Markov chain, (RXk , k ≥ 0) is a

martingale iff E(RXk+1∣Fk) = E(RXk+1∣Xk) = RXk . Since (Xk, k ≥ 0) is time-homogeneous and

discrete, observe that (RXk , k ≥ 0) is a martingale iff, for all i ≥ 0, E(RZ1
∣Z0 = i) = Ri, which is

equivalent to ∑j≥i−1Mi,jRj = Ri as claimed.

When the state space of the Markov chain is finite, since 1 is a simple eigenvalue, only R =

[1,⋯, 1]t is a right eigenvector (up to a multiplicative constant), so that, no “interesting martingale”

of the type (RXk , k ≥ 0) can be defined. Proposition 2.3 states that in the case of infinite transition

matrices, the situation may be different, and the class of martingales of this type may be huge.

The next lemma provides a direct algebraic argument leading to the form of the invariant
measures as stated in Theorem 2.1.

Lemma 2.7. For any finite or infinite matrix U, any y ∈ {0,⋯, s}, where the column are indexed

from 0 to s ≤ +∞, we have

det(Id − U[0,y]) = det(Id − U[0,y−1]) (1 − Uy,y) − ∑
x≤y−1

det(Id − U[0,x−1])Ux,y
y

∏
j=x+1

Uj,j−1, (2.3)

with the convention det(Id − U[0,−1]) = 1.

Proof. This is an application of Lemma 1.1 to the matrix A = Id − U[0,y], more exactly to the

matrix obtained from Id − U[0,y] by the symmetry with respect to the second diagonal.

Proof of Theorem 2.1. In the proof, we write Dx instead of det(Id − U[0,x]). Consider the formula

for π provided in Theorem 2.1; let us establish that ∑x πxUx,y = πy so that π is indeed invariant by

U. Since U is (with lines and columns indexed from 0 to s), ∑x πxUx,y = πy is equivalent to

min{s,y+1}
∑
x=0

Dx−1

∏x
j=1 Uj,j−1

Ux,y =
Dy−1

∏y
j=1 Uj,j−1

. (2.4)

– Assume first that y < s (so that min{s, y + 1} = y + 1), and multiply both sides of (2.4) by

∏y
j=1 Uj,j−1 allows seeing that (2.4) is equivalent to

y−1

∑
x=0

Dx−1Ux,y

y

∏
j=x+1

Uj,j−1 +Dy−1Uy,y +Dy = Dy−1. (2.5)
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which is (2.3), so that it holds, and we have indeed ∑x πxUx,y = πy.

– Assume that y = s (and then, s is finite). Now, min{s, y + 1} = s, and the multiplication of (2.4)

by ∏s
j=1 Uj,j−1 gives,

s−1

∑
x=0

Dx−1Ux,s

s

∏
j=x+1

Uj,j−1 +Ds−1Us,s = Ds−1. (2.6)

and this holds too by (2.3): to see this, we need to additionally observe that Ds = 0 (because 1 is

an eigenvalue of U).

The invariant measure defines a probability measure and is therefore positive recurrent if and

only if ∑∞
i=0 πi <∞ which gives (2.1).

A second proof of Theorem 2.1 will be given in Section 2.3.1.

Theorem 2.8. For a Markov chain Y = (Yi, i ≥ 0) with irreducible transition matrix U, denote

by

τS(Y ) = inf{j > 0 ∶ Yj ∈ S}

the hitting time of the set S by Y . Set, for any pairs of integers (x, b) such that 0 < x < b,

ub(x) = P(τ{0}(Y ) < τ[b,+∞)(Y ) ∣ Y0 = x).

We have

ub(x) =
det(Id − U[x+1,b−1])
det(Id − U[1,b−1])

x

∏
j=1

Uj,j−1 (2.7)

so that U is recurrent if and only if

lim
b→+∞

ub(1) = lim
b→+∞

U1,0

det(Id − U[2,b−1])
det(Id − U[1,b−1])

= 1. (2.8)

In Section 4.1 we will see that in the tridiagonal case, this criterion reduces to Karlin & McGregor
criterion (1.7).

Proof. The formulas of ub(x) and ub(1) are direct consequences of Lemma 1.5 and of Proposition 1.6

((1.16) and (1.17) explaining the appearance of determinants), because, a path from x to 0 which

stays in [0, b − 1], and which hits 0 for the first time by its last step, can be decomposed as a

self-avoiding path going from x to 0 (its weight is ∏x
j=1 Uj,j−1) and a heap of cycles on the vertex

set [1, b − 1] with maximal pieces incident to [1, x], whose weight is given by
det(Id−U[x+1,b−1])
det(Id−U[1,b−1]) ; this

gives (2.7) at once.

Recurrence is equivalent to ub(1)→ 1 when b→ +∞, since U is irreducible.

Proposition 2.9. For x ∈ (a, b), set ←−u a,≥b(x; z) = E [zτ{a}(Y )
1τ{a}(Y )<τ[b,+∞)(Y ) ∣ Y0 = x] the (de-

fective) generating function of the hitting time of a under the event that a is reached before b. We

have

←−u a,≥b(x; z) =
det (Id − zU[x+1,b−1])
det (Id − zU[a+1,b−1])

x

∏
j=a+1

(zUj,j−1). (2.9)
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In particular when U is recurrent ←−u 0,b(x; z) converges
1

to ←−u (x; z) ∶= E [zτ{0}(Y ) ∣ Y0 = x] as b →

+∞; otherwise it converges to

←−u (x; z) = E [zτ{0}(Y )
1τ{0}(Y )<+∞ ∣ Y0 = x] . (2.10)

Proof. The proof of the first statement is the same as that of Theorem 2.8, in which the weight Ui,j

of a step is replaced by Ui,jz. Second statement: in case of recurrence, P(τ{0}(Y ) ≤ τ{b}(Y ) ∣Y0 =
x) → 1 when b → +∞. The statement, which is then equivalent to the convergence in distribution

of τ{0}(Y ) conditioning on the event {τ{0}(Y ) ≤ τ{b}(Y )} follows.

We define now the transition matrix U
(n)

, which we will call the “projected” transition matrix
U on [0, n]:

{ U
(n)
i,j = Ui,j , for i ∈ [0, n], j ∈ [0, n − 1]

U
(n)
i,n = ∑j≥n Ui,j .

(2.11)

It will often be used in the sequel (as well as L
(n)

defined in (2.21)).

Remark 2.10. Let −→u a,≥b(x; z) = E [zτ[b,+∞)(Y )
1τ{a}(Y )>τ[b,+∞)(Y ) ∣ Y0 = x] be the (defective) gener-

ating function of the hitting time of [b,+∞) under the event that [b,+∞) is reached before a. We

have

−→u a,≥b(x; z) = ((Id − zU[a+1,b−1])−1 [1i∈[a+1,b−1]z∑k≥b Ui,k])x,1 (2.12)

where U[a+1,b−1] is the matrix obtained by preserving the entries of U whose columns and rows are

indexed by [a + 1, b − 1], and replacing the others by 0, and [1i∈[a+1,b−1]z∑k≥b Ui,k] the column

vectors in which non-zero lines correspond to the i in [a+ 1, b− 1]: the entry 1i∈[a+1,b−1] ∑k≥b Ui,k

measures the probability to jump at the right of b from i. The matrices in play are infinite, but

representations with finite matrices also exist (for example, keeping the b+1 first lines and columns

of the involved matrices suffice).

To prove this formula, just observe that when M is a transition matrix of a finite state space (with

size s ≥ b), the coefficient (Id − zU[a+1,b−1])−1i,j gives the total mass of paths starting at i, ending at

j, and whose set of vertices is included in [a + 1, b − 1] (a step (k, `) being weighted zMk,`).

Remark 2.11. Some authors consider the case where ∑k≥0 U0,k < 1, so that, a part of the mass

disappears at each passage at 0: if one adds an additional absorbing state † to the state space, and

set U0,† = 1 −∑k≥0 U0,k and U†,† = 1, then the absorbed mass at † for a U-Markov chain starting

from x is

A†(x) = P(τ{†}(X) < +∞ ∣ X0 = x)

and the corresponding (defective) hitting time generating function is

a†(x; z) = E(zτ{†}(X)
1τ{†}(X)<+∞ ∣ X0 = x).

1
It converges in the sense that, for all k, the coefficient of z

k
in ←−u 0,b(x; z) converges to that of ←−u (x; z) as b→ +∞.

Seen as a power series in z, ←−u 0,b(x; z) converges uniformly on each compact included in [0, 1) to ←−u (x; z).
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Recall (2.10). We have A†(x) = a†(x; 1) and

a†(x; z) =←−u (x; z)zU0,†

∞

∑
k=0

(zU0,0 +
∞

∑
y=1

zU0,y
←−u (y; z))

k
=

zU0,†
←−u (x; z)

1 − (zU0,0 +∑∞
y=1 zU0,y

←−u (y; z))

where ←−u is defined in Proposition 2.9. To show this formula, a simple decomposition is sufficient.

Each path going to † can be decomposed as:

– a trajectory that goes to 0 (whose weight is taken into account by ←−u (x; z)),

– a sequence of k cycles from 0 to 0 (each of them contributes (zU0,0 +∑∞
y=1 zU0,y

−→u (y, z))),

– and then a step leading to † from 0.

Definition 2.12. Let π, π
(1)
, π

(2)
,⋯, be a sequence of measures on N. The sequence (π(n)) is said

to converge weakly to π if for all k ≥ 0, limn π
(n)
k = πk.

When these measures are probability measures on N, this is the classical convergence in distri-
bution.

Theorem 2.13. Let U be a transition matrix, irreducible on N, and U
(n)

be the projected transi-

tion matrix defined in (2.11). Denote by ρ
(n)

the unique invariant probability distribution of U
(n)

.

(i) The transition matrix U admits π ∈ M+
N as an invariant measure, if and only if there exists

a sequence (cn, n ≥ 0) such that cnρ
(n)
→ π weakly.

(ii) U is positive recurrent with invariant probability distribution ρ iff ρ
(n)
→ ρ weakly.

Proof. Since Ui,j = U
(n)
i,j for i < n, the equilibrium equations

πb = ∑
a≤b+1

πaUa,b,

ρ
(n)
b = ∑

a≤b+1

ρ
(n)
a U

(n)
a,b = ∑

a≤b+1

ρ
(n)
a Ua,b

are the same for b ≤ n − 1. These systems can be rewritten to express πb+1 (respectively ρ
(n)
b+1) in

terms of πj with smaller indices j, as follows:

πb+1 = (πb −∑
a≤b

πaUa,b)/Ub+1,b, (2.13)

ρ
(n)
b+1 = (ρ(n)b −∑

a≤b

ρ
(n)
a Ua,b)/Ub+1,b (2.14)

for b ≤ n − 1. Fixing a value for π0 allows deducing the proportionality

(πi, 0 ≤ i ≤ n − 1) = Cn(ρ
(n)
i , 0 ≤ i ≤ n − 1) (2.15)

for a constant Cn > 0 (recall that ρ
(n)

is the probability distribution which is invariant by U
(n)

, it

is normalised to have sum 1, so that one can not take ρ
(n)
0 = 1). The uncontrolled weight ρ

(n)
n is

not a detail at all, since it is directly related to Cn. If Cn goes to +∞, for example, it means that

the mass ρ
(n)
i vanishes when n→ +∞, but this does not prevent Cnρ

(n)
i to converge.
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Proof of (i). Assume that π is invariant by U, by (2.15), Cnρ
(n)
→ π weakly. Conversely, assume

that Cnρ
(n)
→ π. Still by (2.15) and (2.13), π is invariant by U.

Proof of (ii). First, if ρ
(n)
→ ρ weakly, then, since ρ is assumed to be a probability distribution, by

(i) ρ is invariant by U, and since ρ is summable and U irreducible, then U is positive recurrent.

Conversely, assume that ρ is invariant by U, and U positive recurrent. Assume that X =

(Xi, i ≥ 0) is a U-Markov chain, and denote by (τ (n)i , i ≥ 0) the sequence of all times t such that

Xt ≤ n (taking in their initial order). It is easy to check that (X
τ
(n)
i
, i ≥ 0) is a U

(n)
-Markov chain

(because the decreasing steps are −1). Since U is positive recurrent, the ergodic theorem applies, and

∣{i ∶ Xi = x, i ∈ [0,m− 1]}∣/m→ ρx as m→∞ (a.s.). The ergodic theorem applies also to (X
τ
(n)
i

)
(which is a Markov chain on a finite state space), that ∣{i ∶ X(n)

i = x, i ∈ [0,m − 1]}∣/m → ρ
(n)
x

for x ≤ n, and by restriction of X, ρ
(n)
x is the time proportion of the chain X at x divided by the

time passed under level n , so that ρ
(n)
x = ρx/(∑y≤n ρy). Since ∑y≤n ρy → 1 as n → +∞, we have

limn ρ
(n)
x = ρx.

2.2 Almost lower triangular cases

In the case, neither uniqueness nor existence of invariant measures is guaranteed:

Theorem 2.14. Let L be an irreducible transition matrix.

(i) L has a unique right eigenvector associated with the eigenvalue 1 (up to a multiplicative con-

stant), and this is the vector whose entries are all equal to one.

(ii) The three following cases arise: (a) L has no invariant measure in M+,∼
N , (b) L has a unique

invariant measure in M+,∼
N , (c) L has several invariant measures in M+,∼

N (the cone generated

by these measures can have any dimension in {1, 2, 3,⋯} ∪ {+∞}).

Proof. (i) Write the system LR = R under the triangular form

Ri+1 = (Ri − ∑
j∶j≤i

Li,jRj)/Li+1,i, for i ≥ 0,

so that the choice of R0 = 1 fixes all the other entries to 1.

(ii)(b) All tridiagonal irreducible transition matrices have a unique invariant measure in M+,∼
N since

they are , and then Theorem 2.1 applies.

(ii)(a) In some lecture notes on Markov chains, as an example of Markov chain on N with no

invariant distribution, a transition matrix of type is often given (see e.g. [18, Example 1.7.11]).

For the sake of completeness, we provide a similar example here. Take L0,1 = a0 = 1, and for

i ≥ 1, Li,i+1 = ai, Li,0 = 1 − ai. Notice that if ai ∈ (0, 1) for all i ≥ 0, then L is irreducible. An

invariant measure π would satisfy for i > 0, πi = πi−1Li−1,i, so that πi = π0∏i−1
j=0 aj and therefore

π0 = ∑k≥1 πkLk,0 = π0∑k≥1(1 − ak)∏k−1
j=0 aj . From this we see that: L has an invariant measure if

and only if ∑k≥1(1 − ak)∏k−1
j=0 aj = 1. Consider a0 = 1, and for j ≥ 1, aj = 1 − 1

(j+1)2 =
j(j+2)
(j+1)2 and

then, since it is a telescopic product

∑
k≥1

(1 − ak)
k−1

∏
j=1

aj = ∑
k≥1

(1 − ak)
k−1

∏
j=1

j(j + 2)
(j + 1)2 = ∑

k≥1

1

(k + 1)2
k + 1

2k
= 1/2.
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(ii)(c) We give the proof here even if it depends on a result which is stated in the sequel. This

statement is a consequence of Proposition 2.3 and of Theorem 3.1 (v) (whose proofs do not depend

on the present theorem). In words Theorem 3.1 (v) states: time reversals of a -Markov chain U is

a Markov chain with a kernel L, and one can define a linear bijection between the cone generated

by the right eigenspace of U (with positive coordinates, and associated with the eigenvalue 1), to

the set of invariant measures for L. The conclusion follows from Proposition 2.3, where we state

that there exist matrices U with a right cone (associated with the eigenvalue 1) of any possible

dimension ≥ 1.

Theorem 2.15. Let L be a irreducible transition matrix and (Yi, i ≥ 0) a L-Markov chain. Set

vb(x) = P(τ{0}(Y ) > τ{b}(Y ) ∣ Y0 = x), for 0 < x < b.

We have

vb(x) =
det(Id − L[1,x−1])
det(Id − L[1,b−1])

b−1

∏
j=x

Lj,j+1, (2.16)

and then, the transition matrix L is recurrent if and only if

lim
b→+∞

vb(1) = lim
b→+∞

∏b−1
j=1 Lj,j+1

det(Id − L[1,b−1])
= 0. (2.17)

Remark 2.16. (i) Observe that vb(x) is not defined as ub(x) (of Theorem 2.8), but rather, cor-

responds to 1 − ub(x). Note that since Y has its jumps bounded by +1, it hits [b,+∞) at b

(starting from x). See Remark 3.7 for a subtle point.

(ii) By the forthcoming Proposition 3.5, Condition (2.17) in Theorem 2.15 is equivalent to

det(Id − L[0,b−1])
L0,1 det(Id − L[1,b−1])

→ 0. (2.18)

Proof of Theorem 2.15. The proof is similar to that of Theorem 2.8. Recurrence is equivalent to

v1(b)→ 0 when b→ +∞. The number vb(x) is the weight of the set of paths that starts at x, ends

at b reached for the first time at the end of the path, and does not touch 0. Each of these paths

can be decomposed as a self-avoiding path from x to b (whose weight is ∏b−1
j=x Lj,j+1), and a heap of

cycles on [1, b − 1] whose maximal pieces are incident to [x, b − 1]; the total weight of these heap

of cycles is the quotient in (2.16).

An analogue of Proposition 2.9:

Proposition 2.17. For x ∈ (a, b), set −→v ≤a,b(x; z) = E [zτ{b}(Y )
1τ[0,a](Y )>τ{b}(Y ) ∣ Y0 = x] and

←−v ≤a,b(x; z) = E [zτ{a}(Y )
1τ[0,a](Y )<τ{b}(Y ) ∣ Y0 = x]. We have

−→v ≤a,b(x; z) =
det (Id − zL[a+1,x−1])
det (Id − zL[a+1,b−1])

b−1

∏
j=x

(zLj,j+1)

←−v ≤a,b(x; z) =

a

∑
j=0

[(Id − zL[a+1,b−1])−1 [1i∈[a+1,b−1]zLi,j]]x,1 .

where [1i∈[a+1,b−1]zLi,j] is a column vector, whose lines are indexed by i.
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The proof is a simple adaptation of that of Proposition 2.9.

Remark 2.18. Absorption at 0: consider a transition matrix L, for which ∑k≥0 L0,k < 1, and

add again an additional absorbing state † to the state space, and set L0,† = 1 − ∑k≥0 L0,k and

L†,† = 1. The absorbed mass at † starting from x is B†(x) = P(τ{†}(Y ) < +∞ ∣ Y0 = x) for L-

Markov chain Y , and the corresponding (defective) hitting time generating function is b†(x; z) =
E(zτ{†}(Y )

1τ{†}(Y )<+∞ ∣ Y0 = x). Recall (2.10). We have B†(x) = b†(x; 1) and

b†(x; z) =
zL0,†

←−v (x; z)
1 − (zL0,0 +∑∞

y=1 zL0,y
←−v (y; z))

where ←−v (x; z) = limb→+∞
←−v ≤0,b(x; z).

An invariant measure η satisfies ηb = ∑a≥b−1 ηaLa,b so that

ηb−1 =
ηb(1 − Lb,b) −∑a≥b+1 ηaLa,b

Lb−1,b
. (2.19)

The fact that ηb−1 is expressed using the ηa with larger indices a brings a very important difficulty
here: formula (2.19) can be used to check that a sequence (ηk, k ≥ 0) is indeed invariant, but, it
seems unsuitable to compute an invariant distribution; and once again, such a solution does not
exist in all generality.

Theorem 2.19. Let L be an irreducible transition matrix with finite size (indexed by [0, s] ×
[0, s]). For any η0 > 0, set for a ∈ [0, s],

ηa = η0 det (Id − L[a+1,s])
a

∏
i=1

Li−1,i. (2.20)

The measure (ηa, a ∈ [0, s]) is invariant by L (and by Perron-Frobenius, there is a single class of

invariant measures).

Proof. This is a consequence of (1.10) and of Proposition 1.4. Indeed, observe the geometry of the

graph with vertex set [0, s] and edge set {(i, j) ∶ Li,j > 0}. Take any spanning tree rooted at a:

The vertices in [0, a − 1] can be connected to a only using the edges 0 ↦ 1 ↦⋯ ↦ a (so that the

observed tree contains this branch), and the rest of the edges of the tree, forms a forest whose root

set is contained in [0, a] having set of nodes [a + 1, s].

Given this theorem, it is tempting to think that when L is indexed by N, and say, irreducible,

its invariant distribution is obtained by just taking limn det (Id − L
(n)
[a+1,n]) ∏a

i=1 Li−1,i where L
(n)

is

the projected transition matrix of L on [0, n] defined by

{ L
(n)
i,j = Li,j , for 0 ≤ i ≤ n, 0 ≤ j ≤ n − 1

L
(n)
i,n = ∑j≥n Li,j .

(2.21)

But it is not the case, since Theorem 2.14 establishes that a transition matrix L is not assured to have
an invariant distribution. The complete picture is more complex and some additional conditions
are needed to get this kind of convergence result. The following Propositions 2.20 and 2.21 provide
two criteria (Prop. 2.21 is simpler, but can be applied only when L is positive recurrent).
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Proposition 2.20. Let L be a irreducible transition matrix. Let ρ
(n)

be the invariant probability

distribution of L
(n)

(see (2.20)). Set

η
(n)
a ∶= ρ

(n)
a / ρ(n)0 , for a ≥ 0.

If the two following conditions hold:

(a) there exists a non-negative sequence (Sa, a ≥ 0) such that, for each b, ∑+∞
a=b−1 SaLa,b < +∞, and

which bounds uniformly η
(n)

: for all a, n ≥ 0, ∣η(n)a ∣ ≤ Sa,

(b) limn η
(n)
a exists for each a; set ηa ∶= limn η

(n)
a for n→ +∞,

then η is invariant by L; that is, for all b, ηb = ∑+∞
a=b−1 ηaLa,b.

Proof. We will prove that η satisfies ηb = ∑+∞
a=b−1 ηaLa,b for all b ≥ 0. Fix some b ∈ N, and take

n > b. The equation ρ
(n)

= ρ
(n)

L
(n)

is equivalent to

ρ
(n)
b =

n

∑
a=b−1

ρ
(n)
a L

(n)
a,b for b < n (2.22)

since the conservation of the last entry ρ
(n)
n of ρ

(n)
is ensured by the conservation of the others.

Hence, (2.22) is equivalent to

η
(n)
b =

n

∑
a=b−1

η
(n)
a L

(n)
a,b for b < n

and since L
(n)
a,b = La,b when b < n, this is equivalent to

η
(n)
b =

+∞

∑
a=b−1

η
(n)
a La,b1a≤n for b < n (2.23)

By (b), for all a, η
(n)
a La,b1a≤n → ηaLa,b when n → +∞, and (a) allows us to use Lebesgue domi-

nated convergence theorem, from which we deduce that the right-hand side of (2.23) converges to

∑+∞
a=b−1 ηaLa,b, while the left-hand side goes to ηb by (b), which is the wanted relation.

Proposition 2.21. Let ρ
(n)

be the invariant probability distribution of L
(n)

. If ρ
(n)

converges weakly

to some probability measure ρ on N, then ρ is invariant by L.

Proof. Consider (2.22) which is equivalent to ρ
(n)

L
(n)

= ρ
(n)

. It suffices to establish that for every

b ∈ N,

n

∑
a=b−1

ρ
(n)
a La,b ⟶

n→+∞

+∞

∑
a=b−1

ρaLa,b. (2.24)

Take a small ε > 0. As a measure over N, ρ is tight: there exists K such that ρ0 +⋯+ ρK > 1− ε.

Take now n large enough, so that ρ
(n)
0 +⋯+ ρ

(n)
K > 1 − 2ε, so that ∑j>K ρ

(n)
j ≤ 2ε. Since La,b ≤ 1,

for all b,
»»»»»»»»»»

n−1

∑
a=b−1

ρ
(n)
a La,b −

+∞

∑
a=b−1

ρaLa,b

»»»»»»»»»»
≤

»»»»»»»»»»

K

∑
a=b−1

ρ
(n)
a La,b −

K

∑
a=b−1

ρaLa,b

»»»»»»»»»»
+ 2ε

(with the empty sum being equal to 0, when b + 1 > K). Now, since ρ
(n)
→ ρ weakly, the r.h.s. is

smaller than 3ε for n large enough.
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Remark 2.22. Tridiagonal transition matrices are ; some work is needed to see that the results

of this section apply to the tridiagonal case (see Section 4.1).

2.3 Remaining proofs

2.3.1 A second proof of Theorem 2.1

Consider U an irreducible transition matrix. Since the transition matrix U
(n)

is finite, we have

ρ
(n)
a = αn det (Id − U

(n)dep(a)) . (2.25)

Here αn is the only constant making of ρ
(n)

a probability distribution.
Now, we claim that for some constants α

′
n, α

′′
n, for all a ∈ [0, n − 1],

det (Id − U
(n)dep(a)) = α

′
n det (Id − U[0,a−1])

n

∏
j=a+1

Uj,j−1 (2.26)

= α
′′
n det (Id − U[0,a−1])/

a

∏
j=1

Uj,j−1. (2.27)

The invariant distribution π = [πa, 0 ≤ a ≤ n] of any irreducible transition matrix M indexed by

[0, n] is proportional to det(Id −M
dep(a)) (Section 1.3.1). If such M is a transition matrix, then

each tree rooted at a ∈ [0, n] can be decomposed into two parts: a branch n ↦ n − 1 ↦ ⋯ ↦ a
“above a”, and a forest with set of roots on [a, n], and other vertices on [0, a − 1], so that, as

explained in Proposition 1.4 leads to (2.26) (since U
(n)

is a -transition matrix on a finite state

space, and since ∏n
j=a+1 U

(n)
j,j−1 = ∏n

j=a+1 Uj,j−1). Formula (2.27) is obtained by dividing (2.26) by

the constant (depending only on n) ∏n
j=1 U

(n)
j,j−1 =∏n

j=1 Uj,j−1.
Using (2.25), (2.26) and (2.27), one sees that

ρ
(n)
a

αnα
′′
n

= det (Id − U[0,a−1])/
a

∏
j=1

Uj,j−1,

so that this constant sequence converges when n → +∞. Hence, Theorem 2.13(i) applies: the
measure (det (Id − U[0,a−1])/∏a

j=1 Uj,j−1, a ≥ 0) is invariant by U.

2.3.2 Proof of Proposition 2.3

First R = [1, 1, 1⋯] is a right eigenvector of any matrix U in .

Infinite dimensional cone We will construct explicitly a class of matrices U in , for which the
right eigenspace of U, associated with the eigenvalue 1 contains the cone generated by an infinite
number of linearly independent vectors with positive coordinates (so that Lemma 2.23 implies the
infinite-dimensional case statement). Set

U0,0 = U0,1 = 1/2,

and for the next rows, only three entries are not zeros:

Uc,c−1 = dc, Uc,c = 1 − dc − uc, Uc,2c = uc, for c ≥ 1.
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Set, for all m ≥ 1,

Γm ∶=
m−1

∏
c=1

(1 + 2
dc
uc

) . (2.28)

Lemma 2.23. If (dc) and (uc) are positive sequences, such that dc + uc < 1, and

Γ∞ ∶= lim
m

Γm < +∞

then U is irreducible, and the cone generated by the right eigenvectors of U with positive coordinates,

associated with the eigenvalue 1, is infinite-dimensional.

Proof. A vector V = (Va, a ≥ 0) is a right eigenvector of U with eigenvalue 1, iff

V0 = V1, and V2c = (1 + dc/uc)Vc − (dc/uc)Vc−1, for all c ≥ 1. (2.29)

It implies that the entries of V with even indices 2c are functions of the entries with smaller indices,

and, better than that, are functions of V0 and of the entries with odd smaller indices V2p+1. As a

consequence, V0 = V1 and the entries (V2p+1, p > 1) provide a parametrization of the eigenspace we

are looking for, but some additional work is needed, to prove the statement concerning the cone

generated by positive vectors.

We first establish that there exists an infinite dimensional set of linearly independent vectors

that are bounded, and satisfies (2.29) (we drop the positivity constraint, for a small moment).

Since (2.29) allows one to determine the even indices V2p (for p ≥ 1) using the odd ones (plus

V0), let us assume that V0 = V1 = 1 and all the free parameters (V2p+1, p ≥ 0) satisfies:

∣V2p+1∣ ≤ Γ2p+1 for all p ≥ 0. (2.30)

We claim that in this case for all i ≥ 0 (odd or even, the even ones being computed thanks to

(2.29)), we have ∣Vi∣ ≤ Γi. The claim can be proved by induction: let PC be the property, ∣Vi∣ ≤ Γi

for all i ≤ C. Then P0 holds. Assume that PC holds for some C ≥ 0. Then either C + 1 is odd, and

by (2.30), PC+1 holds; either C + 1 = 2c is even by (2.29),

∣V2c∣ ≤ (1 + dc/uc)∣Vc∣ + (dc/uc)∣Vc−1∣
≤ (1 + 2dc/uc)Γc = Γc+1 ≤ Γ2c

since (Γc, c ≥ 0) is increasing and since c + 1 ≤ 2c for c ≥ 1, so that, again, PC+1 holds.

This argument allows proving that the (right) eigenspace (associated with the eigenvalue 1)

contains an infinite family
2

of linearly independent vectors (V i
, i ∈ I), whose coordinates are

bounded in absolute value by Γ∞, and then, using that R = [1, 1, 1⋯] is in this space too, the

vectors (2Γ∞R + V
i
, i ∈ I) form an infinite family of linearly independent vectors, with positive

coordinates belonging to this eigenspace.

2
The subspace of the eigenspace associated with the eigenvalue 1 that we described, is parametrized by the vectors

V that we gave, which are functions of the values V2p+1 (with odd indices) that are taken in intervals: the generated

space is infinite-dimensional.
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Finite dimensional case. Fix m ≥ 1: we will give a matrix U, whose dimension of the cone of
positive vector stable by U has dimension m + 1, where the “+1” counts the vector R, so that we
will design a matrix U having an additional set of m linearly independent vectors exactly (the case
m = 0 is fulfilled by the tridiagonal case, in which there is a unique right eigenvector associated with
the eigenvalue 1, since the system TV = V is triangular). We will use the tools already discussed
above in the infinite case. Consider this time the kernel K defined by U0,0 = U0,1 = 1/2, and whose
subsequent rows, only three entries are not zeros:

Uc,c−1 = dc, Uc,c = 1 − uc − dc, Uc,c+1+m = uc.

Any (right) eigenvector V of U associated with the eigenvalue 1, satisfies V0 = V1 = V2+m = 1.
Again, the m-entries V2,⋯, V1+m will appear to be free parameters, since, for c ≥ 2

Vc+1+m = (1 + dc/uc)Vc − (dc/vc)Vc−1.

Now, taking the free parameters ∣Vi∣ ≤ Γi (for i from 2 to 1 +m), we can again show, by iteration
that all Vi satisfy ∣Vi∣ ≤ Γi, and we conclude as in the infinite case.

This ends the proof of Proposition 2.3

3 Connections between almost upper and lower triangular cases

According to Theorem 2.1, transition matrices always have an invariant measure, while it is not
the case for transition matrices (Theorem 2.14). The next theorem says that one can associate
with each transition matrix U, another matrix L of type , “its time-reversal”.

Theorem 3.1. Consider an irreducible transition matrix U = [Ui,j]0≤i,j, with invariant measure

π, then set L = [Li,j]0≤i,j as

Li,j = πjUj,i/πi. (3.1)

We have

(i) L is an irreducible transition matrix on N, with invariant measure π too.

(ii) L is recurrent if and only if U is recurrent,

(iii) If π is a probability distribution then, if (Yk, k ∈ Z) is a U-Markov chain under its stationary

regime (meaning that Yk ∼ π for any k ∈ Z), then the time-reversal of this chain, (Y−k, k ∈ Z)
is a L-Markov chain under its stationary regime.

(iv) L is positive recurrent if and only if U is positive recurrent.

(v) If U has a right eigenvector R = [Rk, k ≥ 0] with positive coordinate (associated with the

eigenvalue 1) then L admits [πkRk, k ≥ 0] as invariant measures: more generally, if U has

k linearly independent eigenvectors (associated with the eigenvalue 1, having positive coordi-

nates), then L admits k linearly independent invariant measures (recall that the column vector

with coordinates equal to 1, is such an eigenvector).

(vi) If U has several linearly independent positive right eigenvectors (associated with the eigenvalue

1), then U is not recurrent, and neither is L.
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Notice that in (iii), only positive recurrent matrices have an invariant probability measure.

Remark 3.2. As a consequence of the (ii) of the Theorem, and of Formulas (2.8), (2.17) and

(2.18),

U1,0

det(Id − U[2,b−1])
det(Id − U[1,b−1])

−−−→
b→∞

1⇔
∏b−1

j=1 Lj,j+1

det(Id − L[1,b−1])
=

det(Id − L[0,b−1])
L0,1 det(Id − L[1,b−1])

−−−→
b→∞

0, (3.2)

but these formulas are in nature, a bit different. See Remark 3.7 to explore further “what is equal”.

Proof of Theorem 3.1. (i): straightforward.

(ii): for an irreducible U-Markov chain (Yj , j ≥ 0), recurrence is equivalent to P(τ{0}(Y ) <

+∞ ∣ Y0 = 0) = 1. This means that the total “U-weights” of the paths in the set ∪k≥0{(x0 =
0, x1,⋯, xk, xk+1 = 0), xi > 0, i ∈ [1, k]} is 1 when the “U-weight” of a given path (x0,⋯, xk+1) is

defined to be ∏k
j=0 Uxj ,xj+1 . Since such paths start and end at 0, then their L-weights and U-weights

coincide.

(iii): by translation invariance, it suffices to write

P(Yk = yk, 0 ≤ k ≤ a) = πy0
a−1

∏
j=0

Uyj ,yj+1 = πya

a−1

∏
j=0

Lyj+1,yj = P(Za−j = yj , 0 ≤ j ≤ a)

for Z an L-Markov chain under its invariant regime.

(iv): by (i), both L and U have the same invariant probability measure (which implies the state-

ment).

(v): Assume that R = [Ri, i ≥ 0] with R0 ∶= 1 is a right eigenvector of U, associated with the

eigenvalue 1, then ∑b Ua,bRb = Ra for a ≥ 0, which by (3.1) gives

∑
b

πbRb Lb,a = πaRa, a ≥ 0;

in other words, L possesses [πaRa, a ≥ 0] as an invariant measure. Since π has non-zero entries, the

map R ↦ [πaRa, a ≥ 0] is a linear bijection, and the conclusion follows.

(vi): By (v), if U has several linearly independent, positive right eigenvectors associated with the

eigenvalue 1, then L has several invariant measures, so that it is not recurrent (see e.g. Norris [18,

Theo. 2.2. p.102] or Brémaud [3, Theo. 3.2.3. p. 119]), and by (ii) neither is U.

Theorem 3.3. The transition matrix L admits a time-reversal transition matrix U if and only

if it possesses a positive invariant measure η in which case Ub,a = ηaLa,b/ηb, and U and L are both

time-reversal of each other. As a consequence, for each L, there is a linear bijection between the set

of classes of invariant measures of L (in M+,∼
N ) and the set of time-reversal transition matrices U.

The proof of this theorem is simple since any such U is the time-reversal of L, but it exists only
when the positive invariant measure η exists; as explained in Theorem 2.14, some irreducible do
not admit any positive invariant measure.
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Remark 3.4. This Theorem, which is deeply connected to Theorem 3.1 allows making the following

observation. A transition matrix U possesses a unique invariant measure π, and then, a unique

time reversal transition matrix L: let us say that (π, L) is the time reversal of (π,U). Now,

consider Right(U) the set of right eigenvectors of U with positive coordinates associated with the

eigenvalue 1. The set Left(L) of invariant measures of L is {[πjRj , j ≥ 0] , R ∈ Right(U)}. It is

then natural to ask, in this case, what are the time reversals of L and their link with “the initial

U”. The time reversal of (π′, L) with π
′
j = πjRj, is (π′,U′) with π

′
iU
′
i,j = π

′
jLj,i for all i, j. Injecting

Lj,i = πiUi,j/πj provides πiRiU
′
i,j = πjRjπiUi,j/πj so that

U
′
i,j = Ui,j

Rj
Ri
, for all i, j.

To compute the set of time reversals of (π, L) where π is taken in the set of invariant measures of L,

it suffices then to know a single element π of this set, to compute the time reversal (π,U) of (π, L)
(by Ui,j = πjLj,i/πi), and then to compute the right eigenvectors of U. This observation entails

that there is a correspondence between the set of transition matrices L possessing an invariant

measures, and the set of transition matrices quotient by the equivalence relation ∼, defined by

U ∼ U
′

if U possesses a right-eigenvector R with positive coordinate, associated with the eigenvalue

1, such that U
′
i,j = Ui,j

Rj
Ri

for all i, j.

3.1 Algebraic connection between U and L

Consider (U, L) a pair of irreducible transition matrices where U is , L is , and assume that they
are time-reversal of each other. The invariant measure π of U is unique, so that Li,j = πjUj,i/πi,
∀i, j ≥ 0. A simple expansion of the determinant using the cycle’s decomposition of permutations,
gives, for every a, b ≥ 0:

det (Id − U[a,b]) = det (Id − L[a,b]) . (3.3)

Apart from this formula, the main relation is

La,b = πbUb,a/πa = Ub,a
det (Id − U[0,b−1]) /∏b

j=1 Uj,j−1

det (Id − U[0,a−1]) /∏a
j=1 Uj,j−1

. (3.4)

If U is known, and the corresponding L is searched, then this last formula, built using Theorem 2.1
allows computing it. On the other hand, if L is known, but not U, this is more difficult since we
have no simple expression of π in terms of L (and again, the existence and uniqueness of π are not
assured).

The following proposition provides some relations between the elements in the tuple (π,U, L).

Proposition 3.5. For any b ≥ 0, set

Zb ∶=
b

∏
j=1

Lj−1,j
Uj,j−1

, Z
′
b ∶=

b

∏
j=1

Uj−1,j
Lj,j−1

,

(where Z0 = Z
′
0 = 1, which is compatible with the convention concerning empty products),
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(i) For any a ≥ 0, det(Id − L[0,a−1]) =
a−1

∏
j=0

Lj,j+1 (with the convention, det(Id − L[0,−1]) = 1).

(ii) For any b ≥ 0, Zb = Z
′
b.

(iii) The measure (Z0, Z1, Z2,⋯) is invariant by both U and L.

The point (ii) of Proposition 3.5 is equivalent to

La,a−1La−1,a = Ua−1,aUa,a−1. (3.5)

Proof. Taking b = a + 1 in (3.4), gives

La,a+1 = det (Id − U[0,a])/det (Id − U[0,a−1]) (3.6)

from what we infer (i) (using (3.3)).

For k ≥ 1, using (3.4) we get

Lb+k,b

b+k

∏
j=b+1

Lj−1,j = Ub,b+k

b+k

∏
j=b+1

Uj,j−1; (3.7)

for k = 1 this provides (ii). Further, this equation rewrites Lb+k,b = Zb Ub,b+k /Zb+k, and since for

k = −1 this is valid too (since Lb−1,b = ZbUb,b−1/Zb−1 = Ub,b−1Ub−1,b/Lb,b−1, and this is true by (ii))
we have for all a, b, La,b = Zb Ub,a /Za, which ensures (iii).

Remark 3.6. By Proposition 3.5, when L is known, each of the sequences (πa, a ≥ 0) (up to a

multiplicative constant), (Ua,a−1, a ≥ 1),(Ua,a+1, a ≥ 0), ((Ui,j , j > i), i ≥ 0) allows computing

the others. For example, if (Ua,a+1, a ≥ 0) is known as well as L, (3.5) allows one to compute

(Ua,a−1, a ≥ 1), and then equation (3.7) let us obtain ((Ui,j), j > i, i ≥ 0) and (Zb, b ≥ 0) which is

proportional to π.

Remark 3.7. By reversibility, it can be seen that ub(x) and 1−vb(x) are not equal in general. This

comes from a lack of symmetry in the measured event. If instead one observes the return time to 0 by

random walks starting at 0, the symmetry comes back, but the formulas are more complex. Denote

by Y
U

and Y
L

Markov chains with respective transition matrices U and L such that πaLa,b = πbUb,a.

One has

P(τ{0}(Y U) < τ[b,+∞)(Y U) ∣ Y U
0 = 0) = P(τ{0}(Y L) < τ{b}(Y L) ∣ Y L

0 = 0). (3.8)

Formula (3.7) allows seeing that the weight of a cycle (a, a + b, a + b − 1,⋯, a + 1, a) for Y
U

is

the same as the weight of the cycle (a, a + 1,⋯, a + b, a) for Y
L

(which allows proving (3.8), using

combinatorial techniques).
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3.2 Some spectral properties of and transitions matrices

The spectral properties of infinite and transition matrices appear to be rather interesting since
their left and right eigenvalues are in general different and have different multiplicities.

We already viewed that -irreducible matrices have a unique left eigenvector associated with
the eigenvalue 1 (up to the multiplicative constant), but could have one or more (including +∞
linearly independent) right eigenvectors associated with the eigenvalue 1. Matrices of type may
have zero or several invariant measures, when, 1, seen as right eigenvalue has multiplicity 1.

The next theorem shows that -transition matrices have a complete spectrum on the left-hand
side, and -ones, a complete spectrum on the right-hand side, with, in both cases, totally explicit
eigenvectors.

Theorem 3.8. (i) If U is an irreducible -transition matrix on N, then U admits all Λ ∈ C as

a simple left eigenvalue with corresponding eigenvector π(Λ) ∶= [πa(Λ), a ≥ 0] unique (up to

a constant factor π0(Λ) ≠ 0 > 0), defined by

πa(Λ) ∶= π0(Λ)
det(ΛId − U[0,a−1])

∏a
j=1 Uj,j−1

, a ≥ 1. (3.9)

(The vector π(1) is the unique invariant measure of U, up to a multiplicative constant.)

(ii) If L is an irreducible -transition matrix on N, then for all Λ ∈ C, π
′(Λ) ∶= [π′a(Λ), a ≥ 0]

defined by

π
′
a(Λ) ∶= π′0(Λ)

det(ΛId − L[0,a−1])
∏a

j=1 Lj−1,j
, a ≥ 1, (3.10)

is the unique (up to a constant factor π
′
0(Λ) ≠ 0) right eigenvector of L associated with the

simple eigenvalue Λ.

(iii) If L is a -transition matrix time reversal of an irreducible transition matrix U (that

is,Li,j = πjUj,i/πi, for all i, j) then [πj(Λ)/πj(1), j ≥ 0] is collinear to π
′(Λ).

(iv) Assume again that L is a -transition matrix time reversal of an irreducible transition

matrix U. For all Λ ∈ C, the map

Ψ ∶ R
N
⟶ RN

v ⟼ [vjπj(1), j ≥ 0]

is a linear map which sends the right eigenspace of U associated with the eigenvalue Λ (that

is, the set {v ∶ Uv = Λv}, possibly reduced to {0}), to the left eigenspace of L associated with

the same eigenvalue.

Notice that (iv) applies only to the matrices L having a time reversal.

Remark 3.9. For any Λ ∈ C, there exists some transition matrix U having Λ as right eigenvalue,

with eigenspace having dimension k for all k ≥ 0 (including +∞). The proof can be simply adapted

from that of Lemma 2.23.
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We first state the following analogue of Lemma 2.7 (which can be proved with the same argu-
ment):

Lemma 3.10. Let s ∈ N∪ {+∞} be a size parameter. If U = [Ui,j]0≤i,j≤s<+∞ is a finite irreducible

stochastic matrix with size s and eigenvalue Λ, or if U = [Ui,j]0≤i,j≤s=+∞ is an infinite irreducible

- stochastic matrix, then for all y ≤ s

det(ΛId − U[0,y]) = det(ΛId − U[0,y−1]) (Λ − Uy,y) (3.11)

− ∑
x≤y−1

det(ΛId − U[0,x−1])Ux,y
y

∏
j=x+1

Uj,j−1,

with the convention det(ΛId − U[0,−1]) = 1.

Proof of Theorem 3.8. (i) Take Λ ∈ C and let us solve the system vU = Λv with unknown, the

vector v = (vj , j ≥ 0). The system {Λvj = ∑i≤j+1 viUi,j for j ≥ 0}, is a triangular system on (vj),
and vj+1 can be expressed uniquely in terms of the previous vj :

vj+1 = (Λvj −∑
i≤j

vi)/Uj+1,j , j ≥ 0

and this leads immediately to the existence and uniqueness of a unique solution v up to a mul-

tiplicative constant. Now, let us establish that π(Λ) given in (3.9), is such a solution, that is, it

satisfies ∑x πx(Λ)Ux,y = Λπy(Λ) for y ≥ 1; the proof is a simple adaptation of that of Theorem 2.1

(with Lemma 3.10 replacing Lemma 2.7 in the argument).

(ii) Notice that in the proof of (i), we did not use that U is a transition matrix, but just that

Uj+1,j ≠ 0. The proof of (ii) is then very similar to the proof of (i): the system Lc = Λc (for a

column vector c) is equivalent to
t
c
t
L = Λ

t
c (where

t
A is the transposed matrix of A).

(iii) If v is a left eigenvector of U with eigenvalue Λ, then vU = Λv is equivalent to ∑i viUi,j =

Λvj ,∀j, and since πjLj,i/πi = Ui,j , ∑i Lj,ivi/πi = Λvj/πj which means that [vi/πi, i ≥ 0] is a right

eigenvector associated with the eigenvalue Λ. By uniqueness of the right eigenvector of L up to a

multiplicative constant, the conclusion follows.

(iv) First, the map Ψ is clearly a bijective linear map on RN
. Now UR = ΛR is equivalent to

∑j Ui,jRj = ΛRi = ∑j Lj,iπjRj/πi (for all i ≥ 0), which is equivalent to the fact that Ψ(R) =
[πjRj , j ≥ 0] is in the left eigenspace of L associated with Λ.

3.2.1 Sub-stochastic almost triangular matrices

A finite or infinite square matrix is said to be sub-stochastic if its coefficients are non-negative,
and if the sums on each row belong to [0, 1]. The notion of irreducibility extends to sub-stochastic
matrices. By Perron-Frobenius theorem, a finite irreducible sub-stochastic matrix M possesses a
simple positive eigenvalue R ≤ 1 (called the Perron-Frobenius eigenvalue) which is strictly greater
than all other eigenvalues modulus (and R < 1, if at least one row, of M has a sum in (0, 1)).

Proposition 3.11. Theorem 3.8(i) and (ii) and Lemma 3.10 extend to the sub-stochastic case

(that is, their statements remain true if U and L are sub-stochastic instead of stochastic).

27



Proposition 3.12. If U (resp. L) is a finite irreducible sub-stochastic (resp. ) transition

matrix (with columns indexed from 0 to s), and Λ is an eigenvalue of U (resp. L), then Λ is a

simple eigenvalue of U (resp. L), and π (resp. π
′
) as defined in Theorem 3.8(i) is an associated

eigenvector.

Proof. The proof is the same as in the proof of the finite case of Theorem 2.1.

We think that this extension to the sub-stochastic case is interesting for two reasons. The
first one is that, sub-stochastic almost upper triangular matrices form a large class of models for
which, as already said, a close formula can be provided. The second reason is that the truncation
U[0,n] of a transition matrix U is sub-stochastic. As explained in Seneta [22, Chap.7], larger and
larger truncations of infinite matrices U can be used to study the behaviour of Markov chains with
transition matrices U, under some suitable hypothesis, and it is worth saying a few words concerning
this aspect (as suggested by a referee of the paper). This second point has to be tempered a bit,
since Theorem 2.1 provides a close formula for “the non-truncated chain”, and these close formulas
do not need the computation of any eigenvalue, which made them simpler to study than truncated
versions.

Proposition 3.11 allows giving a third proof of Theorem 2.1, but only under the additional
hypothesis that U is recurrent. Consider U

<(n) = U[0,n] as the nth truncation of U (for all n ≥ 0).

We prefer to use U
<(n) instead of U[0,n], because our formula needs further truncations. Call Λ(n)

and v(n) its Perron eigenvalue and eigenvector.
Since U

<(n) is sub-stochastic and irreducible, Seneta [22, Theo. 6.8] implies that Λ(n) ↗ 1 (this
follows from Theorem 6.6. [22] and is a consequence of U being a stochastic recurrent matrix

3
).

Now, Proposition 3.11 together with Theorem 6.9 [22] (fixing v(n)0 = π0 = 1) gives that

lim
n→∞

v(n)a = lim
n→∞

det(Λ(n)Id − U
<(n)[0,a−1])

∏a
j=1 U

<(n)j,j−1
= lim
n→∞

det(Λ(n)Id − U[0,a−1])
∏a

j=1 Uj,j−1

=
det(Id − U[0,a−1])

∏a
j=1 Uj,j−1

= πa

but the Seneta theorem requires the recurrence of U for this conclusion, when Theorem 2.1 holds
more generally.

3.3 General presentation of transition matrices using descent kernels

Markov chains with transition matrices, by time-reversal, provide transition matrices, on
which much can be said. Nevertheless, if one is interested in a particular L models which does not
come from such a time-reversal, it may be needed to have some tools allowing one to study them,
(and, for example, compute their time reversal if they have one, to get access to the toolbox of
transition matrices). A slight change of point of view on transition matrices will allow us to search
more efficiently the form of their time-reversal when they exist (see Proposition 3.14), to design
many transition matrices L for which it is possible to find the time-reversal (Section 3.3.2), and,

3
The one appearing as the limiting value of Λ(n) is not defined as the Perron-Frobenius eigenvalue of the matrix U

in the literature, since the natural definition that we use for the finite case becomes pathological; for example, it does

not make sense to define it as the maximum (modulus) eigenvalue since Theorem 3.8 says that all complex values are

eigenvalues of U. In the Seneta language (see definition 6.1 [22]), this limiting value is defined as the reciprocal of a

radius of convergence, called convergence parameter
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finally, to revisit some known results of the literature (the so-called, catastrophe transition matrices,
see Section 3.3.3). The results collected in this section are of interest to the user searching some
complete families of transition matrices for which the invariant distribution is computable (for
the sake of teaching, statistical purpose, or simple curiosity).

Definition 3.13. A descent kernel D = [Di,j]i,j≥0 over N is a lower triangular transition matrix

Di,j > 0⇒ j ≤ i (with non-negative coefficients, summing to one on each row).

Each transition matrix L can be represented uniquely as a pair (v,D) where v = (va, a ≥ 0) is
a sequence of elements of the interval [0, 1] (in fact, (0, 1) in the irreducible case, except v0 ∈ [0, 1)),
and D a descent transition matrix, as follows:

{ Lb,a = vbDb,a, for b ≥ a,
Lb,b+1 = 1 − vb, b ≥ 0.

(3.12)

We will say that (v,D) is the descent representation of L. In other words: vb is seen as the probability
of descent from b, and D as the descent kernel, conditionally on a descent. With probability 1− vb,
there is an increment +1 (ascent).

In the literature, instead of descent kernel, the word “catastrophe” is sometimes used, but with
a slightly different construction, relying instead upon a standard birth-death process, mixed with
a descent kernel (in our representation, the random walker has to choose randomly between a +1
step and a descent taken according to D, see (3.12)). We think that our choice, while equivalent,
is more compact, and allows us to better observe the algebra into play (see e.g. Pollett & al. [20],
Brockwell & al. [4], Kapodistria & al [11], and references therein).

3.3.1 Representation of time-reversal of transition matrices (descent form)

From Theorem 3.3 we see that irreducible transition matrices L having an invariant measure
and those admitting a time-reversal are the same. The representation of -transition matrices L
using descent kernels will allow us to have a better point of view on the form of their possible
time-reversal.

Proposition 3.14. If the set of time-reversals of an irreducible transition matrix L with descent

representation (v,D) is not empty, then each of its elements U can be represented as follows

{ Ua,b = ua αaβbDb,a, for b ≥ a,

Ua,a−1 = 1 − ua, a ≥ 0, with u0 = 1
(3.13)

where [π, u, α, β] is a 4-tuple of sequences which satisfies

(i) π, u, α, β are sequences of positive real numbers, except for β0 which is 0 iff v0 = 0; moreover

u0 = 1 and uj ∈ (0, 1) for j ≥ 1,

(ii) ∑b∶b≥a αaβbDb,a = 1 for all a ≥ 0,

(iii) for all b ≥ 0, a ≤ b,

uaαa = 1/πa, βb = πbvb. (3.14)

(iv) πa(1 − va) = πa+1(1 − ua+1) for all a ≥ 0.
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Proof. First, assume that π, u, α, β satisfy the properties stated in the theorem. By (i) and (ii),
U is a transition matrix. Let us check that πbLb,a = πaUa,b which is sufficient to conclude (by

Theorem 3.3).

– First, we have πaLa,a+1 = πa(1 − va) = πa+1(1 − ua+1) = πa+1Ua+1,a,
– and for b ≥ a, πbLa,b = πbvbDb,a = βbDb,a, while πaUa,b = πaua αaβbDb,a = πbvbDb,a = πbLb,a (by

(3.14)).

These points show that in all cases πaUa,b = πbLb,a.

Conversely, assume that U is a time-reversal of L (with representation (v,D)) for some positive

measure π, that is, it satisfies πbLb,a = πaUa,b. Since U is , it can be represented as Ua,a−1 = 1−ua
and Ua,b = uaHa,b for a sequence u and H such that Ha,b > 0 ⇒ b ≥ a (an ascent kernel). The

sequence u must satisfy πbLb,b+1 = πb(1 − vb) = πb+1Ub+1,b = πb+1(1 − ub+1), so that (iv) holds.

Let us show that U can be represented as stated in the Theorem. First, we must have Lb,a =

0 ⇔ Ua,b = 0. Since for all b > 0, the factor vb > 0, Lb,a = 0 ⇔ Db,a = 0 and since this must be

equivalent to Ua,b = 0, it is easily seen that Ua,b = uaHa,b = ua.Db,a.g(a, b) for some positive function

g(a, b). This way of thinking extends to b = 0, when v0 > 0. If v0 = 0, then L0,0 = 0, and since

D0,0 = 1 (because D is a descent transition matrix), to satisfy U0,0 = u0H0,0 = u0.D0,0.g(0, 0) = 0

too, we will take g(0, 0) = 0 (in fact β0 = 0 will be the needed specification). Now, for all b ≥ a

write

πbvbDb,a = πaUa,b⇔ Ua,b = πbvbDb,a/πa, (3.15)

and then if b > 0, the variables in factor to Db,a are functions of separated variables a or b, so that

g(a, b) = αaβb for some sequences α and β. Set αa = 1/(uaπa), βb = πbvb, and for this choice,

Ua,b = uaαaβbDb,a, so that (iii) and (i) hold. It remains to check (ii). Since U is the time-reversal

of L, we get ∑b πaUa,b = 1 and then ∑b∶b≥a πaUa,b = πaua which implies that ∑b∶b≥a πauaαaβbDb,a =

πaua and then ∑b∶b≥a αaβbDb,a = 1.

3.3.2 Catalytic inversion of transition matrices

In this section, we introduce a tool allowing one to design many -transition matrices L with a
computable invariant measure (and computable time-reversal transition matrices U). The weakness
of this approach is that it is far more efficient when, instead of fixing a given L in terms of its descent
representation (v,D) only (v0,D) is fixed. By this method, finding a complete descent kernel (v,D)
with a computable invariant measure amounts to finding a positive sequence X satisfying some
inequalities:

Definition 3.15. Consider a pair (v0,D), where v0 ∈ [0, 1) and D is a descent kernel. A sequence

X = (Xa, a ≥ 0) is said to be (v0,D) pushable iff the following three conditions are satisfied:

� X0 = v0 and, for all i ≥ 1, Xi > 0 (so that X0 = 0 is possible).

� For all a ≥ 0, Ya ∶= ∑b≥aXbDb,a is finite. For short, we will write Y = X.D.

� For all a ≥ 1,

a

∑
i=1

(Yi/Y0 −Xi) > 0. (3.16)
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Theorem 3.16. Let v0 ∈ [0, 1), D be a descent kernel, and X be a (v0,D) pushable sequence. Set

Y = X.D, and

va+1 =
Xa+1

Ya+1/Y0 +Xa(1/va − 1) for all a ≥ 0 (3.17)

(if v0 = 0, take v1 =
X1

Y0
(1 − Y1

Y0+Y1
) = X1

Y0+Y1
instead). We have

va ∈ (0, 1), for all a > 0, (3.18)

since this is equivalent to (3.16). Define the 4-tuple [u, α, β, π] by π0 = Y0, u0 = 1 and for a ≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ua+1 ∶=
Ya+1ua

Ya(1 − va) + Ya+1ua
,

πa+1 ∶= πa
1 − va

1 − ua+1
,

βa ∶= Xa,

αa ∶= 1/(uaπa)

(3.19)

then for this 4-tuple, the L with representation (v,D) has time-reversal U as defined in Proposi-

tion 3.14, and then, both transition matrices L and U have π as invariant measure.

Proof. Let us first say why (3.18) is equivalent to (3.16). Set γa = Xa(1/va − 1). From (3.17), one

gets that

γa+1 = γa + Ya+1/Y0 −Xa+1, a ≥ 0 (3.20)

and then γa+1 = γ0 +∑a+1
i=1 (Yi/Y0 −Xi). Since va ∈ (0, 1)⇔ γa > 0, we get the result (note that

γ1 = Y0+Y1−X1 when v0 = 0, so that (3.20) holds for γ0 = (Y0+Y1−X1)−Y1/Y0+X1 = Y0+Y1−Y1/Y0
in this case).

It suffices to check that Proposition 3.14 applies to the tuple of sequences [π, u, α, β] as defined

in (3.19). The condition (i) is immediate since we took β0 = X0 = v0; the fact that uj ∈ (0, 1) for

all j > 0 is clear.

For (ii) observe that the first equation of the system (3.19) is equivalent to

1 − va
1 − ua+1

=
Ya+1/ua+1
Ya/ua

(3.21)

so that (Ya/ua) is proportional to (πa, a ≥ 0) as defined in the third equation of the system (3.19),

and since Y0/u0 = π0 these sequences are equal. Write

∑
b∶b≥a

αaβbDb,a =
1

uaπa
∑
b∶b≥a

XbDb,a =
Ya
uaπa

= 1.

Now we prove condition (iii). Since uaαa = 1/πa, we only need to prove that βb = Xb = πbvb. Since

π0 = 1, X0 = v0, the formula is true for b = 0; let us assume that it holds for b ≤ a, for some a, and

let us establish that Xa+1 = πa+1va+1. From (3.17),

Xa+1
va+1

=
ua+1Ya+1
ua+1Y0

+Xa (
1
va
− 1) = ua+1πa+1 + πa(1 − va) = πa+1
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by system (3.19), second equation. The case where a = 0 and v0 = 0 has to be treated separately:

in this case u1 = Y1/(Y0 + Y1) and since Y0 = π0, v1 =
X1

Y0
(1 − Y1/(Y0 + Y1)), we have X1/v1 =

Y0/(1 − u1) = π0(1 − v0)/(1 − u1) = π1 so that X1/v1 is indeed equal to π1.

Finally (iv) is immediate by the second equation of the system (3.19).

3.3.3 “Catastrophe transition matrices”: analysis of transition matrices with same

descent kernel

Theorem 3.16 gives a reformulation for the problem of finding the invariant distributions of the time-
reversal of a given transition matrix L, and as such it may appear a bit useless since no methods are
provided to compute the pair (X,Y ) which is needed to conclude. The following examples show the
power of this theorem: given the descent kernel D and some parameter v0 ∈ [0, 1), it is quite easy
to find many (v0,D) pushable sequences X. Even if it is still difficult to target a given sequence
v = (vi, i ≥ 0), it is possible to construct many sequences v for which it is possible to construct the
time-reversal of (v,D). This allows observing the general form of integrable systems (v,D). The
following results are comparable with those of Pollett & al. [20], Brockwell & al. [4], Kapodistria &
al [11] (and references therein), in which various catastrophe transition matrices are investigated (in
continuous-time). In these results as well, it can be observed that very specific forms of catastrophe
transition matrices are needed to find the invariant distributions or absorption probabilities: each
time it is a challenge to complete all computation details.

Geometric catastrophe

This is the family of transition matrices whose (v0,D) representation involved, for some p ∈ (0, 1),
the descent kernel

Db,a = p(1 − p)b−a + 1a=0(1 − p)b+1, 0 ≤ a ≤ b.

For any positive sequence X = (Xj , j ≥ 0) and a ≥ 0,

Ya = ∑
b≥a

XbDb,a = p∑
x≥0

Xa+x(1 − p)x + 1a=0 ∑
b≥0

Xb(1 − p)b+1,

so that this closed-form formula can be effectively computed for many sequences X (the X
′
is are

the coefficients of a power series). It remains to extract the pushable sequences (those that satisfy
∑a
i=1(Yi/Y0 −Xi) > 0, for non-negative parameters and sequences (v0, X) with X0 = v0, see Defini-

tion 3.15). From this, the complete description of the vectors v and u can be obtained as explained
in Theorem 3.16.

Binomial catastrophe

The descent kernel D, in this case, is defined as follows

Db,a = (ba)p
a(1 − p)b−a, 0 ≤ a ≤ b.

For X = (e−λλb/b!, b ≥ 0) the Poisson distribution (P (λ)
b , b ≥ 0) with parameter λ, the corresponding

Y is Poisson distributed with parameter λp, i.e Ya = P
(λp)
a . In this case Yi/Y0 = (pλ)i/i! and then

∑a
i=1(Yi/Y0 − Xi) = ∑a

i=1((pλ)
i/i! − e−λλi/i!) = ∑a

i=1
λ
i
e
−λ

i!
(pieλ − 1) is indeed positive for p such
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that λp ≥ 1− eλ at least, since ∑a
i=1

λ
i
e
−λ

i!
(pieλ) ≥ λp (the value taken for a = 1) and for each a ≥ 1,

∑a
i=1

λ
i
e
−λ

i!
(−1) ≥ ∑+∞

i=1
λ
i
e
−λ

i!
(−1) = −(1 − e−λ), so that (v0, X) is pushable when λp ≥ 1 − e−λ.

For v0 = X0, with v0 ∈ (0, 1), then

va+1 =
e
−λ
λ
a+1/(a + 1)!

e−λp(pλ)a+1/(a + 1)!/e−λp + e−λλa/a!(1/va − 1)
=

1

eλpa+1 + (1/va − 1)(a + 1)/λ
.

From this formula the sequence (va, a ≥ 0) is characterized. From here, set u0 = 1, and compute
successively, for a ≥ 0,

ua+1 =
e
−λp(λp)a+1/(a + 1)!ua

e−λp(pλ)a/a!(1 − va) + e−λp(λp)a+1/(a + 1)!ua
=

(λp)ua
(1 − va)(a + 1) + (λp)ua

.

After that, the values of π can be obtained from the third formula in the system (3.19).

Uniform catastrophe

The case of uniform catastrophe is described by the following descent kernel Db,a = 1/(b + 1) for
a ∈ [0, b]. The case where Xb = (b+ 1)ρb for ρb a probability measure with full support on N and a
finite mean, is integrable. Denote ρb = ∑k≥b ρk (the tail distribution function). The computation of
Y gives Ya = ρa so that Y0 = 1. The pushability condition is ∑a

i=1(ρi − (i+ 1)ρi) ≥ 0. For v0 = X0,
with v0 ∈ (0, 1), compute successively the va using:

va+1 =
(a + 2)ρa+1

ρa+1 + (a + 1)ρa
.

Set u0 = 1, and compute the ua using:

ua+1 =
ρa+1ua

ρa(1 − va) + ρa+1ua
.

After that, the values of π can be obtained from the third formula in the system (3.19).

4 Particular models

4.1 Back to the tridiagonal case

About the formulas for invariant distributions.

In the tridiagonal case, by (1.5), the invariant distribution (πa, a ≥ 0) associated with the tridiagonal

transition matrix T is unique (since it is ), and it is proportional to (p(t)a ∶= ∏a
j=1

Tj−1,j
Tj,j−1

, a ≥ 0),

and to (p(U)
a ∶=

det(Id−T[0,a−1])
∏a
j=1 Tj,j−1

, a ≥ 0) in Theorem 2.1 for the case. Therefore, in the tridiagonal

case, these two formulas must coincide.

The fact that p
(t)
a = p

(U)
a is a consequence of Theorem 2.1 and Remark 2.2(ii) (and it is also a

consequence of (3.3) and Proposition 3.5).
In the case, it is a bit more complex since Theorem 2.19 only deals with finite transition matrices

then we need to use Proposition 2.20. We then take L
(n)

as described in this Proposition 2.20. In
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the tridiagonal case, L
(n)
i,j = Ti,j for all i, j ≤ n, except for L

(n)
n,n = Tn,n + Tn,n+1. For any a < n, we

have, by Theorem 2.19

ρ
(n)
a = cn det(Id − L

(n)
[a+1,n])

a

∏
i=1

Ti−1,i.

The determinant, by the matrix tree theorem, coincides with the weight of trees rooted at a, on
the graph with vertex set [a, n], and edge set {(i, j) ∶ Ti,j > 0, i, j ≤ n}. Since the only decreasing
edges are the (j, j − 1), there is a single tree on [a, n] rooted at a, it is the tree with edges
{(j, j − 1), j ∈ [a + 1, n]}. Hence

ρ
(n)
a = cn (

n

∏
i=a+1

Ti,i−1)(
a

∏
i=1

Ti−1,i)1a≤n = c
′
n

a

∏
i=1

Ti−1,i
Ti,i−1

1a≤n.

Set, as done in Proposition 2.20,

η
(n)
a = ρ

(n)
a /ρ(n)0 = 1a≤n

a

∏
i=1

Ti−1,i
Ti,i−1

.

It remains to prove that the two conditions (a) and (b) of Proposition 2.20 are satisfied.

(a) We need to take Sa = ∏a
i=1

Ti−1,i
Ti,i−1

(which is p
(t)
a = p

(U)
a by the way). For b fixed, we have

∑a∶a≥b+1 SaTa,b = Sb+1Tb+1,b and this is indeed < +∞.

(b) Let ηa ∶= Sa = p
(t)
a = p

(U)
a . The convergence of η

(n)
a −−−−→

n→∞
ηa is obvious.

Recurrence criterion

In the tridiagonal case, the criterion for recurrence is known to be (1.7) (that is ∑k≥0∏k
j=1

Tj,j−1
Tj,j+1

=

+∞). Let us show that it is equivalent to Theorem 2.8 in this case ( limb→+∞ u1(b) = 1 with

u1(b) = M1,0
det(Id−T[2,b−1])
det(Id−T[1,b−1])). If T is tridiagonal

det(Id − T[1,b−1]) = (1 − T1,1)det(Id − T[2,b−1]) − T1,2T2,1 det(Id − T[3,b−1])

and writing Da,b ∶= det(Id − T[a,b−1]), we have more generally

Di,b−1 = (1 − Ti,i)Di+1,b−1 − Ti,i+1Ti+1,iDi+2,b−1, for i + 1 ≤ b − 1. (4.1)

Set

Zi,b−1 =
Di,b−1

Di+1,b−1 Ti,i−1

so that u1(b) = 1/Z1,b−1. Formula (4.1) rewrites

Zi,b−1 = ci + ai+1 /Zi+1,b−1 for i ≤ b − 2 (4.2)

for

qi ∶=
Ti,i+1
Ti,i−1

, ai+1 = −qi, ci = 1 + qi. (4.3)

Notice that “the last” term, for i = b − 1,

Zb−1,b−1 =
Db−1,b−1

Db,b−1 Tb−1,b−2
=

1 − Tb−1,b−1
Tb−1,b−2

=
Tb−1,b−2 + Tb−1,b

Tb−1,b−2
= 1 + qb−1 = cb−1
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so that (4.2) can be used to express Z1,b−1 in terms of the ai’s and ci’s as follows: if one sees the
relation (4.2) as a kind of continued fraction expansion, what we want to do is produce a formula
for the so-called convergents:

Z1,b−1 ∶= c1 +
a2

c2 +
a3

⋱+
⋱

cb−2 +
ab−1
cb−1

; (4.4)

One can compute the value of the “finite continuous fraction” expressed in (4.4): set

A0 = 1, A1 = c1 = 1 + q1, B0 = 0, B1 = 1

and computing successively

{ Ak = ckAk−1 + akAk−2 = (1 + qk)Ak−1 − qk−1Ak−2,
Bk = ckBk−1 + akBk−2 = (1 + qk)Bk−1 − qk−1Bk−2

(4.5)

for k from 2 to b − 1, we get
Z1,b−1 = Ab−1 /Bb−1.

We can proceed to the computation of Ab−1 and Bb−1, by observing that for any k ≤ b − 1, since
Ak = (1 + qk)Ak−1 − qk−1Ak−2 and Bk = (1 + qk)Bk−1 − qk−1Bk−2, we then have for k ≤ b − 1:

αk ∶= Ak − qkAk−1 = Ak−1 − qk−1Ak−2 = αk−1,

βk ∶= Bk − qkBk−1 = Bk−1 − qk−1Bk−2 = βk−1.

From what we see that (Ak − qkAk−1, k < h) and (Bk − qkBk−1, k < h) are both constant, but
are subject to different initial conditions. For Ck = Ak or Ck = Bk, with c encoding the initial
condition,

Ck = qkCk−1 + c⇒ Ck = qk(qk−1Ck−2 + c) + c = C0

k

∏
j=1

qj + c
k

∑
j=1

k

∏
i=j+1

qi. (4.6)

One gets for k ≤ b − 1, setting Qk ∶=∏k
j=1 qj = Qk−1qk, Fk ∶= ∑k

j=1 (∏j
i=1 qi)

−1

Ak = Qk(1 + Fk), Bk = QkFk.

Hence,
Z1,b−1 = 1 + 1/Fb−1

and since Fk ∶= ∑k
j=1 (∏j

i=1 qi)
−1
= ∑k

j=1∏j
i=1

Ti,i−1
Ti,i+1

and then one observes that the convergence of

Z1,b−1 to 1 is indeed equivalent to Karlin & McGregor criterion (1.7).

Positive recurrence criterion

The positive recurrent criterion is ∑k≥0∏k
j=1

Tj−1,j
Tj,j−1

<∞, while it is ∑∞
a=1

det(Id−U[0,a−1])
∏a
j=1 Uj,j−1

<∞ in the

U case. Section 4.1 explained why, in the tridiagonal case, the formulae of the invariant measures
obtained in the and in the tridiagonal cases coincide: since the formulae coincide, the criteria for
positive recurrence coincide.
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4.2 A class of integrable almost lower-triangular transition matrices

In Section 3.3.2, we described a strategy to design some transition matrices L for which the time-
reversal U can be computed (for some invariant measure π computed simultaneously). Here, we
present a large family of transition matrices for which the invariant distribution can be computed
directly.

Denote by ej = (1i=j , i ≥ 0) the vector with a 1 in entry j only (the first vector is e0).

Definition 4.1. A -transition matrix is said to be Col(0)-triangular if for any c ≥ 1,

L•,c = αcL•,0 +
c

∑
`=0

a`,c e`, (4.7)

where, L•,c denotes the column c of L, the first column being L•,0.

The first column L•,0 is general, and for any c, L•,c is essentially proportional to L•,0, except its
c + 1 first entries, indexed from 0 to c. Since L0,c = ⋯ = Lc−2,c = 0, for c ≥ 1, only the entries Lc,c
and Lc−1,c are free.

We claim that it is possible to solve the system η = ηL when L is a slt, irreducible and Col(0)-
triangular. The idea is to keep on hold the first equation until the end of the resolution:

η0 = ηL•,0 =∑
k

ηkLk,0. (4.8)

Suppose that η is the solution of (4.8) and η = ηL. For c ≥ 1, we have

ηc = ηL•,c = αc η L•,0 + η
c

∑
`=0

a`,c e` = αc η0 +
c

∑
`=0

a`,c η` (4.9)

and it is then apparent that (ηc, c ≥ 1) is a solution of a standard triangular linear system in which
η0 is seen as a parameter. It remains to check if the obtained solution of (4.9) solves (4.8) or not
(which corresponds to the case where a solution exists or none, respectively).

Example: Consider a sequence of vectors V
≥k

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

V010≥k
V111≥k
⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(indexed by k) where, vertically, the

entries are non increasing: 1 > V0 > V1 > V2 >⋯ > 0. The vectors V
≥k

are essentially proportional,
and V ∶= V

≥0
has the sequence (Vi, i ≥ 0) as entries. The simplest cases of Col(0)-triangular

transition matrices are those in which the columns L•,c are essentially proportional. Consider
α0 = 1, α1, α2, . . . and the matrix L such that

L•,c = αcV
≥c−1

= αc[L•,0 −
c−2

∑
j=0

Vjej] for all c ≥ 0. (4.10)

Since L is a -transition matrix, the condition ∑c Lr,c = 1 for all r becomes:

(α0 +⋯+ αr+1)Vr = 1 for r ≥ 0, (4.11)

which implies ∑r+1
`=0 α` = 1/Vr, and since 1 + α1 = α0 + α1 =

1
V0

, we obtain

α1 =
1

V0
− 1, for r > 0, αr+1 =

1

Vr
−

1

Vr−1
. (4.12)
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Since (Vi, i ≥ 0) is decreasing, it is easily seen that r ↦ (∑r
i=1 αi) is increasing so that all the αi are

positive. We have

ηk = ηL•,k = η0αk(1 − V0 −⋯− Vk−2), k ≥ 0 (4.13)

we then need that ∑+∞
i=0 Vi ≤ 1 and

η0 =∑
k

ηkLk,0 =∑
k

ηkVk < +∞,

which is equivalent to

1 = ∑
k

αkVk(1 − V0 −⋯− Vk−2). (4.14)

Using (4.12), it can be written as

V0 + V1 (
1

V0
− 1) +∑

k≥2

( 1

Vk−1
−

1

Vk−2
)Vk(1 − V0 −⋯− Vk−2) = 1. (4.15)

If L satisfies (4.10) and (4.15), then its invariant measures η can be computed thanks to (4.13).

4.3 Some and transition matrices associated with BDP Markov chains

Let T be an irreducible tridiagonal transition matrix. As explained at the beginning of Section 1,
the invariant measure of T and the criterion of recurrence and positive recurrence are available.
Now define two associated transition matrices U and L as follows. Let X be a Markov process with
transition matrix T. The increasing steps of X are +1 while decreasing steps are −1. Now, define

{ Ua,b = P (Xτ↓ = b ∣ X0 = a) ,
La,b = P (Xτ↑ = b ∣ X0 = a)

(4.16)

where

τ
↓

= inf{t > 0 ∶ Xt = Xt−1 − 1},
τ
↑

= inf{t > 0 ∶ Xt = Xt−1 + 1}.

In words, if one observes X only at the times (tj , j ∈ Z) following a decreasing step, then the
sequence of observations is an U-Markov process on {0, 1, 2, 3,⋯}. If one observes X only at the
times (tj , j ∈ Z) following an increasing step, then the sequence of observations is a L-Markov
process on {1, 2, 3,⋯}.

The transition matrices U and L can be computed using path decompositions: Set Loop
T
i ∶=

(1 − Ti,i)−1. For all i ≥ 0, we have Ui,i−1 = Loop
T
i Ti,i−1, and for j ≥ i,

Ui,j = [
j

∏
b=i

Loop
T
b Tb,b+1] Loop

T
j+1 Tj+1,j .

We have, for i ≥ 1, Li,i+1 = Loop
T
i Ti,i+1, for 1 ≤ j ≤ i,

Li,j =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

i

∏
b=j

Loop
T
b Tb,b−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Loop

T
j−1 Tj−1,j .
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Remark 4.2. The matrices U (respectively L) are transition matrices when T is recurrent, since, in

this case, with probability 1, starting from any position i, a Markov chain X with transition matrix

T will have some decreasing steps (resp. increasing steps) which ensures that, for any i, ∑j Ui,j = 1

(resp. ∑j Li,j = 1). It is however possible for a BDP to have globally a.s. a finite number of steps

−1 in the transient case, so that U is not always a transition matrix. Since starting from any point

i, a Markov chain with transition matrix T will have a +1 step with probability 1 (by irreducibility),

L is well defined-even when T is transient.

Set

{ π
U
a = π

T
a+1 Ta+1,a for a ≥ 0,

π
L
a = π

T
a−1 Ta−1,a for a ≥ 1

. (4.17)

Proposition 4.3. Assume that T is irreducible.

(i) T is recurrent (resp. positive recurrent) iff L is irreducible and recurrent (resp. positive

recurrent). If L is a transition matrix then, L admits π
L

as invariant measure (in all cases,

including L transient).

(ii) If T is recurrent and U is a transition matrix, then U is irreducible and recurrent. T is positive

recurrent iff U is positive recurrent. The measure π
U

is invariant by U (in all cases, including

U transient, and even, when U is not a transition matrix!).

Proof. In the proof, we treat simultaneously (i) and (ii). First, the fact that the recurrence of T

is equivalent to irreducibility and recurrence of U (resp. of L) is clear. By irreducibility of T, the

recurrence of T implies that each edge (a, a + 1) and (a, a − 1) are traversed infinitely often by a

Markov chain with transition matrix T so that U and L are recurrent. The converse uses the same

type of argument.

If T is positive recurrent, then by the ergodic theorem, the proportion of time spent at a by

a Markov chain with transition matrix T converges to π
T
a , and then, the proportion of time spent

at an increasing step (a, a + 1) is π
T
aTa,a+1, and the proportion of time spent at a decreasing step

(a, a − 1) is π
T
aTa,a−1. A simple consequence of that is that (4.17) holds in the positive recurrent

case (since ∑a π
T
a+1 converges, ∑a π

T
a+1Ta+1,a and ∑a π

T
a+1Ta,a+1 converge too).

Now, let us check the statements concerning the invariant measures.

By (1.5),

π
U
a = π

T
a+1Ta+1,a =

∏a+1
j=1 Tj−1,j

∏a
j=1 Tj,j−1

.

We want to prove that π
U

is invariant by U.

π
U
aUa,b =

T0,1 . . .Ta,a+1
T1,0 . . .Ta,a−1

Tb+1,b (
b

∏
i=a

Ti,i+1)(
b+1

∏
i=a

Loop
T
i )

=
T0,1 . . .Tb,b+1
T1,0 . . .Tb,b−1

[Ta,a+1LoopTa (
b+1

∏
i=a+1

Ti,i−1Loop
T
i )] = π

U
b Lb+1,a+1
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since the last bracket is Lb+1,a+1; this allows us to conclude the invariance of π
U

by U:

∑
a∶a≤b+1

π
U
aUa,b = π

U
b ∑
a∶a≤b+1

Lb+1,a+1 = π
U
b ∑
j∶j≤b+2

Lb+1,j = π
U
b .

Now, we want to prove that π
L

is invariant by L. Write π
L
a = π

T
a−1Ta−1,a =

∏a−1
j=1 Tj−1,j

∏a−1
j=1 Tj,j−1

Ta−1,a =

∏a
j=1 Tj−1,j

∏a−1
j=1 Tj,j−1

, so that

π
L
aLa,b =

∏a
j=1 Tj−1,j

∏a−1
j=1 Tj,j−1

[
a

∏
k=b

Loop
T
kTk,k−1] Loop

T
b−1 Tb−1,b

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∏b−1
j=1 Tj−1,j

∏b−1
j=1 Tj,j−1

Tb−1,b

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Ma,a−1 [

a

∏
k=b

Tk−1,kLoop
T
k ] Loop

T
b−1

= π
L
b−1 [

a−1

∏
k=b−1

Loop
T
kTk,k+1] (Ta,a−1LoopTa ) = π

L
b−1Ub−1,a−1.

From here, ∑a π
L
aLa,b = ∑a π

L
b−1Ub−1, a = π

L
b−1 if U is a transition matrix.

Remark 4.4. This example is one of the simplest and transition matrices one can construct

using stopping times of a BD Markov chain. One can construct many other transition matrices

by designing other stopping times: for example, for a transition matrix: starting at k, start the

trajectory when it hits k − 1, or at the first time where the 5 last steps are (+1,+0,+1,−1,+1).

4.4 Repair shop Markov chain

The following is a well-known Markov chain that is present in different textbooks. It is an integrable
system, where recurrence, positive recurrence and transience have been characterized. Most of the
results about this chain can be found in Brémaud’s Book [3] under the tag repair shop. Nevertheless,
the methods that we will use to obtain the same results are based on Theorem 2.1 and are therefore
of different nature.

The repair shop chain is defined as the Markov chain Xn given by:

Xn+1 = (Xn − 1)+ + Zn+1
where (Zn, n ≥ 0) is a sequence of i.i.d. random variables with distribution (ak, k ≥ 0), meaning
that P(Zn = k) = ak for every k ≥ 0. This chain models the number of broken machines in a repair
shop, where each day one broken machine is repaired (when there is at least one available to repair),
and where the number of new machines that need to be repaired day n+ 1 is Zn+1. The transition
matrix A associated with this chain is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 a3 ⋯
a0 a1 a2 a3 ⋯
0 a0 a1 a2 ⋯
0 0 a0 a1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note 4.5. Some generalizations of the repair shop Markov chain appear in the literature, notably,

in relation to queueing theory; see e.g. Abolnikov & Dukhovny [1] and references therein.
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4.4.1 Positive recurrence criterion

Set m ∶= ∑s sas the mean of Z1, i.e. of the distribution (a0, a1,⋯).

Proposition 4.6. The transition matrix A is positive recurrent if and only if m < 1.

Proof. By Lemma 1.1, equation (1.12)

CN ∶=
det(Id − A[0,N])
∏N+1

j=1 Aj,j−1
= ∑
s∈SN

⎛
⎜
⎝

`(s)
∏
j=1

(Id − A)sj−1+1,sj
⎞
⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

∏
j∈[0,N−1]
j≠s

Aj+1,j

⎞
⎟⎟⎟⎟⎟
⎠
a
−N−1
0 (4.18)

= ∑
s∈SN

`(s)
∏
j=1

(Id − A)sj−1+1,sj
a0

. (4.19)

Since (Id − A)x,y = 1x=y − ay−x+1−1x=0 , we have

CN = ∑
s∈SN

`(s)
∏
j=1

1sj−sj−1=1 − asj−(sj−1+1)+1−1sj−1=0
a0

.

This is a kind of product of transitions that measures the passage from sj−1 to sj . For the increments

except for the first one, define

tδ =
1δ=1 − aδ

a0
, δ ≥ 1

and for the first increment, define

t
f
δ =

(Id − A)0,δ
a0

=
1δ=0 − aδ

a0
, δ ≥ 0.

Consider the generating functions which encode the increments of the sequence (sj , j ≥ 0)

Gf(x) = ∑
δ≥0

t
f
δx

δ
=

1 − a0
a0

−∑
s>0

as
a0
x
s
,

G(x) = ∑
δ≥1

tδx
δ
=

1 − a1
a0

x −∑
s>1

as
a0
x
s
.

Now, CN = [xN]Gf(x)/(1 − G(x)) (notation for the extraction of the coefficient of x
N

in the

generating function Gf(x)/(1 −G(x))) so that

∑
N≥0

CN = lim
x→1

Gf(x)/(1 −G(x));

the sum of the coefficients of a series is obtained by a simple evaluation at 1 but only when the

power series converge at this point. Since G
f(1) = 0 and 1−G(1) = 0, we apply the L’hôpital rule,

which says

∑
N≥0

CN = lim
x→1

Gf(x)
1 −G(x) = lim

x→1

G
′
f(x)

−G′(x) .
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We have,

G
′
f(1) = −∑

s>0

ass
a0

= −
m
a0
,

−G
′(1) = − [(1 − a1) −∑

s>1

sas] /a0 = −
1 −m
a0

;

therefore ∑N≥0CN = m/(1 −m), from what we see that this converges iff m < 1, which is then the

sufficient and necessary condition for positive recurrence.

4.4.2 Recurrence criterion

Proposition 4.7. The transition matrix A is recurrent if and only if m ≤ 1.

Proof. Let αN ∶= det((Id − J)[0,N]) for

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a2 a3 a4 ⋯

a0 a1 a2 a3 ⋯

0 a0 a1 a2 ⋯

0 0 a0 a1 ⋯

⋮ ⋮ ⋮ ⋮ ⋮

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where A is the matrix presented in the previous section. Since (Id − A)[2,N] = (Id − A)[1,N−1] =
(Id − J)[0,N−2], by Theorem 2.8

A is recurrent ⇔ ( lim
N→∞

a0
αN−1
αN

= 1) . (4.20)

By Lemma 1.1

αN = ∑
s∈SN

(
`(s)
∏
j=1

(Id − J)sj−1+1,sj)( ∏
j∈[0,N−1]\s

Jj+1,j) (4.21)

= ∑
s∈SN

`(s)
∏
j=1

(Id − J)sj−1+1,sja
sj−sj−1−1
0 . (4.22)

Since (Id − J)x,y = 1x,y − ay−x+1, we have

αN = ∑
s∈SN

`(s)
∏
j=1

(1sj−sj−1=1 − asj−(sj−1+1)+1) a
sj−sj−1−1
0 .

Again, this is a kind of product of transitions that weigh the passage from sj−1 to sj . We set

tδ = (1δ=1 − aδ) aδ−10 , δ ≥ 1.

Consider the generating function which encodes the increments of the sequence (sj , j ≥ 0)

GJ(x) = ∑
δ≥1

tδx
δ
=

(1 − a1)
a0

(a0x) −∑
s>1

as
a0

(a0x)s .
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Now, αN = [xN] (1/(1 −GJ(x))). By Theorem 2.8, a0
αN−1
αN

is non-decreasing in N and bounded by

1, so that limN a0
αN−1
αN

exists, and better than that it is equal to supN a0
αN−1
αN

= S ≤ 1. A standard

result of calculus (the ratio test) applies: the radius r of convergence of 1/(1 −GJ) satisfies

1/r = a0/S.

This allows us to complete a step in our reasoning:

A is recurrent ⇔ (lim
N
a0
αN−1
αN

= 1)⇔ (r = 1/a0) .

Now notice that the function 1/(1 − z) has a radius of convergence 1 and since GJ has radius of

convergence at least 1/a0, the function 1/(1 −GJ(x)) has radius of convergence given by the

R ∶=(a) (1/a0) ∧ inf{∣x∣, GJ(x) = 1}
=(b) (1/a0) ∧ inf{x > 0, GJ(x) = 1}
=(c) inf{x > 0, GJ(x) = 1}

Equality (a) follows from the preceding discussion, equality (b) from the fact that the coefficients

of GJ are non-positive (from a2/as), and equality (c) holds because GJ(1/a0) = 1. We infer that

A is recurrent ⇔ R = 1/a0. (4.23)

To finish this sequence of equivalent assertions, it is enough to prove that

R = 1/a0⇔ m ≤ 1.

Start by noting that GJ(1/a0) = (1/a0)(1 −∑s≥1 as) = 1. Now G
′
J(x) = 1 −∑s≥1 sas(a0x)

s−1
and

therefore G
′
J(1/a0) = 1 −m.

If m > 1, then the function GJ is locally decreasing at 1/a0. Hence, there exists some ε > 0 such

that GJ(1/a0 − ε) > 1, which implies together with GJ(0) = 0 and the intermediate value theorem,

that GJ = 1 has at least one solution on [0, 1/a) which implies that R < 1/a0 (it is transient).

If m ≤ 1, then 0 ≤ ∑s≥1 sas(a0x)
s−1

≤ ∑s≥1 sas = m when 0 ≤ x ≤ 1/a0 so that G
′
J(x) ≥

1 −m ≥ 0 on [0, 1/a0] (in fact, G
′
J > 0 on [0, 1/a0)). Since GJ(1/a0) = 1 and GJ(0) = 0, and GJ is

increasing monotone on [0, 1/a0), then R = 1/a0.

5 Appendix

5.1 Continuous-time counterparts

A continuous Markov process X = (Xt, t ≥ 0) is a continuous-time process described by means
of a generator G = (Gi,j ∶ i, j ∈ S), where S (N for us) is the state space, and which satisfies
Gi,i = −∑j≠i Gi,j (each of these sums being finite), so that each row of G sums up to zero. The
value Gi,j is a rate (for i ≠ j), and can be seen as the parameter of an exponential distribution: it is
the jump rate for the process when its value is i, at which it jumps at j ≠ i. For more information
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on this type of process see [18, 19]. An invariant measure π
C

for the continuous Markov process is

a non-negative measure satisfying π
C
G = 0.

The jump process associated with X is the discrete-time Markov chain Y = (Yk, k ≥ 0), defined
by

Yk = X(τk), for k ≥ 0

where τ0 = 0, and for k ≥ 1, τk = inf{t ∶ t > τk−1, Xt ≠ Xτk−1}, that is the k-th jump time of X. The
transition matrix of Y is M = (Mi,j ∶ i, j ∈ N) defined as

Mi,j = −Gi,j/Gi,i, ∀i ≠ j and Mi,i = 0 ∀i ∈ N.

The properties of positive recurrence, null recurrence and transience are inherited from the jump
chain to the continuous chain under non-explosion assumptions (Theorem 3.4.1 and Theorem 3.5.3
[18]). Also, the knowledge of the (or an) invariant measure of one of these processes (either of Y or
of X) allows one to deduce the corresponding invariant measure of the other, by using:

πi = −π
C
i Gi,i, for all i ≥ 0,

where π is the invariant measure for the discrete process Y .
The last important remark is: G is (resp. ) iff M is (resp. ). For this reason, our results

apply to continuous Markov processes with and generator matrices G.

5.2 BDP and orthogonal polynomials

Karlin & McGregor approach relies on the study of the spectral properties of the tridiagonal tran-
sition matrix T (see notation in (1.4)) and its connection with a family of orthogonal polynomials
(Qi, i ≥ 0) defined as follows: set Q0(x) = 1, p0Q1(x) = x − r0, and

xQj(x) = qjQj−1(x) + rjQj(x) + pjQj+1(x), j ≥ 1;

and this can be rewritten in the following form

Q(x) ∶= [Q0(x) Q1(x) Q2(x) ⋯]t , xQ(x) = TQ(x). (5.1)

Observe that Q(x) is then an eigenvector of T associated with the eigenvalue x.
Karlin & McGregor [13] prove that there exists a unique measure ψ on [−1, 1] for which the

family (Qi, i ≥ 0) forms an orthogonal family. More precisely

πj ∫
1

−1
Qi(x)Qj(x)dψ(x) = 1i=j ,

where π is the invariant measure of T. Further,

(Tn)i,j = πj ∫
1

−1
x
n
Qi(x)Qj(x) dψ(x). (5.2)

Their approach is somehow more natural in the continuous settings: define the transition rate
matrix

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(λ0 + µ0) λ0 0 0 0 ⋯
µ1 −(λ1 + µ1) λ1 0 0 ⋯
0 µ2 −(λ2 + µ2) λ2 0 ⋯
0 0 µ3 −(λ3 + µ3) λ3 ⋯
⋮ ⋮ ⋱ ⋱ ⋱ ⋱

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.3)
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and a second family of orthogonal polynomials (Q̃i, i ≥ 0) as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−xQ̃0(x) = −(λ0 + µ0)Q̃0(x) + λ0Q̃1(x),
−xQ̃n(x) = µnQ̃n−1(x) − (λn + µn)Q̃n(x) + λnQ̃n+1(x),
Q̃0(x) ≡ 1

(5.4)

so that (5.4) can be rewritten as

−xQ̃(x) = GQ̃(x). (5.5)

These polynomials are the orthogonal polynomials of a solvable Stieljes moment problem associated
with a regular probability measure Ψ on [0,+∞). There exists a unique measure Ψ on [0,+∞) for

which the (Q̃i, i ≥ 0) forms an orthogonal family ([13]), more precisely, π
C
j ∫ 1

−1 Q̃i(x)Q̃j(x)dΨ(x) =
1i=j , where π

C
is the explicitly known invariant measure of the continuous-time process.

Set P
′(t) = P (t)G, for t ≥ 0 and P (0) = Id. The matrix P (t) is the transition matrix of the

continuous-time BD process, and Pi,j(t) is the probability that the state of the chain is j at time
t given that it started at time 0 in state i (a detail: µ0 is not assumed to be 0, the case where
absorption at 0 may occur is included). Then Karlin & McGregor defined “formally”

fi(x, t) = ∑
j≥0

Pi,j(t)Q̃j(x) (5.6)

and in vectorial notation

f(x, t) = P (t)Q̃(x)⇒ ∂f(x, t)/∂t = P ′(t)Q̃(x) = P (t)GQ̃(x) = −xf(x, t),

subject to the initial condition f(x, 0) = Q̃(x). From here f(x, t) = exp(−xt)Q̃(x), so that

fi(x, t) = exp(−xt)Q̃i(x).

Now, reinterpret fi(x, t) on the L
2

space in which we are working in, equipped with its basis of
orthogonal polynomials (Q̃j(x), j ≥ 0). The extraction of Pi,j(t) in (5.6) can be done using the

orthogonality of the Q̃j ’s,

Pi,j(t) = [∫ fi(x, t)Q̃j(x)dΨ(x)] / [∫ Q̃j(x)2dΨ(x)]

(they set ∫ Q̃j(x)2dΨ(x) = 1/πCj).
The main point in the construction: the orthogonality of the polynomials, means, since Q̃0(x) =

1, and ∫ Q̃0dΨ = 1, that ∫ Q̃jdΨ = 0 for j ≥ 1, the moments ∫ xndΨ can be expressed in the Q̃n
(since Q̃n has degree n).

Karlin & McGregor constructed their study by establishing a correspondence between the set
of matrices G of continuous-time BD processes, and the set of solvable Stieltjes moment problem.
From here, the measure Ψ encodes somehow in an indirect way the polynomials (Qi, i ≥ 0) (as a
transform), which are solution to −xQ̃(x) = GQ̃(x) and then they encode the spectral properties
of G, which drives the behaviour of P (t) (by (5.6)). The extraction of the recurrence criterion from
here (see [12, p.370 - 376]) is done by expressing the recurrence in terms of a certain property of
Ψ, which in turn, is shown to be expressible in terms of the coefficients of G (which provides the
criteria given at the beginning of Section 1, in the discrete-time version of the BD process).

The methods developed by Karlin & McGregor are really elegant and satisfying from a theoretical
point of view. These methods connect probability theory, algebra, measure theory (specifically the
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“moment problem”) and the theory of orthogonal polynomials. However, the focus made on the
map G ↦ Ψ, which is something that can be compared with the recourse of Fourier transform in
other fields of probability theory, has the effect to lock a bit these studies, and this, for two reasons.
The first one is that the correspondence is exact, so that, these tools are not simply available for
any extension of the class of BD processes. Secondly, the measures Ψ are in general not known,
nor computable, so that, Ψ is used as a formal encoding tool, rather than as a computing tool
that helps to make some computations: there are just a handful of important cases in which it can
be computed (see e.g. Schoutens [21]). The approach we propose is different since it is centred on
direct computations of quantities of interests. Limitations exist, but they are not the same at all.
The criteria of recurrence/transience we provide, do not rely on the moment’s computation of any
measure.
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