Formule exacte pour les cartes biparties simples

Eric Fusy (LIX, Ecole Polytechnique) travail en commun avec Olivier Bernardi (MIT)

Slicings formula

[Tutte'62] "a census of slicings":

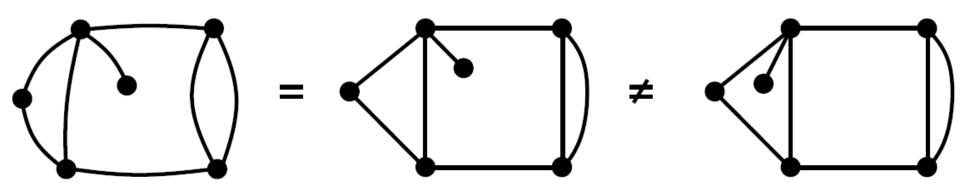
The number of ways to "slice" the 2-sphere having boundaries of fixed even sizes (n_i boundaries of size 2i for i in [1..k]) is

$$2\frac{e!}{v!}\prod_{i=1}^{k}\frac{1}{n_i!}\binom{2i-1}{i-1}^{n_i}$$

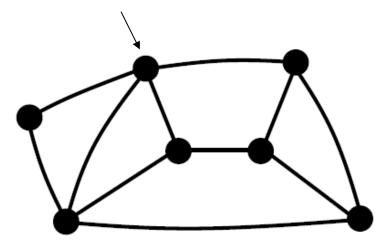
where $e = \sum_i in_i$ $v = -2 + \sum_i (i-1)n_i$

Planar maps

• Planar map: connected planar graph embedded in the plane

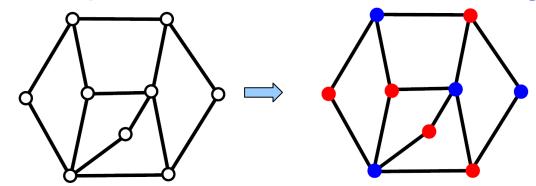


• rooted map: a corner in the outer face is distinguished



Bipartite maps

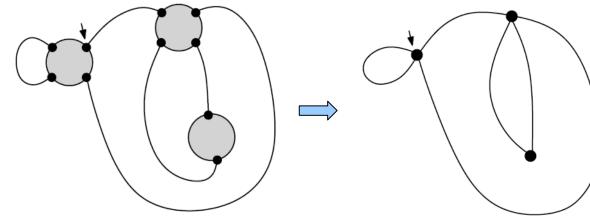
• Bipartite map = all faces have even degree



Slicings formula
①

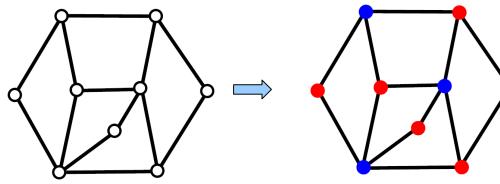
number of rooted bipartited maps with n_i faces of degree 2i for i in [1..k] is

 $2\frac{e!}{v!}\prod_{i=1}^{k}\frac{1}{n_{i}!}\binom{2i-1}{i-1}^{n_{i}}$



Bipartite maps

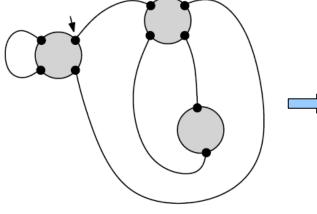
• Bipartite map = all faces have even degree

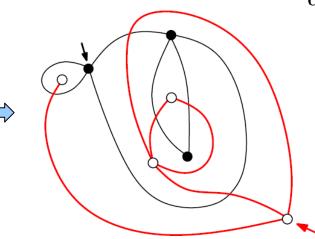


Slicings formula
①

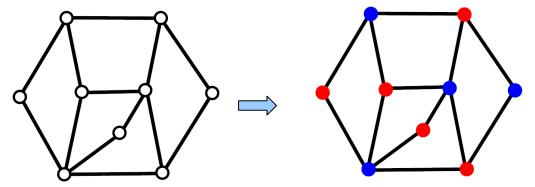
number of rooted bipartited maps with n_i faces of degree 2i for i in [1..k] is

$$2\frac{e!}{v!}\prod_{i=1}^{k}\frac{1}{n_i!}\binom{2i-1}{i-1}^{n_i}$$

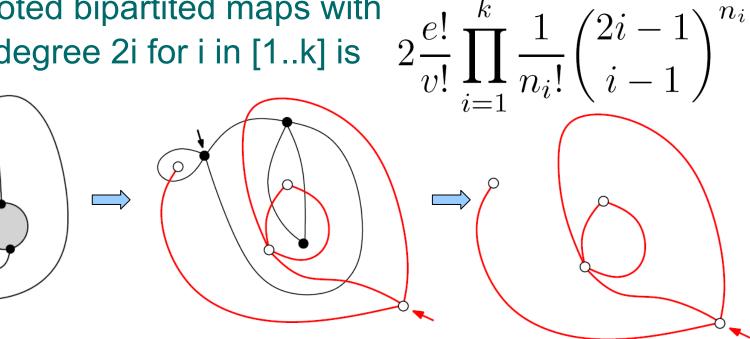




Bipartite map = all faces have even degree



- Slicings formula number of rooted bipartited maps with
 - n_i faces of degree 2i for i in [1..k] is



"Slicings formula" for simple maps

[Bernardi-F'11 bijectively], can be proved by substitution

 The number of rooted simple bipartite maps with n_i faces of degree 2i for i in [2..k] equals

$$2\frac{(e+n-3)!}{(e-1)!} \prod_{i=2}^{k} \frac{1}{n_i!} \binom{2i-1}{i-2}^{n_i}$$

where n is the number of faces and e is the number of edges

"Slicings formula" for simple maps

[Bernardi-F'11 bijectively], can be proved by substitution

 The number of rooted simple bipartite maps with n_i faces of degree 2i for i in [2..k] equals

$$2\frac{(e+n-3)!}{(e-1)!}\prod_{i=2}^{k}\frac{1}{n_i!}\binom{2i-1}{i-2}^{n_i}$$

where n is the number of faces and e is the number of edges

• To be compared with 2

$$2\frac{e!}{v!}\prod_{i=1}^{k}\frac{1}{n_{i}!}\binom{2i-1}{i-1}^{n_{i}}$$

"Slicings formula" for simple maps

[Bernardi-F'11 bijectively], can be proved by substitution

 The number of rooted simple bipartite maps with n_i faces of degree 2i for i in [2..k] equals

$$2\frac{(e+n-3)!}{(e-1)!}\prod_{i=2}^{k}\frac{1}{n_i!}\binom{2i-1}{i-2}^{n_i}$$

where n is the number of faces and e is the number of edges

To be compared with $2\frac{2}{2}$

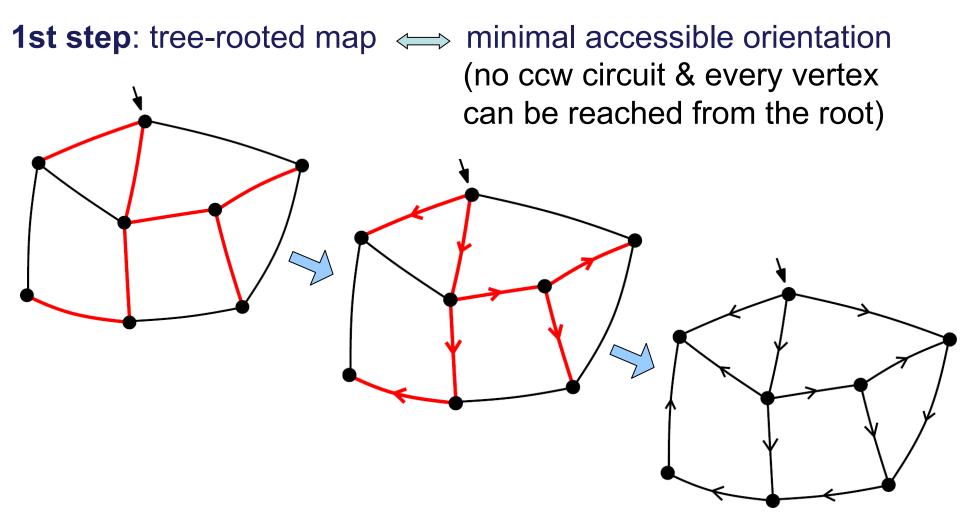
$$2\frac{e!}{v!}\prod_{i=1}^{k}\frac{1}{n_i!}\binom{2i-1}{i-1}^{n_i}$$

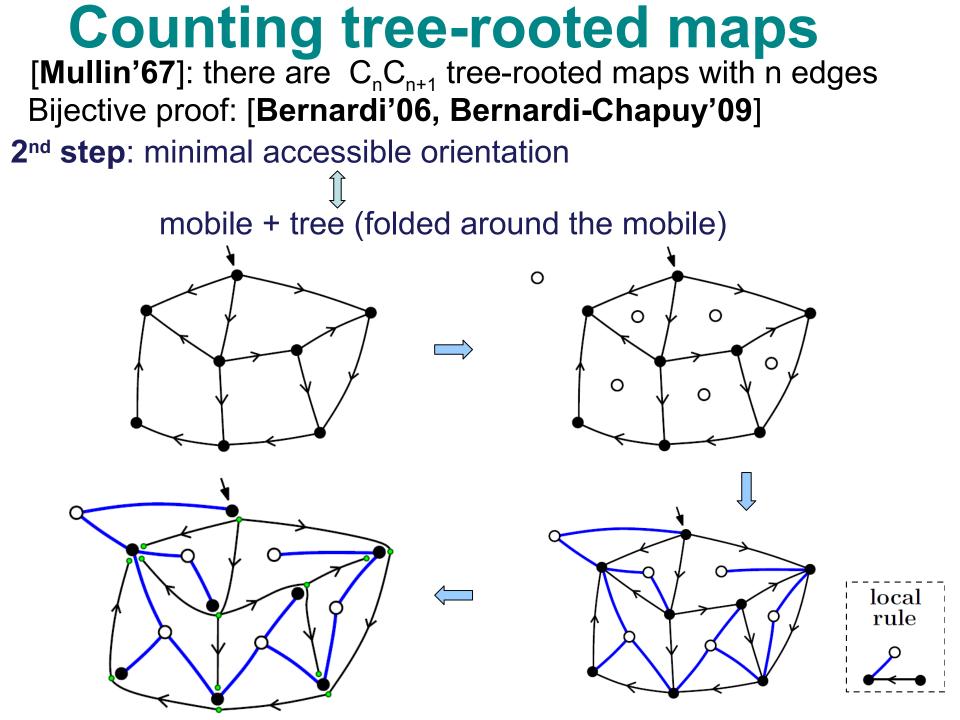
 Rk: weighted sum over plane trees with n_i vertices of degree i, each having weight w_i is (cf Lagrange inversion formula):

$$\frac{m!}{p!} \prod_i \frac{1}{n_i!} w_i^{n_i} \quad \text{with} \begin{array}{l} m = -2 + \sum_i in_i \\ p = m + 1 - \sum_i n_i \end{array}$$

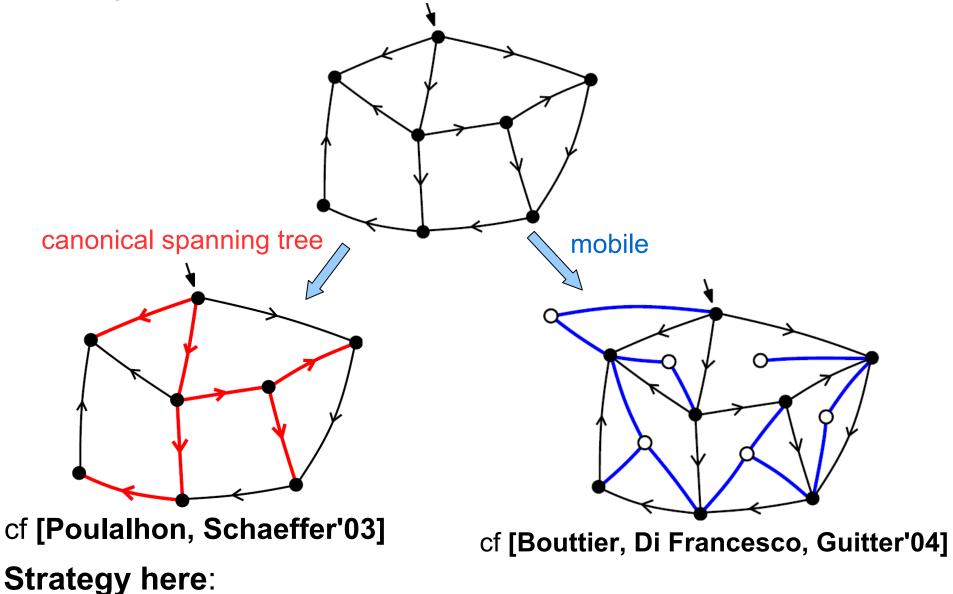
Counting tree-rooted maps

Def: tree-rooted map = rooted planar map + spanning tree [**Mullin'67**]: there are C_nC_{n+1} tree-rooted maps with n edges Bijective proof: [**Bernardi'06, Bernardi-Chapuy'09**]



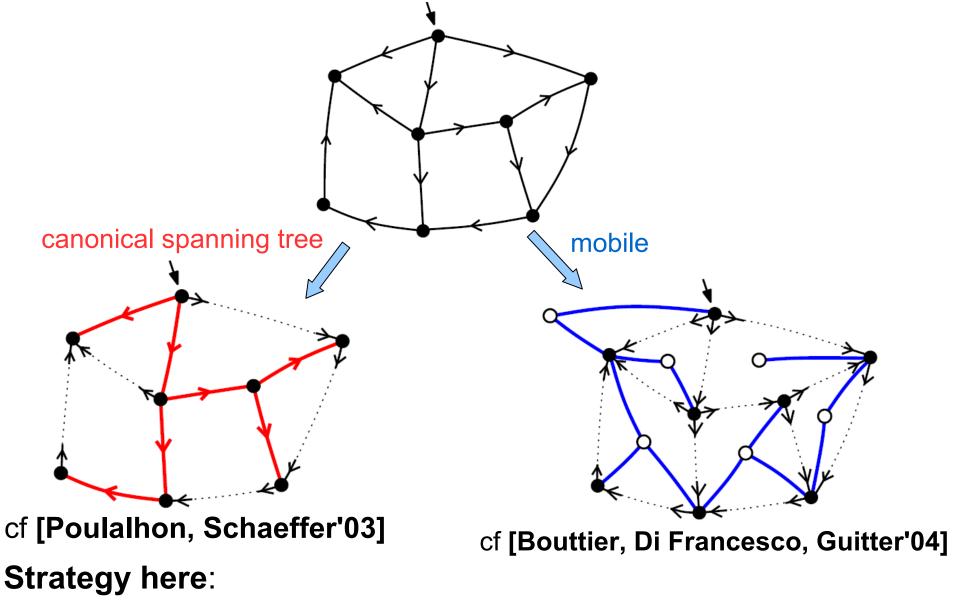


Consequences Two ways to encode a minimal accessible orientation:



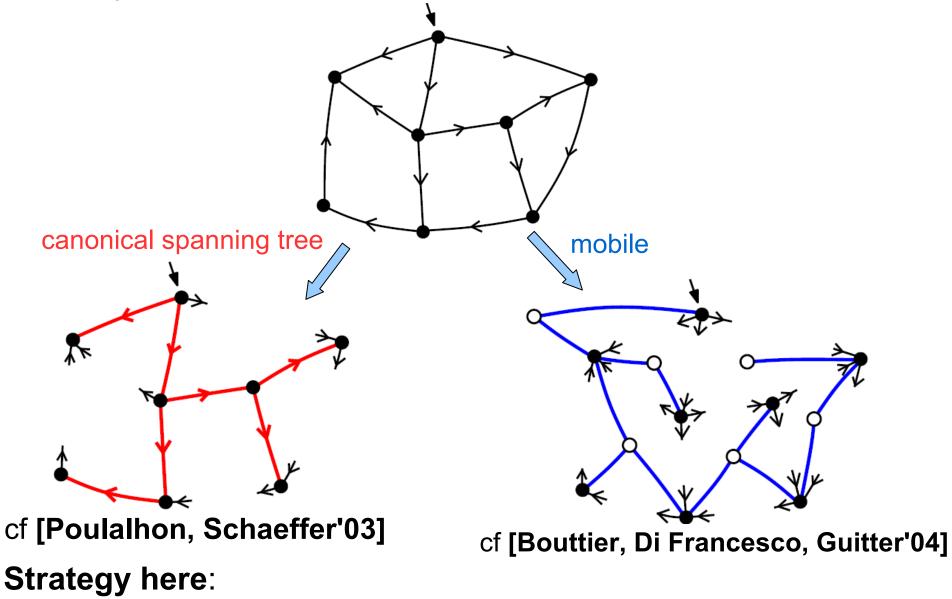
map family subfamily of minimal accessible orientations

Consequences Two ways to encode a minimal accessible orientation:



map family subfamily of minimal accessible orientations

Consequences Two ways to encode a minimal accessible orientation:

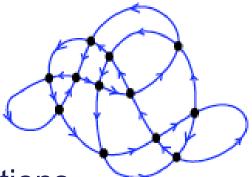


map family subfamily of minimal accessible orientations

Outline

• Bijective proof of Tutte's slicings formula

$$2\frac{e!}{v!}\prod_{i=1}^{k}\frac{1}{n_i!}\binom{2i-1}{i-1}^{n_i}$$



canonical spanning trees & Eulerian orientations (recover Schaeffer's bijection [Schaeffer'97])

Bijective proof of the "slicings formula for simple bip. maps"

$$2\frac{(e+n-3)!}{(e-1)!}\prod_{i=2}^{k}\frac{1}{n_i!}\binom{2i-1}{i-2}^{n_i}$$

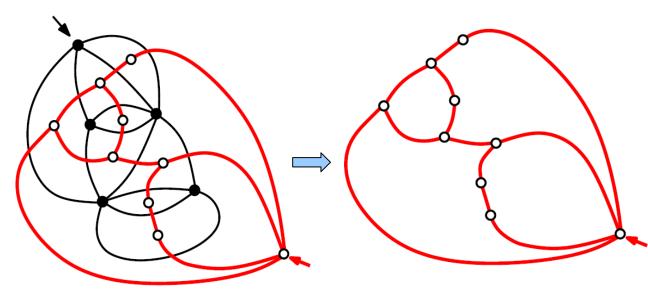
Mobiles & 2-orientations (indegree 2 at vertices)

 Generalization of the series expressions to higher girth (girth = length of a shortest cycle within the graph)

Part I: bijective counting of bipartite maps

Bipartite maps \iff **Eulerian maps**





Slicings formula
①

number of rooted eulerian maps with n_i vertices of degree 2i for i in [1..k] is Ĵ

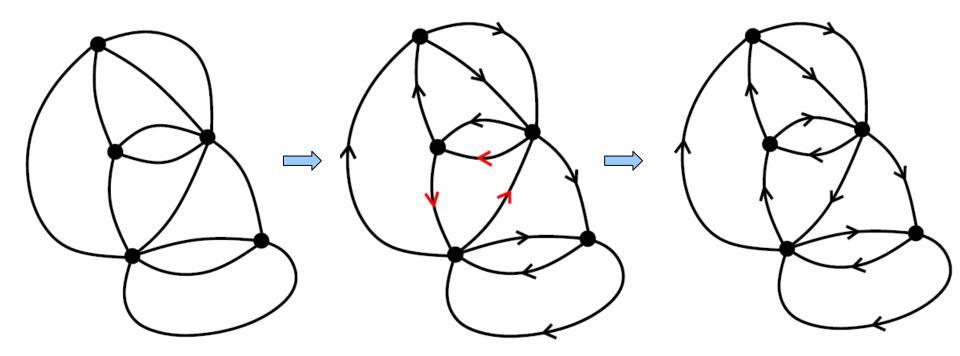
number of rooted bipartite maps with n_i faces of degree 2i for i in [1..k] is

$$2\frac{e!}{v!}\prod_{i=1}^{k}\frac{1}{n_i!}\binom{2i-1}{i-1}^{n_i}$$

$$2\frac{e!}{v!}\prod_{i=1}^{k}\frac{1}{n_i!}\binom{2i-1}{i-1}^{n_i}$$

Eulerian orientations

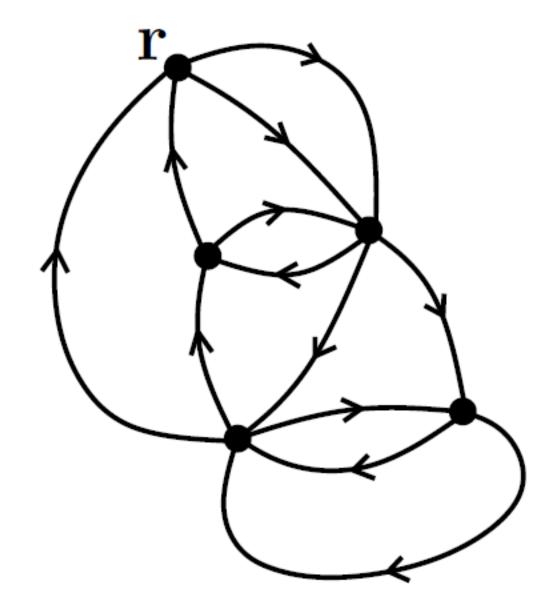
Eulerian orientation: indegree(v) = deg(v)/2 for each v



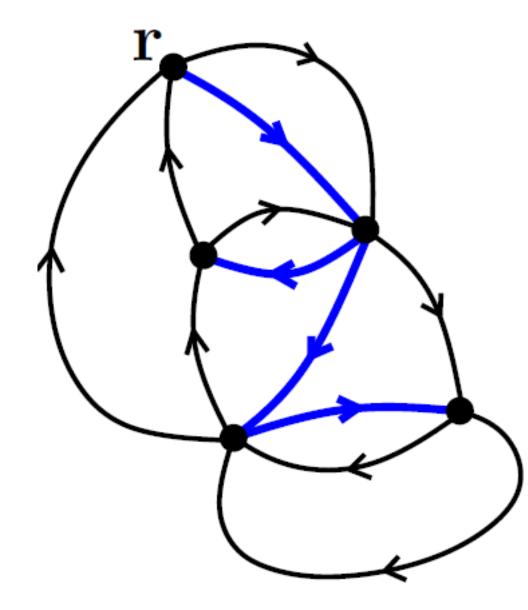
• An eulerian map admits a unique minimal eulerian orientation



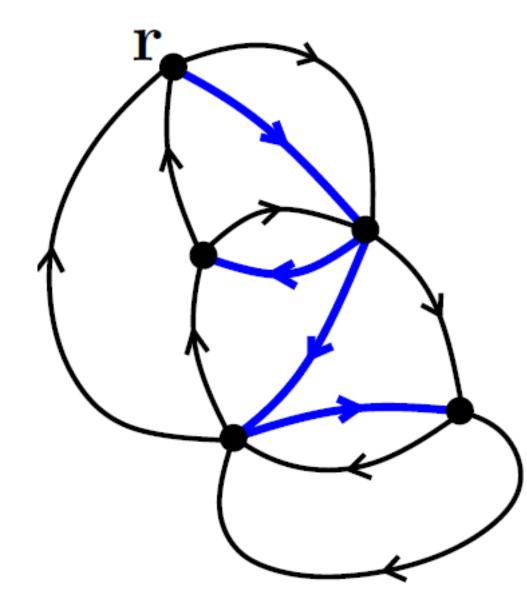
Minimal eulerian orientations



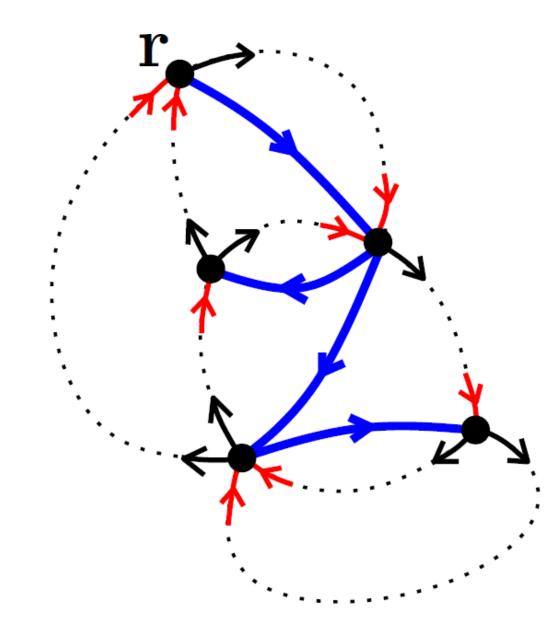
Compute the canonical spanning tree



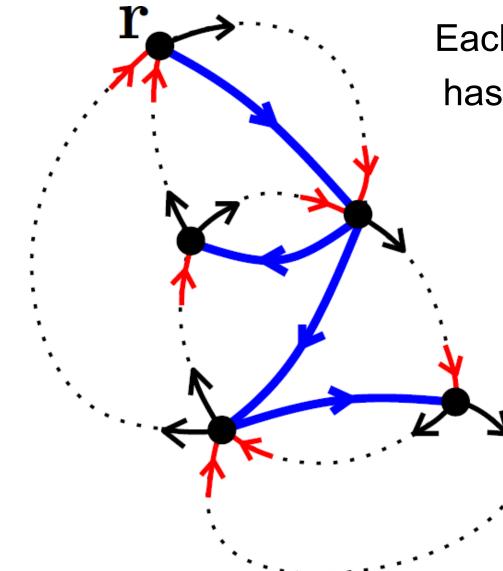
Compute the canonical spanning tree



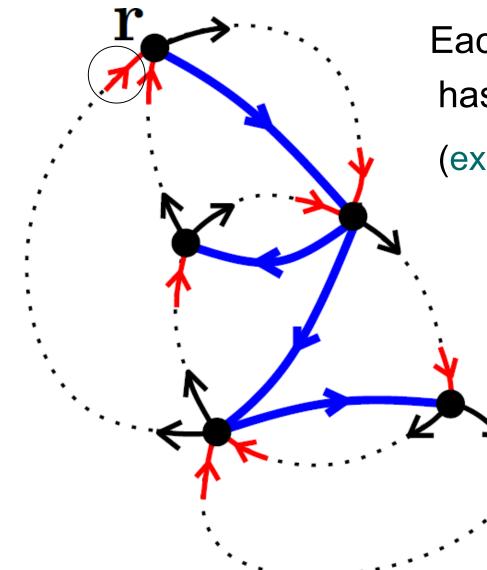
Cut each non-tree edge at its middle



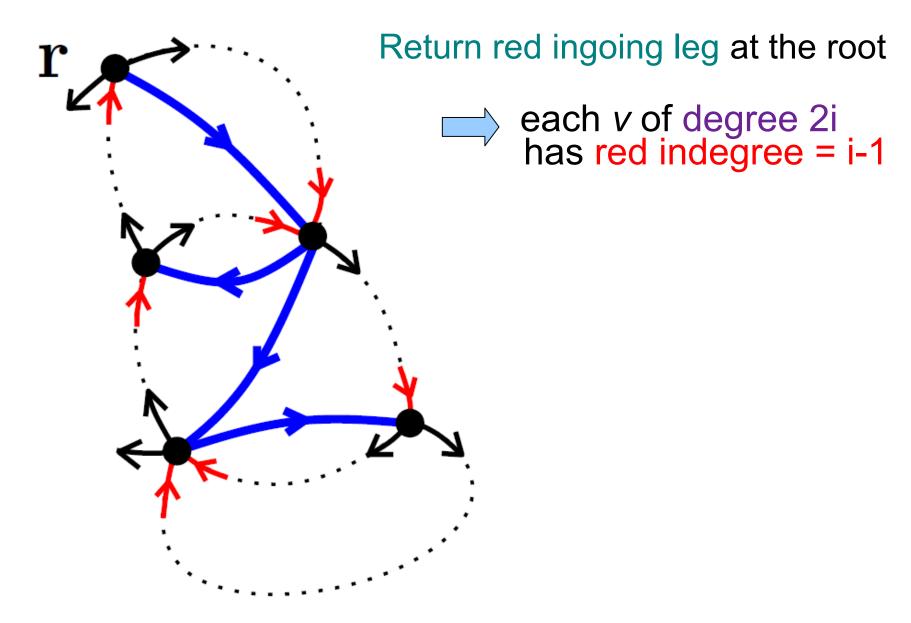
Cut each non-tree edge at its middle

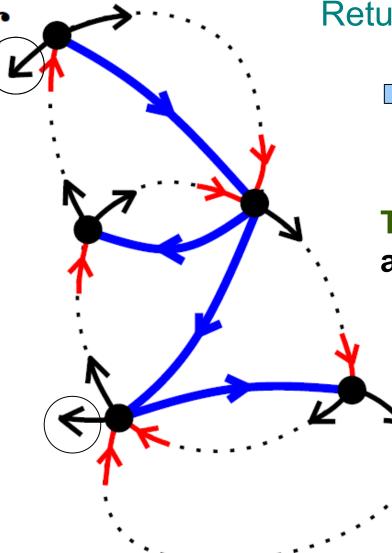


Each vertex *v* of degree 2i has red indegree = i-1



Each vertex *v* of degree 2i has red indegree = i-1 (except if v=r, red indegree=i)





Return red ingoing leg at the root

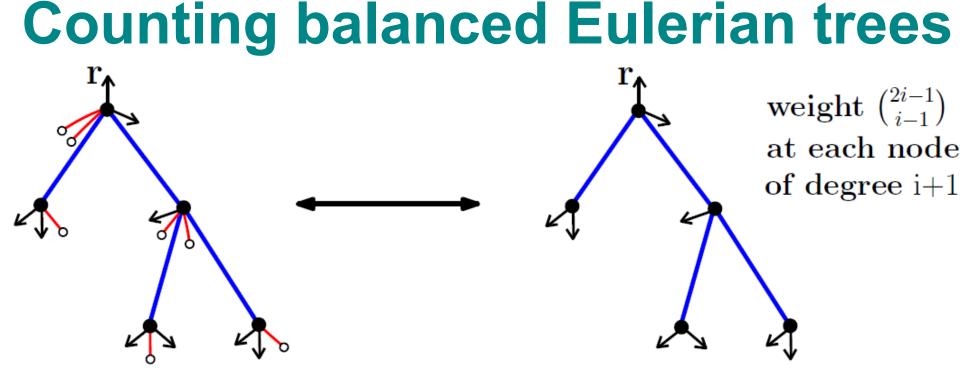
each v of degree 2i has red indegree = i-1

Two black arrows (including r) are unmatched

Replace ingoing red half-edges by ``legs" \Rightarrow each *v* of degree 2i has i-1 legs

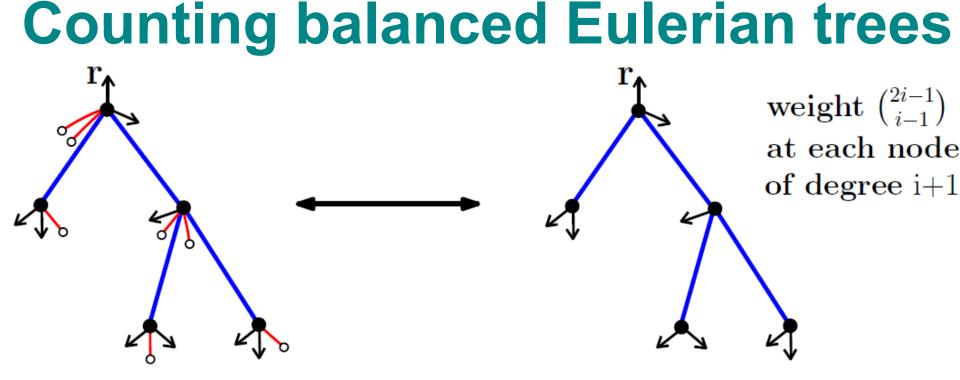
Such a tree is called ``eulerian", and is called ``balanced eulerian" if rooted at one unmatched arrow (there are two such arrows)

Rk: we get the same tree as in [Schaeffer'97]



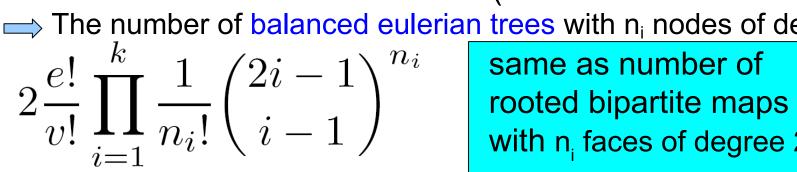
The number of eulerian trees with n nodes of degree 2 is $\frac{e!}{(v-1)!} \prod_{i=1}^{k} {\binom{2i-1}{i-1}}^{n_i} \text{ where } \begin{array}{l} e = \sum_i in_i \\ v = -2 + \sum_i (i-1)n_i \end{array}$

2/v of these trees are balanced (v is the number of leaves)



The number of eulerian trees with n_i nodes of degree 2i is $\frac{e!}{(v-1)!} \prod_{i=1}^{k} {\binom{2i-1}{i-1}}^{n_i} \text{ where } \begin{array}{l} e = \sum_i in_i \\ v = -2 + \sum_i (i-1)n_i \end{array}$

2/v of these trees are balanced (v is the number of leaves) \implies The number of balanced eulerian trees with n_i nodes of degree 2i is

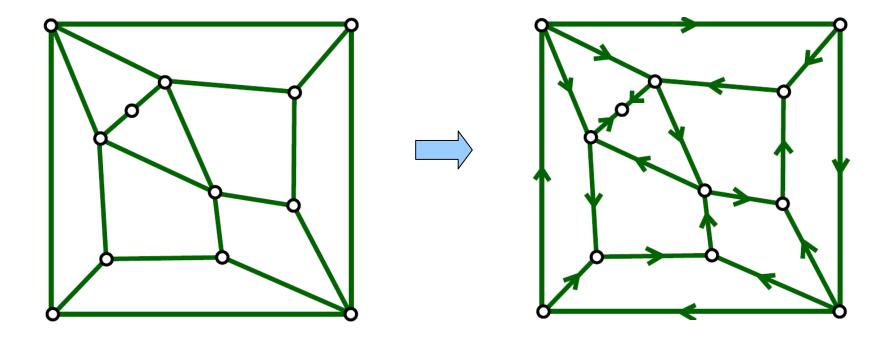


with n faces of degree 2i

Part II: bijective counting of simple bipartite maps

A quadrangulation is simple iff it admits an orientation where: inner vertices have indegree 2, outer vertices have indegree 1

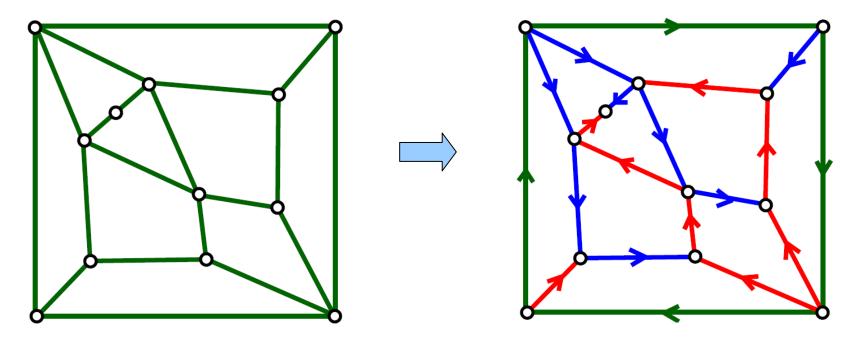
Such an orientation is called a 2-orientation



A quadrangulation is simple iff it admits an orientation where: inner vertices have indegree 2, outer vertices have indegree 1

Such an orientation is called a 2-orientation,

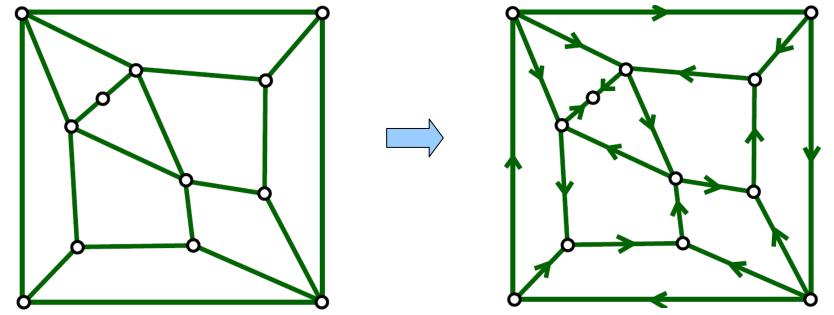
it is accessible from the outer face (cf partition into 2 spanning trees)



A quadrangulation is simple iff it admits an orientation where: inner vertices have indegree 2, outer vertices have indegree 1

Such an orientation is called a 2-orientation,

it is accessible from the outer face (cf partition into 2 spanning trees)



[Felsner'03]:

A simple quadrangulation has a unique minimal 2-orientation

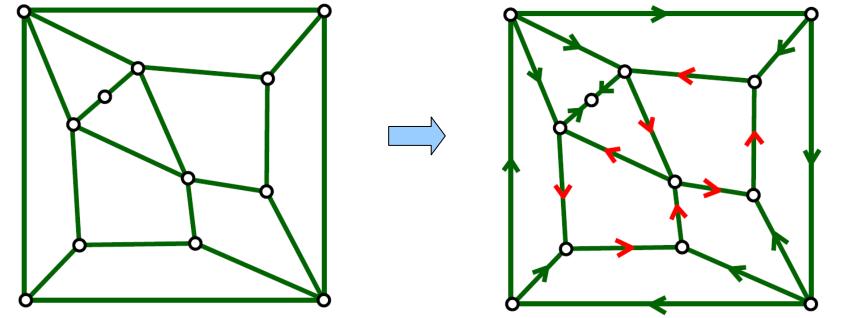
Minimal 2-orientations

Simple quadrangulations

A quadrangulation is simple iff it admits an orientation where: inner vertices have indegree 2, outer vertices have indegree 1

Such an orientation is called a 2-orientation,

it is accessible from the outer face (cf partition into 2 spanning trees)



[Felsner'03]:

A simple quadrangulation has a unique minimal 2-orientation

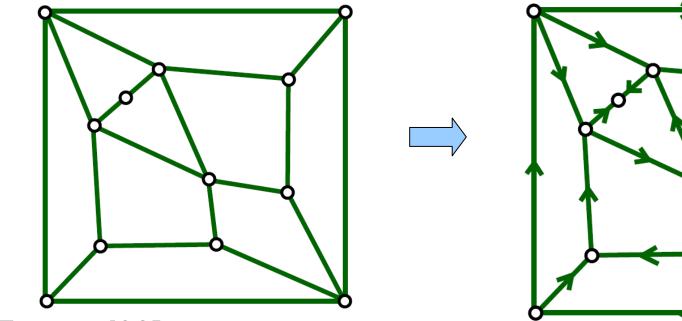
Minimal 2-orientations

Simple quadrangulations

A quadrangulation is simple iff it admits an orientation where: inner vertices have indegree 2, outer vertices have indegree 1

Such an orientation is called a 2-orientation,

it is accessible from the outer face (cf partition into 2 spanning trees)



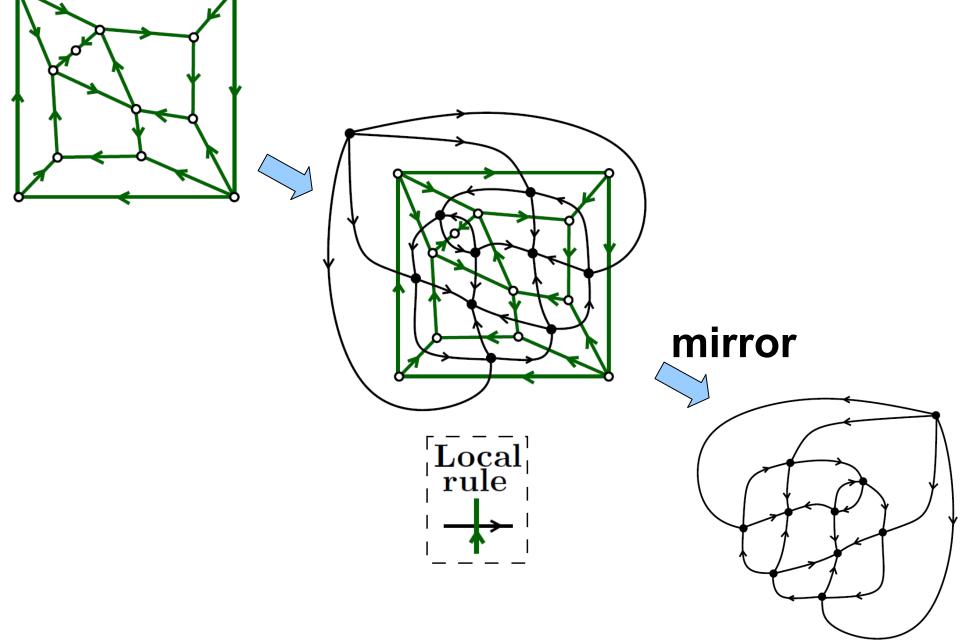
[Felsner'03]:

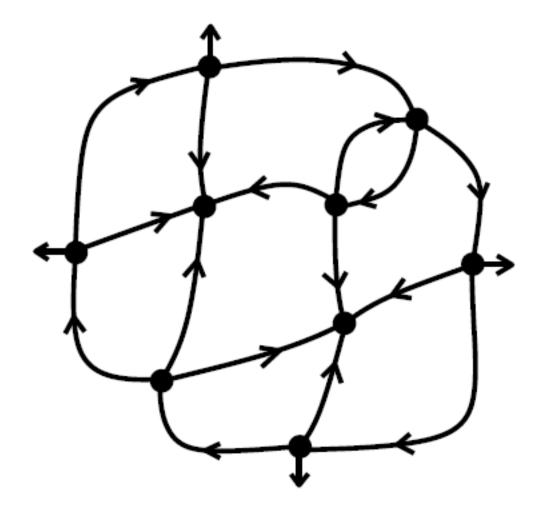
A simple quadrangulation has a unique minimal 2-orientation

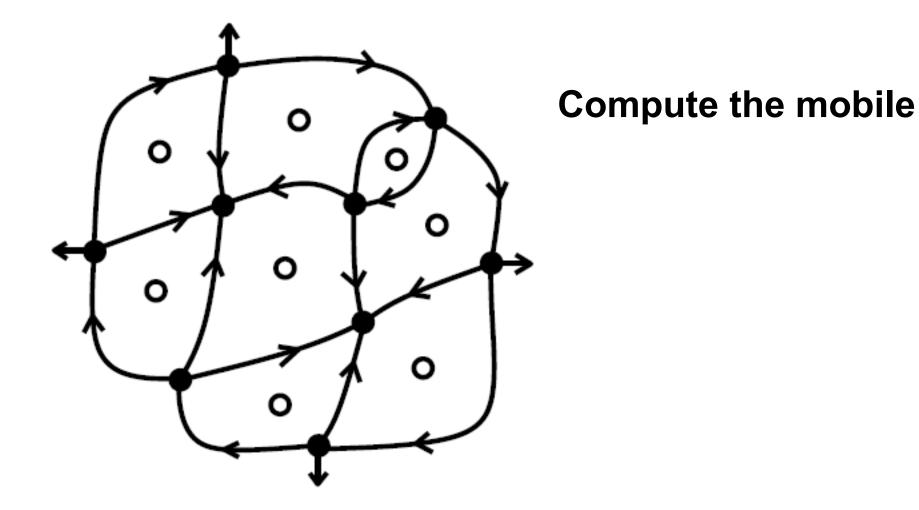
Minimal 2-orientations

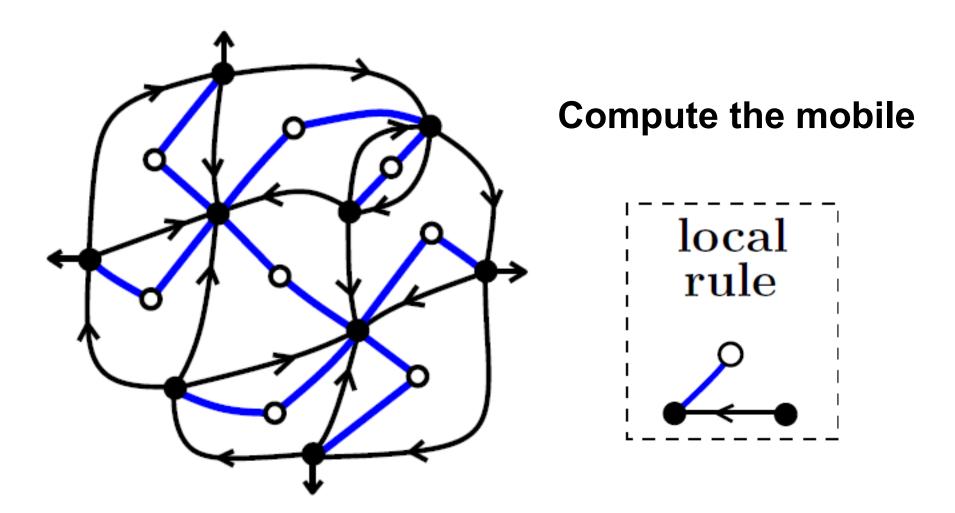
Simple quadrangulations

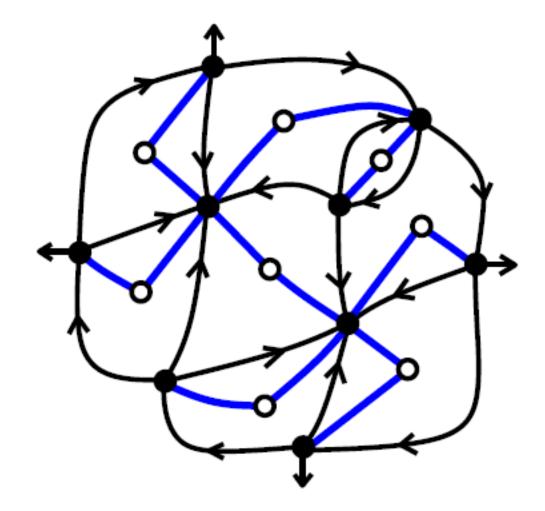
Duality on 2-orientations



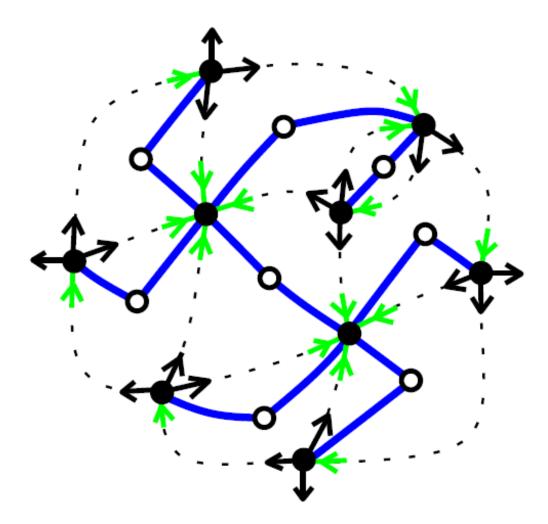




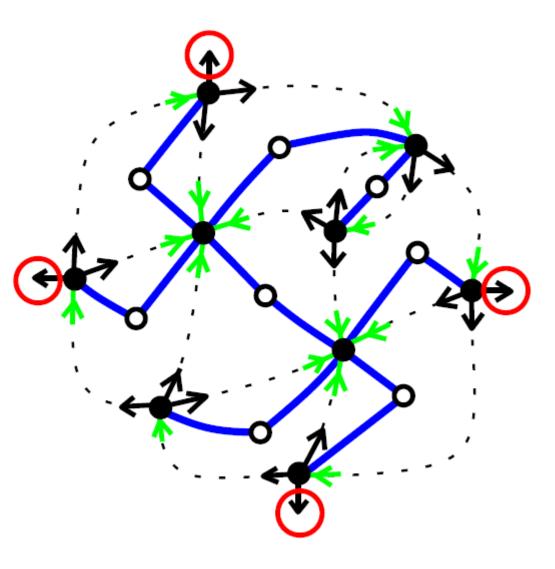




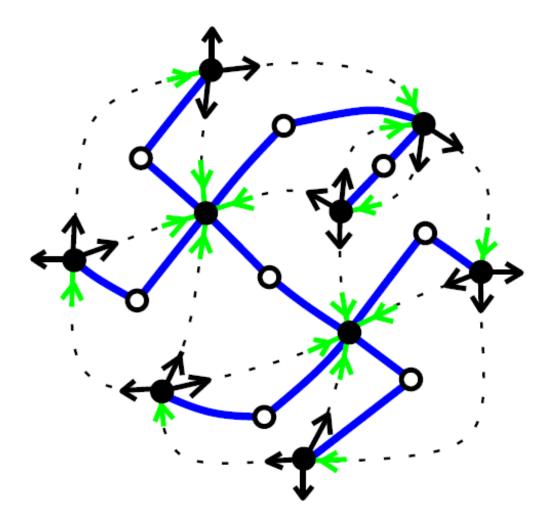
Cut the non-mobile edges at their middle

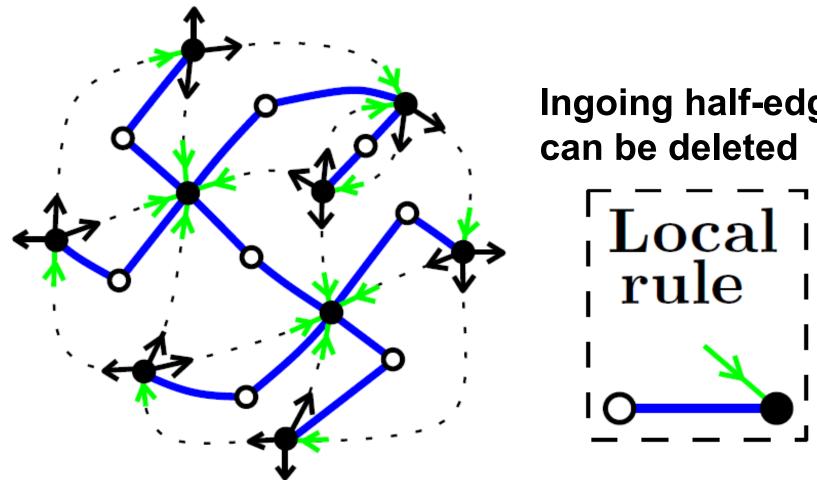


Cut the non-mobile edges at their middle

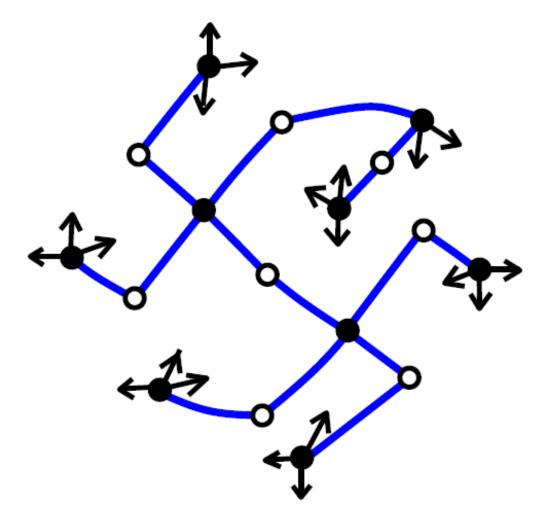


Rk: there are 4 unmatched arrows





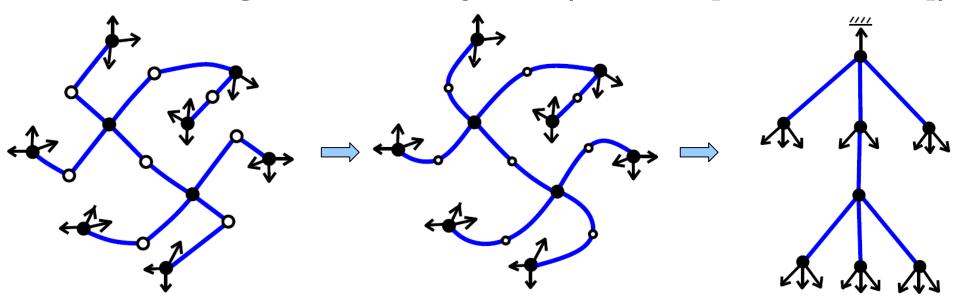
Ingoing half-edges can be deleted



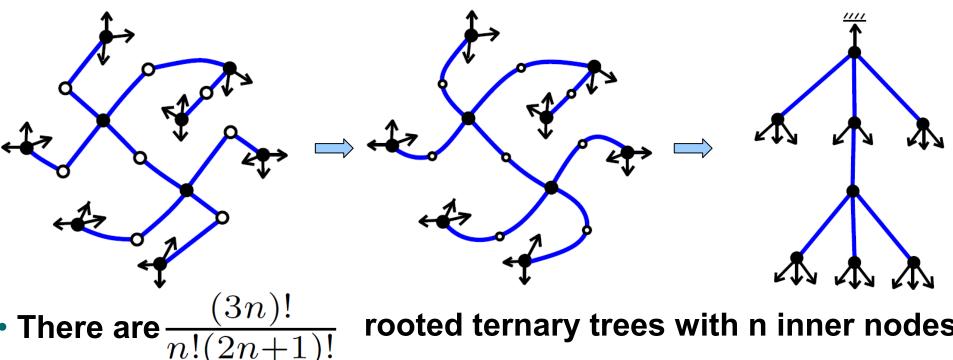
Ingoing half-edges can be deleted

Local

Minimal dual 2-orientation → mobile Construction gives a ternary tree (recover [Schaeffer'99])



Minimal dual 2-orientation \rightarrow mobile **Construction gives a ternary tree (recover [Schaeffer'99])**

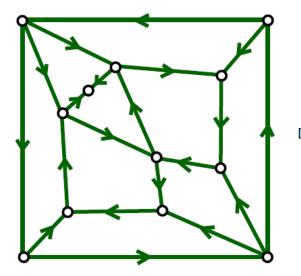


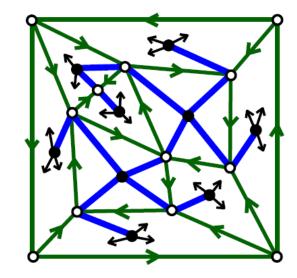
- There are
- A proportion 4/(2n+2) of these rooted trees are balanced

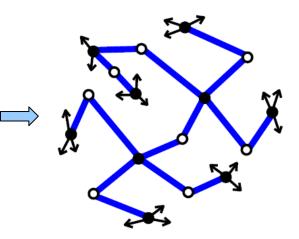
 \implies there are $\frac{4(3n)!}{n!(2n+2)!}$ rooted simple quad. with n+1 faces

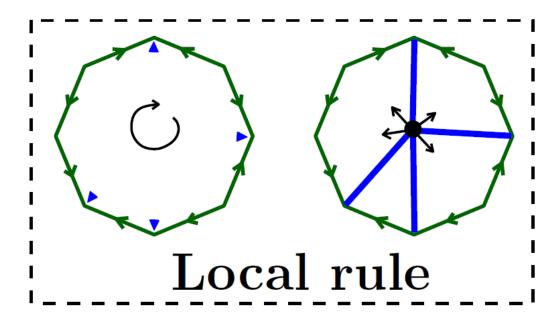
This is
$$2 \frac{(e+n-3)!}{(e-1)!} \prod_{i=2}^{k} \frac{1}{n_i!} {2i-1 \choose i-2}^{n_i}$$
 when $n_2 = n+1 = 0$ for i>2

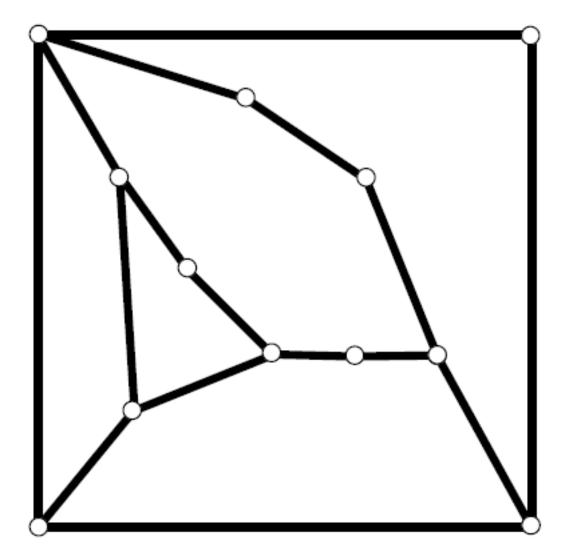
Direct construction (without duality)

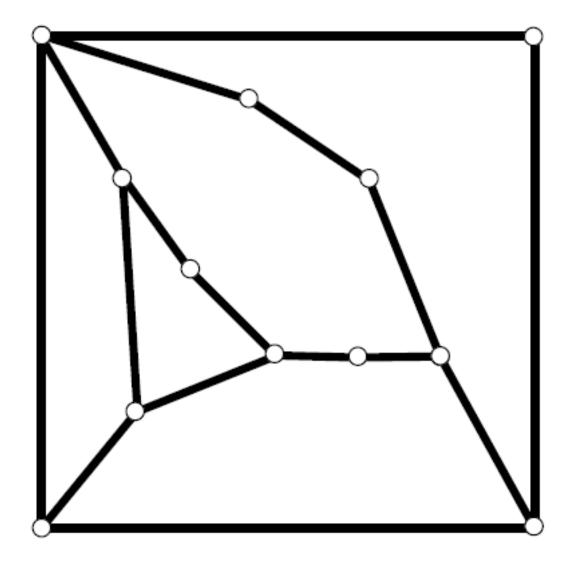




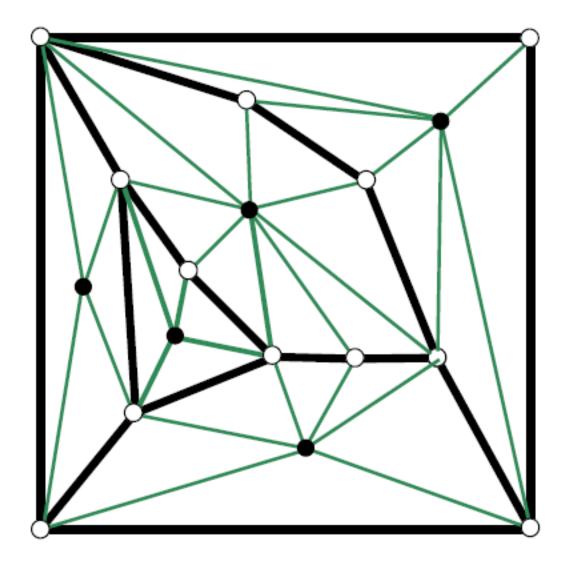




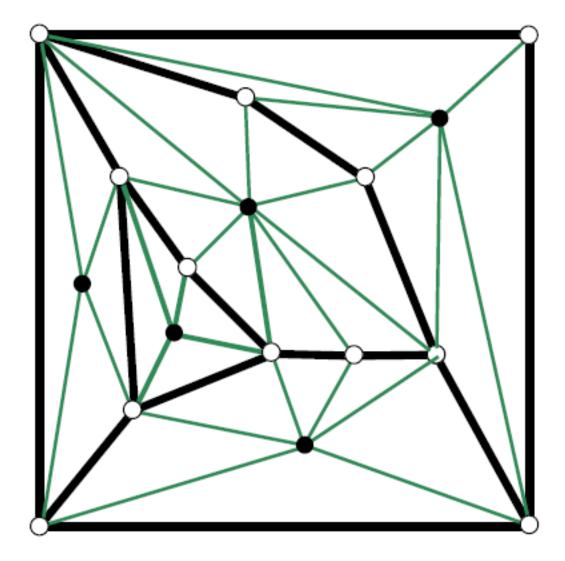


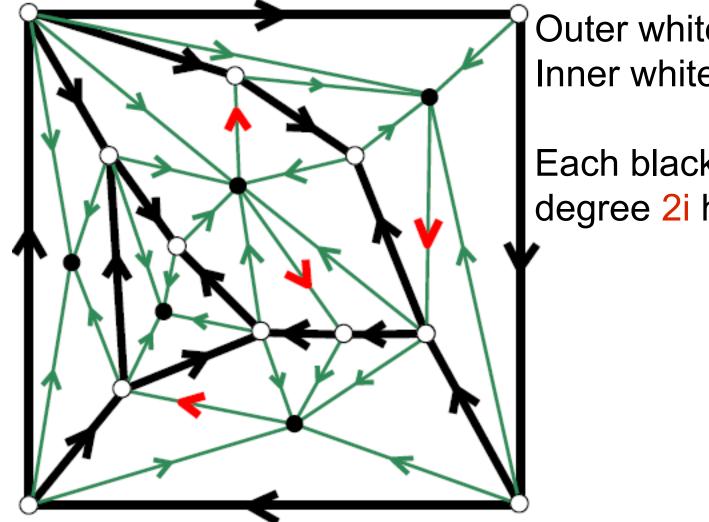


insert a star into each inner face



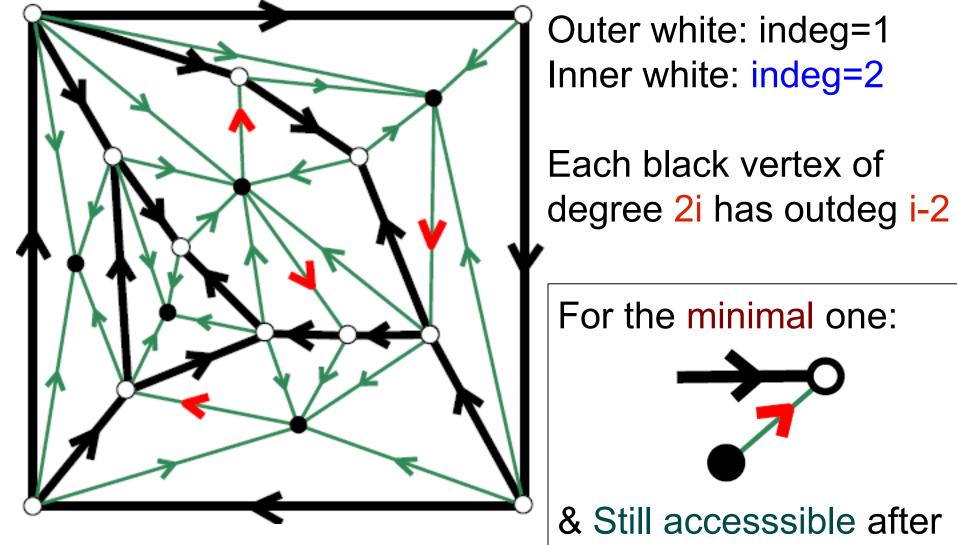
insert a star into each inner face



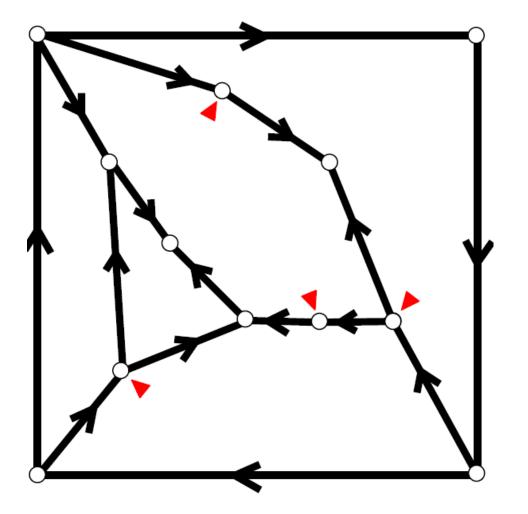


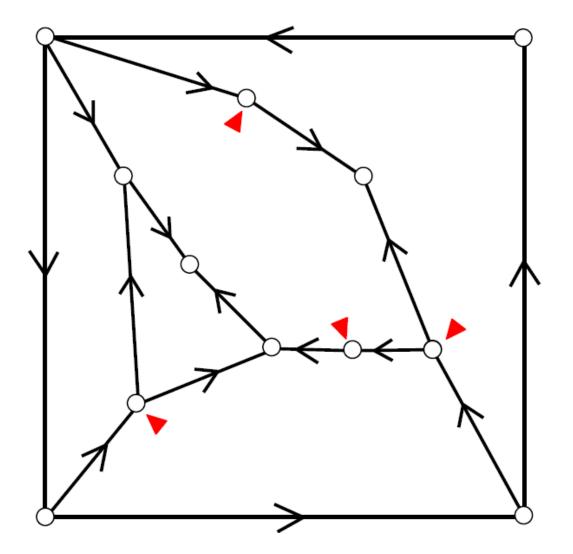
Outer white: indeg=1 Inner white: indeg=2

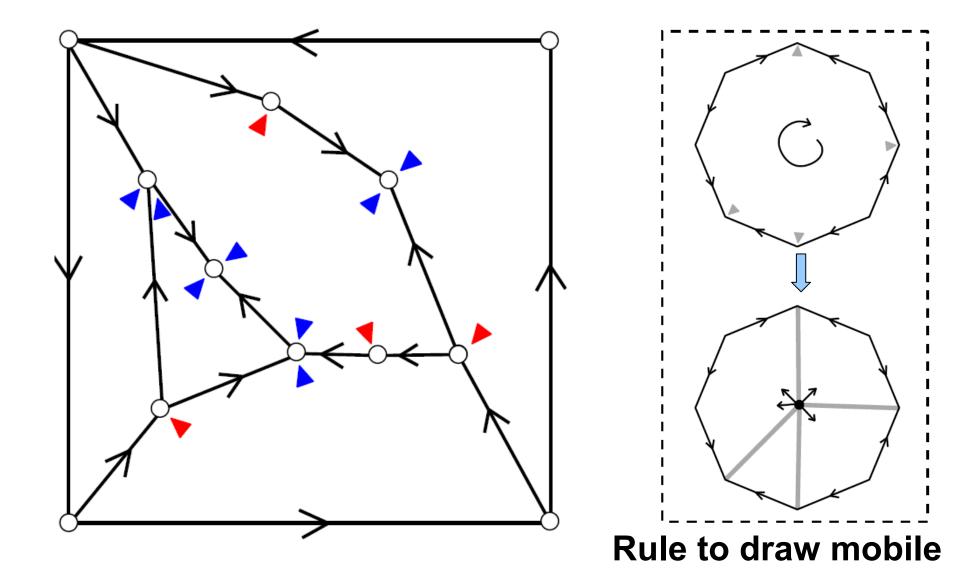
Each black vertex of degree 2i has outdeg i-2

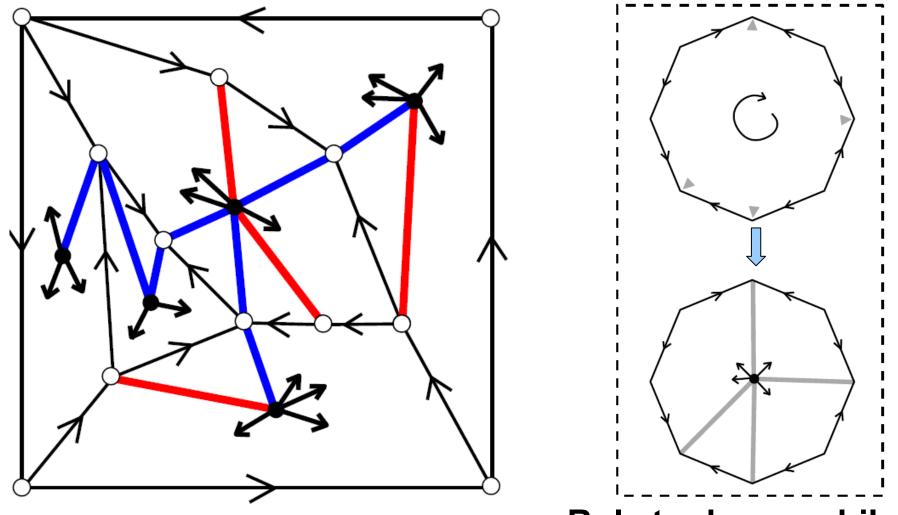


deleting the stars

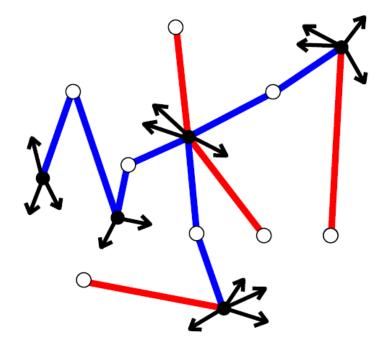








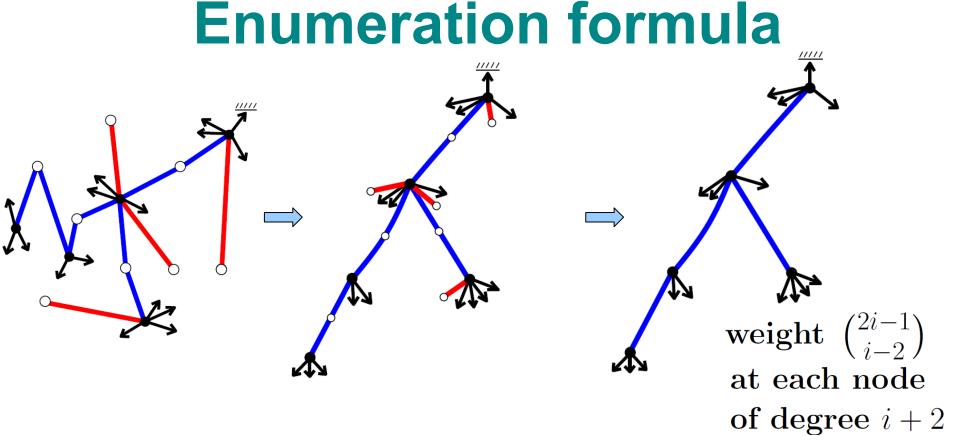
Rule to draw mobile



White vertices either have:

- degree 2 (middle blue edge)
- degree 1 (end of leg)

Each black vertex of degree 2i has i-2 legs



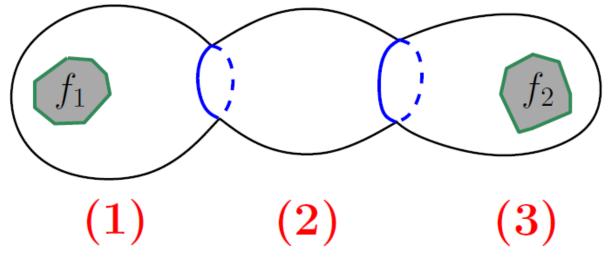
- & each mobile has 4 ``balanced" rootings
- ➡ The number of simple rooted bipartite maps with n_i faces of degree 2i is:

$$2\frac{(e+n-3)!}{(e-1)!}\prod_{i=2}^{k}\frac{1}{n_i!}\binom{2i-1}{i-2}^{n_i}$$

Works for $n_2 > 0$ only !

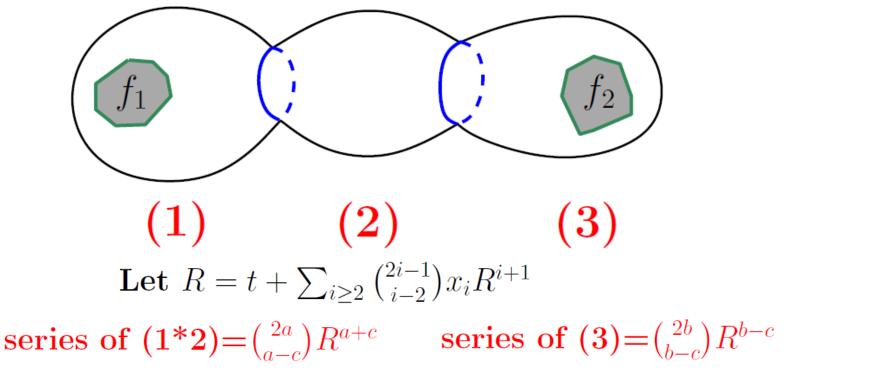
Construction on the cylinder

- Two root-faces f₁ of degree 2a, f₂ of degree 2b
- Let 2c = length shortest cycle separating f1 from f2



Construction on the cylinder

- Two root-faces f₁ of degree 2a, f₂ of degree 2b
- Let 2c = length shortest cycle separating f1 from f2



$$F_{a,b} = \sum_{c>2} c \binom{2a}{a-c} \binom{2b}{b-c} R^{a+b} = \frac{(a+2)(b+2)}{2a+2b} \binom{2a}{a-2} \binom{2b}{b-2} R^{a+b}$$
$$\implies 2\frac{(e+n-3)!}{(e-1)!} \prod_{i=2}^{k} \frac{1}{n_i!} \binom{2i-1}{i-2}^{n_i}$$

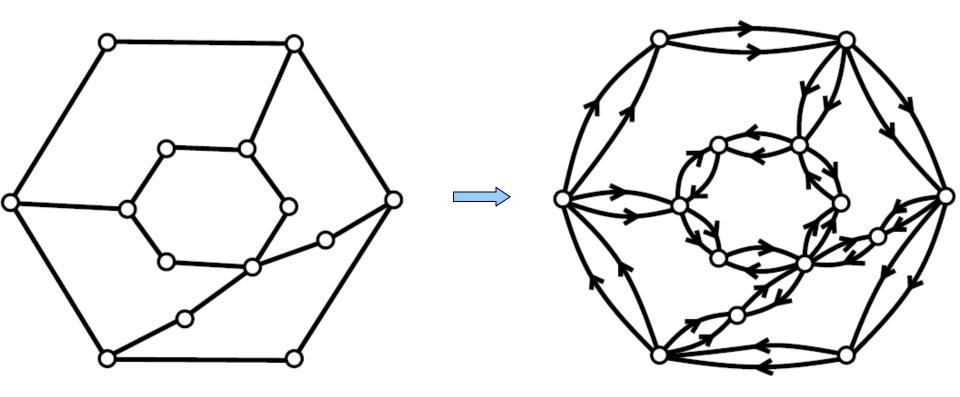
Part III: generalization to higher girth

b/(b-1)-orientations for b≥2

A b/(b-1)-orientation on a 2b-angulation G is an orientation of the planar map (b-1)*G (each edge multiplied by b-1) such that:

- inner vertices have indegree b
- outer vertices have indegree b-1

[Bernardi,F'10]: a 2b-angulation can be endowed with a b/(b-1)-orientation iff it has girth 2b



Shape of the mobiles in girth 2b≥2

- Each black vertex of degree 2i has i-b legs
- There are ``connectors" between black vertices: (trees with black leaves, white inner nodes, weights on half-edges)



a connector for b=4

Connectors, for b = 1: $\bullet^{0} \bullet^{0} \bullet$ b = 2: $\bullet^{0} \bullet^{1} \circ^{1} \bullet^{0} \bullet$ b = 3: binary trees