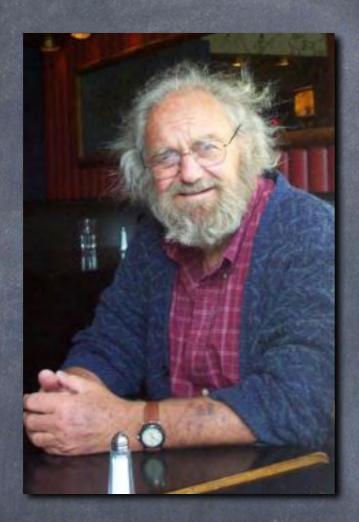
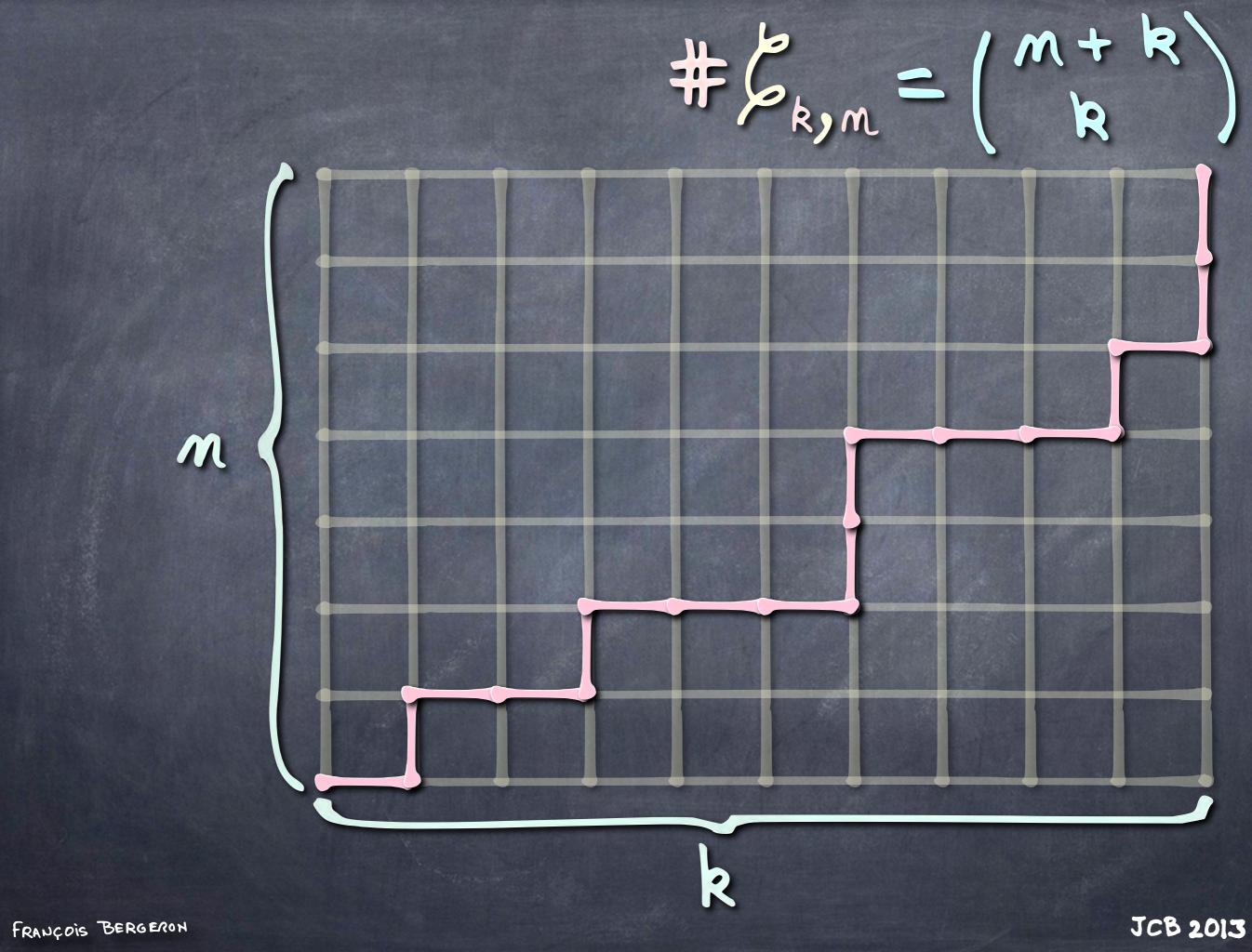
FONCTIONS PARKING ET POLYOMINDS

COLLABORATEURS



ADRIANO

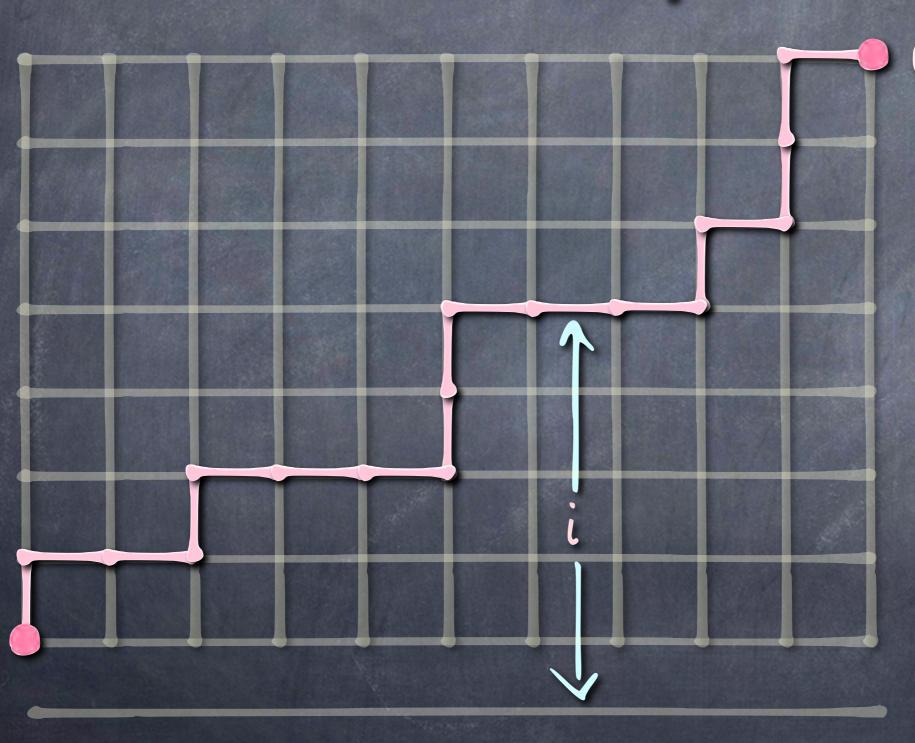
JEAN-CHRISTOPHE



Friday, 15 February, 13

CHEMINS ET MONÎMES $x_{\alpha} := T_{i}^{T} x_{i}$

$$x_{\alpha} := \prod_{i} x_{i}$$



 $\chi_2^2 \chi_3^3 \chi_5^3 \chi_6 \chi_8$

FRANÇOIS BERGERON

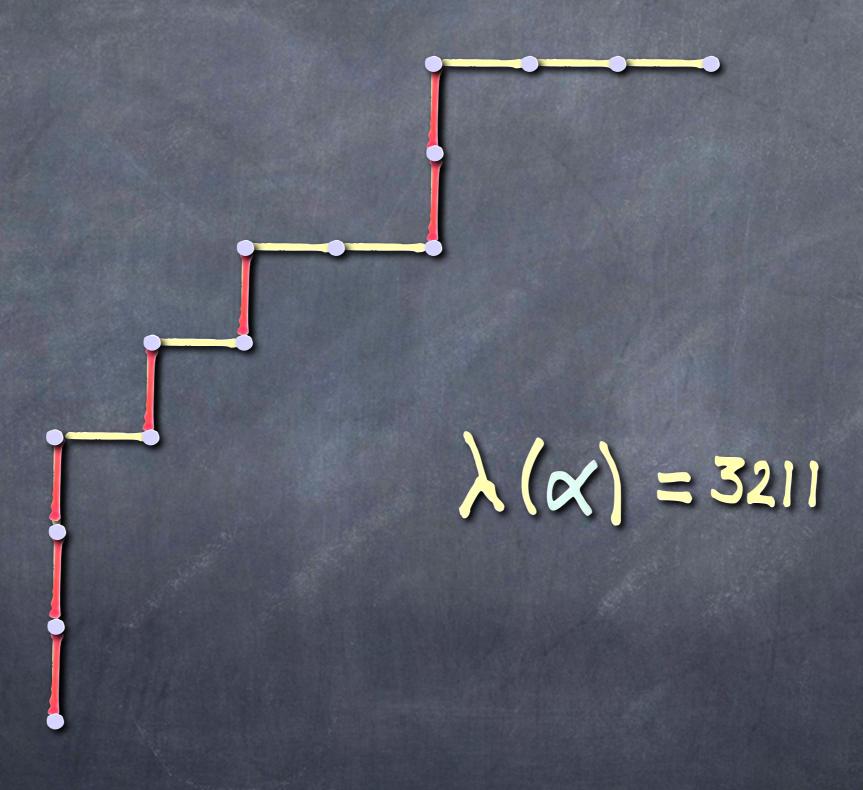
FONCTIONS HOMOBENES COMPLETES

FONCTION GÉNÉRATRICE DES CHEMINS

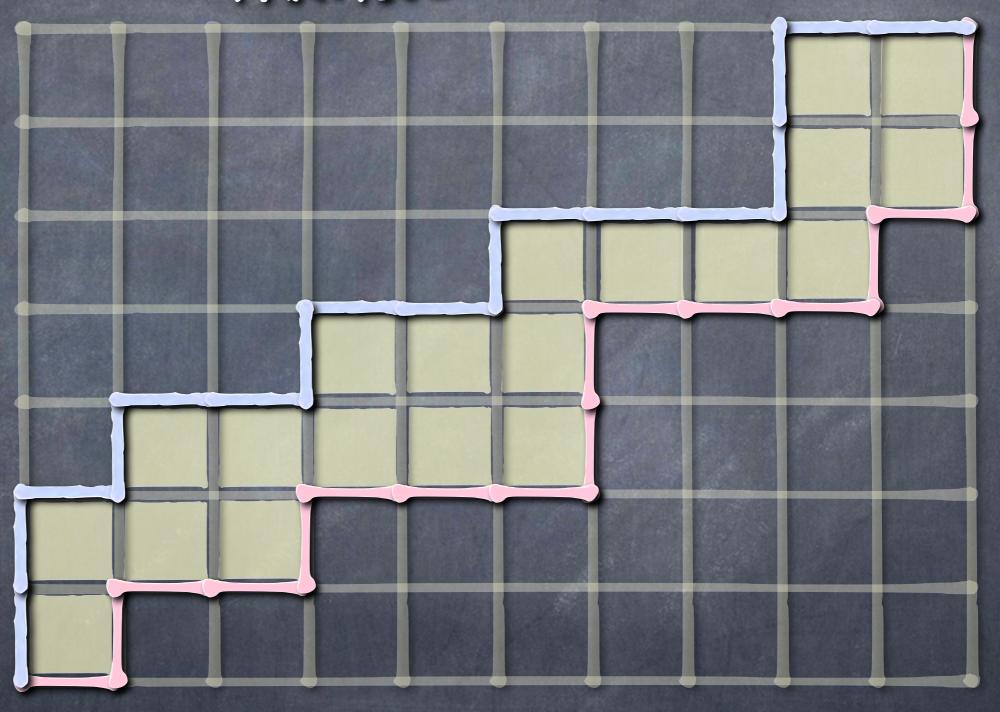
$$h_{k}(x_{11}x_{23}...,x_{m+1}) = \sum_{\alpha \in \mathcal{E}_{k,m}} x_{\alpha}$$

$$h_{R}(\underline{U,U,...,1}) = \binom{m+k}{k}$$

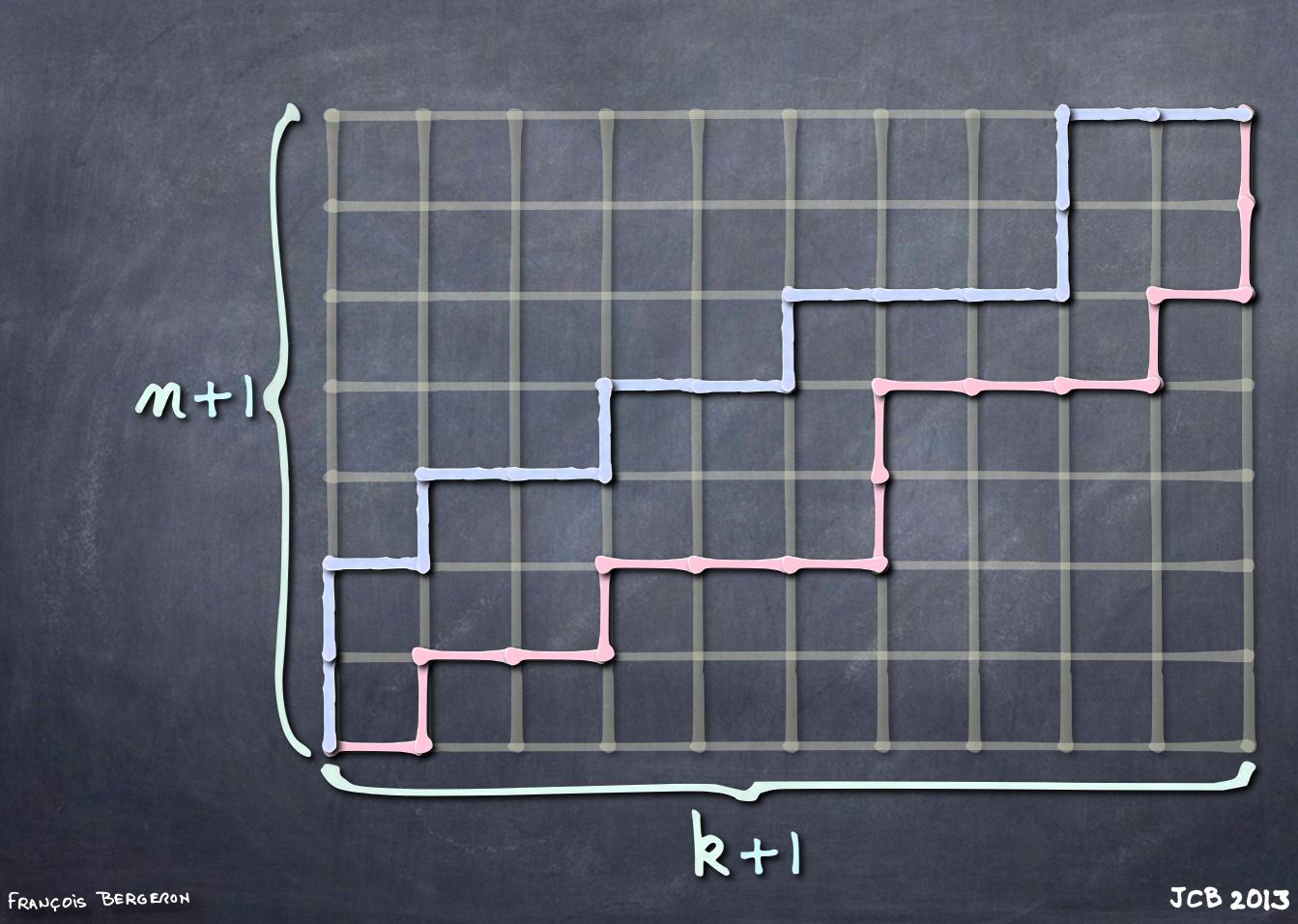
FORME D'UN CHEMIN &



PR, M: PARALLELOGRAMMES

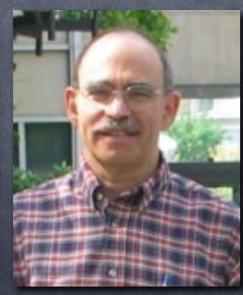


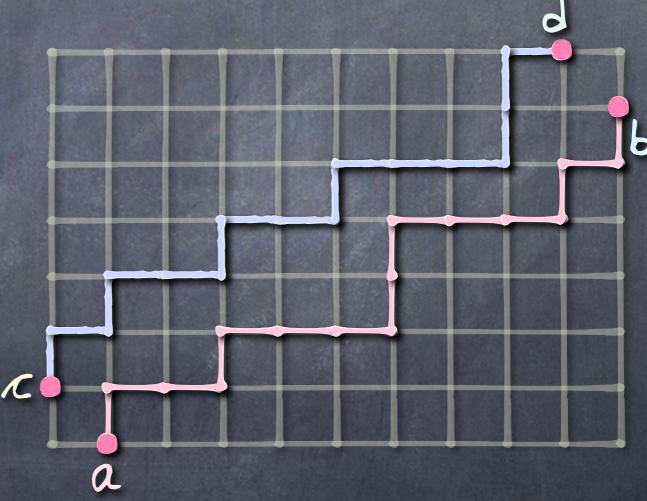
FRANÇOIS BERGERON



Friday, 15 February, 13

LINDSTROM - GESSEL - VIENNOT



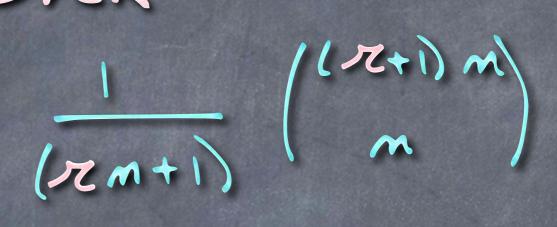


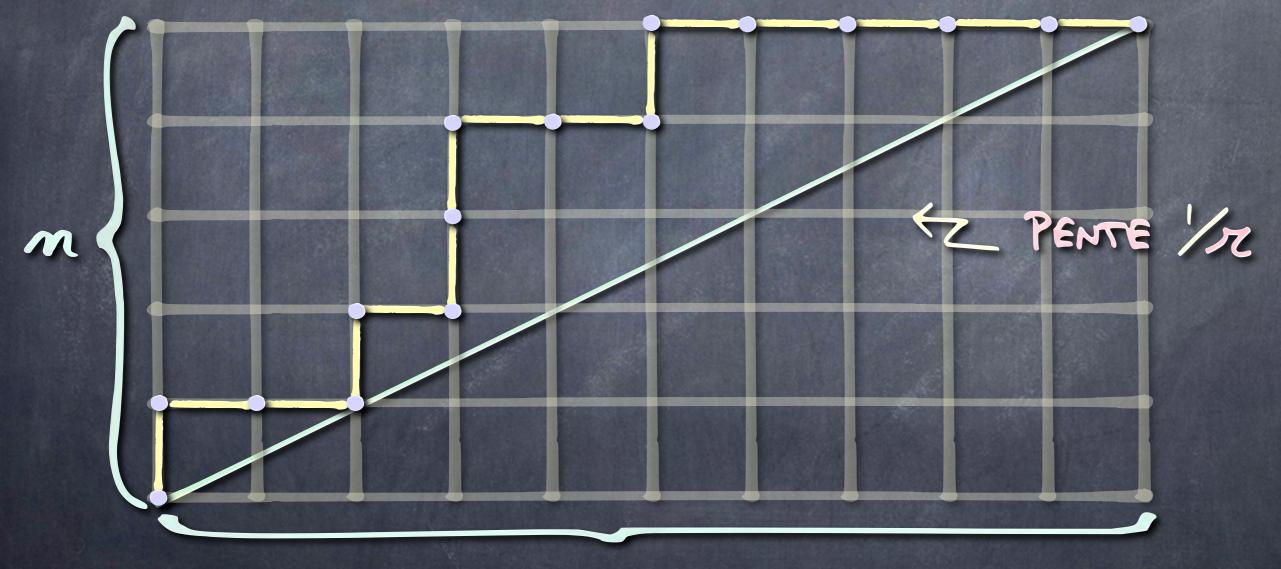
FRANÇOIS BERGERON

POLYOMINOS BRALLE LOGRAMMES

$$P_{k+1, m+1} = \frac{1}{m+k+2} \binom{m+k}{k} \binom{m+k+2}{k+1}$$

CHEMINS DE 1-DYCK





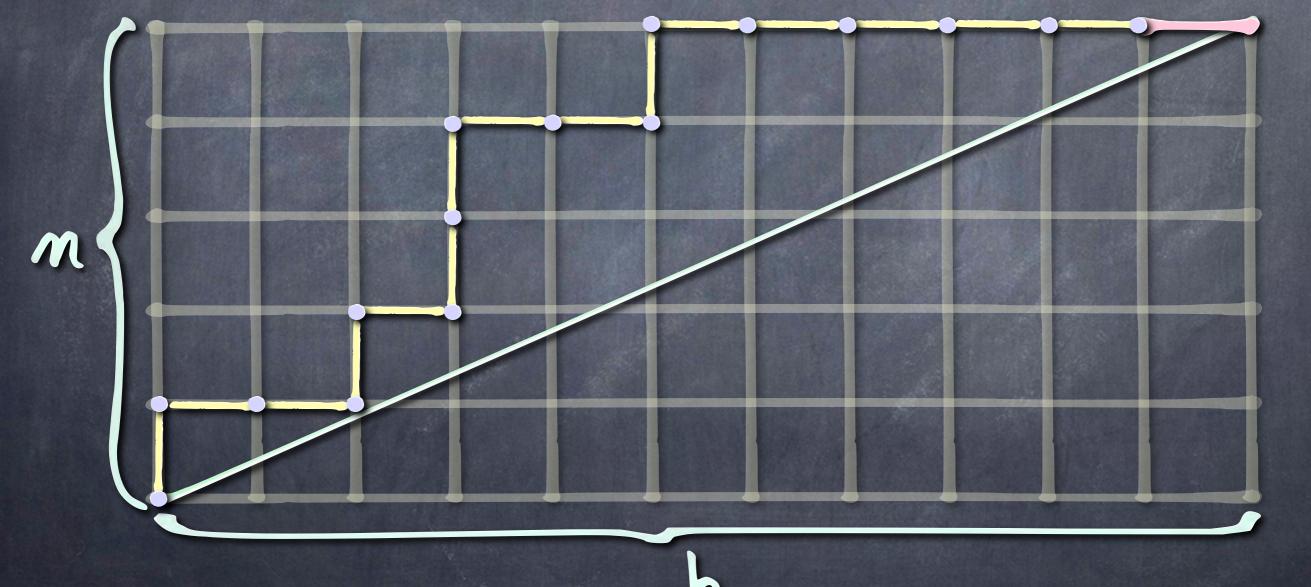
7 m

FRANÇOIS BERGERON

CHEMINS DE R, M-DYCK

RELATIVEMENT
PREMIERS

$$\frac{1}{k+m} \left(\frac{k+m}{m} \right)$$



FRANÇOIS BERGERON

DERIVATION OF A NEW FORMULA FOR THE NUMBER OF MINIMAL LATTICE PATHS FROM (0, 0) TO (km, kn) HAVING JUST t CONTACTS WITH THE LINE my=nx AND HAVING NO POINTS ABOVE THIS LINE; AND A PROOF OF GROSS-MAN'S FORMULA FOR THE NUMBER OF PATHS WHICH MAY TOUCH BUT DO NOT RISE ABOVE THIS LINE

By M. T. L. BIZLEY, F.I.A., F.S.S., F.I.S.

Whitworth(1) deals in Chapter v of Choice and Chance with the problem of finding the number of minimal lattice paths from (0,0) to (k,k) which do not cross the line y=x. By a lattice path is meant a path joining two points with integral coefficients by a line composed of horizontal and vertical steps of unit length. A minimal lattice path from (0,0) to (x,y), say, is a lattice path where the total number of steps is (x+y); in other words, all the steps are onwards. In what follows minimal lattice paths only will be considered, and the words 'minimal lattice' will be omitted.

Although Whitworth deals only with the case where the boundary line (i.e. the line which the path must not cross) is y = x, the more general case of a boundary $\alpha y = x$ has been solved provided α is a positive integer (2), (3). The number of paths from (0, 0) to $(\alpha l, l)$ which may touch but never rise above

$$\alpha y = x$$
 is $\frac{1}{l\alpha + 1} \binom{l\alpha + l}{l}$.

Grossman (a) announced without proof in 1950 a formula for the number of paths from (0, 0) to (km, kn) which may touch but never rise above the line my = nx, where k is a positive integer and m and n are coprime positive integers; thus (km, kn) is any point having positive integral coefficients. Grossman's formula is

$$\Sigma F_1^{k_1} F_2^{k_2} \dots / k_1! k_2! \dots,$$

where

$$F_j = \frac{1}{j(m+n)} \binom{jm+jn}{jm},$$

J. Inst. Actuaries, 77 (1952)

FORMULE DE GROSSMAN

RELATIVEMENT PREMIERS

#DYCK =
$$h_d$$

Previews

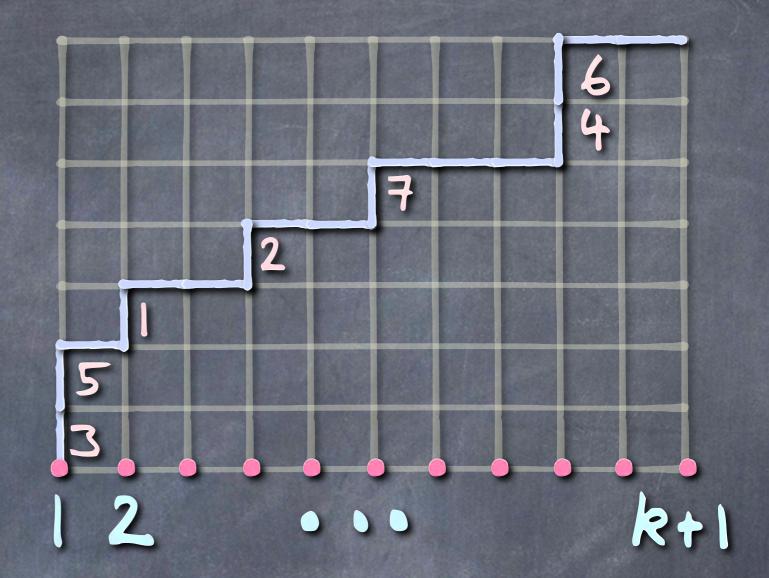
Previews

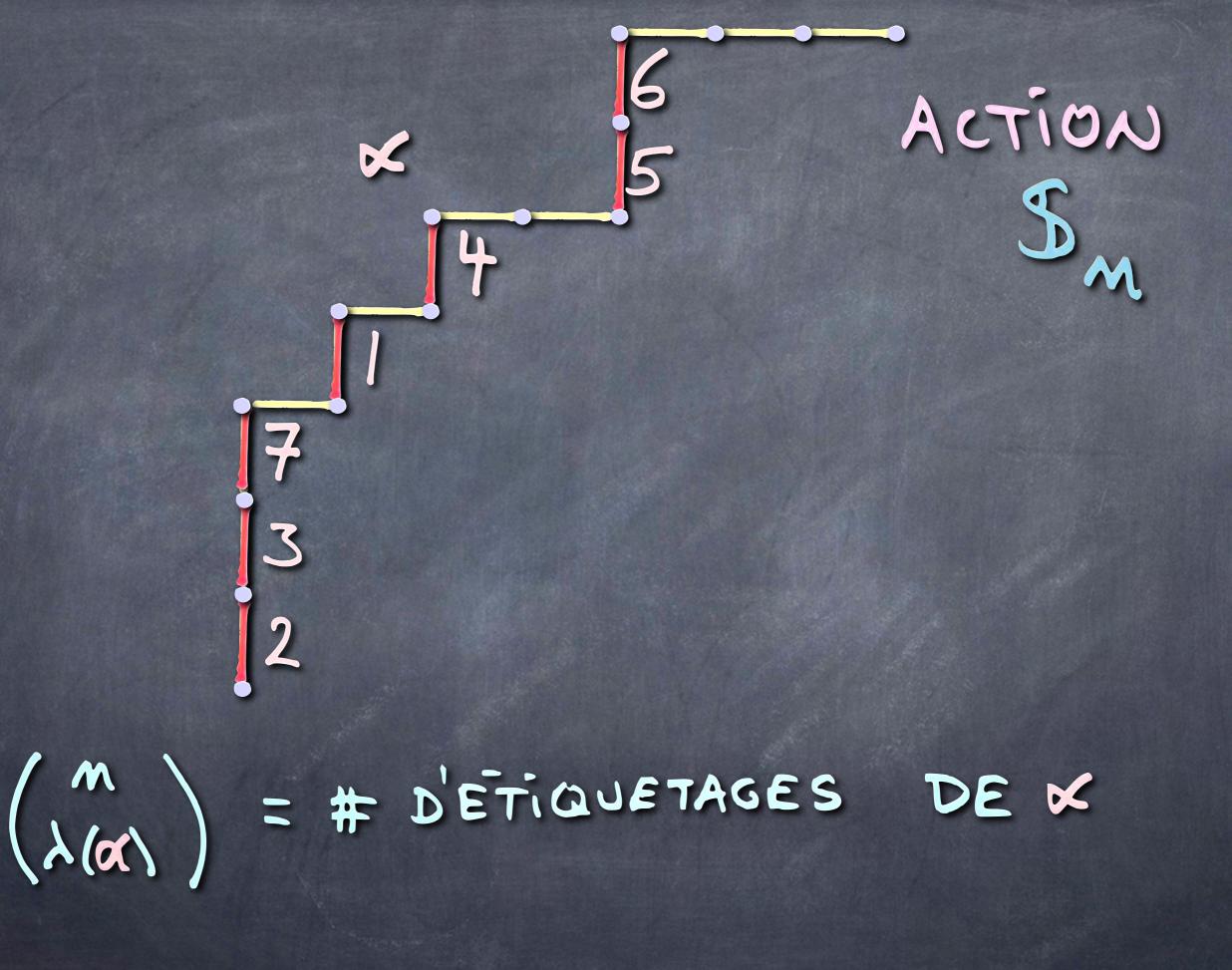
 $\frac{1}{k+m} \left(\frac{j(k+m)}{jm} \right)$

#Dxk

$$2k,2m = \frac{1}{2}(\frac{1}{k+m}(\frac{k+m}{m})^2 + \frac{1}{2(k+m)}(\frac{2k+2n}{2m})$$

ETIQUETAGES





FRANÇOIS BERGERON

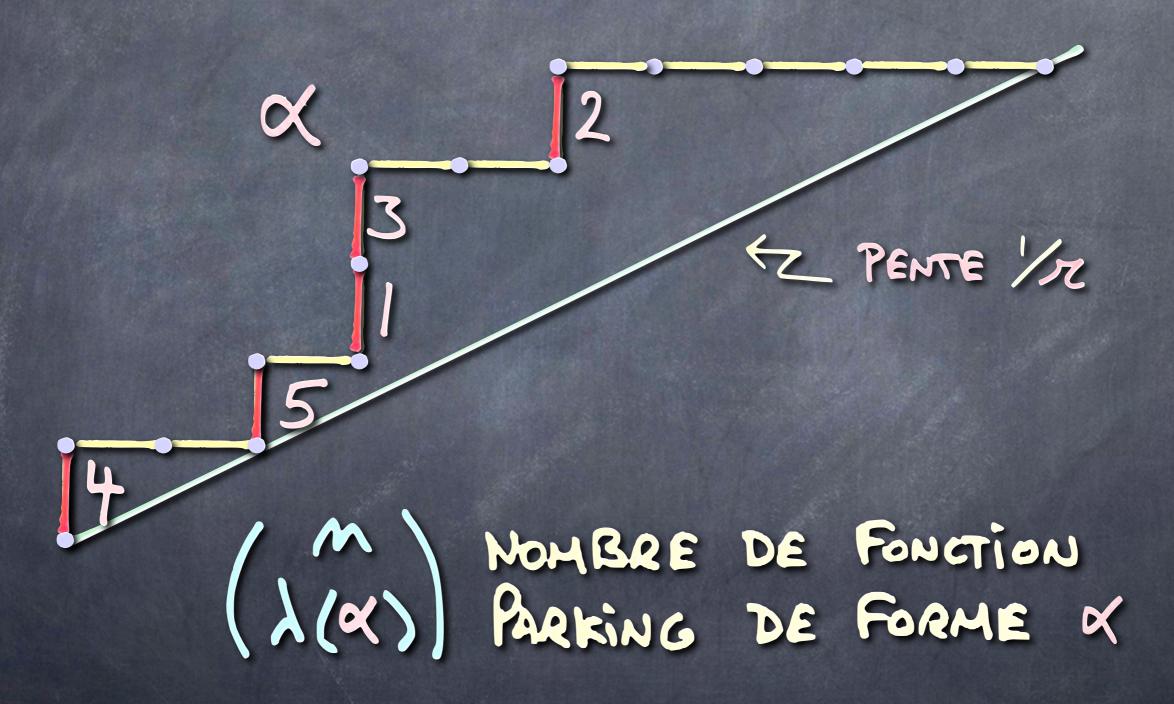
$$(k+1)^{M} = \sum_{\alpha \in \mathcal{E}_{k,m}} (\lambda(\alpha))$$

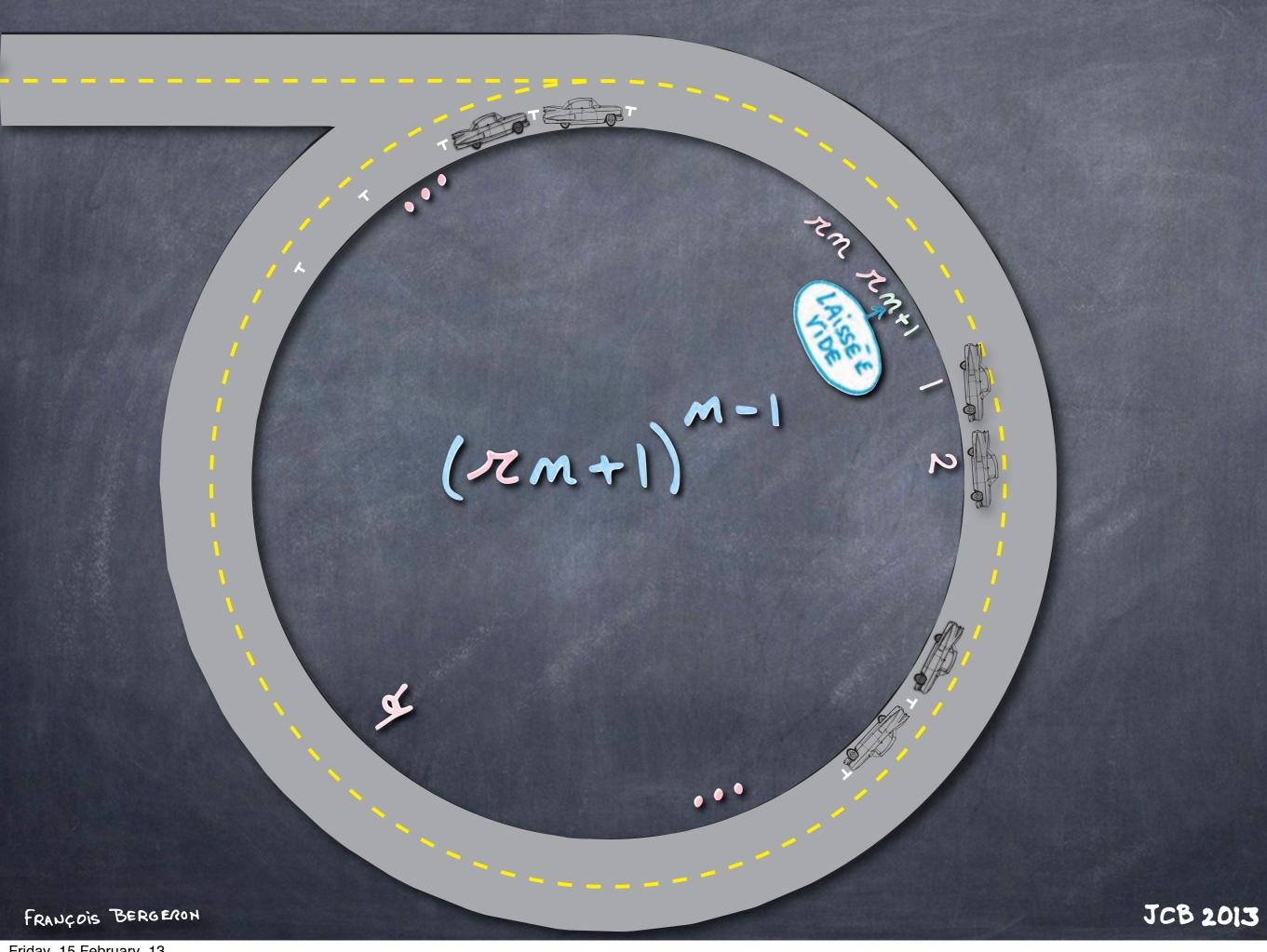
CARACTE RISTIQUE DE FROBENIUS

SERIE DE POLYA

$$L_{k,m}(z) = \sum_{\alpha \in \mathcal{B}_{k,m}} h_{\lambda(\alpha)}(z)$$

17-fauctions Parking





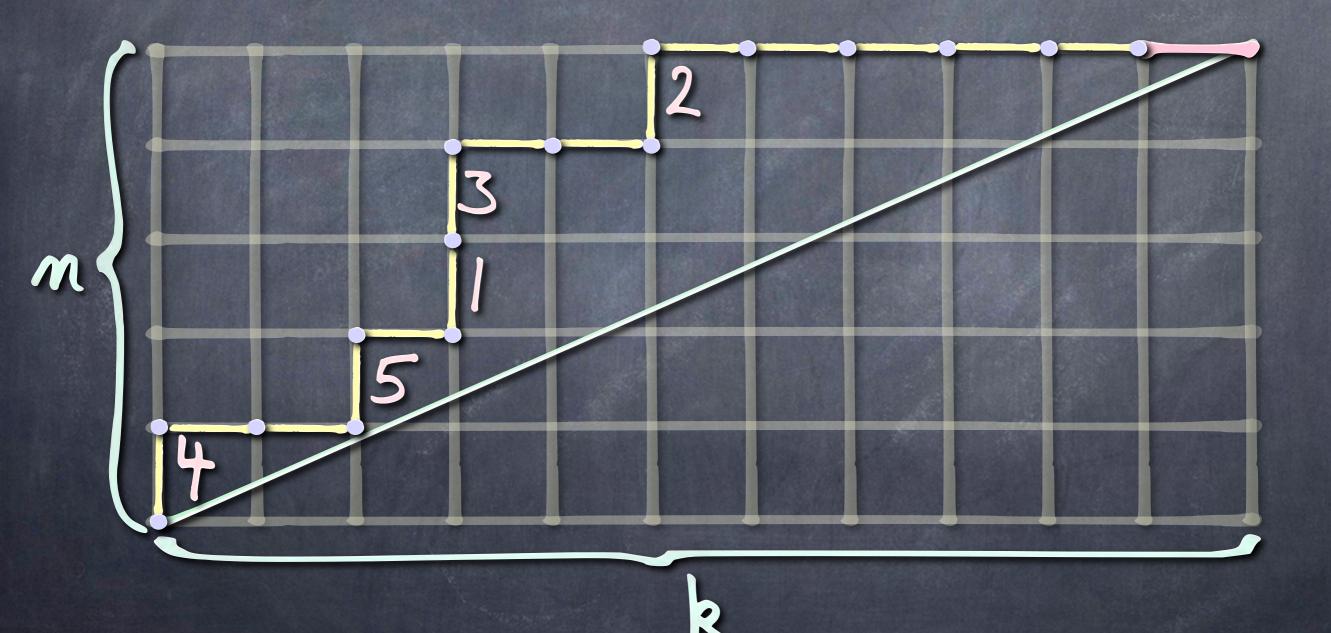
17-fauctions Parking

$$(\pi m+1)^{m-1} = \sum_{\mathcal{Z}} (\lambda m)$$

$$\mathcal{Z} = \mathcal{Z} = \mathcal{$$

RELATIVEMENT
PREMIERS

k, m-Fouctions Parking
m-1



FRANÇOIS BERGERON

FORMULE A LA GROSSMAN

$$\sum_{d=0}^{\infty} \# PARk_{dk,dm}(dm)! = \sum_{j \geq 1} (jk)^{jm-1} \frac{\chi_{jm}}{(jm)!}$$

FROBENIUS

k, m-fonctions Parking

$$PARK_{k,m}(Z) := \sum_{\alpha \in DYCK_{k,m}} h_{\lambda(\alpha)}$$

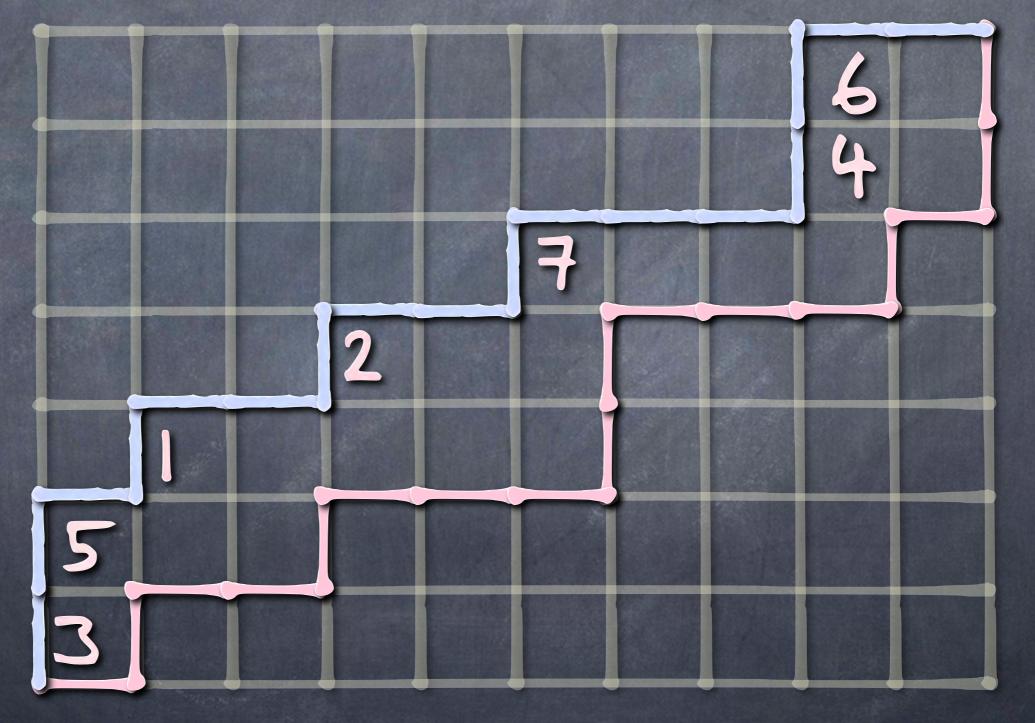
RELATIVEMENT PREMIERS

$$= \frac{1}{R} \int_{R} \left[\frac{1}{R} \frac{1}{2} \right]$$

$$= \sum_{M \in R} \frac{l(r)-1}{R} \frac{l(r)}{2r}$$

$$\Pi = (\alpha, \beta)$$

$$\lambda(\Pi) := \lambda(\beta)$$



FRANÇOIS BERGERON

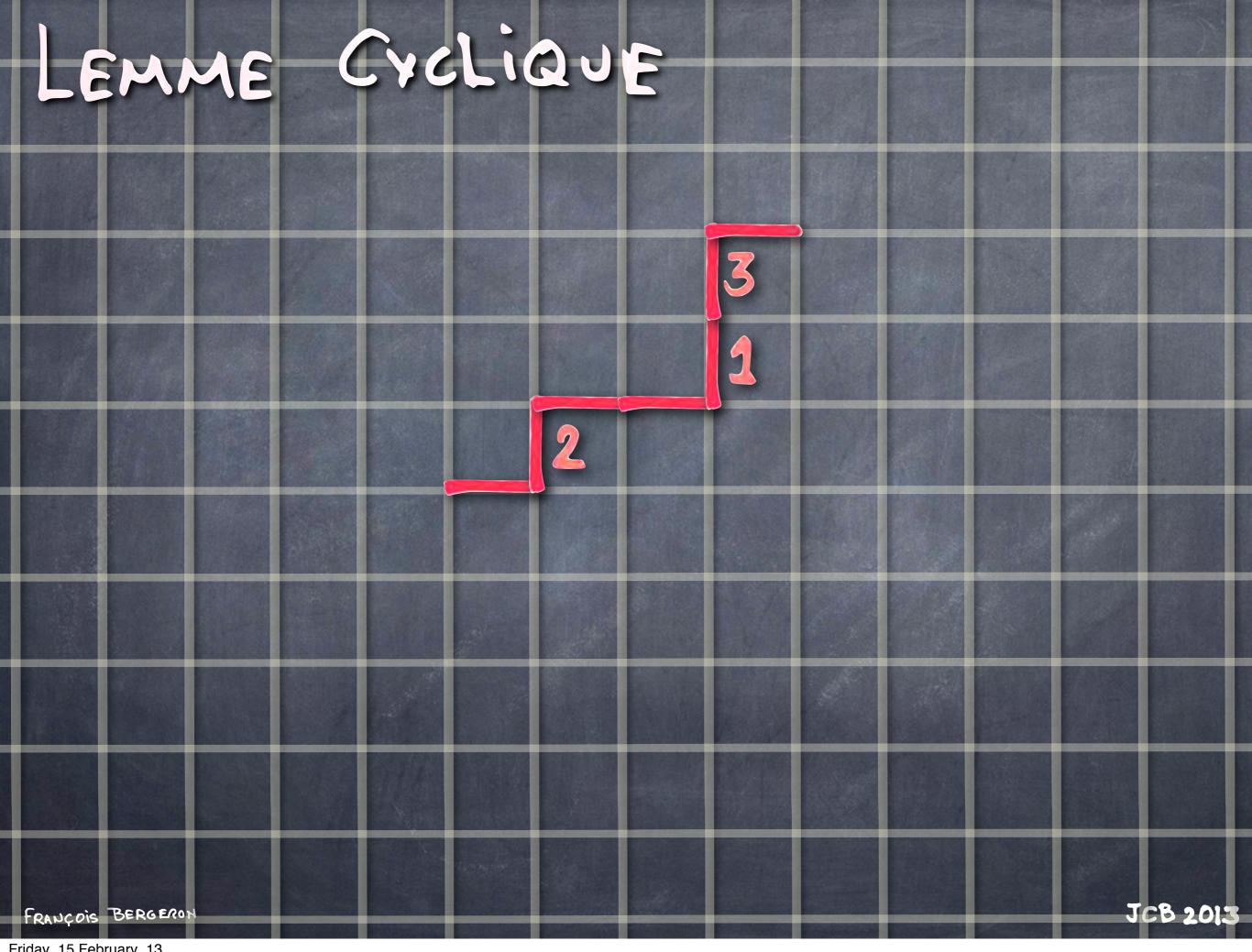
FROBENIUS DE ÉRIM

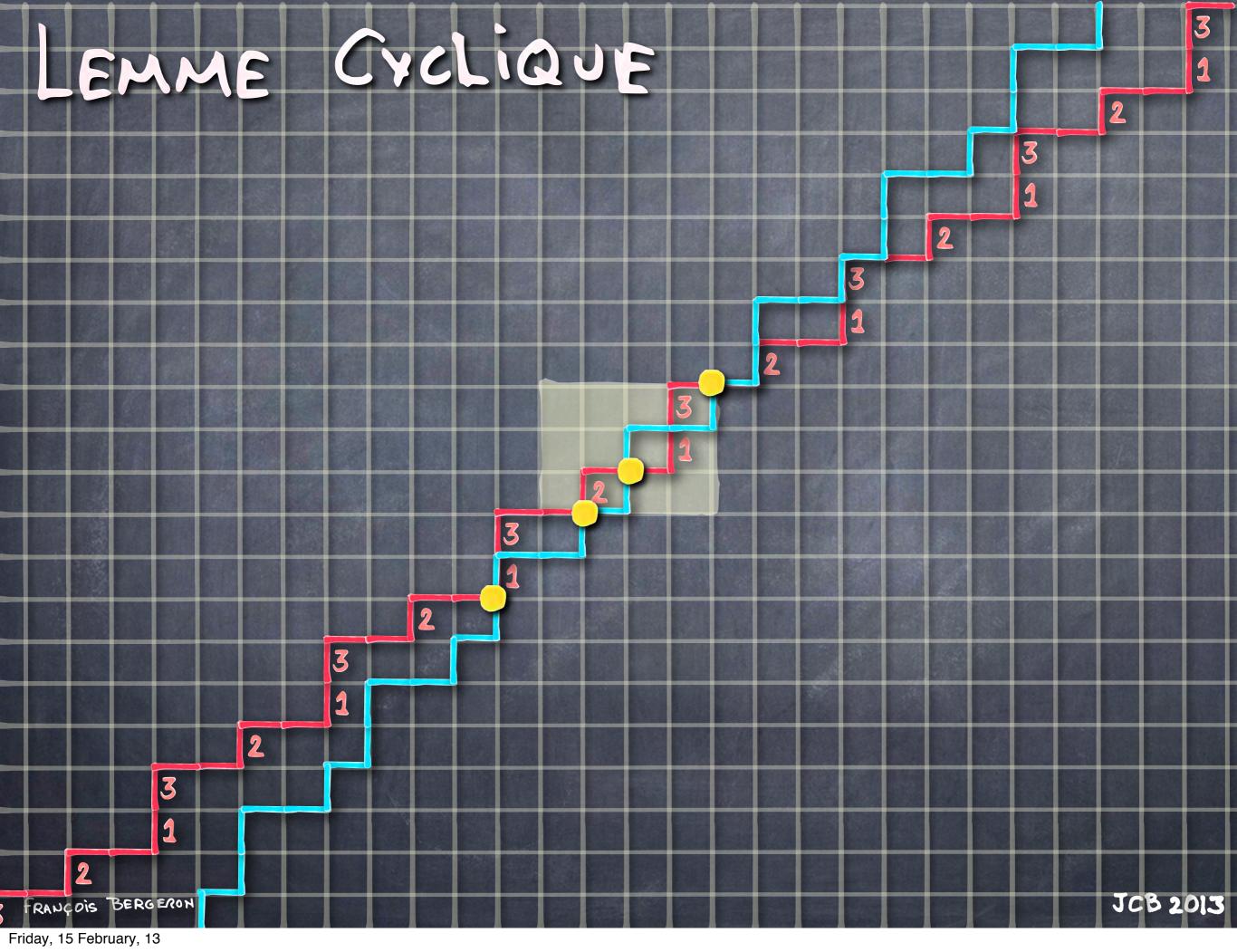
$$\chi_{k,m}(z) = \sum_{\pi \in \mathcal{O}_{k,m}} h_{\lambda(\pi)}(z)$$

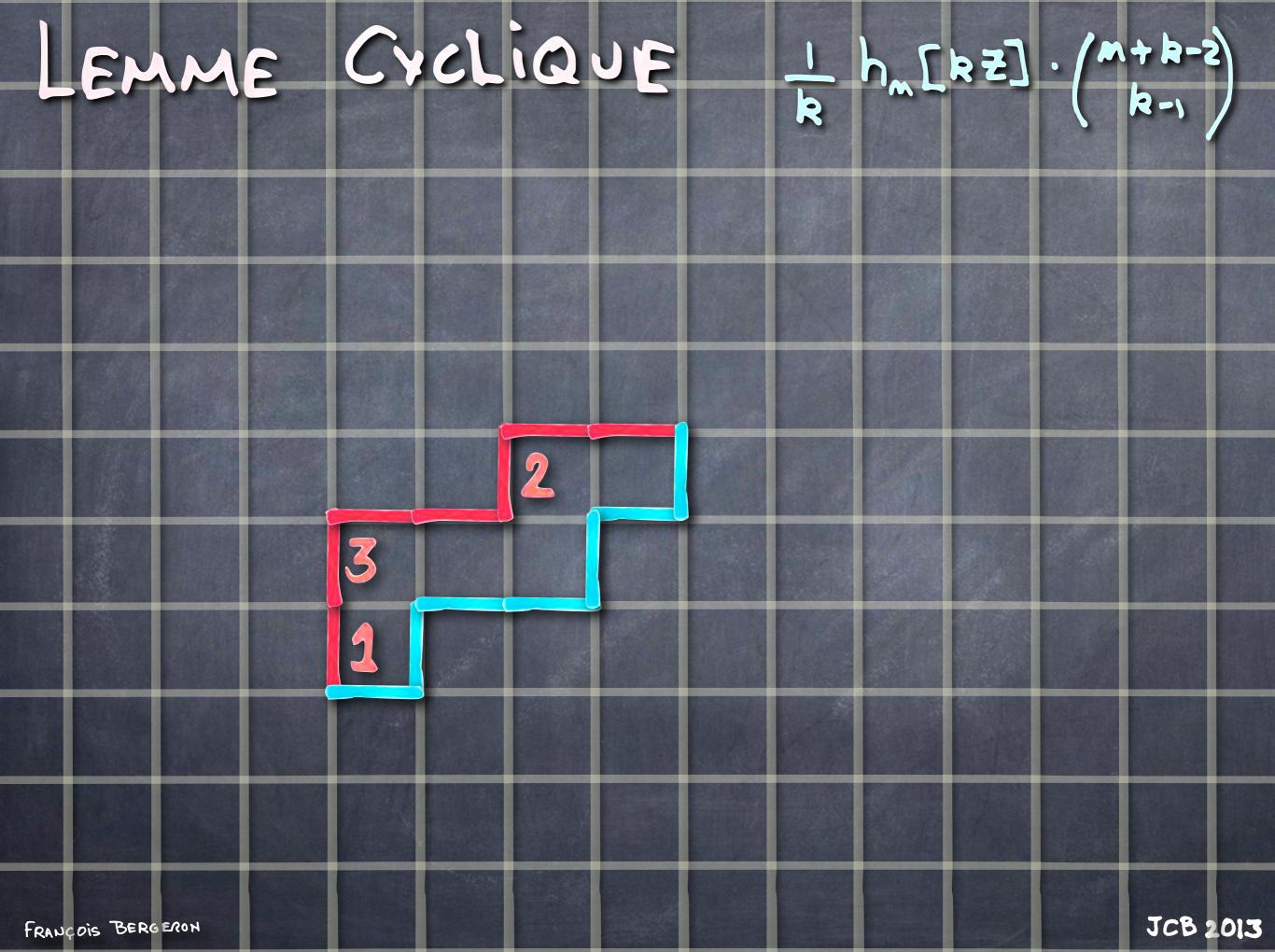
$$=\frac{1}{k}h^{m}[kz]\cdot\binom{m+k-2}{k-1}$$

$$\#\chi_{k,m} = k^{m-1} \binom{m+k-2}{k-1}$$

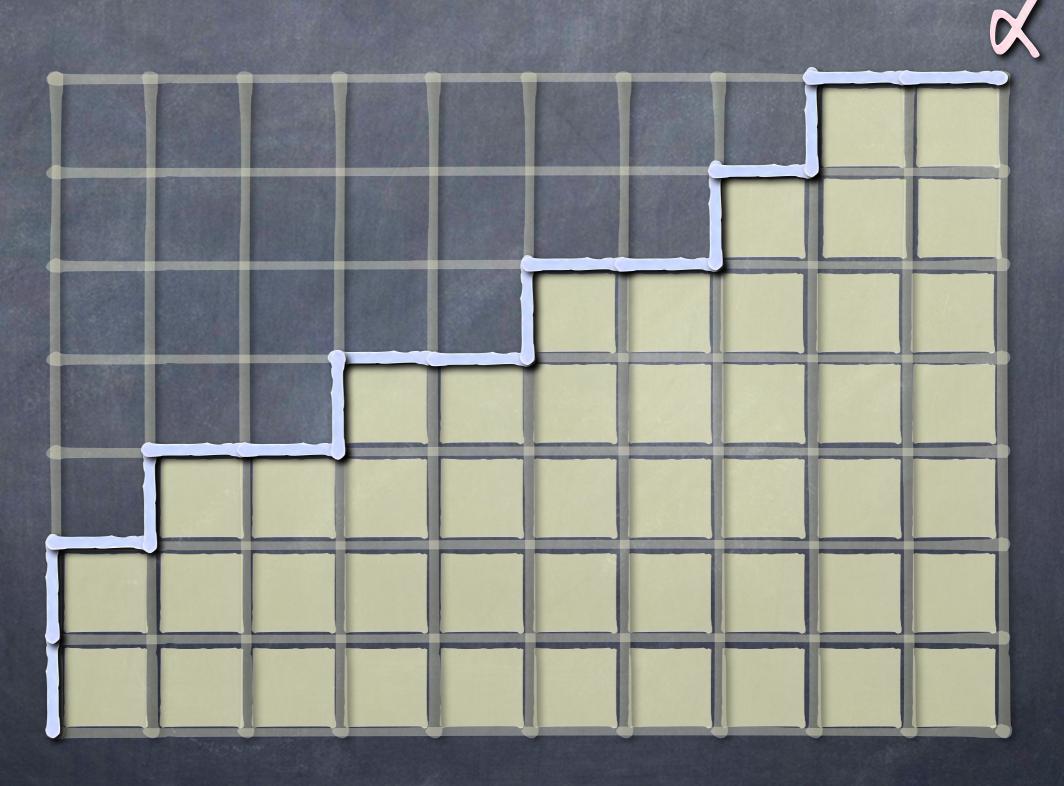
$$=\sum_{\mathbf{T}\in\mathcal{P}_{\mathbf{k},\mathbf{m}}}\left(\lambda_{\mathbf{T}}^{\mathbf{m}}\right)$$





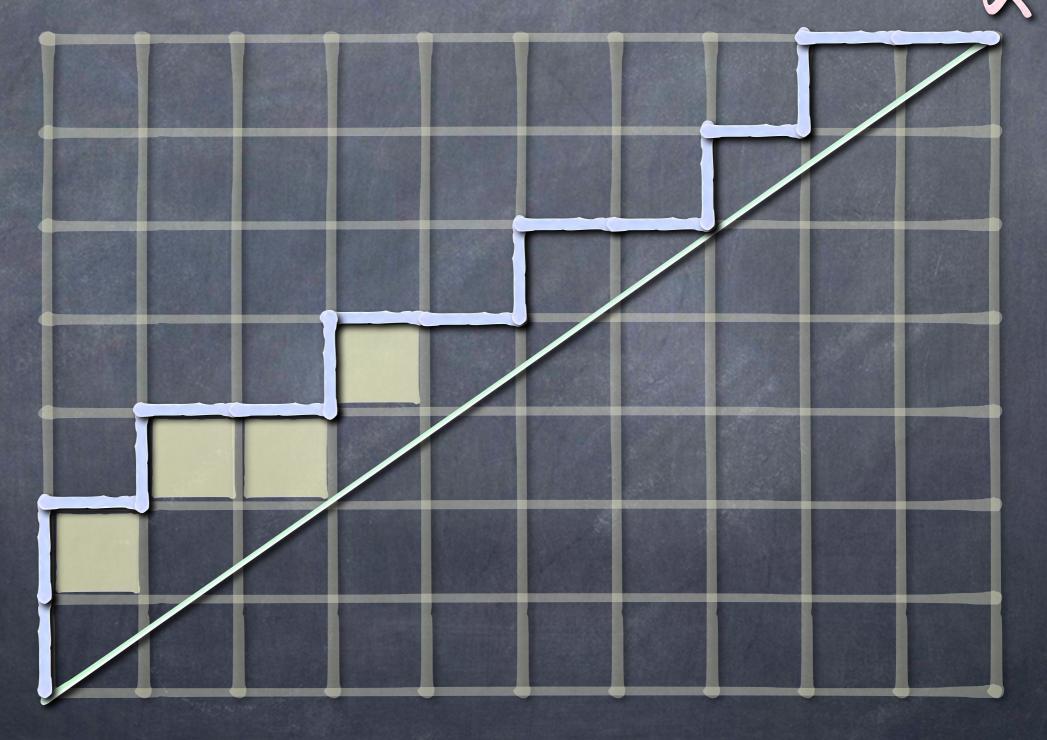


AIRE D'UN CHEMIN aure(K)



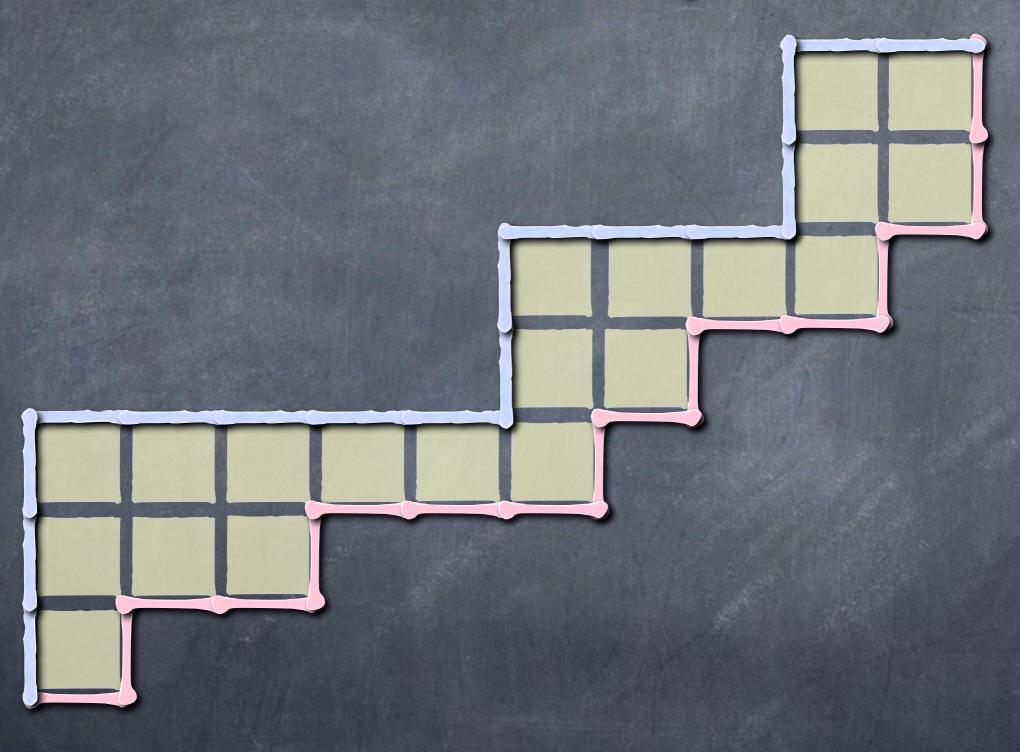
FRANÇOIS BERGERON

AIRE D'UN CHEMIN DE DYCK aire(x)



FRANÇOIS BERGERON

aire (TT)



FRANÇOIS BERGERON

$$\begin{bmatrix} m+k \\ q \end{bmatrix} = \sum_{\alpha \in \mathcal{B}_{k,m}} q \text{ aire}(\alpha)$$

$$\begin{bmatrix} k+1 \\ q \end{bmatrix} = \sum_{\alpha \in \mathcal{L}_{k,m}} q \text{ aire}(\alpha)$$

$$\begin{bmatrix} k+1 \\ q \end{bmatrix} = \sum_{\alpha \in \mathcal{L}_{k,m}} s_{\alpha}(1,q,...,q^{k}) s_{\alpha}(q)$$

$$L_{k,m}(q;q) = \sum_{\alpha \in \mathcal{L}_{k,m}} s_{\alpha}(1,q,...,q^{k}) s_{\alpha}(q)$$

FROBENIUS

$$Z_{R,m}(z;q) = \sum_{\pi \in Z_{R,m}} aire(\pi) h_{\lambda(\pi)}$$

CONJECTURE DE D'APDERIO

$$\lambda_{k+1,m}(z;q) = \omega \Delta_{h_k}(e_{n}(z))$$

$$\widetilde{\Delta}_{f} := \Delta_{f} \Big|_{t=1}$$

$$= \omega \sum_{k=1}^{\infty} f_{k} [1-i] \prod_{i=1}^{\infty} \frac{x h_{ki} [\frac{z}{z}/(1-q)]}{(1-x)\cdots(1-xq^{k-1})}$$

$$I_{1}(z;q) = \frac{qx}{1-qx}h_{1}(z)$$

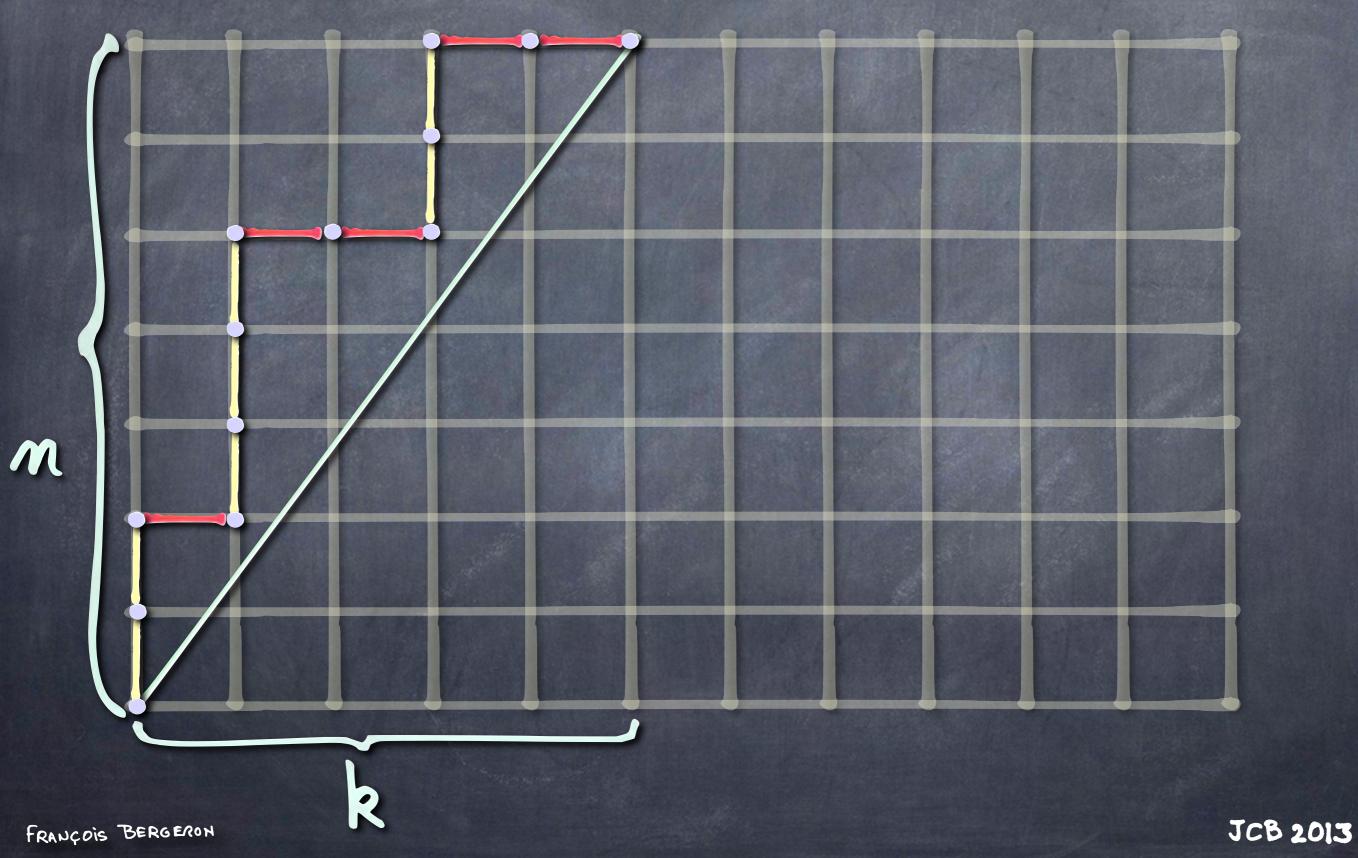
FROBENIUS

k, m-fonctions Parking

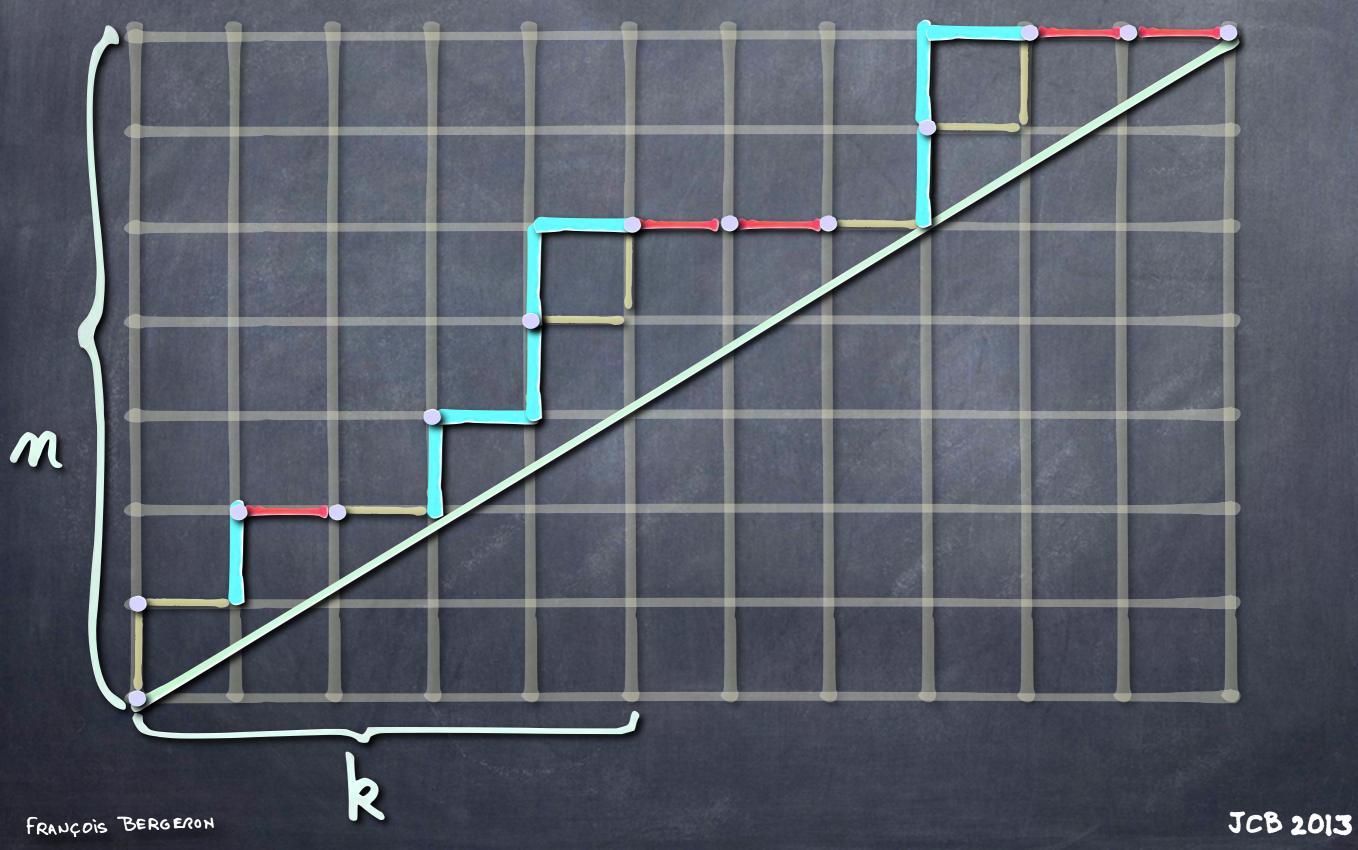
PARK
$$(7;9) := \sum_{d \in DYCK_{R,m}} aire(a) h_{\lambda(d)}$$

LINEAIRE ET MULTIPLICATIF

THM PREUME COMBINATOIRE



THM PREUME COMBINATOIRE

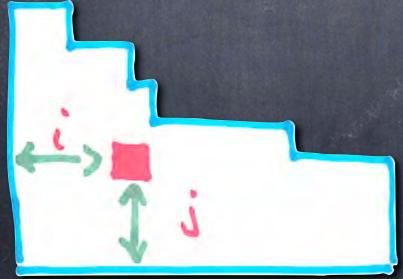


TROUVER UNE STATISTIQUE TELLE QUE

$$\chi_{\text{MJM}}(z;q,t) = \omega \Delta_h(e_n(z))$$

DI OPÉRATEUR SUR LES FONCTIONS SYMÉTRIQUES

POLYNôMES DE MACDONALD $H_{\mu} = H_{\mu}(Z; 4,t)$ $\Delta_{\xi}(H_{h}) := f[B_{h}] \cdot H_{h}$



$$B_{\mu}(q,t) = \sum_{(i,j) \in \mu} q^i t^j$$

$$H_1 = S_1$$
 $H_2 = S_2 + q S_{11}$
 $H_{11} = S_2 + t S_{11}$
 $H_3 = S_3 + (q^2 + q) S_{21} + q^3 S_{111}$
 $H_{21} = S_3 + (q + t) S_{21} + q t S_{111}$
 $H_{111} = S_3 + (t^2 + t) S_{21} + t^3 S_{111}$

FRANÇOIS BERGERON