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Slicings formula
The number of ways to ''slice'' the 2-sphere having boundaries of 

fixed even sizes (ni boundaries of size 2i for i in [1..k]) is 

[Tutte’62] ‘‘a census of slicings’’:

    where  



  

Planar maps
•  Planar map: connected planar graph embedded in the plane

•  rooted map: a corner in the outer face is distinguished
   
 



  

Bipartite maps
•  Bipartite map = all faces have even degree

•  Slicings formula 
     
number of rooted bipartited maps with 
   ni faces of degree 2i for i in [1..k] is 
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‘‘Slicings formula’’ for simple maps 
[Bernardi-F’11 bijectively], can be proved by substitution 
• The number of rooted simple bipartite maps with ni faces of 

degree 2i for i in [2..k] equals

where n is the number of faces and e is the number of edges
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‘‘Slicings formula’’ for simple maps 
[Bernardi-F’11 bijectively], can be proved by substitution 
• The number of rooted simple bipartite maps with ni faces of 

degree 2i for i in [2..k] equals

where n is the number of faces and e is the number of edges

• To be compared with 

• Rk: weighted sum over plane trees with ni vertices of degree i, 
each having weight wi is (cf Lagrange inversion formula):   



  

Counting tree-rooted maps

1st step: tree-rooted map          minimal accessible orientation

Bijective proof: [Bernardi’06, Bernardi-Chapuy’09]

Def: tree-rooted map = rooted planar map + spanning tree
[Mullin’67]: there are  CnCn+1 tree-rooted maps with n edges

(no ccw circuit & every vertex 
can be reached from the root)



  

Counting tree-rooted maps

2nd step: minimal accessible orientation
Bijective proof: [Bernardi’06, Bernardi-Chapuy’09]
[Mullin’67]: there are  CnCn+1 tree-rooted maps with n edges

mobile + tree (folded around the mobile)



  

Consequences
Two ways to encode a minimal accessible orientation:

Strategy here: 
        map family        subfamily of minimal accessible orientations 

canonical spanning tree mobile

cf [Poulalhon, Schaeffer'03] cf [Bouttier, Di Francesco, Guitter'04]
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Outline
• Bijective proof of Tutte’s slicings formula

• Bijective proof of the ‘‘slicings formula for simple bip. maps’’
   

• Generalization of the series expressions to higher girth
(girth = length of a shortest cycle within the graph)
   

    canonical spanning trees & Eulerian orientations
(recover Schaeffer’s bijection [Schaeffer'97])

  Mobiles &  2-orientations (indegree 2 at vertices)



  

Part I: bijective counting
of bipartite maps



  

Bipartite maps      Eulerian maps

•  Slicings formula 
     
number of rooted eulerian maps with 
ni vertices of degree 2i for i in [1..k] is 

number of rooted bipartite maps with 
ni faces of degree 2i for i in [1..k] is



  

Eulerian orientations
•  Eulerian orientation: indegree(v) = deg(v)/2 for each v

• An eulerian map admits a unique minimal eulerian orientation

Eulerian maps Minimal eulerian orientations



  

Min. Eulerian ori. → Eulerian tree

Compute the canonical 
spanning tree



  

Compute the canonical 
spanning tree

Min. Eulerian ori. → Eulerian tree



  

Cut each non-tree edge
at its middle

Min. Eulerian ori. → Eulerian tree



  

Cut each non-tree edge
at its middle

Min. Eulerian ori. → Eulerian tree



  

 Each vertex v of degree 2i 
has red indegree = i-1 

Min. Eulerian ori. → Eulerian tree



  

 Each vertex v of degree 2i 
has red indegree = i-1 

(except if v=r, red indegree=i)

Min. Eulerian ori. → Eulerian tree



  

 each v of degree 2i 
has red indegree = i-1 

Return red ingoing leg at the root

Min. Eulerian ori. → Eulerian tree



  

 each v of degree 2i 
has red indegree = i-1 

Return red ingoing leg at the root

Two black arrows (including r)
are unmatched

Min. Eulerian ori. → Eulerian tree



  

Replace ingoing red half-edges by ``legs''
 each v of degree 2i has  i-1 legs 

Such a tree is called ``eulerian'',
and is called ``balanced eulerian''
if rooted at one unmatched arrow
(there are two such arrows)

Rk: we get the same tree as in  [Schaeffer'97]

Min. Eulerian ori. → Eulerian tree



  

Counting balanced Eulerian trees

The number of eulerian trees with ni nodes of degree 2i is

2/v of these trees are balanced (v is the number of leaves)



  

Counting balanced Eulerian trees

The number of eulerian trees with ni nodes of degree 2i is

2/v of these trees are balanced (v is the number of leaves)
The number of balanced eulerian trees with ni nodes of degree 2i is

same as number of 
rooted bipartite maps 
with ni faces of degree 2i 



  

Part II: bijective counting
of  simple bipartite maps



  

Orientations for simple quadrangulations
A quadrangulation is simple iff it admits an orientation where:
  inner vertices have indegree 2, outer vertices have indegree 1

[de Fraysseix, Ossona de Mendez'01]

Such an orientation is called a 2-orientation
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Such an orientation is called a 2-orientation, 
it is accessible from the outer face (cf partition into 2 spanning trees)
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Simple quadrangulations Minimal 2-orientations
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Duality on 2-orientations

mirror



  

Minimal dual 2-orientation → mobile



  

Minimal dual 2-orientation → mobile

Compute the mobile



  

Minimal dual 2-orientation → mobile

Compute the mobile



  

Minimal dual 2-orientation → mobile

Cut the non-mobile 
edges at their middle



  

Minimal dual 2-orientation → mobile

Cut the non-mobile 
edges at their middle



  

Minimal dual 2-orientation → mobile

Rk: there are 4
unmatched arrows



  

Minimal dual 2-orientation → mobile



  

Minimal dual 2-orientation → mobile

Ingoing half-edges
can be deleted



  

Minimal dual 2-orientation → mobile

Ingoing half-edges
can be deleted



  

Minimal dual 2-orientation → mobile
Construction gives a ternary tree (recover [Schaeffer'99]) 



  

Minimal dual 2-orientation → mobile
Construction gives a ternary tree (recover [Schaeffer'99]) 

• There are rooted ternary trees with n inner nodes 

•  A proportion 4/(2n+2) of these rooted trees are balanced  

there are rooted simple quad. with n+1 faces 

This is when n2=n+1
ni=0 for i>2



  

Direct construction (without duality)



  

Generalized 2-orientations



  

Generalized 2-orientations

insert a star into 
each inner face



  

Generalized 2-orientations

insert a star into 
each inner face



  

Generalized 2-orientations



  

Generalized 2-orientations

Outer white: indeg=1
Inner white: indeg=2

Each black vertex of 
degree 2i has outdeg i-2



  

Generalized 2-orientations

Outer white: indeg=1
Inner white: indeg=2

Each black vertex of 
degree 2i has outdeg i-2

For the minimal one:

& Still accesssible after
    deleting the stars



  

Minimal 2-ori. → mobile 



  

Minimal 2-ori. → mobile 



  

Minimal 2-ori. → mobile 

Rule to draw mobile



  

Minimal 2-ori. → mobile 

Rule to draw mobile



  

Minimal 2-ori. → mobile 

Each black vertex of 
degree 2i has i-2 legs

White vertices either have:
  - degree 2 (middle blue edge)
  - degree 1 (end of leg)



  

Enumeration formula

The number of simple rooted bipartite 
maps with ni faces of degree 2i is:

Works for n2>0 only !Works for n2>0 only !

& each mobile has 4 ``balanced'' rootings



  

Construction on the cylinder
• Two root-faces f1 of degree 2a, f2 of degree 2b
• Let 2c = length shortest cycle separating f1 from f2



  

Construction on the cylinder
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Part III: generalization
     to higher girth 



  

b/(b-1)-orientations for b≥2 
    A b/(b-1)-orientation on a 2b-angulation G is an orientation of 

the planar map (b-1)*G (each edge multiplied by b-1) such that:
  - inner vertices have indegree b
  - outer vertices have indegree b-1 

  [Bernardi,F'10]: a 2b-angulation can be endowed with a
                             b/(b-1)-orientation iff it has girth 2b



  

Shape of the mobiles in girth 2b≥2 
• Each black vertex of degree 2i has i-b legs
• There are ``connectors'' between black   
  vertices: (trees with black leaves, white  
  inner nodes, weights on half-edges) 

a connector for b=4
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