Indecomposable permutations, Hypermaps, and Subgroups of finite index of \mathbb{F}_2 .

Robert Cori Labri, Université Bordeaux 1

• Joint work with Claire Mathieu (Brown University), Christophe Reutenauer (UQAM), Mike Robson (Labri, Bordeaux 1).

The sequence A003319 of OEIS

 $1, 3, 13, 71, 461, 3447, \ldots$

First found by Marshall Hall Jr Canad J Math, Vol 1, (1949), see also: The Theory of Groups, Macmillan (1959) page 105

Theorem The number $N_{n,r}$ of subgroups of index *n* in \mathbb{F}_r is given by $N_{1,r} = 1$, and :

$$N_{n,r} = n(n!)^{r-1} - \sum_{i=1}^{n-1} (n-i)!^{r-1} N_{i,r}$$

denoting $c_n = N_{n,2}$ we have :

$$c_n = n(n!) - \sum_{i=1}^{n-1} (n-i)! c_i$$
 $c_2 = 3, c_3 = 13, c_4 = 71...$

Indecomposable permutations

A permutation a_1, a_2, \ldots, a_n is *decomposable* if there exists p < n such that a_1, a_2, \ldots, a_p is a permutation of $1, 2, \ldots, p$

Elementary facts on indecomposable permutations

Remark If $a_1 > a_n$ then α is indecomposable.

Corollary Not less than one half of the permutations of S_n are indecomposable

Almost all permutations are indecomposable

Proposition 1 Let c_n be the number of indecomposable permutations of S_n then :

$$c_n = n! - \sum_{i=1}^{n-1} c_i (n-i)!$$

$$c_n = \sum_{i=1}^{n-1} i c_i (n-i-1)!$$

Proposition (Lentin, Comtet, 1969)

 $\frac{c_n}{n!} = 1 - \frac{2}{n} + O(\frac{1}{n^2})$

First values 1, 1, 3, 13, 71, 461, ...

Permutations by number of cycles, Stirling numbers Cycle of α :

$$i_1, i_2 = a_{i_1}, \dots, i_k = a_{i_{k-1}}, \dots, i_j, \quad a_{i_j} = i_1$$

The number of permutations of S_n having *m* cycles is the Stirling number $s_{n,m}$.

$$s_{n,m} = (n-1)s_{n-1,m} + s_{n-1,m-1}$$
 $s_{1,1} = 1$ $s_{n,1} = (n-1)!$ $s_{n,n} = 1$

Indecomposable permutations of \mathbb{S}_4

4, 1, 2, 3
$$(1, 4, 3, 2)$$
4, 1, 3, 2 $(1, 4, 2)$ (3)4, 2, 1, 3 $(1, 4, 3)$ (2)4, 2, 3, 1 $(1, 4)$ (2) (3)4, 3, 1, 2 $(1, 4, 2, 3)$ 4, 3, 2, 1 $(1, 4)$ (2, 3)

Indecomposable permutations by number of cycles

Let $c_{n,m}$ be the number of indecomposable permutations of S_n having m cycles, then:

$$c_{n,m} = s_{n,m} - \sum_{p=1}^{n-1} \sum_{i=1}^{\min(p,m)} c_{p,i} s_{n-p,m-i}$$

The probability of indecomposability depends heavily on the number of cycles

• Permutations with 1 cycle: $\frac{c_{n,1}}{s_{n,1}} = 1$

• Permutations with
$$n-1$$
 cycles $\frac{c_{n,n-1}}{s_{n,n-1}} = \frac{2}{n(n-1)}$

Number of indecomposable permutations by number of cycles

1					Stirling numbers:	1					
1	0					1	1				
2	1	0				2	3	1			
6	6	1	0			6	11	6	1		
24	34	12	1	0		24	50	35	10	1	
120	210	110	20	1	0	120	274	225	85	15	1

Main result

The shape of the curve $\frac{c_{n,m}}{s_{n,m}}$ as a function of $\frac{m}{n}$ when *n* and *m* tend to ∞

Sketch of the proof (1)

Lemma 1 If the following condition holds, then the permutation $a_1, \ldots a_n$ is decomposable:

$$a_1 = 1 \text{ or } a_n = n$$

Moreover when n and m are sufficiently large almost all decomposable permutations with mcycles satisfy this condition.

The number of permutations of S_n with *m* cycles satisfying the condition is :

$$2s_{n-1,m-1} - s_{n-2,m-2}$$

Sketch of the proof (2) : Moser-Wyman asymptotic formula

 $s_{n,m}$ is asymptotically equivalent to:

$$\frac{b n!}{a^n \sqrt{n}} \frac{u^m}{m!}$$

a, b are functions of u, and u is given by:

$$\frac{m}{n} = \frac{u}{e^u - 1}$$

Hence the probablity that a permutation satisfies the condition of Lemma 1 tends to:

$$\frac{2e^u - 1}{e^{2u}}$$

Sketch of the proof (3)

Lemma 2 If the following condition holds, then the permutation $a_1, \ldots a_n$ is indecomposable:

 $\exists i, i \leq a_1 \text{ and } a_i > a_n$

Sketch of the proof (4)

Lemma 3 The probability that a permutation of S_n with *m* cycles satisfies no one of the two conditions:

 $a_1 = 1 \text{ or } a_n = n \qquad \exists i, i \leq a_1 \text{ and } a_i > a_n$

is:

$$O(\frac{\log(n-m)}{n-m}).$$

Main result

Theorem 1. The probability that a permutation of S_n with *m* cycles is decomposable tends to:

 $(1-e^{-u})^2$

when n, m tend to infinity with $\frac{m}{n}$ constant, where:

$$\frac{m}{n} = \frac{u}{e^u - 1}$$

Probability for a permutation of S_{2m} with *m* cycles to be indecomposable

Computed values:

m	2	3	4	5	6	7	8	9	10	50	75
$rac{c_{2m,m}}{s_{2m,m}}$	0.54	0.49	0.48	0.48	0.49	0.49	0.49	0.50	0.50	0.51	0.511

Value given by the Theorem:

About 51.1 % of the permutations of S_n with $\frac{n}{2}$ cycles are indecomposable

Permutations with *m* **left-to-right maxima**

Definition A *left to right maximum* in $a_1 a_2 \dots a_n$ is a_j such that $a_j > a_i$ for all i < j.

Remark The probability for a permutation of S_n with m left-to-right maxima to be decomposable is the same as the probability for permutations with m cycles to be indecomposable

Indecomposable permutations of \mathbb{S}_4

4, 1, 2, 3
$$(1, 4, 3, 2)$$
4, 1, 3, 2 $(1, 4, 2)$ (3)4, 2, 1, 3 $(1, 4, 3)$ (2)4, 2, 3, 1 $(1, 4)$ (2) (3)4, 3, 1, 2 $(1, 4, 2, 3)$ 4, 3, 2, 1 $(1, 4)$ (2, 3)

From cycles to left-to-right maxima

Proposition The number of permutations of S_n with *m* cycles is equal to the number of those with *m* left-to-right maxima

Mapping *F*:

- Write the cycles of α with the largest element in the first position
- Order the cycles in increasing order of their first elements
- Remove parenthesis

Example

- $\alpha = 5, 3, 2, 6, 9, 7, 4, 8, 1 = (1, 5, 9)(2, 3)(4, 6, 7)(8)$
- $\alpha = (3,2) (7,4,6) (8) (9,1,5)$
- $F(\alpha) = 3, 2, 7, 4, 6, 8, 9, 1, 5$

From cycles to left-to-right maxima

Proposition The number of indecomposable permutations of S_n with m cycles is equal to the number of those with m left-to-right maxima

Proof: The permutation α is decomposable if and only if $F(\alpha)$ is

The probablity of indecomposability decreases while the number of cycles increases

Theorem 2.

Proof:

- Consider the left-to-right maxima
- For any permutation α build the inversion tableau U_{α} such that:

$$U_{\alpha}[i] = |\{j|j < i, \ \alpha(j) > \alpha(i)\}|$$

• Denote $\alpha \preceq \beta$ if $U_{\alpha}[i] \leq U_{\beta}[i]$ for all i

Description of the partial order \preceq

Division into slices

Divide the elements of S_n into slices by counting the number of $U_{\alpha}[i]$ equal to 0. Then the number of permutations in slice k is equal to the Stirling number $s_{n,k}$.

Proof (continuation)

- The order \leq satisfies the following:
 - If $\beta \preceq \alpha$ and α is decomposable then β also is
- Let a colouring of S_n in two colors blue and red be such that such that if α is blue and $\beta \leq \alpha$ then β is also blue. Then we have
- The numbers of red elements $r_{n,k}$ in slice k satisfy:

$$\frac{r_{n,k}}{s_{n,k}} > \frac{r_{n,k+1}}{s_{n,k+1}}$$

Hypermaps

A Hypermap (S, σ, α) :

 σ, α are permutations acting on the set *S*, such that the group they generate acts transitively on *S*.

Graphical representation

A hypermap is represented by a **bicouloured map**, vertices are coloured **blue** and **red** and edges have endpoints of different colors.

The edges are numbered by the integers $\{1, 2, ..., n\}$ so that they represent the two permutations.

- To each *cycle* of σ corresponds a blue vertex such that when going around this vertex in the *trigonometric positive direction*, the edges are met in the same order as they appear in the corresponding cycle of σ .
- To each *cycle of* α corresponds a red vertex such that the edges met around it satisfy the same property as above with respect to α .

A hypermap on a set of 10 points

A hypermap on a set of 10 points

A hypermap on a set of 10 points

30

Rooted hypermaps

Two hypermaps are *isomorphic* if one can be obtained from the other by relabelling the set of points.

Or if (S, σ, α) and $(S'\sigma', \alpha')$, acting S' are such that there e exists a bijection ϕ of S onto S'

 $\sigma' = \phi \sigma \phi^{-1}, \ \alpha' = \phi \alpha \phi^{-1}$

A hypermap is *rooted* if an element r of S is distinguished.

Two *rooted hypermaps* with roots r and r' are *isomorphic* if the above bijection satisfies also:

$$\phi(r) = r'.$$

A rooted hypermap on a set of 10 points

 $\alpha = (1, 6)(2, 5, 4)(3, 9, 10, 8)(7)$ $\sigma = (1, 7, 3, 4)(2, 10)(5, 6)(8, 9)$ r = 10.

Doubly rooted hypermaps

A doubly rooted hypermap is given by two permutations σ, α on a set S of points, and two elements a, b of S such that the following conditions are satisfied:

- the group generated by σ, α is transitive on S,
- $\alpha(a) = b$, $\sigma(b) = a$

A doubly-rooted labelled hypermap on 11 points

 $\alpha = (1, 6)(2, 5, 4)(3, 9, 10, 11, 8)(7)$ $\sigma = (1, 7, 3, 4)(10, 2, 11)(5, 6)(8, 9)$ a = 10 b = 11.

Robert Cori,

JCB Labri, January 29 2010

Figure 1: The 13 unlabelled doubly-rooted hypermaps on 4 points

From indecomposable permutations to doubly-rooted hypermaps

Proposition Let θ be an indecomposable permutation of S_n , and $\alpha = F(\theta), a = n, b = \theta^{-1}(n)$ then (θ, α, a, b) is a doubly rooted hypermap.

The hypermap obtained from $\theta = (1, 7)(2)(3, 5)(4, 6, 8)$

 $F(\theta) = 2, 5, 3, 7, 1, 8, 4, 6 = (1, 2, 5)(3)(4, 7)(6, 8)$

Main result

Theorem 3. For any doubly-rooted hypermap $(S, \sigma, \alpha, a, b)$ there exists a unique labeling ϕ of S such that $\phi(a) = n$ and

 $F(\phi\sigma\phi^{-1}) = \phi\alpha\phi^{-1}$

Proof:

Ossona de Mendez and Rosenstiehl have proposed a bijection between indecomposable permutations and rooted hypermaps. This bijection uses the left-to-right maxima of the permutation. The algorithm which builds an indecomposable permutation from a doubly-rooted hypermap (σ, α, a, b) can be modified in order to give a proof of the theorem.

Labelling the edges of a doubly rooted hypermap in the OMR bijection

Self-reciprocal hypermaps and quasi-maps

A doubly-rooted hypermap (σ, α, a, b) is self-reciprocal if it is isomorphic to (α, σ, b, a) **Proposition** The number of self-reciprocal rooted hypermaps with n-1 points is the same as the number of self-dual rooted hypermaps with n-1 points, and is equal the number of indecomposable involutions of S_n .

From hypermaps to subgroups of \mathbb{F}_2

The free group 𝔽₂ with two generators consists of the words on the alphabet a, b, a⁻¹, b⁻¹ with the reductions:

$$aa^{-1} = a^{-1}a = bb^{-1} = b^{-1}b = \infty$$

To a rooted hypermap (S, σ, α, r) one associates the subroup of 𝔽₂ consisting of the words f such that φ(f)(r) = r where φ(a) = σ, φ(b) = α

Representation by an automaton

- One can assoliciate an automaton which set of states is S, the actions of a, b are those of σ, α and the initial and final state is r.
- The cosets correspond to the states of the automaton, the index of the group is the number of states

Automorphisms of \mathbb{F}_2

- We have defined a bijection between indecomposable permutations of S_n and subgroups of \mathbb{F}_2 of index n-1.
- We know two natural actions on indecomposable permutations
 - 1. Take the inverse
 - 2. Take the mirror image and complement

 $b_i = n + 1 - a_{n+1-i}$

• Are there automrphisms of \mathbb{F}_2 corresponding to those?

The answer is positive for the first with a well suited bijection (due to Sillke) and negative for the second until now.

Open problems

• Ricatti equation for the number of indecomposable permutations (Michel Marcus).

$$c_{n,k} = (n-1)c_{n-1,k} + \sum_{i=2}^{n-1} \sum_{j=1}^{\min(i,k-1)} c_{i,j}c_{n-i,k-j}$$

• Hetyei formula

$$c_n = \sum_{\theta \in \mathbb{S}_{n-2}} \prod_{i \in IFix(\theta)} (i+2)$$

where

$$IFix(\theta) = \{j | \theta(j) = j \text{ and } \forall i < j, \ \theta(i) < j\}$$

• Indecomposable matchings with k left to right maxima