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1 INTRODUCTION

1 Introduction

In computer science, probability theory, algebra, statistical physics, biology, a lot of objects hav-

ing a discrete nature appear for various reason. In statistical physics, biology and also in probability

theory, discrete objects are used to model some real phenomenons (quantum physics, magnetism,

polymer, DNA, genealogical tree, random walk, Markov chain, etc.); in computer science and in

algebra the objects are by nature discrete: finite groups, monöıd, bases of polynomials,... data

structures, algorithms, in computer science, morally, everything is discrete!

A good understanding of the combinatorial properties of these families of objects is then a

crucial point, often the first question. What means “to understand the combinatorial properties

of a family of objects?” Well, it depends. Sometimes, the objects are so complex, that even the

number of objects of size n is unknown:

– there are 4n path S = (Sk, k = 0, . . . , n) in the plane with steps North, East, West, South

(with S0 = 0). How many such paths are non self intersecting (starting from 0 and such that

Sk = Sj =⇒ k = j)? This is not known, neither the answer for the loop cases (Sn = S0), called

”non intersecting polygons”

Figure 1: A non self intersecting path with 10 steps; a non intersecting polygon with 16 steps

– How many square matrices n × n with entries 0 or 1, such that no two 1 are neighbors? (are

neighbors the entries ak,j and ak′,j′ if |k′ − k| = 1, j = j′ or |j − j′| = 1, k′ = k). This is not known.

– Take a honeycomb lattice. The number of directed animals with n cells is unknown.

Figure 2: A directed animal on the honeycomb lattice is a subset A of the lattice such that any point

of A can be reached from the bottom vertex by a raising walk staying inside A.

In some cases, the objects are more simple, and can be decomposed and counted : we say that

we are able to count a family of objects, if the sequence (an, n ≥ 0) giving the number of objects of

size 0,1,2,. . . is explicitly or implicitly known. Often, only the generating function G(z) =
∑

n anz
n

is implicitly known as a solution of a more or less complex system of functional equations.

Examples of counted families of objects include:

– number of compositions of n (sequence of positive integers summing to n); this is 2n−1. Why?
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1 INTRODUCTION

– number of partitions of n (set of positive integers summing to n); the generating function is
∏

k≥1
1

1−xk ; why?

– plane partitions with or without imposed symmetries with n boxes,

– the number of paths S = (S0, . . . , Sn) where the increments Sk − Sk−1 are taken in a finite set I,

or restricted to satisfy various assumptions, as to end at 0, to be positive all along, etc.,

– number of rooted plane trees with n nodes (and where the degree of the nodes are restricted to

belong to a fixed set, as for example {0, 2, 3}),
– number of rooted quadrangulations with n faces (or triangulations), or number of planar graphs

with n points, etc.

Figure 3: A plane partition and a rooted quadrangulation with 5 (finite) faces.

One can find on the Sloane’s web site, more than 160 000 sequences appearing as counting

sequences in combinatorics : http://www.research.att.com/∼njas/sequences/ (Can you imagine

why this site is made for ?)

Existing techniques to count combinatorial objects are more or less involved, but often tricky :

often they rely on the decomposition of the objects; from there some equations involving the

searched generating function have to be solved, or some ugly determinants have to be computed;

sometimes a bijection exists with a simpler family of objects...

Good overviews are:

– the two books of Richard Stanley, Enumerative Combinatorics, vol. 1 and 2.

http://www-math.mit.edu/∼rstan

– Analytic combinatorics, by Flajolet and Sedgewick, available for free at

http://algo.inria.fr/flajolet

– see also the page of the Austrian research network devoted to Analytic Combinatorics and Prob-

abilistic Number Theory,

http://dmg.tuwien.ac.at/nfn

where the different specialties of Austrian research teams on the topics are given.

Of course, studying combinatorial objects doesn’t mean only counting. Knowing that there

are
(2n
n

)

/(n + 1) binary trees with n internal nodes, or that they are 2n−1 compositions of n does
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1 INTRODUCTION

not help a lot to know what is the standard shape of a binary trees with 109 nodes or what is

the standard size of a part in a compositions of 108. When one wants to describe a family of

combinatorial objects, one of the first questions arising is then to try to give some elements on

an additional parameter of the structure. The parameters of interests are various, depends on the

applications, but in any case, they generally give the first quantitative information on the behavior

of the discrete structures.

For example,

– the standard height of a planar binary tree with n nodes is about
√
n. In other words, if the

set of trees with n nodes is endowed with the uniform distribution, the mean height of a tree is

asymptotically
√
n (up to a constant factor). [The maximal possible height of a tree with n internal

node is n: this is trivial and not interesting; the minimal height is around log2 n: this is trivial,

and not interesting].

– in a uniform quadrangulation with n faces, the (mean of the) maximum distance between two

vertices is n1/4,

– in a binary search tree with n nodes, the height of the tree is 4.31 log n+ o(log n) asymptotically

(when the data successively inserted x1, . . . , xn are i.i.d. random variables, uniform on [0, 1] (see

Section 2.2)),

– in the cycle-representation of a uniform random permutation of {1, . . . , n}, the cycle containing

1 as a length uniform on {1, . . . , n}.
————————————

Note 1 : 1) The same set of objects can be endowed with several “natural” distributions. On the above

examples, the set of binary trees is first endowed with the uniform distribution, then endowed with the

distribution induced by successive insertion of data (the binary search tree construction). These distributions

are radically different. Each result concerning the mean or the distribution of a parameter of a family of objects

is of course dependent on the chosen distribution on this family.

2) In computer science, data structures are often simple combinatorial objects (trees, arrays). When one

wants to analyze the cost of construction or of utilization of a given data structures, often this cost is a simple

parameter of the structure: for example, the cost of the construction of a binary search tree relies on the

number of comparisons done between the elements; the total number of comparisons done when constructing

the tree is equal to the total path length of the tree, the maximum number of comparisons needed to place

an element in the tree is given by the height of the tree, etc.

Hence, in the book of Knuth (the art of computer programming), or in those of Flajolet & Sedgewick, analysis

of algorithms considerations appear “melted” with combinatorial ones.

During, these last decades appear that some families of combinatorial structures show some

remarkable asymptotic behaviors. Some of the parameters of interest present some limiting behavior

in distribution; for example, denoting by Hn the height of a binary tree with n internal nodes taken

uniformly in the set of binary trees with n nodes, thenHn/
√
n converges in distribution. In a binary

search tree, the depth of insertion Dn in a tree of size n, converges also: (Dn − 2/ log n)/
√
log n

converges in distribution to a centered normal variable. Much more than that appears; sometimes

the family of objects can be sampled (generated with the right distribution on a computer) and

drawn: in some cases, the whole picture of the object seems to present a limiting behavior, see the
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examples on Figures 4, 5 and 6.
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Figure 4: loop erased random walk with 10 000 steps: make a random walk in the plane, and erase

the loops as soon as they appear. Stop when the number of (remaining) steps is 10000.
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Figure 5: Two random walks with 10000 steps. The first one has increment distribution 1
2 (δ1 + δ−1),

the second one with increments distribution 1
4δ−4 +

1
5δ2 +

1
5δ3 +

7
20δ0. So different... and so similar
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Figure 6: On the first picture, a uniform directed animals on a triangular lattice with 10 000 cells. On

the second one, a uniform filling of a square array of size n×n by the integers from 1 to n2, increasing

along rows and columns (picture, taken on Dan Romik’s page http://www.math.ucdavis.edu/∼romik)
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Main questions

Hence, the “limiting picture” can be random or deterministic. The difficulty when one tries to

translate the observed phenomenons into theorems or conjectures is immediate: a limiting behavior

appears on the picture, yes, but, something has been forgotten in the procedure... the notion of

convergence has not been defined! and the limiting object is often not of the same type as the

discrete one... it is no more discrete, but present a “continuous” structure. Often, when sampling

and drawing “the picture” of the combinatorial object on a picture, a rescaling has been done:

morally, what appears at scale
√
n have been represented at scale 1 on Figure 5. It has been done

more or less consciously by the programmer, but it has been done (since most drawing softwares

make an automatic rescaling of the picture to fit with the screen of the computer).

Hence the main questions that appear are the following:

1. what means that a sequence of rescaled combinatorial structures converges?

2. what means that a sequence of rescaled random combinatorial structure converges? (in distri-

bution? or in probability?)

Assume that a theorem of convergence has been written...

3. would we be able to deduce something from this global convergence?

4. what can not be deduced from this convergence?

But over all,

5. how can we prove such convergence results ?

Quick answers

1. Intrinsically, nothing. “To converge” is a notion “topology dependent”. In other words, a

topology has to be defined first... it may happen that no pre-existing topology is available in the

literature; particularly, this may happen if you want to prove a first result on your preferred struc-

ture (all combinatorial structures are different); you do have to invent a topology on a convenient

set, containing the discrete rescaled objects and the plausible limit... that you have to create also.

Sometimes, several choices of topology are available.

2. Roughly speaking, one can say that if the work in (1) has been done cleanly, the notion of

convergence in distribution (or in probability) is well defined at once; there is a notion of weak

convergence associated automatically to a given notion of convergence.

3. Again, this is topology dependent. More the topology is thin, more the deductions are numerous

and strong. If the limiting object is not trivial, infinitely many things can be deduced in general

(for example, the scaling has been chosen in such a way that the limiting object is not infinite

or reduced to a single point. These byproducts may concern the whole structure, it the topology

is well built. Generically, any parameter which depends continuously of the objects will have a

limiting behavior implied by the convergence of the structure.

4. Again, this is topology dependent. In general, infinite many things can not be deduced. For

example, if you rescale your structure by
√
n, every phenomenon which does not appear at this
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scale can not be viewed on the limit, and then can not be studied via this procedure.

5. this is the main question, and of course, the difficult one. Several different problems in nature

have to be solved altogether. When a topology has been defined, a first work is to establish some

criterion of convergence in distribution with respect to this topology. Then of course, the special

case studied must been proved to satisfy the criterion built.1

In this course, we will modestly illustrate these questions and constructions for the convergence

of a sequence of paths, and for the convergence of a sequence of trees. Some applications to analysis

of algorithms will naturally appear.

Some references

We here give some references that have been used to make the present course; some other ref-

erences are given for complement, to the interested reader.

Concerning the asymptotic of paths, the main ideas comes from Donsker in the fifties. For this

course, the main sources in probability theory are the books of Billingsley (Convergence of Prob-

ability Measures, and Probability and Measure), the book of Kallenberg (Foundations of Modern

Probability, not recommended to beginners); for beginners, the book of Breiman (Probability) does

not contain all the stuff needed for the course, but constitutes a very nice introduction to proba-

bility theory. The properties of the Brownian Motion (just evoked at the end of the notes) can be

studied in the book of Revuz & Yor (Continuous Martingales and Brownian Motion), or Karatzas

& Shreve, (Brownian Motion and Stochastic Calculus).

The convergence of rescaled Galton-Watson tree to a limiting object has been proven/imagined

by David Aldous in the nineties

http://www.stat.berkeley.edu/∼aldous/Research/index.html

in a series of large papers (the continuum random tree 1, 2, and 3).

From this date, the continuum random tree appears to be a central structure, appearing as

limit in a lot of applications. One will find on the web page of Jean-François Le Gall a lot of stuff

concerning the convergence of rescaled trees (among other its work with T. Dusquesne concerning a

generalization of Aldous result to families of Galton-Watson trees, where the offspring distribution

is more general than in the present course, letting other limits than the continuum random tree of

Aldous, appear); on the page of JFL one will find also some courses on the convergence of random

trees

1Wendelin Werner got the Field medals in 2006, particularly for his works (together with Oded Schramm and

Greg Lawler) concerning the limiting behavior for various model of random curbs in the plane : loop erased random

walks, contour of percolation clusters, random Peano curbs,... What is remarkable in these impressing works is that

limiting behaviors are obtained even if the number of such curbs are not known (even up to an exponential order, for

some of them). Hence, this example shows that even if often counting results are the first elements and an important

tool to obtain asymptotic results, it exists some cases where they stay unknown when more asymptotic qualitative

results are known.
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http://www.dma.ens.fr/∼legall/Cornell.pdf

Properties of branching processes (as Galton-Watson processes) can be studied in the book of

Athreya and Ney (Branching processes) and Harris, (The theory of branching processes).

The proof of the convergence of the rescaled random trees we propose here is taken from a

paper written in collaboration with M. Mokkadem (The depth first processes of Galton-Watson

trees converge to the same Brownian excursion, in 2003).

Before starting with the core of the problem, we recall now some simple facts of probability

theory in R (for distribution on R). We think that the reader must understand this stuff before

being ready to understand the construction of convergence for more complex structures.
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2 Elements on probability theory in R

2.1 Distribution on R: characterizations and convergences

We write in this part, some elements valid in the real case but also more generally, as it will

soon appear.

Let Ω be a set. A σ-field A on Ω, is a part of the power set P(A), stable by countable union,

countable intersection, and by complementation. The elements of A are the measurable sets, and

often called in probability theory the events. A probability measure P on (Ω,A) is a map from A
into [0, 1], which is σ-additive, and such that P(Ω) = 1 (by σ-additive, we mean: if (Ai, i ≥ 1) is a

sequence of non pairwise intersecting elements of A, then P(∪iAi) =
∑

i P(Ai)).

The three tuple (Ω,A,P) is called a probability space.

————————————
Note 2 : When Ω is a finite or countable set, usually A is taken equals to the whole set P(A); there is a

good reason for that... The measure P gives a measure to the events; then in general we want the singletons

{ω} to have a probability, that is to belong to the σ-field A. In a countable set, if the singletons are in the

σ-field, then every subsets are also in the σ-field (since this latter is close under countable union). Hence, in

the discrete case, considerations about σ-fields are often omitted in the first courses of probability. In the case

of distribution on R this can not longer be omitted, since no satisfying construction of measures can avoid

this point on R.
————————————

Example 1 : • Famous distributions on discrete sets:

– on finite sets:

. the uniform distribution

. Bernoulli parameter p. This is the distribution pδ1 + (1 − p)δ0 meaning, P({1}) = p,P({0}) = 1− p

. Binomial distribution with parameter (n, p) ; this is the distribution which assigns the weight
(

n
k

)

pk(1 − p)n−k

to k ∈ J0, nK.

– on N :

. the geometrical distribution: P({k}) = p(1− p)k for k ≥ 1,

. Poisson distribution with parameter λ, P({k}) = λk exp(−λ)/k! , for k ≥ 0

• on R (famous distributions having a density with respect to the Lebesgue measure):

. Uniform distribution, f(x) = 1[0,1](x),

. Exponential distribution with parameter a : f(x) = ae−ax, x ≥ 0,

. Normal distribution N (m,σ2), with mean m and variance σ2,

f(x) =
exp

(

− (x−m)2

2σ2

)

√
2πσ2

.

When a density exists, the set of measurable sets can not be the entire power set P(R) for the

reason that (a measure having the same properties as) the Lebesgue measure can not be defined on

all P(R). Hence, even if P is the uniform distribution on [0, 1], P(B) is not (can not be) defined for

any subset B of [0, 1]; even if this fact seems at the first glance not important, it implies in some

sense all the “complications” coming from the σ-field considerations.
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2.1 Distribution on R: characterizations and convergences

The σ-field used on R is the σ-field generated by the open sets (the minimal σ field containing

the open sets); this σ-field is called the Borelian σ-field, and denoted by B(R); its elements are

called the Borelians, or Borelian sets. If P has a density f , then for any Borelian A ∈ B(R),
P(A) =

∫

A f(x)dx, and in any case, we write P(A) =
∫

A dP(x) meaning that we integrate with

respect to the measure P.

We recall that when PX is discrete then for any measurable function g

E(g(X)) =
∑

x∈A
P(X = x)g(x)

when PX has a density f then

E(g(X)) =

∫

f(x)g(x)dx

in any case, we write

E(g(X)) =

∫

g(x)dPX (x).

To end, notice that B(R) contains all the singletons on R, and then, it contains any σ-field build on

any countable set (for example Z, N, Q); for this reason, in general when a variable is considered

as a real random variable, the considered σ-field will always be B(R).

Let (E, E) be a set E equipped with a σ-field E . A random variable X on (Ω,A) taking its

values in (E, E) is a measurable map from (Ω,A) into (E, E) (measurable means that X−1(C) ∈ A
for any C ∈ E).

If (Ω,A,P) is a probability space, the distribution ofX is a probability measure PX on (E,B(E))

defined by

PX(A) := P(X−1(A)).

Hence, the distribution of a random variable X is a measure PX . This distribution is called the

image distribution of X (and also, the pushed-forward distribution of X on (E,B(E)).

————————————

Example 2 : a) Assume that Ω = {1, 2, 3, 4, 5, 6}, A = P(Ω), P is the uniform distribution. Then X : Ω 7→ R

defined by X(i) = (i− 2)2 is a random variable in (Z,P(Z)) with distribution PX as follows: PX({i}) = 1/6 for

i ∈ {0, 4, 9, 16} and PX({1}) = 2/6.

b) If Ω = set of trees with 12 nodes, A = P(Ω), P =uniform distribution. Then H : (Ω,P(Ω)) 7→ (N,P(N))

defined by H(t) = height of the tree t, is a random variable. PH({5}) = P(H−1(5)) = P({t : H(t) = 5}) =
#{t ∈ Ω, H(t) = 5}/#Ω

c) If Ω = R, A := B(R) the set of Borelian subsets of R (defined below), P being the normal distribution N (0, 1).

Then X : (R,B(R)) → (R,B(R)), defined by X(x) = cos(x) is a random variable with values in (R,B(R)). We

have PX(A) = P(X−1(A)) = P(cos(X) ∈ A) =
∫

f(x)1A(cos(x)) dx where N is normal N(0, 1), and f its

density.

————————————
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2.1 Distribution on R: characterizations and convergences

Note 3 : This note can be skipped; its aims is to discuss the fact that often, in probability theory, the

probability space is not given, but only distribution and random variables.

Assume that X is the identity function on (Ω,A) (it is measurable as a map from (Ω,A) onto itself, and

then a random variable). Trivially in this case PX = P : hence P appears to be the initial distribution of

a probability space and to be the distribution of a random variable. Hence any distribution on a set is the

distribution of a random variable! This artificial case shows that there are no difference in nature between

probability distribution of a space, as introduced at the beginning of this section, or the distribution of a

random variable. This identity is used everywhere in probability theory, without indication. This is the reason

why, often in probability theory, the probability set Ω is not given explicitly (specially when we are working

on R): often, the story begins with a random variable taking its values in a given set E having a certain

distribution PX ; this does not mean that there didn’t be at ”the beginning of the time a set Ω”, but this set

is not useful for the computations, and if needed, it can be taken equal to E; in which case taking P = PX

as the ”initial probability measure on Ω”, the identity has distribution PX .

2.1.1 Characterizations of measures on R

Here are some examples of characterization of measures on R; they are written in term of

random variables, but does not concern the equality of random variables, but of their distributions.

1) if PX(A) = PY (A) for all open ball A, or open sets A, or closed sets A, then PX = PY ,

2) if E(f(X)) = E(f(Y )) for all continuous bounded function f then PX = PY (same criterion with

continuous + bounded support instead),

3) the cumulative function x 7→ FX(x) := P(X ≤ x) characterizes the distribution: if FY (x) =

FX(x) for every x ∈ R then the two distributions PX and PY are equal,

4) Fourier transforms: t 7→ ΦX(t) := E(eitX), for t ∈ R. If ΦX(t) = ΦY (t) on R, then PX = PY ,

5) Laplace transforms: t 7→ ΨX(t) := E(etX), for t ∈ R (or a subset of R). If ΨX(t) = ΨY (t) on R

(or on an interval of R), then PX = PY (Laplace transforms do not exist in all generality),

6) Probability generating function t 7→ GX(t) := E(tX), for t ∈ R (or a subset of R); If GX(t) =

GY (t) on R (or on an interval of R), then PX = PY (this is used for distribution having their

support on N),

7) moments: if for any k ∈ N := {0, 1, 2, . . .}, E(Xk) = E(Y k) then it may happen that PX 6= PY .

Under the so-called Carleman’s condition, namely if
∑
(

E(X2k)
)−1/(2k)

= +∞, then there exists

only one measure with these moments, and then PX = PY .

————————————

Exercise 1 : a) Let X be uniform on [0, 1]; using the characterization (3) find the law of X2; do the same

work with characterization (2). Compare these two methods for a general r.v. Y = f(X).

b) Recall that if X and Y are independent then f(X) is independent of g(Y ) for any measurable function f

and g (in some measurable spaces). Using characterization (1) find the distribution of X + Y if X and Y are

independent, and have the Poisson distribution with respective parameters λ et µ (this is equivalent to compute

P(X + Y = k) for any integer k... yes?). Do the same using (4) (discuss what happens if instead of (4), (5) or

(6) is used). Discuss the difference in the general case when one wants to compute the law of X1 + · · · + Xn

using (1) and using (4).
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2.1 Distribution on R: characterizations and convergences

2.1.2 Characterization of the convergence of measures on (R,B(R))

First, we recall some definitions. Definition : Let X be a r.v. and (Xn, n ≥ 0) a sequence of

random variables defined on the same probability space (Ω,A,P) taking their values in R.

– We say that (Xn, n ≥ 0) converges in probability to X if :

∀ε > 0, P(|Xn −X| ≥ ε) = P({ω | |Xn(ω)−X(ω)| ≥ ε}) →
n

0.

– We say that (Xn, n ≥ 0) converges almost surely to X if :

P(lim
n
Xn = X) = P({ω | limXn(ω)}) = 1.

– We say that (Xn, n ≥ 0) converges to X in Lp (for p > 0) if :

Xn ∈ Lp, for each n, and if E(|Xn −X|p) →
n

0.

We put together these three notions, because we see them to be from the same type: they are

convergence of functions; all the random variables X,X1,X2 are defined on the same space, and

they are compared point by point. These convergences are convergence of the ”standard type”;

more n is large, and more Xn is close to the limit X, which can be random (see Exercise 2.1.2).

Archetype of a.s. convergence is the strong law of large numbers (see also Figure 7) :

Theorem 1 (Strong law of large number) Let (Yn, n ≥ 1) be a sequence of i.i.d. random

variables with mean m, then
∑n

i=1 Yi
n

a.s.→
n
m.

The weak law of large number is the same statement with the convergence in probability instead.

To prove the weak version is easy if one assumes var(Y1) < +∞. Try! (Use Bienaymé-Tchebichev

inequality). A simple proof of the strong law of large numbers exists if a moment of order 2 + ε

exists: inequality of Markov + Borel Cantelli lemma gives the result.

0.5

1

0 5000 10000

Figure 7: Drawing of a random sequence (
∑n

i=1
Yi

n
, n ≥ 1), with i.i.d. r.v. Yi having mean 1.

————————————

Exercise 2 : Let (Xn, n ≥ 0) be a sequence i.i.d. r.v. Bernoulli B(1/2).

a) Show that that the sequence (Yn, n ≥ 1) defined by Yn =
∑n

i=1Xi2
−i converges a.s.
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2.1 Distribution on R: characterizations and convergences

b) For each n ≥ 1, let Zn be defined by Zn =
∑n

i=1Xi2
−(n−i+1); prove that Zn has the same distribution as

Yn (that is PYn
= PZn

), for each n.

c) Prove that the sequence (Zn) does not converge a.s. (neither in probability).

The convergence in distribution is not a convergence of r.v., but a convergence of distributions! Let

µ, µ1, µ2, . . . be a sequence of probability measure on (R,B(R)). The sequence of measures µn is

said to converge weakly to µ (we write µn
weak−−−→
n

µ) if for any bounded continuous function f

lim

∫

R

f(x)dµn(x) =

∫

R

f(x)dµ(x).

Definition : We say that a sequence of random variables Xn (defined on possibly different proba-

bility spaces (Ωn,An,Pn)) converges in distribution, if the sequence of measures (PXn , n ≥ 1) converges

weakly to a limiting probability measure µ (which is then the probability distribution of a random vari-

able X). In other words, a sequence of random variables (Xn) converges in distribution to X (we note

Xn
(d)−−→
n

X) if

E(f(Xn)) →
n

E(f(X))

for any f : R 7→ R bounded, continuous.

(We could have written En instead of E meaning that the expectation is taken with respect to Pn).

See below some more usual characterization of the convergence. What is important to see

here, is that the variables need not to be defined on the same Ω, and also that Xn and X are not

compared as random variables: Xn is not close to X, but E(f(Xn)) is close to E(f(X)).

Consider the following example: if you take a sequence of i.i.d. random variables (Xn) where

all the Xn have the same distribution Bernoulli 1/2: they converge in distribution, since for any

function f (continuous or not) E(f(Xn)) = E(f(X)); but Xn does not converge in probability, since

a.s. (Xn, n ≥ 1) has two accumulation points 0 and 1.

Characterization of the convergence in distribution

If one of the following facts holds, then Xn
(d)−−→
n

X,

1) Convergence of the cumulative distribution function Fn(x) = P(Xn ≤ x) → F (x) = P(X ≤ x),

for all x where F is continuous

2) Convergence of the Fourier transform Φn(t) = E(eitXn) → Φ(t) = E(eitX), for all t

3) Convergence of the Laplace transform t 7→ ΨXn(t) := E(etXn) → ΨX(t) := E(etX), for t in an

interval of ∈ R.

4) Convergence of the moments : if for any integer k ≥ 1, E(Xk
n) → E(Xk) and X satisfying the

Carleman’s condition.

Compare these criterions with the criterions of characterization of measures in Section 2.1.1.

One may state a meta theorem as follows:
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2.1 Distribution on R: characterizations and convergences

“Any criterion characterizing the probability measures on R characterizes also the

convergence of measures, under the additional condition that the limit is a proba-

bility measure”.

————————————

Exercise 3 : a) What we mean by the meta theorem is: the point-wise convergence of Fn to some function

F is not sufficient (F must be a cumulative function), the convergence of the Fourier transform is not sufficient,

the limit must be the Fourier transform of a probability measure, etc. Find an example of sequence of r.v. (Xn),

such that (Fn) converges point-wise and such that the sequence (Xn) does not converge in distribution.

b) Find an example of sequence of r.v. (Xn) such that Xn
d−−→
n

X but E(Xn) 6→ E(X).

See also below, the classical Portmanteau theorem :

Theorem 2 (Portmanteau) Let P,P1,P2, . . . be a sequence of measures on the same Polish

space (S,S). The five following assertions are equivalent :

(i) Pn
weak−−−→
n

P.

(ii)
∫

fdPn −→
∫

fdP for any f bounded, uniformly continuous.

(iii) lim supn Pn(F ) ≤ P(F ) for any closed set F .

(iv) lim infn Pn(O) ≥ P(O) for any open set O.

(v) For all A ∈ S such that P(∂A) = 0, Pn(A) −→ P(A).

An archetype of the convergence in distribution is the following theorem (see also Figure 8)

Theorem 3 (Central limit theorem) Let (Yi) be a sequence of i.i.d. random variables, hav-

ing mean m and variance σ2 ∈ (0,+∞). Let

Xn :=

∑n
i=1(Yi −m)√

σ2n

be the rescaled sum (with mean 0 and variance 1). We have Xn
(d)−−→
n

N (0, 1).

–2

0
5000 10000

Figure 8: We have simulated a sequence (
∑

n
i=1

(Yi−m)√
σ2n

, n ≥ 1) satisfying the requirement of Theorem

3. It does not converge a.s., but in distribution.
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2.2 Exercise: analysis of the mean profile of binary search trees

————————————

Exercise 4 : a) Find in the literature the hierarchy of the convergences.

b) Using characterization (3) show the central limit theorem for a sum of i.i.d. random variables having distribution

the Bernoulli distribution B(p), Poisson(λ) (subtract the mean, divide by the square root of the variance).

2.2 Exercise: analysis of the mean profile of binary search trees

We will use here some stuff introduced in the next Section, concerning simple notion on trees;

the reader unaware of these notions, can skip this exercise in a first reading.

We present under an exercise the analysis of the mean profile of a binary search tree. Lot is known on

binary search trees , among other thanks to the efforts of Luc Devroye http://cg.scs.carleton.ca/∼luc/

(there is also an entire book by Mahmoud, on the topic). Here we present a simple result, which

can be proved by several methods, and which can be attributed to Guy Louchard.

A binary search tree is a structure associated with quick-sort. Quick-sort is an algorithm used to

sort a list of data l = (x1, . . . , xn) from a set E, equipped with a total order <; it works recursively

as follows (the list is assumed to contain distinct elements). Take the first element x1 of l, and by

successive comparison with x1, build two lists lx1
< and lx1

> of elements of (x2, . . . , xn) smaller and

larger than x1. Apply recursively the same algorithm to these lists, until each list contains 0 or 1

element.

The binary search tree is practically used to store/retrieve data in a computer. Formally, it is

a binary labeled tree, that is iteratively constructed as follows;

At the beginning the tree is empty. When a new data xi is inserted in a binary search tree,

. if the tree is empty it is placed at the root,

. if the tree is not empty, xi is compared to the data y placed at the root; if xi is larger than y, xi

is inserted in the right subtree of y, if is smaller, xi is inserted in the left subtree rooted y.

Hence, when x1, . . . , xn have been successively inserted, the data in the left subtree of x1 is lx1
< ,

and those in the right one is lx1
> . Let BSTn be the binary tree having as internal nodes the labeled

nodes hence constructed (if n data are inserted, the tree has size 2n + 1). Denote also by tn the

underlying tree of BSTn, that is the tree without the labels.

1) Assume E = R, endowed with the usual order <. Draw BST5 corresponding to the data

(x1, x2, x3, x4, x5) = (0.3, 0.5, 0.7, 0.4, 0.45).

2) Let x6 be a new data in [0, 1] to be inserted. Discuss the difference between BST6 and BST5

according to the value of x6.

3) Discuss in terms of BSTn the following quantities (cost=number of comparisons): cost to build

BSTn, maximal cost for a successful query (that is, to retrieve a data which is in the tree), maximal

cost of an unsuccessful query (that is, to be sure that a data is not in the tree).

In order to analyze the stochastic behavior of the binary search tree, we now consider what is

called the permutation model. We assume from now on that the sequence (xi) is a sequence of

i.i.d. random variables, uniform on [0, 1].

The underlying tree tn associated with the list l does not depend on the value of the list, but only

16



2.2 Exercise: analysis of the mean profile of binary search trees

of the relative order of the data, that is, it depends on the permutation σn in the symmetric group

Sn, such that

xσn
1
< . . . < xσn

n
. (1)

4) Under the permutation model show that the permutation σ in (1) is uniform in Sn; is it still

the case if the xi are not uniform, but say follows another distribution having a density? What is

law of the rank of (a new data) xn+1 in the list x1, . . . , xn+1 ? Give the evolution rule for tn (be

careful, the question in on tn, not on BSTn).

5) Under the permutation model, conditionally on x1, how many nodes in the left subtree of BSTn

(rooted on the first child of the root) when x2, . . . , xn have been inserted?. When n → +∞, what

can be said? Discuss the same question for another subtree.

6) Using (3), what is the law of the size of the left subtree of tn? Compute this again using (4), by

integration of the value of x1 (we can use the following formula
∫ 1
0 x

a(1 − x)bdx = a!b!
a+b+1!valid for

a > 0, b > 0).

7) We enter now in the study of the mean profile. Let Z(n) := (Zk(n), k ≥ 1) be the (leaf) profile

of tn, that is the successive number of leaves at level k ≥ 1 in tn (recall that n counts the number

of internal nodes).

a) Using (4), show that for n ≥ 0,

E(Zk(n+ 1) | (Zk(n), k ≥ 0)) = Zk(n)

(

1− 1

n+ 1

)

+ 2
Zk−1(n)

n+ 1
, (2)

this being initialized by Z0(1) = 1, Zi(0) = 0 for i ≥ 1.

From (2) we deduce, by taking the expectation

E(Zk(n+ 1)) =
nE(Zk(n))

n+ 1
+ 2

E(Zk−1(n))

n+ 1
, (3)

and thus, setting zk(n) =
E(Zk(n))

n+1 this gives

zk(n+ 1) =
nzk(n) + 2zk−1(n)

n+ 2
and z0(1) = 1. (4)

b) For n ≥ 0, consider a random walk Wn = 1 +X1 + · · · +Xn where the Xi are independent but

not i.i.d.: P(Xk = 1) = 2
k+1 , P(Xk = 0) = 1− 2

k+1 . Express pk(n+ 1) := P(Wn+1 = k) in terms of

the vector (pj(n), j ≥ 0). Compare to (4).

c) Check the Lindeberg’s condition2 forWn, and state a limit theorem forWn; what can be deduced

2Lindeberd’s condition for central limit theorem: Let (Xk) be a sequence of real r.v., independent, defined on the

same probability space (Ω,F , P). Assume the expected values E(Xk) = µk and variances var(Xk) = σ2
k exist and are

finite, and let s2n :=
∑n

k=1 σ
2
k. If this sequence of independent r.v. Xk satisfies the Lindeberg’s condition:

for all ε > 0, lim
n→∞

1

s2n

n
∑

k=1

E
(

(Xk − µk)
21|Xk−µk|>εsn

)

= 0,

then the central limit theorem holds, i.e. the random variable

Zn :=

∑n
k=1 (Xk − µk)

sn

converges in distribution to a standard normal random variable as n → ∞.
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3 PATHS AND TREES : DISCRETE CONSIDERATIONS

for the profile of BST?

d) Make some simulations: draw the profile of a binary search tree with 100 000 nodes associated

with a sequence of i.i.d. random variables xi, uniform on [0, 1]. What can be conjectured?

3 Paths and trees : discrete considerations

3.1 Planar trees

We will use the formalism introduced in probability theory by Neveu, which is particularly

well adapted to probabilist considerations, and which is moreover the usual formalism in computer

science. The trees considered in this course are rooted, and planar, meaning that the children of

each node are ordered.

ǫ

1
2

3

31 3211

311

Figure 9: Representation of the tree E = {ǫ, 1, 2, 3, 11, 31, 32, 311}

Each node is a word; a tree is a set of words. We proceed as follows. Let U = ǫ ∪⋃n≥1N
⋆n

be the set of finite words that can be written on the alphabet N⋆ := {1, 2, 3, ...}; ε designates the

empty word. Denote by uv the concatenation of the words u and v; by convention ǫu = uǫ = u.

Definition : A part T of U is a tree if it has the following properties :

• ǫ ∈ E

• if uv ∈ E then u ∈ E

• if uk ∈ E for k > 1 and u ∈ U then u(k − 1) ∈ E.

Some vocabulary : let T be a tree. The elements of T are called nodes. The word ǫ is called

the root of T ; the length of a word u in T , denoted by |u|, is called the height of u in T or the level

of u in T (we have |ǫ| = 0). For u is T ,

cu(T ) = max{k | uk ∈ T}

is the number of children of u in T (and, the ui’s, for i ∈ N are the children of u). Hence, if it

exists, u1 is called the first child of u, u2 the second, etc.. The cardinality of T is called the size of

the tree, and denoted by |T |.
The properties imposed in the definition of the tree are clear : a tree must have a root, all the

prefixes=ancestors of a node must be in the tree, and the children of a node u in T are ordered

from u1 to the last one ucu(T ) (these properties ensure a unique tree for “each tree shape”).

18



3.2 Encoding of finite trees

The lexicographical order on U denoted by <lex can be projected on any tree T , making of it a

totally ordered set. Trees are often represented as done on Figure 9, omitting the words; it is then

understood, that the root is at the bottom, that the children of each node are sorted from left to

right.

The set of trees will be denoted by T , and the set of trees with n nodes by Tn.

One finds in the literature several other definitions for this same families of rooted planar tree :

one of them, classical in computer science is the following one: a tree is either a single node, or a

ordered (finite) sequence of trees (this is a recursive definition).

3.2 Encoding of finite trees

A very rich and efficient method to represent a tree (from a combinatorial point of view) consists

in encoding them by some paths. For this, are used some traversal algorithms.

Breadth first search

1

2 3 4

5 6 7

8 9 10 11 12

Figure 10: Order induced by the breadth first search

In the breath first search, the levels of the tree are visited successively, from the root to the

top of the tree, and on a given level, the nodes are visited from left to right. On the above tree

is indicated the visit order of the different nodes. [Formally, the breadth first order is defined as

follows: u <br v if (|u| < |v| or if (|u| = |v| and u <lex v)).]

Depth first search

The nodes are visited according to the lexicographical order. First the root, then 1, then 11, etc.

1

2

3

4 5 6

7

8 9

10

11 12

Figure 11: Depth first search order.
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3.3 Encoding of trees by paths

3.3 Encoding of trees by paths

3.3.1 Queue representation

(We here use the word ”queue”, where usually in computer science is used the word ”stack”).

Let us make a depth first traversal of a tree T of T (exactly the same work could be made

with the breadth first search instead). Sort the nodes (u1(T ), . . . , u|T |(T )) of T according to the

lexicographical order (hence u1(T ) = ǫ). Denote by yi(T ) = cui(T )(T ) the number of children of

ui(T ) in T . We thus have associated with any tree T of T a sequence

D(T ) = (y1(T ), . . . , y|T |(T ))

as done on Figure 12, that we call description of T .

1

1
1

1

0

00
0

0 2
2

3

Figure 12: the sequence (1,2,0,2,1,0,3,1,1,0,0,0) is the sequence of length 12 corresponding to this

tree of size 12

Lemma 1 The map D is an injection from T onto ∪n≥1N
n.

Proof . Take two distinct trees T1 and T2 in T . If cǫ(T1) 6= cǫ(T2) then y1(T1) 6= y1(T2), and then

D(T1) 6= D(T2), it’s done. Assume that cǫ(T1) = cǫ(T2), and consider u the minimal element of U

which is not in both T1 and T2; assume that u is in T1. By definition of the depth first traversal,

if u is the lth node in T1, then (u1(T1), . . . , ul−1(T1)) = (u1(T2), . . . , ul−1(T2)), that is both trees

contains the same l − 1 first nodes. Let us see why (y1(T1), . . . , yl−1(T1)) 6= (y1(T2), . . . , yl−1(T2)).

The father v of u belongs to both T1 and T2, and has the same rank in both trees, in the

lexicographical order (say it is v = uj(T1) = uj(T2) for j ≤ l − 1, since it is visited before its child

u). But it is clear that cv(T1) > cv(T2). Indeed, let k be the rank of u among the children of v,

that is let k such that u = vk. Since u ∈ T1 then cv(T1) ≥ k; in the other hand, since u /∈ T2 then

cv(T2) < k). Hence, (y1(T1), . . . , yl−1(T1)) 6= (y1(T2), . . . , yl−1(T2)), and thus D(T1) 6= D(T2). �

The map D is obviously not a surjection on ∪n≥1N
n. For example the sequence (2, 4) has no

pre-image. For any n, consider Dn the set of sequences of non negative integers y = (y1, . . . , yn)

satisfying the following set of constraints :
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3.3 Encoding of trees by paths

(C) =



































y1 ≥ 1,

y1 + y2 ≥ 2,
...

y1 + ...+ yn−1 ≥ n− 1,

y1 + ...+ yn = n− 1.

(for n = 1, the only constraint is y1 = 0).

Proposition 1 For any n ≥ 1, the restriction of D on Tn is a bijection on Dn.

Before proving this result, for any n ≥ 1, we introduce the sets Ln, of paths s := (s0, s1, . . . , sn)

with increments in {−1, 0, 1, 2, . . . }, satisfying the constraints

(C ′) =



































s0 = 0,

s1 ≥ 0,
...

sn−1 ≥ 0,

sn = −1.

In the literature, the elements of ∪nLn are called Lukaciewish paths.

For any n ≥ 1, there is an obvious bijection Ψn between Dn and Ln. The image of (y1, . . . , yn) ∈
Dn being simply s := Ψn((y1, . . . , yn)) = (s0, s1, . . . , sn) the path with increments the yi − 1 :

s0 = 0, and for 1 ≤ j ≤ n, sj = (y1 − 1) + · · ·+ (yj − 1). (5)

Proof of Proposition 1 . In the proof, n ≥ 1 is fixed.

1) First, take T ∈ Tn and consider D(T ) = (y1(T ), . . . , yn(T )); we have to check that D(T )

belongs to Dn, that is, satisfies (C): a tree with n nodes contains n− 1 children, then y1(T )+ ...+

yn(T ) = n−1. In the lexicographical order, a node is visited before its children. Hence, y1(T )+· · ·+
yk(T ) counts the number of children of u1(T ), . . . , uk(T ), which include u2(T ), . . . , uk(T ) and also

uk+1(T ) if k+1 ≤ n, since the k+1th node if it exists, is a child of one of the nodes u1(T ), . . . , uk(T );

therefore y1(T ) + · · · + yk(T ) ≥ k if k ≤ n− 1. Hence D(T ) is indeed Dn. Moreover by Lemma 1,

since D is an injection, its restriction to Tn is then an injection from Tn on Dn.

2) To end the proof, it suffices to show that for any element d = (y1, . . . , yn) ∈ Dn, there exists

T in Tn such that d = D(T ). For this we use a counting argument and show that #Dn = #Tn;
first, one has

#Tn =

n−1
∑

k=1

∑

#Tx1 × · · · ×#Txk
;

where the second sum ranges on the k tuples (x1, . . . , xk) such that x1 ≥ 1, . . . , xk ≥ 1 and

x1 + · · ·+xk = n− 1 (this is a simple decomposition of the trees of Tn according to the degree k of

the root, and the number of nodes x1, . . . , xk in the k subtrees rooted at the children of the root).
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3.3 Encoding of trees by paths

Since we already know that #Dn = #Ln, let us establish that #Ln = #Tn. Any path s =

(s0, s1, . . . , sn) ∈ Ln can be decomposed as follows: consider s1 (the first step). Since s has its

increment in {−1, 0, 1, 2, . . .}, s1 = j belongs to {0, 1, . . . , n − 2}. Now, the path (s1 − s1, s2 −
s1, . . . , sn − s1) starts from 0, end at position −1− j, and has length n− 1; it can be decomposed

into j+1 parts as on Figure 13, corresponding to the sections of the paths between the first hitting

Figure 13: Decomposition of a Lukaciewish path after its first steps, into Lukaciewish paths.

time of −1,−2, . . . ,−j − 1. Each of these parts is an element of ∪m≥1Lm. This decomposition

immediately gives

#Ln =
n−2
∑

k=0

∑

#Lx1 × · · · ×#Lxk
,

and the second sum ranges on the same xi’s as above. Since #L1 = |T1| = 1, this suffices by

induction to end the proof. �

We here sum up some information that can be deduced from this construction.

Proposition 2 The depth first search (resp. breadth first search) induced a bijection Γlex (resp.

Γbr) from T onto ∪n≥1Ln, sending bijectively Tn onto Ln : for t ∈ Tn, if Γlex(t) = s (resp.

Γbr(t) = s) then the ith increment of s is cui(t) − 1 the number of children minus 1 of the ith

node of t according to the lexicographical order (resp. breadth first order), for i from 1 to n.

Breadth first queue (BFQ)

1

2 3 4

5 6 7

8 9 10 11 12

Figure 14: A tree and its BFQ

Let T ∈ T be a tree. The Lukaciewish path ST = Γbr(T ) is called the breadth first queue
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3.3 Encoding of trees by paths

(BFQ) of T . As said above,

ST (0) = 0 and for j ∈ {1, . . . , |T |}, ST (j) =

j
∑

i=1

(yi(T )− 1),

where yi(T ) is the number of children of the ith node of T according to the breadth first order.

Depth first search (DFS)

The DFS allows to associate with each tree T ∈ T , three different paths.

– First, the Lukaciewish path ST = Γlex(T ) is called the depth first queue (DFQ) of T . As said

above,

ST (0) = 0 and for j ∈ {1, . . . , |T |}, ST (j) =

j
∑

i=1

(yi(T )− 1),

where yi(T ) is the number of children of the ith node of T according to the breadth first order.

– The second path we associate to a given tree, is the contour process. This construction is classical

in combinatorics: a tree T having n nodes has n−1 edges. We will a function FT (called the contour

function) from J0, 2(n − 1)K taking its value in the set of the nodes of T . Set FT (0) = ǫ, the root

of T . FT (k) is built as follows : if the node FT (k − 1) has some non visited children (meaning,

not in the list {FT (0), . . . , FT (k − 2)}) then FT (k) is the leftmost non visited child of FT (k − 1).

If all children of FT (k − 1) have been visited, then FT (k) is the father of FT (k − 1). The contour

function is the function vT from J0, 2(|T | − 1)K taking its values in R+ defined by

VT (k) = |FT (k)|,

the distance to the root of FT (k). The function VT gives the height of a fly walking clockwise

around the tree, one edge by unit of time, according to the time. It’s important to notice the huge

similarity between a tree and its contour process; this will appear to be crucial in the construction of

a notion of limiting tree. By construction V is a path starting at 0, ending at 0, having increments

±1, and non negative. Such a path is called ”Dyck path”.

– The third path associated with T is its ”height process” :

HT (i) = |ui+1(T )| for 0 ≤ i ≤ |T | − 1.

Proposition 3 Each of the path, BFQ, DFQ, height process and contour process, characterizes

the tree it is coming from.

(We mean by this assertion that the map which associates with a tree its height process (for

example) is an injection.)

————————————

Exercise 5 : Let T be a tree with n nodes. Denote by Z0(T ), Z1(T ), Z2(T ), . . . the number of nodes

at distance 0, 1, 2, ... from the root. For example, on the tree Figure 15, Z0 = 1, Z1 = 2, Z2 = 3, Z3 =
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3.4 Relation between HT , VT and ST

u1

u2

u7

u4 u5

u6

u3

u8

00 781 140 1

Figure 15: : a tree, its DFQ, its height process and its contour process.

1, Z4 = 1, Z5 = 0... The width of the tree T is defined by W (T ) = maxZk(T ), and the height is defined by

H(T ) = max{k, Zk(T ) 6= 0} (as usual).

1) Express W (T ) and H(T ) in term of the contour process VT

2) Express W (T ) and H(T ) in term of the BFQ ST := Γbr(T ) of T .

3) Let Nk(T ) be the number of nodes in T having k children. Express Nk(T ) in terms of the BFQ ST , and in

terms of the DFQ S′
T := Γlex(T ) of T .

3.4 Relation between HT , VT and ST

Further, a probability distribution on trees will be introduced; for this distribution, it will

appears that the DFQ ST is a simple random process. The contour process VT is the rich process

from a topological point of view, since it deeply resembles to the tree. Studying the relation between

these processes will be an important tool to prove the convergence of the contour process, and then

later, of the tree itself. The height process appears to be an intermediate on this way.

3.4.1 Link between HT and VT

Here, we just transform into formulas a simple fact: the height process as well as the contour

process gives the successive height of the nodes in the tree traversal. The contour process encodes

several times the height of the nodes, and the height process only once.

Let T be a tree of Tn, and let (u1(T ), · · · , un(T )) be its nodes, sorted according to the lexico-

graphical order. For any l ∈ {1, · · · , n} set

mT (l) = inf{k| FT (k) = ul+1(T )};

mT (l) gives the first visit time of ul+1(T ) by the contour function FT . Hence VT (mT (l)) = |FT (k)| =
|ul+1| = HT (l) for any l ∈ {1, · · · , n}.

Lemma 2 For any l ∈ {1, · · · , n},

mT (l) +HT (l) = 2l.

24



3.4 Relation between HT , VT and ST

Proof . for l = 0, it’s true. Then we proceed inductively, observing that mT (l) gives the successive

first visit time of nodes sorted according to the lexicographical order. Two cases appear :

– if ul+2(T ) is the first son of ul+1(T ), then mT (l+1) = mT (l) + 1 and HT (l+1) = HT (l) + 1, for

which we see that mT (l + 1) +HT (l + 1) = mT (l) +HT (l) + 2;

– if ul+2(T ) is not the first son of ul+1(T ) then it is necessarily a son of one of the ancestor

v of ul+1(T ). Therefore HT (l + 1) = |v| + 1 and mT (l + 1) = mT (l) + dT (ul+1(T ), v) + 1 =

mT (l) + |uT (l)| − |v|+ 1; hence mT (l + 1) +HT (l + 1) = mT (l) + |uT (l)|+ 2. �

Here is a second lemma, that controls the difference between both processes; it will also be

useful later on, for asymptotic considerations.

Lemma 3 For l ∈ {1, · · · , n} and for any k ∈ JmT (l),mT (l + 1)J :

VT (mT (l + 1)) − 1 ≤ VT (k) ≤ VT (mT (l))

HT (l + 1)− 1 ≤ VT (k) ≤ HT (l).

Proof . The contour process is a kind of interpolation of the height process :

VT (k) =

{

HT (l) if k = mT (l) for a given l

HT (l)− (k −mT (l)) if k ∈ JmT (l) + 1,mT (l + 1)− 1K for a given l
�

3.4.2 Link between the DFQ and the height process

Let u1(T ), . . . , un(T ) be the nodes of a tree T of Tn, sorted according to the lexicographical

order; let ST be the corresponding DFQ. We say that j (for a j < l) is a right minimum for ST on

J0, lK if

min
j≤k≤l

ST (k) = ST (j).

Let also denote by RMT (l) = {j | and right minima of ST on J0, lK}.

Lemma 4 (Le Gall & Le Jan) For any l ∈ J0, n − 1K and j ∈ J0, l − 1K, j is a right minimum

for ST on J0, lK if and only if uj+1(T ) is an ancestor of ul+1(T ).Therefore

#RMT (l) = HT (l). (6)

Formula (6) will appear to be fundamental ; it will be the cornerstone of the convergence of the

contour process.

Proof . We interpret ST as the size of a queue in a LIFO (last in first out) system. Consider

a LIFO server, where one client per unit of time gets out of the queue. The nodes of T are the

clients. The root u1(T ) arrives at time 0; set queue(0) := {u1(T )}. The size of the queue is then

S′
T (0) = 1.

The evolution of the queue is then as follows : at time i, the children of ui(T ) arrive in the queue,
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3.4 Relation between HT , VT and ST
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Figure 16: : LIFO queue size associated with a tree. Observe the node 6. The node 6 is present

in the queue at time 5, and no more at time 6, by construction. Its depth in the tree is 3 : its

ancestors are u5, u2 and u1. The right minima of ST on J0, 5K are exactly 1-1=0, 2-1=1 and

5-1=4.

from the rightmost one (first) to the leftmost one (last), and then in the queue, the leftmost one

will get out of the queue at first. Simultaneously, ui(T ) leaves the queue

queue(i) = (queue(i − 1)\{ui(T )}) ∪ {ui(T )1, . . . , ui(T )cui(T )}.

The size of the queue is then

S′
T (i) = S′

T (i− 1) + cui(T ) − 1.

Hence the queue size process and the DFQ are related by

S′
T (i) = ST (i) + 1, for any i ∈ J0, nK.

Hence the right minima of S′
T and ST coincide.

In the LIFO procedure, the parents are served before their children. Consider the node uk(T );

it is in queue(k − 1), not in queue(k); let Tk be the subtree of T rooted at k. At time k, appear

the children of uk(T ) in the queue; it is easy to see that the first nodes that are served after uk(T )

are the nodes from Tk (apart uk(T ), |Tk| − 1 nodes are concerned). Therefore, it is immediate that

at times (k − 1) + 1, (k − 1) + 2, . . . , (k − 1) + |Tk| − 1 the queue contains the same nodes as that

at time k − 1 (except uk(T )) plus some nodes from Tk; thus

S′
T (k − 1 + i) ≥ S′

T (k − 1) for any i ∈ {0, 1, . . . , |Tk| − 1}.

At time (k − 1) + |Tk| the queue contains no element of Tk, no more uk(k) and no new elements.

Hence

S′
T (k − 1 + |Tk|) = S′

T (k − 1)− 1;

Hence, k− 1 is a right minima on J0, (k − 1) + |Tk| − 1K but not in J0, (k − 1) + |Tk|K. This suffices

to conclude: j is a right minima on [0, l] if ul+1(T ) is a descendant of uj+1(T ), and it is not the

case if ul+1(T ) is a not a descendant of uj+1(T ). �
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3.5 Random walks

3.5 Random walks

We call path (or walk) a sequence (finite or infinite) (Sk)k∈J0,NK of elements of R (or of any set,

more generally). S0 is called the initial position and N the length of the path. In the sequel we

will assume that S0 = 0. Denote by Xk = Sk − Sk−1 the kth increment of the path S. We have,

for any k ∈ J0, NK

Sk =
k
∑

j=1

Xj .

We represent usually such a path by a sequence of points (k, Sk)k∈J0,NK in R2, sometimes interpo-

lated linearly.

Definition : A random walk with length N is a path (Sk)k∈J0,NK where the increments are i.i.d.

random variables.

When S0 = 0, and if all the Xi are ±1, independently with probability 1/2, the 2N paths with

length N have the same probability. This model is called the model of simple random walk.

When the Xi have a discrete distribution µ, that is, P(Xi = k) = µk for k ∈ Z, then

P(S1 = s1, S2 = s2, . . . , Sn = sn) = P(X1 = s1,X2 = s2 − s1, . . . ,Xn = sn − sn−1)

= µs1µs2−s1 . . . µsn−sn−1 (7)

————————————

Exercise 6 : When the increments have a density, how reformulate (7)?

Clearly, a distribution µ of the increments, induces a distribution on the corresponding random

walk; usually a random walk is described via the distribution of its increments. The distribution
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Figure 17: Simulation of three random walks with length 100. The first one has increments

Xi = ±1 with probability 1/2, for the second one Xi ∼ N (0, 1), for the third one, Xi ∼ Cauchy

C(1) (distribution with density 1
π

1
1+x2 on R).

of the final position SN is given by the Nth self convolution of µ (that is µ∗N ). The asymptotic

behavior of the whole trajectory (Sk)k=0,...,N will be done further in the course; one may first say

that the asymptotic behavior of Sn/n is given by the law of large numbers (depending on the
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3.6 A probability distribution on the set of trees

existence or not of E(X1), and of its value); more thinly (Sn −E(Sn))/
√
n will have an asymptotic

Gaussian behavior (if var(X1) exists).

3.6 A probability distribution on the set of trees

A Galton-Watson (GW) process is a Markov chain (Zn)n=0,1,2··· on N such that Z0 = 1 and

such that, for k ≥ 0, Zk+1 can be written :

Zk+1 =

Zk
∑

l=1

Y
(k)
l

where the random variables Y
(k)
l are i.i.d. copies of Z1, having distribution p := (pj)j≥0. In more

concrete terms :

• At time T = k, Zk individuals are alive.

• At time T = k + 1, each of the Zk individual dies, but produces j descendants with probability

pj, independently from the other individuals. The distribution p is called the offspring distribu-

tion(noted OD for short). The genealogical tree of this population is called Galton–Watson tree.

These trees are planar trees: there is a root (the first individual who was there at time 0), and the

different children of a nodes are ordered.

Denote by f , the generating function of p :

f(s) =
∑

k≥0

pk s
k = E(sY1) for |s| ≤ 1.

Let fn be the generating function of Zn. For n ≥ 2

fn(s) = E(sZn) = Ep(s
∑Zn−1

i=1 Yi) = E(
∑

k≥0

s
∑Zn−1

i=1 Yi IZn−1=k)

=
∑

k≥0

Ep(s
∑k

i=1 Yi)Ep(IZn−1=k)

=
∑

k≥0

Ep(s
Y1)k Pp(Zn−1 = k)

=
∑

k≥0

Pp(Zn−1 = k)f(s)k

= fn−1(f(s))

Hence, the function fn is simply f◦n. We have

Ep(Z1) = f ′(1)
def
= m

Ep(Zn) = f ′n(1) = f ′n−1(1)f
′(1) =

(

f ′(1)
)n

= mn.

Then, when m > 1 (resp. m < 1) the mean number of nodes of the n level increases (or decreases)

exponentially fast. When m = 1, it is constant equal to 1.
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3.7 Galton-Watson trees conditioned by the size

Assume that p0 + p1 6= 1. The extinction time T of the Galton-Watson process (Zn)n≥0 is the

first t for which Zt = 0 :

T = inf{t, t ∈ N, Zt = 0};

(note that if Zt = 0, then Zt+1 = 0. In term of the GW family tree, it is height +1. When p0 > 0,

the extinction probability q , defined by

q = Pp(T < +∞),

is strictly positive (Z1 = 0 with probability p0). The extinction probability q equals 1 if m ≤ 1 (if

p1 6= 1) and is the smallest positive solution to f(t) = t if m > 1.

————————————

Exercise 7 : Prove this result. First, using fn and fn+1, show that q = f(q) thanks to a passage to the limit.

Draw f on [0, 1], and indicate the slope of f in 1. How many solution to this equation on [0, 1] when m < 1,

when m > 1? Conclude.

The total population X of the GW process is the random variable defined by

X = Z0 + Z1 + Z2 + · · · .

Since the Z1 subtrees of the root are independent and have same size distribution asX, the following

representation of X holds :

X
(d)
= 1 +

Z1
∑

k=1

Xk

where the X ′
ks are independent copies of X, and are independent of Z1. Let g(x) = Ep(x

X) be the

probability generating function of X; g is solution of the functional equation :

g(x) = x f(g(x)).

If E(Z1) < 1, one may deduce of this the mean size of the total population :

Ep(X) = g′(1−) =
1

1− f ′(1)
=

1

1− Ep(Z1)
.

If E(Z1) ≥ 1, the mean size of the total population is +∞.

3.7 Galton-Watson trees conditioned by the size

Lemma 5 Denote by Pp the distribution of the family tree of a Galton-Watson tree with OD

p, satisfying m =
∑

i≥0 ipi ≤ 1 (this is the mean number of children of a node). Then Pp is a

distribution on the set of finite trees : for any finite tree t ∈ T ,

Pp({t}) =
∏

u∈t
pcu(t) =

∏

i

p
Ni(t)
i (8)

where Ni(t) is the number of nodes in t having i children.
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3.8 From random walk to GW trees

Sketch of proof . Let (Yu, u ∈ U) be a family of i.i.d. random variables indexed by the complete

infinite tree U and having p has distribution. Consider

T := {ǫ} ∪ {u = u1...un ∈ U | uj ≤ Yu1...uj−1 for j ∈ J1, nK}.

One can check that T is the family tree of a GW process, with OD p (introduce Zk, has above,

and check that (Zk, k ≥ 0) has the same representation as that given at the beginning of Section

3.6). By what is explained above, the probability of extinction of this GW process is 1 a.s., and

then the corresponding tree is finite with probability 1 (if p1 6= 1). Now, take a finite tree t. When

computing Pp(T = t) one sees that only the variable Yu, indexed by u ∈ t need to satisfy Yu = cu(t)

in order than T = t, the “others” being any integers. It follows that (by summing on all possible

values of the “others”), that Pp(T = t) =
∏

u∈t pcu(t). �.

Notice that when m > 1, as explained also in the exercise above, Pp is not a distribution on

the set of finite trees, but on the set of all trees (leading to some difficulties, since the weight of the

set of infinite trees is the probability of non extinction, which is > 0 (but the probability of each

infinite tree is 0)).

3.8 From random walk to GW trees

Consider a random walk with an infinite length : S(0) = 0 and for any k ≥ 1, S(k) =
∑k

i=1(Yi−
1) where the Yi are i.i.d. r.v. with distribution p. Let

Hit−1(S) = inf{k | S(k) = −1}

the first hitting time of −1 by S. Consider S = (S(0), . . . , S(Hit−1)) the random walk killed at

time Hit−1.

For any path s in Ln (for some n), we have

Pp(S = s) =
n
∏

i=1

Pp(Yi − 1 = si − si−1, i ∈ J1, nK) =
n
∏

i=1

psi−si−1+1.

This distribution is the same as Γlex(T) (see Proposition 2) for T the family tree of a GW process

having OD p.

It follows that

Proposition 4 If T is a GW tree with OD p, then the trajectory S := Γlex(T) is distributed as

a random walk with increment Yi− 1 (i.i.d. where Yi has distribution p) killed at its first hitting

time of −1. For any n ≥ 1,

Pp(Hit−1 = n) = Pp(|T| = n).

To compute the value of P(Hit−1 = n), we use the following lemma :
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3.8 From random walk to GW trees

Lemma 6 The rotation principle (Dvoretzky & Motzkin) For S defined as above, we have

for k ≥ 1,

Pp(Hit−1 = k) =
1

k
P
(

Sk = −1
)

.

This result needs that the increments have their support in {−1, 0, 1 . . . }.
Proof . In the proof, all the considered paths have increments in {−1, 0, 1, 2, . . . }. The proof we

provide is essentially combinatorial. Recall the definition of Lk and let

Bk = {(s0, . . . , sk), sk = −1}

be the set of walk ending at −1. We will associate with each trajectory t of Lk, a set of k trajectories

Φ(t) = {t1, . . . , tk} included in Bk.

First, note that Lk is a subset of Bk.

Let t in Bk; let ∆it = ti − ti−1 for i from 1 to k the k increments of t. For any j ∈ {0, . . . , k − 1},
denote by t(j) the trajectory having as increments ∆jt, . . . ∆kt,∆1t, . . .∆j−1t (geometrically, cut t

at position j, and exchange the left and right part of the trajectory as done on Fig. 18).

– Start with t ∈ Lk. All the trajectories t(j), j ∈ {0, . . . , k − 1} are different and only one of

them is in Lk: the reason is that t(j) reaches its minimum for the first time at time k − j. Hence,

t is the only element in Φ(t) being also in Lk.

– take an element on t ∈ Bk: then there exists an only pair (t′, j) such that t = (t′)(j) and t′ is in

Lk. Indeed, assume that t reaches its minimum for the first time at position j; then t(j) is in Lk

(and t(j
′) ∈ Lk iff j′ = j);

Hence each rotation class (t(j), j = 0, . . . , k − 1) for t ∈ Lk are distinct, have cardinality k, and

∪t∈Lk
Φ(t) = Bk (that is each element of Bk is in a rotation class).

Now, in a rotation class, all the trajectories have the same weight under Pp, since they have

the same increments (in a different order). Hence, to each trajectory t from Lk with probability

Pp(t), we have associated a set of k trajectories t(0), . . . , t(k−1) from Bk having the same weight. It

remains just to sum on all these trajectories to end the proof. �

————————————
Note 4 : A direct consequence of the arguments developed in the proof is

#Lk =
#Bk

k
.

Consider h := gcd{ i | Pp(Y1 = i) > 0 and i > 0}, and the set of possible trees size under

Pp :

PTSp := {n | Pp(|T| = n) > 0}.

If h = 1 it is not difficult to see that there exists N such that m ∈ PTSp for any m ≥ N ; if h > 1,

it is not the case : an infinite number of integers are lacking in PTSp (think to the example of

binary trees: the size is odd, PTSp = 1 + 2N).
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3.8 From random walk to GW trees

Figure 18: A path t from EX(5), and its 5 conjugates t(1), . . . , t(5) on the line below.

Lemma 7 Let p be a critical OD (with mean 1 and variance σ2p ∈ (0,+∞)). For n in PTSp,

Pp(|T| = n) ∼ hn−3/2

√
2πσp

. (9)

This means that if (xn, n ≥ 1) is a sequence of elements of PTSp going to +∞, then Pp(|T| =
xn) ∼ hx

−3/2
n√
2πσp

.

This is a consequence of Proposition 4, Lemma 6, and of a local version of the central limit

theorem, here recalled (or given) :

Theorem 4 Local central limit theorem (see Port, Theoretical probability for applications). Let

X1,X2, . . . be some i.i.d. r.v. with mean m, and variance σ2 ∈ (0,+∞). Let Sn = X1+· · ·+Xn.

Assume that the distribution X1 has it support in the set {a+ hk | k ∈ Z}, where h is maximal.

Then, when n −→ +∞
√
n

h
P(Sn = an+ hk)− 1√

2πσ
exp

(

− (hk + an− nm)2

2σ2n

)

−→ 0 uniformly on k.

Here m = 0; one then has
√
nP(Sn = −1) − h(

√
2πσp)

−1e−1/(2σ2
pn) tends to 0, and then P(Sn =

−1) ∼ h(
√
2πnσp)

−1.

In the sequel we will restrict ourselves to the case where h = 1. The case h > 1, that

arises in important applications as in binary trees, can be treated with taking care of

PTSp and by introducing h where it is needed.

GW tree under the conditioning {|T| = n}

Let p = (pk)k≥0 be an OD. Let (y1, . . . , yn) ∈ Dn (see page 20) be the description of a tree with

n node. An natural question is the following :
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3.9 Example of Galton-Watson tree conditioned by the size

Conditionally on {|T| = n}, what is the probability that the description of a GW with offspring

distribution p is (yi)?

Without any conditioning we have :

Pp

(

(Y1, . . . , Yn) = (y1, . . . , yn)
)

=
n
∏

i=1

pyi . (10)

The conditioning does not change too much the things: the probability being proportional to that

before conditioning :

Pp

(

(Y1, . . . , Yn) = (y1, . . . , yn)||T| = n
)

=
Pp

(

(Y1, . . . , Yn) = (y1, . . . , yn)
)

Pp(|T| = n)

=

∏n
i=1 pyi

Pp(|T| = n)
(11)

since (yi, i = 1, . . . , n) is the description of a size n tree.

3.9 Example of Galton-Watson tree conditioned by the size

Binary tree

A binary GW tree is the family tree of a GW process when the OD is p2 = α, p0 = 1−α (with

0 < α < 1). Of course, a.s. the family tree of this GW process is a binary tree. Let us condition

by {|T| = 2n+ 1}.
Take a tree t with 2n+1 nodes: it has n+1 leaves (nodes with 0 children) and n internal nodes

(nodes with 2 children); hence

Pp(T = t | |T| = 2n+ 1) =
p
N2(t)
2 p

N0(t)
0

Pp(|T| = 2n+ 1)
=

αn(1− α)n+1

Pp(|T| = 2n+ 1)
.

This weight does not depend on the detail of the tree: all binary trees with 2n + 1 nodes have

the same weight! This is the uniform distribution on the set of binary trees with 2n + 1 nodes (of

course, we used also that all binary trees, and only them, have a positive weight). Notice that what

we said does not depend on the choice of α.

————————————

Exercise 8 : How many binary trees with 2n+ 1 nodes? Ternary trees?

Plane trees (also called geometrical trees)

Assume that p is the geometrical distribution with parameter α, for an α ∈ (0, 1). That is

pi = (1− α)iα for any i ≥ 0. Take t a planar tree with n nodes (t ∈ Tn). We have

Pp

(

T = t | |T| = n) =

∏

u∈t pcu(t)
Pp

(

|T| = n)
=

(1− α)
∑

u∈t cu(t)α|t|

Pp

(

|T| = n)
=

(1− α)n−1αn

Pp

(

|T| = n)
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3.9 Example of Galton-Watson tree conditioned by the size

since each node, except the root, is the child of another node; again, the probability is the same for

all tree having a weight. But all trees in Tn has a positive weight, that is here, all trees in Tn: hence
the conditional distribution Pp

(

.| |T| = n) is the uniform distribution on Tn, and this whatever the

choice of α.

Cayley trees

(Remark due to Spencer (97)) A Cayley tree with n nodes is a connected graph with set of

vertices {1, 2, . . . , n} with no cycle. The vertex 1 is chosen to be the root. According to Cayley

(1889) there are nn−2 Cayley trees (see also Section 3.11). We are willing to talk about the shape

of Cayley trees. Cayley trees are not given with an order between the brothers of a given nodes

11 1

2

2 2

333

444 5

5 56 6 6

Figure 19: Three Cayley trees.

(recall that a graph is just a set of vertices, and a set of pairs of vertices, called edges). Then, a

priori, the depth first order is not well defined on Cayley trees. But using the labels of the nodes,

there is a simple canonical ordering of the children of the nodes : first 1 is the ancestor. Then order

the children of 1, according to the standard order in N, and do the same thing for each node in

the tree. This provides a canonical representation of the nodes of Cayley trees (one can represent

Cayley trees on the plane by respecting this order). On the above picture, the two first Cayley trees

are different, and the two trees 2 and 3 are the same tree. The third tree has its labels sorted, and

is then the canonical representative. When dealing with canonical representation, a Cayley tree is

defined by a n-tuples of disjoint sets (A1, A2, · · · , An) where ∪i≥1Ai = {2, · · · , n}. To build the

tree, use an order, for example the breadth first order. Gives to the ith node visited #Ai children

with labels the element of Ai, sorted according to the increasing order (to children of the root are

the vertices with label in Ai, ...). For example, the two trees 2 and 3 on the figure, are defined by :

({2, 4}, {5}, {3, 6}, ∅, ∅, ∅). This is deeply related to the BFQ considerations explained above in the

course. For a n-tuple (A1, A2, · · · , An) coming from a tree, the sequence (yi, i = 1..n) satisfying

yi = #Ai in in Dn.

The question is : given a sequence (y1, · · · , yn) in Dn, how many n-tuples (A1, . . . , An) corre-

sponding to a Cayley tree exist ? (we mean, such that(#A1, . . . ,#An) = (y1, . . . , yn)). In other

words, how many Cayley tree with a canonical description given by the y’s ?

We have 1 choice for the root label (it is 1, by convention), for the labels in A1 we have
(

n−1
y1

)

choices, for A2 we have
(n−1−y1

y2

)

choices... finally, the number of Cayley tree with a prescribed
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3.10 An exponential family and a critical parameter

vector (#A1, . . . ,#An) = (y1, . . . , yn) is :
(

n− 1

y1

) n
∏

k=2

(

n− 1− (y1 + · · ·+ yk−1)

yk

)

=
(n− 1)!

y1! · · · yn!
;

the probability to observe this shape, when the set of Cayley tree is equipped with the uniform

distribution is then proportional to this number.

Take now a GW process with OD p, the Poisson distribution with parameter λ (that is pi =
λie−λ

i! ). We have

Pp(D(T) = (y1, . . . , yn) | |T| = n) =

∏n
i=1

λyie−λ

yi!

Pp(|T| = n)

=
e−λnλn−1

Pp(|T| = n)

n
∏

i=1

1

yi!
.

Hence, the two distribution are proportional, then equal, since they give a positive weight to the

same trees. Therefore the shape of Cayley tree is distributed as a GW tree with OD the Poisson

distribution, conditioned to have n nodes.

————————————

Exercise 9 : 1) A unary-binary tree is a tree in which the nodes have 0, 1, or 2 nodes. Build an OD p for

which Pp(. | |T| = n) is the uniform law on the set of unary-binary trees with n nodes.

2) Same question, if the set of allowed degrees is given by a subset I include in N (containing {0}).

3.10 An exponential family and a critical parameter

We saw that according whether m =
∑

ipi > 1 or m ≤ 1 a GW process with distribution p

eventually a.s dies out or not. Above, we saw also that under the conditioning by |T| = n, the

distribution of binary trees – and the same happened just after for geometrical trees, or Poisson

trees – does not depend on the parameter α which entered in the definition of the OD, and which

tuning of course, change the mean number of children of a given node (when no conditioning takes

place). This phenomenon occurs similarly for any OD, as been shown by Kennedy (in his paper

The Galton-Watson process conditioned on the total progeny).

More precisely, consider p = (pk)k≥0 an OD as usual, and consider

f(x) = Ep(x
Y ) =

∑

k≥0

pkx
k

its probability generating function. Now, consider p̃ := (p̃k)k≥0 defined by

p̃k
def
=

akpk
f(a)

,

for a certain a > 0 fixed and smaller than the radius of convergence of f (which is a power series,

with radius 1, at least). We have

Pp(Y1 = y1, · · · , Yn = yn | |T| = n) = Pp̃(Y1 = y1, · · · , Yn = yn | |T| = n);
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3.11 Problem: Analysis of hashing with linear probing

that is, the distributions on Tn of family trees of GW processes with OD p and p̃ under the

conditioning {|T| = n} coincide.

Indeed,

Pp̃(Y1 = y1, · · · , Yn = yn | |T| = n) =

∏n
k=1 a

ykpyk
f(a)nPp̃(|T| = n)

=

∏n
k=1 pyk

Pp̃(|T| = n)f(a)na−n+1

which is indeed proportional to

Pp(Y1 = y1, · · · , Yn = yn | |T| = n) =

∏n
k=1 pyk

Pp(|T| = n)

These probability having clearly the same support, and being proportional, are equal. (One can

pass from a Bernoulli distribution to another one, or a geometrical distribution to another one, or

a Poisson... by the choice of right a in what is done above).

The value of a (when it exists) such that af ′(a) = f(a) provides the so-called critical case, that

is the case for which Ep̃(Y ) = m̃ = 1. The corresponding variance σ̃2 = Ep̃(Y
2)− 1 of the number

of children of a given node under p̃ can be expressed in terms of f :

σ̃2 =
a2f ′′(a)
f(a)

.

It will play a crucial role, later on.

In the sequel, we will suppose that the OD is critical: it has mean 1 and its variance

σ2p ∈ (0,+∞)

————————————

Exercise 10 : Find an exponential family which does not contain any critical distribution. (Under such distri-

butions, tree behave asymptotically radically differently than those under critical distributions: even the order of

their height is not the same; the study of these trees is principally due to Le Gall & Duquesne)

3.11 Problem: Analysis of hashing with linear probing

Hashing with linear probing is an algorithm used to store and retrieved data in a computer.

The data belong to a certain set E. A function h from E to J0, n − 1K is then used to place some

data x1, . . . , xk from E (with k ≤ n) in an array with n cases, labeled 0, 1, . . . , n− 1.

The data are inserted successively, as follows :

1) data xi chooses the place h(xi),

2) xi is stored in the first empty case among h(xi), h(xi) + 1 mod n, h(xi) + 2 mod n, etc. If xi

is stored in h(xi) + j mod n (with j taken in J0, n − 1K) we say that xi probed the j + 1 cases

h(xi), . . . , h(xi) + j mod n. The cost of insertion of xi is j + 1 (definition).
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3.11 Problem: Analysis of hashing with linear probing

[This problem appears also in the literature under the ”parking allegory”; some cars try to park

on a circular parking with n places: car xk (or k) chooses a place, say j, and then park on the first

empty place starting from j.]

In order to analyze the cost of insertion (in term of displacement of the items), the following

hypothesis is made on the successive values h(x1), h(x2), etc of choices: they are assume to be i.i.d.

uniform on the set J1, nK. (Of course, as explained in the book of Knuth, from a practical point

of view, the construction of an efficient hashing function – which doesn’t send all the data on the

same case! – is quite difficult.)

We propose in this problem to analyze this algorithm;3 the asymptotic cost will follows some

considerations of the last section of this course.

Denote by Ai(k) = {j | h(xi) = j, for i = 1, . . . , k}, the number of data that have chosen case

k.

1) For a fixed k smaller than n, give the joint law of (#A0(k), . . . ,#An−1(k)).

2) For m ∈ J0,m− 1K, let Ym be the number of data that probed case m.

– Why Ym = #Am + (Ym−1 − 1)+? (for m = 0, Y0 = #A0 + (Yn−1 − 1)+)

3) Assume now that k = n− 1 (that is n− 1 data stored in n cases);

– Give a set of necessary and sufficient condition on (#A1, . . . ,#An) in order than the last case of

the array stays empty at the end.

– Simplify the description of the process Y given in (2), in this case.

– What is the distribution of the process Y ?

4) Express the total cost of insertion of n− 1 items in terms of the process Y ?

5) In the case where n− 1 items are inserted, what is the importance of the first assumption: ”the

last case is empty”?

6) How change the total cost, if a last data h(xn) is inserted?

3The analysis of hashing with linear probing has been done at first by Flajolet, Viola and Poblete. Here, as an

exercise, we give another analysis, published later on in collaboration with Chassaing (Parking functions, empirical

processes and the width of rooted labeled trees).
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4 ASYMPTOTIC COMPARISON BETWEEN THE HEIGHT PROCESS AND DFQ

4 Asymptotic comparison between the height process and DFQ

Above in the course, the DFQ of a GW tree with n nodes appeared to be a random walk

conditioned to hit −1 at time n. We will see here that some properties valid for non conditioned

random walks stay true for conditioned one (see Figure 20). We will deduce from this some elements

on trees with n nodes, but what is much important for the aim of this course, we will deduce the

asymptotic “equality” of the two processes: height process and DFQ.

 3000

 20

 40

 60

 0  1000  2000
 0

 3000

 0

 20

 40

 0  1000  2000

−20

Figure 20: Two random walks with increments ±1 with probability 1/2; the first is conditioned by

Hit−1 = 3001

4.1 Concentration principle : from random walks to Lukaciewish paths

Let S0 = 0, Sj =
∑j

i=1 Yi − 1 for j ≥ 1, be a random walk where the Yi are i.i.d. and are p

distributed. We assume from now on that E(Yi− 1) = 0 and σ2p = var(Yi− 1) = var(Yi) ∈ (0,+∞).

Let Wn be the set of all paths of size n (this is Rn equipped with the Borelian σ-field); and let

An be a subset of Wn (a Borelian); denote by Pn the distribution of size n random walk. We have

Pn(S ∈ An | S ∈ Ln) =
Pn((S ∈ An) ∩ (S ∈ Ln))

Pn(S ∈ Ln)
≤ Pn(S ∈ An)

Pn(S ∈ Ln)
.

Hence since by Lemma 6 and Lemma 7 (when h = 1),

Pn(S ∈ Ln) =
1

n
P(Sn = −1) ∼ n−3/2

√
2πσp

,

we get

Pn(S ∈ An | S ∈ Ln) = O(n3/2)Pn(S ∈ An); (12)

the right hand side is simple, since it deals with non conditioned random walks. Then, immediately

Corollary 1 For any c > 0 and β > 0

Pn(S ∈ An) = o(n−β) =⇒ Pn(S ∈ An | S ∈ Ln) = o(n−β+3/2).

Pn(S ∈ An) = o(exp(−cnβ)) =⇒ Pn(S ∈ An | S ∈ Ln) = o(exp(−c′nβ)).
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4.2 The theorem of Petrov

In other words, very rare events for random walk are still very rare even on Lukaciewish paths.

(An event can be true with proba. 1/2 (or much more) on random walk and have proba 0 (or close

to 0) on Lukaciewish paths. Can you find examples?).

To use this concentration principle, we focus on rare events that describe the wanted phe-

nomenon (for example, instead of saying that something converges to 1, we say that “the probability

it stay far from 1” is very small).

4.2 The theorem of Petrov

We refer to Petrov (Sums of independent random variables) for the (not difficult) proof of the

following theorem and for much more!

Lemma 8 (Petrov) Let z1, z2, . . . , be i.i.d. r.v. with mean 0, such that

E(etz1) < +∞ for |t| ≤ H,

for a constant H > 0. Let Zn = z1 + · · · + zn. Then there exists constant g > 0 and T > 0 s.t.

P(|Zn| ≥ x) ≤ 2 exp

(

− x2

2gn

)

for |x| ≤ gnT (13)

P(|Zn| ≥ x) ≤ 2 exp (−Tx/2) for |x| ≥ gnT (14)

This Lemma is admitted. ( valid constants g, T can be computed). (the proof is simple, but a bit

long; it is an application of the Markov inequality P(X ≥ a) ≤ a−1E(X) valid for non negative

r.v.; for X positive or not P(X ≥ a) = P(etX ≥ eta) for t > 0; now etX is a positive random

variable; by Markov, P(X ≥ a) = P(etX ≥ eta) ≤ E(etX )/eta. Now take X = Zn, use that

E(etZn) = E(etz)n An ingredient used is the following: if X is a centered r.v. such that, for some

H > 0, E(etX) < +∞ for |t| ≤ H, then there exists g > 0 , T > 0 s.t. E(etX) ≤ egt
2/2 for |t| ≤ T .

To end, an optimization on t is done).

Notice that the Bienaymé-Tchebichev theorem says that

P(|Zn| ≥ x) ≤ var(Zn)/x
2 = n var(z1)/x

2.

Petrov bound are much better, since the bound are exponentially small in x. Using Petrov bounds

one can prove

Lemma 9 Let n ∈ N∗ and let Zn = z1+· · ·+zn satisfying the hypothesis of the previous Lemma.

• For ν ∈]0, 12 [, there exists c > 0,

P(|Zn| ≥ n1/2+ν) = O

(

exp

(

−n
2ν

2g

))

(15)

• For c > 0,

P(|Zn| ≥ c
√
n lnn) = O

(

n−c2/2g
)

(16)
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4.3 Application : How many nodes with degree k in a GW tree with n nodes?

Proof . Formula (13) says that P(|Zn| ≥ n1/2+ν) ≤ 2 exp(−n2ν/(2g)) for n large enough. Same

proof for the second formula. �

4.3 Application : How many nodes with degree k in a GW tree with n nodes?

The application Γlex sends a tree with nl nodes of degree l to a Lukaciewish path with nl

increments l − 1. If the OD is p = (pi)i≥0, then the increments have distributions µ := (µj)j≥−1.

Let S be a r.w. with i.i.d. increments with law µ. Let

Ml(n) =

n
∑

k=1

ISk−Sk−1=l−1,

be the number of increments on S equal to l− 1. Since the increments are i.i.d. Ml(n) is a random

walk with i.i.d increments with distribution Bernoulli(µl−1), then

Ml(n)− µl−1n =
n
∑

k=1

(

ISk−Sk−1=l−1 − µl−1

)

,

is a sum of centered increment, having some exponential moments in a neighborhood of zero

(exercise). By Petrov (Lemma 9) for ν ∈ (0, 1/2), for some g > 0

P(|Ml(n)− µl−1n| ≥ n1/2+ν) = O(e−n2ν/2g),

By Corollary 1

P(|Ml(n)− µl−1n| ≥ n1/2+ν | S ∈ Ln) = O(n3/2e−n2ν/2g) = O(e−cn2ν
). (17)

for some c > 0. Hence, in a Lukaciewish path, with a huge probabilityMl(n) is close to µl−1n = pln,

and then of course, this can be translated in term of nodes of degree l in a GW with OD p and n

nodes. One can show also by the same method, using (16)

P(|Ml(n)− µl−1n| ≥ d
√

n log n) = O(n−d2/2g)

and then P(|Ml(n)− pln| ≥ d
√

n log n | S ∈ Ln) = O(n3/2n−d2/(2g)) = O(n3/2−d2/(2g)). (18)

Hence, the probability that |Nl(n)− pln| ≥
√
cn log n goes to 0, if c is chosen large enough.

4.4 Asymptotic comparison between the height process and the DFQ

From now on, we assume that a variable w having distribution p, is centered and has some

exponential moments in a neighborhood of zero :

(A) : ∃a > 0 s.t. E(ea|w|) < +∞.
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4.4 Asymptotic comparison between the height process and the DFQ

Relation between the height process and the DFQ

Let T be a tree in Tn, ST its DFQ and HT its height process. In Lemma 4 we saw that

RMT (l) =
{

j | 0 ≤ j < l, min
j≤k≤l

ST (k) = ST (j)
}

. (19)

then

HT (l) = #RMT (l), for l ≥ 1.

Our aim now is to show that

Theorem 5 Assume (A). There exists a constant c > 0 such that for any ν ≥ 0

Pp

(

sup
0≤l≤n

∣

∣

∣

∣

∣

ST(l)−HT(l)
σ2p
2

∣

∣

∣

∣

∣

≥ n1/4+ν | |T| = n

)

= O(exp(−cnν)). �

Since ST(l) will appear to have order n1/2 for most l ∈ J0, nK, this result indeed says that HT(l)
σ2
p

2

is close to ST(l).

Passage via non-conditioned random walk

Consider a random walkW with increment a sequence of i.i.d. r.v. (wi, i ≥ 1), with distribution

µ = (µj)j≥−1 = (pj+1)j≥−1. From what it said in the previous subsection, this random walk,

conditioned to hit −1 at first at time n has the same law has the DFQ ST of a GW tree T with

OD p conditioned to have size n :

P(W ∈ A | Hit−1(W ) = n) = Pp(ST ∈ A | |T| = n).

In other words, W is the unconditioned version of ST. The set of right minima of W on J0, lK is:

RM(l) =

{

j | 0 ≤ j < l, min
j≤k≤l

W (k) =W (j)

}

.

In probability we prefer variable that depends on the past of the random walk, instead of the future.

Since j belongs to RM(l) if the walk behaves properly between time j and l, we prefer to turn over

the walk.

Turning back of W

We associate with the path (W (j))j∈J0,lK, the path (W •(j))j∈J0,lK defined by :

W •(j) =W (l)−W (l − j) for every j ∈ J0, lK. (20)

The graph of W • is obtained by taking the symmetric of that of W with respect to the center

(l/2,W (l)/2). It is easy to note that the increments of (W •(i))i≥0 have the same distribution of
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4.5 Study of the number of records of W •: ladder variables

W •

W

Figure 21: : Construction of W • from W . The right minima of W are marked on W , the record

of W • on the graph of W •.

those of W , namely (µj)j≥−1, and are independent. Let

R•(l) =
{

j | 1 ≤ j ≤ l, max
0≤k≤j

W •(k) =W •(j)
}

,

be the (weak) records time of the path (W •(j))j∈J0,lK. We have immediately by (20) :

#R•(l) = #RM(l), (21)

max
0≤i≤l

W •(i) = W (l)− min
0≤i≤l

W (i). (22)

∣

∣

∣

∣

∣

max
0≤j≤l

{W •(j)} −#R•(l)
σ2p
2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

W (l)− min
0≤i≤l

{W (i)} −#RM(l)
σ2p
2

∣

∣

∣

∣

∣

. (23)

Hence, instead of working with right minima, we are now dealing with records. That’s more easy!

4.5 Study of the number of records of W •: ladder variables

Let (w(i), i ≥ 1) be the i.i.d. increments of W • :

W •(0) = 0, W •(k) =
k
∑

j=1

w(j), for k ≥ 1;

recall that P(w(1) = i) = µi for i ≥ −1, that E(w(1)) = 0, and var(w(1)) = σ2p.

The weak records time of W • increase are the 0 = τ0 < τ1 < τ2 < · · · defined by :

τk = inf
{

j > τk−1,W
•(j) ≥W •(τk−1)

}

, for k ≥ 1. (24)

Lemma 10 For any k ∈ N, P(W •(τ1) = k) = P(w(1) ≥ k). Moreover

E(W •(τ1)) = σ2p/2. (25)

Moreover if w(1) has some exponential moment then W •(τ1) too.

Proof . (Taken from Feller 1). Let λr = P(W •(τ1) = r); for any r ≥ 0, let us establish

λr = µr +
µ−1

1− λ0
λr+1. (26)
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4.5 Study of the number of records of W •: ladder variables

Recall that we are talking about weak records. We have by a clear decomposition according to the

first step

λr = P(w(1) = r) + P(w(1) = −1,W •(τ1) = r)

A path satisfying {w(1) = −1,W •(τ1) = r} can be decomposed without ambiguity as follows: A

step -1, then a finite sequence of paths where W •(τ1) = 0, then a last path with W •(τ1) = r + 1,

(relatively to level −1, the pieces in the decomposition coincides with weak records time) In term

of probabilities, this becomes

λr = µr + µ−1

(

+∞
∑

j=0

λj0

)

λr+1,

(which is (26)) where j counts the number of passage at level −1 between time 2 and τ1. Then
∑

r≥0

rλr =
∑

r≥0

r
(

µr +
µ−1

1− λ0
λr+1

)

.

Which simplify to

E(W •(τ1))
(

1− µ−1

1− λ0

)

= 0,

Since E(W •(τ1)) > 0, one finds λ0 = 1− µ−1 and then, eventually

λr = µr + λr+1 = P(W •(1) ≥ r) for r ≥ 1; (27)

Now the computation of the mean runs as follows :

E((W •(τ1)) =
∑

k≥0

kλk

=
∑

k≥0

kP(W •(1) ≥ k) =
∑

k≥0

k
∑

l≥k

P(W •(1) = l)

=

+∞
∑

l=0

P(W •(1) = l)(

l
∑

k=0

k) =

+∞
∑

l=0

P(W •(1) = l)(l(l + 1)/2)

= (E(W •(1)2 − µ−1) + E(W •(1)) + µ−1 = E(W •(1)2) = σ2p

Now, a r.v. X (or a measure ν) has some exponential moments around 0 iff there exists a > 0 such

that P(X ≥ k) ≤ ce−ak for any k > 0 for some c > 0, and P(X ≤ −k) ≤ ce−ak for any k > 0 for

some c > 0. If µ has exponential moments, then it is not difficult to see that also does λ. �

4.5.1 Concentration of the number of records

What follows is a bit technical: the probabilities are cut into some small pieces; but only simple

tools are used. We first start by showing that σ2

2 R
•(l) and max0≤j≤lW

•(j) are close :

Proposition 5 Assume (A). For each ν > 0, there exists γ > 0 and N > 0 such that for all

n ≥ N and every l ∈ J0, nK,

P

(∣

∣

∣

∣

∣

max
0≤j≤l

W •(j) − σ2p
2
R•(l)

∣

∣

∣

∣

∣

≥ n1/4+ν

)

≤ exp(−γnν). (28)
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4.5 Study of the number of records of W •: ladder variables

Again since the order of max0≤j≤lW
•(j) is n1/2 this gives a rich information if ν ∈]0, 1/4[.

Proof . Here W • is considered as a random walk with infinite length. Denote for short, for each

k ≥ 1, ∆k = W •(τk) −W •(τk−1) the kth records growth. By Markovianity ∆k
(d)
= W •(τ1), and

the sequence (∆k, k ≥ 1) as well as the sequence (τk − τk−1, k ≥ 1) is a sequence of i.i.d. r.v.. In

addition

max
0≤j≤l

W •(j) =
R•(l)
∑

k=1

∆k. (29)

From here, a result as (28) is quite intuitive : max0≤j≤lW
•(j) is a sum of R•(l) variables having

mean E(∆k) = σ2p/2. Then max0≤j≤lW
•(j) should be close to R•(l)σ2p/2. We will show that this

is the case.

We will use the Petrov’s Lemma : under (A), ∆1 has some exponential moments. The left hand

side (LHS) of (28) according to(29), is

P

(∣

∣

∣

R•(l)
∑

k=1

(

∆k −
σ2p
2

)∣

∣

∣ ≥ n1/4+ν
)

≤ A(l, n) +B(l, n)

where

A(l, n) = P(R•(l) ≥ n1/2+ν),

B(l, n) = P

(∣

∣

∣

R•(l)
∑

k=1

(

∆k −
σ2p
2

)∣

∣

∣ ≥ n1/4+ν , R•(l) ≤ n1/2+ν
)

.

Let us see why A(l, n) and B(l, n) are small; define the random walk (Uk)k≥0 :

Uk =
k
∑

j=1

(∆j − σ2p/2);

its increments are the centered r.v. (∆j − σ2
p

2 , j ≥ 1), and own exponential moments. The following

Lemma 11 (that follows) allows to end the proof of Proposition 5.

Lemma 11 1) For ν > 0, there exist constants c1 > 0 and N1 > 0 s.t. for any n ≥ N1 and all

l ∈ J0, nK,

A(l, n) ≤ exp(−c1nν)

2) For ν > 0, there exist two constants c̃1 > 0 and N2 > 0 s.t. for every n ≥ N2 and all

l ∈ J0, nK,

B(l, n) ≤ exp(−c̃1nν).

Proof . (2) To control B(l, n), write

B(l, n) ≤
n1/2+ν
∑

j=1

P(|UR•(l)| ≥ n1/4+ν | R•(l) = j)P(R•(l) = j)

≤ max
j∈J1,n1/2+νK

P(|Uj | ≥ n1/4+ν)
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4.5 Study of the number of records of W •: ladder variables

since Uk is a sum of centered r.v. having exponential moments, we can use Petrov’s lemma. Each

term is smaller than 2e−Tnν+1/4
or 2e−nν/2g according to the value of j, as says Petrov’s Lemma.

In any case, there exists c > 0, which does not depend on l, such that this is smaller than 2e−cnν
.

(1) In the sequel we note n1/2+ν instead of ⌊n1/2+ν⌋. For all l ∈ J0, nK,

A(l, n) ≤ P(τn1/2+ν ≤ l)

≤ P(τn1/2+ν ≤ n)

≤ P

(

τn1/2+ν ≤ n, max
0≤j≤n

W •(j) ≤ n1/2+ν/2

)

+ P

(

max
0≤j≤n

W •(j) ≥ n1/2+ν/2

)

By the union bound, the second term is smaller than n terms all smaller than exp(−cnν). The first
one is bounded by

P

(

max
0≤j≤τ

n1/2+ν

W •(j) ≤ n1/2+ν/2

)

.

Using max
0≤j≤τ

n1/2+ν

W •(j) = Un1/2+ν + ⌊n1/2+ν⌋
σ2p
2
, this term rewrites

= P(Un1/2+ν + ⌊n1/2+ν⌋
σ2p
2

≤ n1/2+ν/2)

≤ P(−Un1/2+ν ≥ ⌊n1/2+ν⌋
σ2p
2

− n1/2+ν/2)

≤ exp(−c2n1/2+ν).

by Petrov again, for n large enough; Lemma 11 follows. �

4.5.2 Back to right minima considerations on W

Proposition 5 and (23) says that for any ν > 0 there exist constants γ > 0 and N > 0 s.t. for

all n > N and l ∈ J0, nK

P

(

∣

∣W (l)− min
0≤i≤l

W (i)−RM(l)
σ2p
2

∣

∣ ≥ n1/4+ν

)

≤ exp(−γnν); (30)

Since this is true for each l ∈ J0, nK, by the union bound :

Corollary 2 For all ν > 0 there exist two constants γ > 0 and N > 0 s.t. for all n > N

P

(

sup
0≤l≤n

∣

∣W (l)− min
0≤i≤l

W (i)−RM(l)
σ2p
2

∣

∣ ≥ n1/4+ν

)

= O(exp(−γnν)).

Proof of Theorem 5 : As already said ST has the same law as the random walkW conditioned

by {Hit−1(W ) = n}. (Notice that for l ≤ |T|, min0≤i≤l ST(i) = 0). Write

Pp

(

sup
0≤l≤n

∣

∣

∣

∣

∣

ST(l)−HT(l)
σ2p
2

∣

∣

∣

∣

∣

≥ n1/4+ν | |T| = n

)
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4.6 Relation between the contour process and the DFQ

= P

(

sup
0≤l≤n

∣

∣

∣

∣

∣

W (l)− min
0≤i≤l

W (i)−#RM(l)
σ2p
2

∣

∣

∣

∣

∣

≥ n1/4+ν
∣

∣

∣W ∈ Ln

)

.

According to Corollaries 1 and 2, there exists a constant C > 0 such that

Pp

(

sup
0≤l≤n

∣

∣

∣

∣

∣

ST(l)−HT(l)
σ2p
2

∣

∣

∣

∣

∣

≥ n1/4+ν | |T| = n

)

= O(n5/2) exp(−Cnν). �

4.6 Relation between the contour process and the DFQ

The aim now is to establish the following theorem

Theorem 6 For any ν > 0,there exist some constants γ > 0 and N > 0 such that

∀n ≥ N, Pp

(

sup
t∈[0,1]

∣

∣

∣

∣

∣

ST(nt)−
σ2p
2
VT(2nt)

∣

∣

∣

∣

∣

≥ n1/4+ν | |T| = n

)

= O(exp(−γnν)).

Theorem 6 possesses very visual interpretations, as can be seen on the following simulations.

1) On the following figure, we have simulated a tree with size 5560 and with lattice offspring

distribution p0 = 13/18, p2 = 1/6, p6 = 1/9; the corresponding value of σ2/2 is 11/6. In black, the

contour process, in grey the DFQ. One can observe the quasi proportionality of the two processes.

160

111200
0

Note also that since 2l ≥ m(l) (for any l), the contour process “lags” from the DFQ.

2) On the following figure, we have simulated a size 4208 tree with a non lattice offspring distribution

p0 = 8/15, p1 = 4/15, p3 = 2/15, p5 = 1/15, (in this case σ2/2 = 16/15)

100

0
0

8450
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4.6 Relation between the contour process and the DFQ

Proof . Recall Lemmas 2 and 3 page 24. For each t ∈ [0, 1[, we note ζ(nt) the integer such

that

[2nt] ∈ [m(ζ(nt)),m(ζ(nt) + 1)[. (31)

Now, decompose...

Pp( sup
t∈[0,1]

|ST(nt)−
σ2

2
VT(2nt)| ≥ n1/4+ν | |T| = n) ≤ A+B + C +D

where

A = Pp

(

sup
t∈[0,1]

∣

∣ST(nt)− ST(ζ(nt))
∣

∣ ≥ n1/4+ν

3
, sup

t
|ζ(nt)− nt| < n1/2+ν | |T| = n

)

(32)

B = Pp

(

sup
t∈[0,1]

∣

∣ST(ζ(nt))−
σ2p
2
HT(ζ(nt))

∣

∣ ≥ n1/4+ν

3
| |T| = n

)

C = Pp

(σ2p
2

sup
t∈[0,1]

∣

∣HT(ζ(nt))− VT(2nt)
∣

∣ ≥ n1/4+ν

3
| |T| = n

)

D = Pp

(

sup
t∈[0,1]

|ζ(nt)− nt| > n1/2+ν | |T| = n
)

(33)

To control A, again, we remove the condition:

A = O(n3/2)P
(

sup
k≤n1/2+ν

sup
0≤j≤n−k

∣

∣W (j)−W (j + k)
∣

∣ ≥ n1/4+ν

3

)

= O(n3/2)
n
∑

j=1

P( sup
k≤n1/2+ν

|W (k)| ≥ n1/4+ν

3

)

= O(e−c5nν
),

for a constant c5 > 0, if n is large enough according to Lemma 8.

For B, by Theorem 5, there exists c6 > 0 such that B = O(n5/2 exp(−c6nν)).
Since [2nt] ∈ [m(ζ(nt)),m(ζ(nt) + 1)[, we have according Lemma 3 :

C ≤ Pp

(σ2

2
sup

l∈{1,··· ,n}
|HT(l)−HT(l + 1) + 1| ≥ n1/4+ν

3
| |T| = n

)

≤ Pp

(σ2

2
sup

l∈{1,··· ,n}
|HT(l + 1)− 1− 2

σ2p
ST(l)| ≥

n1/4+ν

6
| |T| = n

)

+Pp

(σ2

2
sup

l∈{1,··· ,n}
|HT(l)−

2

σ2p
ST(l)| ≥

n1/4+ν

6
| |T| = n

)

We then conclude by the Theorem 5.

To bound D, we use (31) and Lemma 2; we have

sup
t∈[0,1]

|2ζ(nt)− 2nt| ≤ sup
t∈[0,1]

|2ζ(nt)−m(ζ(nt))|+ sup
t∈[0,1]

|m(ζ(nt))− 2nt|

≤ 2 sup
0≤l≤n

HT(l).
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4.6 Relation between the contour process and the DFQ

since HT(l) is the number of right minima of ST, use (21) and Corollary 1 we get

Pp

(

sup
0≤l≤n

HT(l) ≥ n1/2+ν | |T| = n

)

= O(n3/2)P

(

sup
0≤l≤n

R•(l) ≥ n1/2+ν

)

.

We conclude by Lemma 11, and the union bound. �
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5 CONTINUOUS PROCESSES AND WEAK CONVERGENCE IN C[0, 1]

5 Continuous processes and weak convergence in C[0, 1]

In this part we provide some elements allowing one to understand the convergence in C[0, 1],

the set of continuous functions from [0, 1] with values in R; we then evoke the convergence in

distribution of random walk and excursion type paths, properly rescaled. To begin, we give some

elements to understand what is a probability measure on C[0, 1], how it is characterized.

5.1 Probability measure on a Polish set

Let S be a set and ρ a distance on S. For x in S, r ≥ 0, the ball B(x, r) of center x and radius

r, is the set

B(x, r) = {y ∈ S, ρ(x, y) < r};

an open set of S is any union of balls. The family of open subsets of a space forms the standard

topology (a topology is a collection of subsets of a space E, stable by union, by finite intersection,

containing E and the empty set).

A set equipped with a distance (S, ρ) is a called a Polish space, if it is separable and complete:

– separable: a countable subset D of S is dense (D is dense in S, if for any s ∈ S, there exists an

element of D as close as wanted to s: for any ε > 0 there exists d ∈ D such that ρ(s, d) < ε),

– complete: a space S is complete if any Cauchy sequence of S converges in S (has a limit, and the

limit is inside S). A sequence (sn) is a Cauchy sequence, if for any ε > 0, there exists N such that

if n ≥ N and m ≥ N then |xn − x| ≤ ε.

Hence R is a Polish space when equipped with the distance d(x, y) = |x− y|, since:
– Q is countable and dense,

– The Cauchy sequences converge: a Cauchy sequence (xn) is clearly bounded, then as some accu-

mulations points. The set of accumulation points is necessarily of cardinality 1 (since accumulation

points are at distance smaller than ε, for any ǫ, clearly).

The Borelian σ-field B(S) is the σ-field induced by the standard topology: this is the set

of subsets of S that are obtained by a (at most) countable sequence of unions, intersections,

complementations, applied on the set of open sets of S.
Hence, the open sets, closed sets, singleton, sets with a countable cardinality... are all Borelians

sets. In fact, what is difficult is to find a non Borelian set (even on R, it is not at all a simple

exercise).

5.2 Measure on Polish space. Characterization

A function f defined on S, taking its value in R is continuous, if for any open set O of R,

f−1(O) is an open set of S. The function f is said to be measurable (or Borelian) if for any B in
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5.2 Measure on Polish space. Characterization

B(R), f−1(B) ∈ B(S). It is easy to see, that a sufficient condition, is that f−1(O) ∈ B(S) for any
open set O of R. In particular, the continuous functions from (S,B(S)) to R are measurable.

The measure P is sufficient to define a notion of integral for measurable non negative functions

f :
∫

fdP;

this is done in several steps : if f = IA (is a indicator function of a set) where A ∈ B(S), set
∫

S
IA(ω)dP(ω) =

∫

A
dP(ω) = P(A).

Prolong by linearity : let A1, . . . , An a family of Borelian (disjoint or not) from B(S) and any real

numbers λ1, . . . , λn; for f defined by f =
∑n

i=1 λiIAi , set

∫

S
f(ω)dP(ω) =

∫ n
∑

i=1

λiIAi(ω)dP(ω) =
n
∑

i=1

λi

∫

Ai

dP(ω) =
n
∑

i=1

λiP(Ai).

This construction is valid, since it can be checked that the result does not depend on the represen-

tation of a given function f .

The notion of integral is then defined for the family of step functions (positive or not). Then one

shows that one may build an increasing “function integral” and linear (that is, f −→
∫

fdP is

increasing and linear), on (first) the set of measurable non negative functions. For this, we use that

any measurable function f , non negative is a limit of an increasing sequence of non negative scale

functions fn : for example,

fn(x) =

{

[10nf(x)]/10n for f(x) ≤ n

n for f(x) > n

which is the below approximation at 10−n of f(x) for f(x) < n. It is easy to check that fn is

measurable, is a step function, and that fn is increasing.

One then sets

∫

fdP = lim
n

∫

fndP. (34)

The integral of a positive bounded function f is always finite (since the measure is finite, P(S) = 1).

The integral of a measurable function f is defined in the case where
∫

f+dP and
∫

f−dP are finite,

by
∫

fdP =

∫

f+dP −
∫

f−dP;

if only one of the integral
∫

f+dP or
∫

f−dP diverges, we say accordingly that
∫

fdP = +∞ or

−∞. The words “one then sets” in (34) is a hidden theorem: one has to show that the limit does

not depend on the chosen sequence fn.

Lemma 12 Any probability measure on (S,B(S)) is regular, that is, for A in S and ε > 0,

there exists a closed set F and an open set O such that F ⊂ A ⊂ O and P(O − F ) < ε.
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5.2 Measure on Polish space. Characterization

Proof . Let E be the set of subsets of A in S satisfying the property stated in the Lemma. Let

ρ denote the metric on S; ρ(x,A) is the distance between x and the set A. If A is closed, take

F = A and O = Oδ = {x, ρ(x,A) < δ} for δ chosen small enough (indeed, O1/n is decreasing, and

limn P(O1/n) = P(limO1/n) = P(A) = P(F )). Hence, every closed set belongs to E. Let us show

that the family of sets E having this property is a σ-field (since it has already been shown that it

contains the closed sets, it would contain the Borelian sets). Let An be a sequence of elements of

E. Consider some open sets On and closed set Fn such that

Fn ⊂ An ⊂ On and P(On − Fn) < ε/2n+1.

Then, take O = ∪nOn and F = ∪n≤n0Fn (n0 is chosen such that P(∪nFn − F ) < ε/2). One then

has A = ∪nAn ∈ E. Since E is stable by taking the complementary, this ends the proof. �

Lemma 13 Two measures on (S,B(S)) which coincide on the closed sets of S (or on the open

sets of S) are equal.

Proof . Two measures P and P′ on (S,B(S)) are equal if they are equal on all Borelian sets. The

closed set generates the Borelian σ-field, but this does not provide a proof of the Lemma.

First, by taking the complementary, it suffices to prove this lemma for closed sets. Let us see

why this is a consequence of the previous Lemma. Let A be a Borelian and F and O as said in the

previous Lemma. One has

P(F ) ≤ P(A) ≤ P(O) = 1− P(Oc).

Hence, to know the probability on the closed sets is sufficient to determine the probability of any

Borelian. �

To go faster, one can also use a Theorem about Dynkin systems, which states the following

result. (A π-system of Dynkin is a set of subsets stable by finite intersection).

Lemma 14 If two measures on (S,B(S)) coincides on a π-system which generates B(S), then,
they coincide on B(S).

(Billingsley, Probability and measure, Theorem 3.3). Open sets forms a π-system, and generate

the Borelian σ-field.

Associated with P, a notion of integral has been defined. If P and P′ are two measures on

(S,B(S)) such that for any measurable function f , one has
∫

fdP =
∫

fdP′ then P = P′ (that is,

for all A in B(S), one has P(A) = P′(A)). This is clear, since it suffices to take f = IA to check it.

Which is less obvious is the following proposition:

Proposition 6 Let P and P′ be two probability measures on (S,B(S)) such that
∫

fdP =
∫

fdP′

for all bounded continuous function f (with values in R). Under these conditions, one has P = P′.
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5.3 Random variables with a values in a Polish space

Proof . To prove this proposition, we will show that the two measures coincide on closed sets (and

then, we use Lemma 13). For this, we approximate the function IF of a closed set F by bounded

continuous functions. We make here the same work as on R : let ψ defined on R taking its values

in R defined by

ψ(t) =

{

1− t if 0 ≤ t ≤ 1

0 if t ≥ 1
.

The function fn defined by fn(x) = ψ(nρ(x, F )) is equal to 1 if x ∈ F , 0 if ρ(x, F ) > 1/n and is

[0,1] in the other case (it is uniformly continuous).

The sequence of functions fn is decreasing and converge point-wise toward IF . Since all the

fn are dominated by the constant function g = 1 on S (which is integrable), by the Theorem of

Lebesgue (of dominated convergence) one has

lim
n

∫

S
fn(x)dP(x) =

∫

S
IF (x)dP(x) = P(F ).

Then, one gets P′(F ) = limn

∫

S fn(x)dP
′(x). Hence P(F ) = P′(F ). �

5.3 Random variables with a values in a Polish space

Let (Ω,A,P) a probability space, and (S,B(S)) a Polish space, equipped with its Borelian

σ-field.

A map X : Ω → S is a random variable if X is measurable from (Ω,A) to (S,B(S)) (that is,

X−1(b) ∈ A for any b ∈ B(S)). The distribution of X, denoted by PX is the probability measure

defined on (S,B(S)) by
PX(b) = P(X−1(b)) = P({ω | X(ω) ∈ b}).

Let f be a measurable function from (S,B(S)) with values in R (equipped with B(R)). The

expectation of f(X) is defined by

E(f(X)) =

∫

f(x)dPX(x).

5.4 Convergence in distribution in a Polish space

Definition : Let P,P1,P2, . . . be a sequence of probability measure defined on the same Polish

space (S,S). The sequence (Pn, n ≥ 1) weakly converges to P (we write Pn
weak−−−→
n

P), if for any

bounded continuous function f (from S to R),

∫

fdPn −→
∫

fdP. (35)

A sequence of r.v. (Xn) converges in distribution to X if PXn

weak−−−→
n

PX , in other words, if

E(f(Xn)) =

∫

f(x)dPXn(x) −→
∫

f(x)dPX(x) = E(f(X)),
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5.5 Probability measures on (C[0, 1],B(C[0, 1]))

for bounded continuous functions f . We note Xn
d−−→
n

X.

We have

Proposition 7 Let (Xn, n ≥ 1) be a sequence of r.v. taking their values in a Polish space

(S,S). If Xn
weak−−−→
n

X then for any continuous function f from S to a Polish space (S′,S ′), then

g(Xn)
d−−→
n

g(X).

Proof . It suffices to show that for h bounded continuous, from S’ to R, we have E(h(g(Xn))) −→
E(h(g(X))). Since h◦g is bounded continuous from S to R, it is indeed the case since Xn

weak−−−→
n

X. �

Other criterion: the Portmanteau Theorem (recall Theorem 2 page 15).

5.5 Probability measures on (C[0, 1],B(C[0, 1]))

The norm ‖.‖∞ induce a metric (d(f, g) = ‖f − g‖∞) on C[0, 1] ; this space equipped with this

metric is a Polish space (exercise). The Borelian σ-field of C[0, 1] is the σ−field generated by the

open balls for the norm ‖.‖∞; a ball B(f, r) = {g ∈ C[0, 1] | ‖f − g‖∞ < r} where r ∈ R+⋆, and

f ∈ C[0, 1]. According to Lemma 13, a probability measure P on C[0, 1] is determined by its value

on the open sets (or closed sets).

The map πt
πt : C[0, 1] −→ R

f 7−→ f(t)

associates with each function f from C[0, 1] the value f(t). The function πt is called coordinate

function. For any t, πt is continuous and thus measurable. To see the continuity, we have to check

that π−1
t (] − ∞, α[) is an open set for any α; to see this take f in π−1

t (] − ∞, α[); therefore, by

definition f(t) < α; clearly the ball B(f, |f(t) − α|/2) is also included in π−1
t (] − ∞, α[). Hence,

around each point of π−1
t (]−∞, α[), there is an open ball entirely included in π−1

t (]−∞, α[). This

set is thus open.

Therefore πt is a random variable on (C[0, 1],B(R),P) with values in R, its distribution being

as usual P ◦ π−1
t : for any b ∈ B(R),

Pπt(b) = P(π−1
t (b)) = P({f ∈ C[0, 1] | f(t) ∈ b}).

Further, the family of maps πt1,...,tk (indexed by the possible k’s and ti’s) are called the finite

dimensional coordinates functions :

πt1,...,tk : C[0, 1] −→ Rk

f 7−→ (f(t1), . . . , f(tk))

for (t1, . . . , tk) ∈ [0, 1]k . The map πt1,...,tk is a random variable with values in Rk (equipped with

the Borelian σ-field). The family of distributions P ◦π−1
t1,...,tk

for k in N⋆ and (ti)i∈J1,kK in [0, 1]k , are

called the finite dimensional distribution (FDD) of P.
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5.5 Probability measures on (C[0, 1],B(C[0, 1]))

The family of random variables (πt) is called canonical process.

Again, there exist also random variables with values in C[0, 1] (they are called stochastic pro-

cesses); let (Ω,A,P) be a probability space. A map x from (Ω,A,P) with values in (C[0, 1],B(C[0, 1]))

is a random variable if it is measurable.

The distribution Px of x is defined as usual by Px(A) = P({ω | x(ω) ∈ A) = P(x−1(A)) for all

elements A in B(C[0, 1]). One has also πt(x) = x(t) is a r.v. having distribution Px ◦π−1
t . Further,

πt1,...,tk(x) = (x(t1), . . . ,x(tk)) is a random vector with distribution Px ◦ π−1
t1,...,tk

.

We saw that the FDD of P is the family P ◦π−1
t1,...,tk

for all k and ti’s (then the FDD are defined

given P). Conversely

Proposition 8 Let P and P′ be two probability distributions on (C[0, 1],B(C[0, 1])). If the FDD

of P and P′ are equal then P = P′.

(In other words, if x and y are two processes with values in C[0, 1]. If for any k in N⋆ and (ti)i∈J1,kK

in [0, 1]k, (x(t1), . . . ,x(tk))
(d)
= (y(t1), . . . ,y(tk) then x and y have the same distribution).

Proof . We call finite dimensional set, a set of the form π−1
t1,...,tk

(H) where H is a Borelian from

Rk. Finite dimensional sets form a π-system of Dynkin (stable by finite intersections). Hence, two

probabilities P and P′ coinciding on finite dimensional sets, coincides on the σ-field they generate.

It remains to see that this σ-field is the Borelian σ-fields, which will allow one to deduce P = P′.

For this, consider B(f, r) = {g | ‖g−f‖∞ ≤ r} be the closed ball with center f ∈ C[0, 1] and r ≥ 0.

We have

B(f, r) =
⋂

t∈[0,1]∩Q
{g | f(t)− r ≤ g(t) ≤ f(t) + r}

Write the rational number in [0, 1] as a list, t1, t2, . . . , and let

Ak =
⋂

t∈{t1,...,tk}
{g | f(t)− r ≤ g(t) ≤ f(t) + r} = π−1

t1,...,tk

(

k
∏

i=1

[f(ti)− r, f(ti) + r]
)

where
∏k

i=1[f(ti) − r, f(ti) + r] is the parallelepiped in Rk. Hence, Ak is a finite dimensional set

and we see that ∩Ak = B(f, r). Hence the σ-field generated by the finite dimensional set contained

the closed balls and then Borelian sets. Hence, P = P′. �

Examples of probability measure on C[0, 1]

A) Consider the random function W := (t 7→ Xt), t ∈ [0, 1], where X : (Ω,A) → (R,B(R)) is a real

random variable. This random function, is of course a random process with values in C[0, 1]. Let

us be more formal, to see what happens. The map

Φ : (R,B(R) −→ (C[0, 1],B(C[0, 1])

x 7−→ (t 7→ xt)
;
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5.5 Probability measures on (C[0, 1],B(C[0, 1]))

is measurable (why?). Hence,W = Φ◦X is a r.v. from (Ω,A) taking its values in (C[0, 1],B(C[0, 1])).

Let PX be the law of X; the distribution of W on (C[0, 1],B(C[0, 1])) is given by PW = P(W ∈
b) = P({ω : Φ(X(ω)) ∈ b) = P({ω : X(ω) ∈ Φ−1(b)) = PX(Φ−1(b)), for b ∈ B(C[0, 1]). One can

compute the probability that W ∈ B for any ball B in B(C[0, 1]) if PX is known. How ?

—————

B) Let X = (X1, . . . ,Xn) ∈ Rn a random vector with distribution µn. Associate with X the path

Z := Z(X) defined by Zi = X1 + · · · + Xi for i ∈ J1, nK, and Z0 = 0, and next consider the

normalized version of Z, the random function z ∈ C[0, 1], defined by

zt =
1

cn

(

Z⌊nt⌋ + {nt}X⌊nt+1⌋
)

=
1

cn

(

Z⌊nt⌋ + {nt}(Z⌊nt+1⌋ − Z⌊nt⌋)
)

for t ∈ [0, 1]. (36)

The random function z interpolates piecewise linearly the sequence (Zk)k∈J0,nK; there have been two

rescaling: the time as been divided by n, the space by cn (where (cn) is a deterministic sequence

in R⋆). The random function z belongs to C[0, 1]. The map Ψ, which sends (x1, . . . , xn) to the

function z defined as in (36), is continuous and is then measurable. The distribution of z is µn◦Ψ−1.

• In the case where µn = µ⊗ · · ·⊗µ (that is, the increments are i.i.d.) then for cn =
√

nσ2µ (where

σ2µ is the variance of µ), the corresponding z, will be called the normalized random walk.

We now, come back to our processes ST, HT, VT under the conditioning |T| = n, and define

some normalized version of them.

• Again p is the offspring distribution; denote by

sn the normalized version of ST under the conditioning by |T| = n; time rescaling =n; space

rescaling =
√
n;

hn the normalized version of HT under the conditioning by |T| = n; time rescaling =n− 1; space

rescaling =
√
n;

vn the normalized version of VT under the conditioning by |T| = n; time rescaling =2(n−1); space

rescaling =
√
n;

sn, hn, vn are called normalized DFQ, height process, contour process. Their distribution will be

denoted as usual, Psn , Phn and Pvn .

—————

In the three last examples, we have associated with a vector in Rj a piecewise linear path; the

process was then just another representation of this vector, and then we were still in Rj, in some

sense. The next example reveals much more the deep richness of the distribution in C[0, 1];

B) The Wiener measure is a probability measure on (C[0, 1],B(C[0, 1])) denoted by W such that :

if x has distribution W, the process (xt)t∈[0,1] = (πt(x))t∈[0,1] (called Brownian motion) satisfies :

• xt ∼ N (0, t), for each t ∈ [0, 1],

55
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• if 0 ≤ t1 < t2 < · · · < tn ≤ 1, then xt1 −xt0 , . . . ,xtn −xtn−1 are i.i.d., and xt−xs has distribution

N (0, t− s) for any t ≥ s.

The FDD of the Brownian motion Pn ◦ π−1
t1,...,tk

are defined by the second point. The density of

W ◦ π−1
t1,...,tk

with respect to the Lebesgue measure on Rk is given

ft1,...,tk(y1, . . . , yk) =

k
∏

i=1

exp(− (yi−yi−1)
2

2(ti−ti−1)
)

√

2π(ti − ti−1)

where t0 = y0 = 0.

Notice that this time, the knowledge of a finite number of coordinates πt(x) = xt is not sufficient

to reconstitute x as it was the case in the previous cases. The fact that such a measure W on C[0, 1]

having these FDD exist, is not at all obvious. There are several methods to show that it is indeed

the case; we chose to prove that it exists as a limit in distribution of a sequence of measures in

C[0, 1].

5.6 Weak convergence in C[0, 1]

The aim of this part is to explain some elements about the weak convergence in C[0, 1]; in

particular, we discuss some criterions of convergence. We then show that rescaled random walks

converge in distribution to W in C[0, 1] (normalized random walk converges in distribution to

the Brownian motion); then also that the other processes sn, hn,vn have a limit, the so called,

normalized Brownian excursion (up to some scale constant).

The first idea is to try to understand the link between the weak convergence of xn to x in

C[0, 1], and the convergence of FDD.

Lemma 15 Let P,P1,P2, . . . be probability measures on (C[0, 1],B(C[0, 1])) such that Pn
weak−−−→
n

P. Then for any k, k ∈ N⋆ any (t1, . . . , tk) ∈ [0, 1]k, Pn ◦ π−1
t1,...,tk

d−−→
n

P ◦ π−1
t1,...,tk

Proof . The map πt1,...,tk is continuous from C[0, 1] in Rk (see Proposition 7 page 53). �

What about the converse? Let (Pn, n ≥ 1) be a sequence of probability measure on C[0, 1] such

that for any k ∈ N⋆ and any (t1, . . . , tk) ∈ [0, 1]k , Pn ◦ πt1,...,tk converges. Can we deduce that the

sequence (Pn) converges? The answer is NO! (see the exercise below).

————————————

Exercise 11 : For any n, take Pn = δfn the Dirac measure on a deterministic function fn ∈ C[0, 1].

– Find an example where (fn) converges point-wise to a non continuous function f . Shows that the FDD con-

verges to those of the Dirac measure on f . But that δfn does not weakly converge to δf in C[0, 1], since δf has

not its support in C[0, 1]!

– find an example where (fn) converges point-wise to f ≡ 0 but that (fn) does not converge uniformly to f .

Again show that the FDD of Pn converge to those of δf but that the sequence (Pn) does not converge weakly

in C[0, 1] to δf .
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————————————

Exercise 12 : a) Let Xn be a sequence of real r.v., such that Xn
d−−→
n

X . Consider the process zn defined

by zn(t) = cos(Xn t) and z the process z(t) = cos(X t) for t ∈ [0, 1].

Is it true that zn
d−−→
n

z in C[0, 1]?

b) Let X(n) = (X
(n)
1 , . . . , X

(n)
k ) a r.v. in Rk. Assume that X(n) d−−→

n
X = (X1, . . . , Xk). Let

z(n)(t) = Z
(n)
⌊kt⌋ + {kt}(Z(n)

⌊(k+1)t⌋ − Z
(n)
⌊kt⌋) for t ∈ [0, 1]

z(t) = Z⌊kt⌋ + {kt}(Z⌊(k+1)t⌋ − Z⌊kt⌋) for t ∈ [0, 1]

where Z(n)(0) = Z(0) = 0, Z(n)(j) = X
(n)
1 + · · ·+X

(n)
j and Z(j) = X1 + · · ·+Xj, 1 ≤ j ≤ k.

Do we have z(n)
weak−−−→
n

z?

FDD characterize the measures on C[0, 1] but not the convergence of measures.

The problem is that convergence of FDD distributions corresponds (in a stochastic form) to the

point-wise convergence, when the topology we are working with is the topology of uniform conver-

gence. What may also happen, is that the FDD converges to a non-continuous limit (there exists

some sequences of continuous functions converging point-wise to non continuous limits). Hence, to

get the convergence of distributions in (C[0, 1],B(C[0, 1])), something else is needed.

Definition : Let Π be a family of probability measures on a Polish space (S,B(S)), equipped

with its Borelian σ-field. We say that Π is relatively compact if any sequence of elements of Π contains

a subsequence converging weakly (to a measure P possibly not in Π).

(More generally, relatively compact means with compact closure).

The limit of this subsequence (in the closure on Π) is necessarily a probability measure on

(S,B(S)), as one can see in integrating the bounded continuous function equals to 1 on S (this

gives the weight of the total space).

Proposition 9 Let (Pn, n ≥ 1) be a sequence of probability measures on (C[0, 1],B(C[0, 1])). If

the FDD of Pn converge to those of P and if the family (Pn, n ≥ 0) is relatively compact, then

Pn
weak−−−→
n

P (in the space of probability measures on (C[0, 1],B(C[0, 1]))).

[The convergence of Pn ◦ π−1
t1,...,tk

is defined as usual, that is, it is the convergence of a sequence of

probability measures on Rk].

Proof . From any subsequence (Pn′) of Pn, one can extract a converging subsequence Pn′′ , converg-

ing to a measure Q (possibly depending of this extracted subsequence). By hypothesis, the FDD

of Q are those of P; thus P = Q by Proposition 8. Hence Pn′′
weak−−−→
n

P. One deduces of this that

Pn
weak−−−→
n

P (indeed: if (xn, n ≥ 1) is a sequence of real numbers such that from any subsequence
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(xn′) one can extract a converging subsequence (xn′′) which converges to x (for an x which does

not depend on (xn′)), then xn −→ x (such a sequence can not have two accumulation points in R).

Then, apply this to the sequence of real numbers xn =
∫

fdPn for f bounded continuous: the limit

is
∫

fdP). �.

Proposition 10 Let (Pn, n ≥ 1) be a sequence of probability measures on (C[0, 1],B(C[0, 1])).

Assume that (Pn, n ≥ 1) is relatively compact, and that for any k ∈ N⋆ and t1 < t2 < · · · < tk,

Pn ◦ π−1
t1,...,tk

converges to a measure µt1,...,tk on Rk; then Pn weakly converges to a measure P on

(C[0, 1],B(C[0, 1])) such that P ◦ π−1
t1,...,tk

= µt1,...,tk .

Proof . From any subsequence (Pn′) of (Pn), extract a converging subsequence (Pn′′); it then

converges weakly to a certain P, whose FDD are necessarily given by µ. Then such a P is unique,

since the FDD characterize probability measures on (C[0, 1],B(C[0, 1])). Hence Pn
weak−−−→
n

P. �

Hence, to prove that a sequence of probability measures on C[0, 1] weakly converges, two things

have to be done :

• One has to prove the convergence of the FDD; the limiting FDD will be those of the limit (if the

weak convergence indeed holds true).

• the relative compactness of the family (Pn, n ≥ 1) must be proved.

In most cases, the second point is much more difficult to handle than the first one.

Definition : A family Π of probability measures on (S,B(S)) is tight, if for any ε > 0, there

exists a compact K ⊂ S such that for any P ∈ Π, P(K) > 1− ε.

First, let us state a simple result (which proof is a bit more complex than one could expect).

Lemma 16 If Π = {P} is reduced to a single Borelian probability measure on a Polish space

(S,B(S)), then Π is tight.

Proof . Since S is Polish, it is separable : there exists a dense subsequence (xi, i ≥ 1) in

S. For p ∈ N⋆ and ε > 0, we have
⋃

n≥1B(xn, 1/p) = S. To do this we use here a property

of probability measures: if AN is a non-decreasing sequences of sets (for inclusion) such that

∪nAn = A then P(An) → P(A); indeed for disjoint measurable sets Bn, P(∪Bn) =
∑

P(Bn). Thus

taking Bn = An \ ∪i<nAi, the Bi are disjoint, ∪i≤nBi = ∪i≤nAi, and thus P(An) = P(∪i≤nBi) → 1

since P(∪iBi) = P(Ω) = 1.

Take AN (p) =
⋃N

n=1B(xn, 1/p). The sequence AN (p) converges to S; then if N := Np is large

enough P(ANp(p) ≥)1− ε/2p. And thus

P(S\
⋃

n≤Np

B(xn, 1/p)) ≤ ε/2p.
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5.6 Weak convergence in C[0, 1]

Let Kε =
⋂

p

⋃

n≤Np
B(xn, 1/p). One has P(Kε) ≥ 1−ε. Moreover Kε is compact : to see this, since

we are in a metric space, it suffices to show that any sequence in Kε owns a converging subsequence

in Kε. Take a sequence (yn, n ≥ 1) in Kε. For p fixed, this sequence has an infinite number of terms

in the Np balls ∪n≤NpB(xn, 1/p) (since ∪n≤NpB(xn, 1/p) contains Kε); therefore, the sequence (yn)

has an infinite number of terms in one of these balls, say B(xnp , 1/p) (for np ≤ Np). In other words,

we can build a subsequence of y having all its terms in B(xnp , 1/p). By the diagonal procedure,

one constructs from there a sequence converging in all balls B(xnp , 1/p). Thus its limit belongs to

∩pB(xnp , 1/p) which is included in Kε (this set is reduced to a single point). �

Theorem 7 (Prohorov) Let Π be a family of probability measures on a Polish space (S,B(S)).
1) If Π is tight, then it is relatively compact.

2) If Π is relatively compact, then it is tight.

Admitted (See Billingsley, convergence of probability measures).

We are working on C[0, 1] (equipped with the topology induced by the distance d∞(f, g) =

‖f − g‖∞, topology often called, topology of uniform convergence). In order to prove tightness

for a family of probability measures on this space, it will be useful to know the following classical

theorem, characterizing the relatively compact subsets of this space.

Theorem 8 (Arzelà-Ascoli) A subset H of C[0, 1] is relatively compact if and only if

{

For any t ∈ [0, 1], {g(t) | g ∈ H} is bounded in R.

H is equicontinuous .

(admitted) In the first point, “for any” can be replaced by, “there exists”.

The second point means ∀ε > 0, ∀t ∈ [0, 1], there exists δ > 0 such that for all t′ ∈ [0, 1],

|t− t′| ≤ δ ⇒ sup{|g(t) − g(t′)| | g ∈ H} ≤ ε.

Hence, this condition, looks like to simple continuity, except that the same δ is valid for all g of

the family. The modulus of continuity of a function g in in C[0, 1] is

wx(δ) = sup
|s−t|<δ

|g(s)− g(t)|.

A sufficient condition for equicontinuity is

lim
δ↓0

sup
g∈H

wg(δ) = 0, (37)

which is equivalent to the uniform equicontinuity (continuity of f is ∀ǫ > 0, for all x ∈ [0, 1], ∃δ > 0,

|x− y| ≤ δ ⇒ |f(x)− f(y)| ≤ ε. Here, the same δ is valid for all x, and all g ∈ H.)
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Remark 1 Since [0, 1] is compact, a continuous function f on [0, 1] is also uniformly continuous.

We say that f is uniformly continuous if, ∀ε > 0, ∃δ > 0, |x − y| ≤ δ ⇒ |f(x) − f(y)|. The

proof which proves that continuous implies uniform continuous, can be adapted easily to prove that

equicontinuity implies uniform equicontinuity. Hence (37) is a criterion of equicontinuity.

Theorem 9 Let (Pn, n ≥ 1) be a sequence of probability measures on (C[0, 1],B(C[0, 1])). If the

two following conditions are satisfied then the sequence (Pn, n ≥ 1) is tight :

(i) For any η > 0, there exists a ∈ R+ such that

Pn({x | |x(0)| > a}) ≤ η for n ≥ 1.

(ii) For any ε > 0 and η > 0, there exists δ ∈]0, 1[ and n0 ∈ N such that for n ≥ n0,

Pn({x | wx(δ) ≥ ε}) ≤ η.

Proof . Let ε > 0, by (i) there exists a such that Pn({x | |x(0)| > a}) ≤ ε/2.

By (ii), for every p ≥ 1, one can find δp > 0 and np such that

sup
n≥np

Pn({x | wx(δp) ≥ 1/p}) ≤ ε/2p+1.

But also, for n ≤ n1, one can find δ′p > 0 such that

sup
n<np

Pn({x | wx(δ
′
p) ≥ 1/p}) ≤ ε/2p+1,

since, at n fixed, Pn({x | wx(1/m) ≥ 1/p}) tends to 0 when m → +∞.

Hence, taking δ̃p = inf{δp, δ′p} > 0, we have

Kε = {x | |x(0)| < a,wx(δ̃p) ≤ 1/p for all p ≥ 1}

satisfies Pn(Kε) > 1− ε for every n ≥ 0 and Kε is relatively compact; moreover, since Kε is closed

(intersection of closed sets {x | |x(0)| < a} and {x | wx(δ̃p) ≤ 1/p}), it is then compact, and then

according to Prohorov, the family (Pn, n ≥ 1) is tight. �

Remark 2 (Modulus of continuity, via dyadic numbers)

We want to bound wx(2
−n), by the help of some “paths on dyadic numbers”.

Let ∆n = {q/2n, 0 ≤ q < 2n} and

Un = sup

{∣

∣

∣

∣

x(
q

2n
)− x(

q + 1

2n
)

∣

∣

∣

∣

, 0 ≤ q < 2n
}

.

Let t ∈ [0, 1]; tn = [t2n]/2n is the maximum element of ∆n, smaller than t. For t ∈ ∆m (with

m > n),

|x(t)− x(tn)| ≤
∑

n≤p<m

|x(tp+1)− x(tp)| ≤
∑

n≤p<m

Up.
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(the tp+1’s constitutes a path of dyadic approximation of t, becoming much thin each time; for

p ≥ m, tp+1 = t). Let ∆ = ∪∆n be the set of dyadic numbers in [0, 1]. For t ∈ ∆,

|x(t)− x(tn)| ≤
∑

p≥n

Up.

For δ ≤ 2−n and for every s and t in ∆ such that |s− t| ≤ δ, we have

|x(s)− x(t)| ≤ |x(s)− x(sn)|+ |x(sn)− x(tn)|+ |x(tn)− x(t)| ≤ 3
∑

p≥n

Up.

Now, for a continuous function x, the modulus of continuity is

wx(δ) = sup
|s−t|≤δ

(s,t)∈∆2

|x(s)− x(t)|;

we then deduce than

wx(2
−n) ≤ 3

∑

p≥n

Up.

Next theorem gives the so-called “moment criterion” for tightness, often more easy to check than

the previous one, since instead of dealing with modulus of continuity, it involved only a difference.

Theorem 10 Consider (Pn, n ≥ 1) a sequence of probability measures on C[0, 1]. Let xn be Pn

distributed. If there exists α > 1, β > 0 and γ > 0 such that for any s, t in [0, 1] and any n

E(|xn(s)− xn(t)|α) ≤ β|s− t|γ+1

and if moreover the sequence (xn(0)) is tight, then (Pn, n ≥ 1) is tight.

(a reference: Theorem 12.3, Billingsley, convergence of probability measure).

Proof . We prove that assumption (ii) of the preceding theorem is fulfilled; this is sufficient, since

(i) has been also assumed. Let U
(n)
p = sup{|xn( q

2p )− xn(
q+1
2p )|, 0 ≤ q < 2p}; we have

E((U (n)
p )α) ≤ 2p sup

{

E

(∣

∣

∣
xn(

q

2p
)− xn(

q + 1

2p
)
∣

∣

∣

α)

, 0 ≤ q < 2p
}

≤ β2−pγ .

Since E(sup{|X1|, . . . , |Xk|}) ≤ E(|X1|+ · · ·+ |Xk|) ≤ k supi E(|Xi|). Therefore,

‖U (n)
p ‖α ≤ 2−pγ/αβ1/α.

By remark 2, we have

wxn(2
−p) ≤ 3

∑

q≥p

U (n)
q .

Hence

‖wxn(2
−p)‖α ≤ 3

∑

q≥p

‖U (n)
q ‖α ≤ 3

∑

q≥p

2−pγ/αβ1/α ≤ 3β1/α
2−pγ/α

1− 2−γ/α
.
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Let ε > 0 and η > 0 be fixed and δ = 2−p a parameter to be tuned. We have

Pn({x,wx(δ) ≥ ε}) ≤
Markov

E(|wx(δ)|α)
εα

≤
(3β1/α 2−pγ/α

1−2−γ/α )
α

εα
;

we see that when p → +∞, this bound goes to 0, and then is smaller than η > 0 for p large

enough.�

Proposition 11 Assume that (xn) is a sequence of processes with values in (C[0, 1],B(C[0, 1]))

converging in distribution to x. Let (yn) be a sequence of processes taking their values in

(C[0, 1],B(C[0, 1])) (yn is defined on the same probability space as xn), such that

∀ε > 0, P(‖xn − yn‖∞ ≥ ε) −−−→
n

0.

Then one has yn
d−−→
n

x.

This result is true in all Polish spaces (it does not use the fact that we are working on C[0, 1]).

Proof . According to the Portmanteau theorem, it suffices to show that for any bounded uniformly

continuous function f (from C[0, 1] with values in R), E(f(xn)) − E(f(yn)) tends to 0. Let ε > 0

be fixed. Since f is uniformly continuous, there exists δ > 0 such that ‖z1 − z2‖∞ ≤ δ ⇒
|f(z1)− f(z2)| ≤ ε. Hence

|E(f(xn))− E(f(yn))| ≤ E(|f(xn)− f(yn)|I‖xn−yn‖∞≤δ) + E(|f(xn)− f(yn)|I‖xn−yn‖∞>δ)

≤ ε+ ‖f‖∞P(‖xn − yn‖∞ > δ);

the second term goes to 0, by hypothesis. �

————————————
Note 5 : This point is much important for the asymptotic behavior of hn, sn and vn : we saw that they

were asymptotically at distance 0 (by Theorems 5 and 6). It will then be sufficient to obtain the convergence

in distribution of one of them in C[0, 1] in order to get for free the convergence of the other ones.

Lemma 17 (A tightness criterion for the convergence of rescaled discrete processes) Consider

(Pn, n ≥ 1) a sequence of probability measures on C[0, 1], and let wn e Pn distributed. If a.s. wn

is linear between the points (j/n, j = 0, . . . , n), and if there exists some constants α > 2, β > 0

such that, for any n ≥ 1, any s, t in [0, 1] such that ns and nt are integers,

E(|wn(s)− wn(t)|α) ≤ β|s− t|α/2

then, this is also true for all s, t in [0, 1]. Hence if moreover the family (Pn ◦π−1
0 , n ≥ 1) is tight,

then so does (Pn, n ≥ 1).

62



5.6 Weak convergence in C[0, 1]

(The proof is boring, and can be skipped).

Proof . Let s, t ∈ [0, 1]. Two cases arise :

• if ⌊nt⌋ = ⌊ns⌋, nt and ns are in the same piece [⌊nt⌋/n, ⌊nt+ 1⌋/n]. One has

E|wn(s)− wn(t)|α = (n(t− s))αE|wn(
⌊nt⌋
n

)− wn(
⌊nt+ 1⌋

n
)|α

= (n(t− s))α max
k

E|wn(k/n)− wn((k + 1)/n)|α

≤ (n(t− s))αβ|1/n|α/2

≤ (n(t− s))α/2β|n(t− s)

n
|α/2

≤ β|(t− s)|α/2

because n(t−s)| ≤ 1. The first inequality follows the fact that on the considered interval, the slope

of wn is n|wn(
⌊nt⌋
n )− wn(

⌊nt+1⌋
n )|

• if 0 ≤ ⌊ns⌋ ≤ ⌊nt⌋. We have

E|wn(s)− wn(t)|α = E|wn(s)− wn(
⌈ns⌉
n

)|α + E|wn(
⌈ns⌉
n

)− wn(
⌊nt⌋
n

)|α + E|wn(
⌊nt⌋
n

)− wn(t)|α

≤ β
∣

∣t− ⌊nt⌋
n

∣

∣

α/2
+ β

∣

∣s− ⌈ns⌉
n

∣

∣

α/2
+ β

∣

∣

⌈ns⌉
n

− ⌊nt⌋
n

∣

∣

α/2

≤ C ′|t− s|α/2

for a constant C ′ which does nor depend on n, neither on (s, t) (such a constant exists since

α/2 > 1 : one wants to check that (|a|α/2 + |b|α/2 + |c|α/2)2/α ≤ C(|a|+ |b|+ |c|) for a constant C;

this is true since all norms are equivalent on R3 and (a, b, c) → |a| + |b| + |c| as well as (a, b, c) →
(|a|α/2 + |b|α/2 + |c|α/2)2/α are norms). �

5.6.1 Definition and existence of the Brownian motion

Proposition 12 Let (Xi, i ≥ 1) be a sequence of r.v. i.i.d, with distribution N (0, 1). Let W be

the random walk defined by W0 = 0 and Wk = X1 + · · ·+Xk (for k ≥ 1). Let wn be the rescaled

interpolated random walk, defined by

wn(t) =
W⌊nt⌋ + {nt}(W⌊nt+1⌋ −W⌊nt⌋)√

n
for t ∈ [0, 1].

The sequence of measures (Pwn , n ≥ 1) weakly converges in the set of probability measures on

(C[0, 1],B(C[0, 1])); its limit is called the Wiener measure W.

A process having distribution W is called the Brownian motion.

Proof . Finite dimensional convergence : Let t1 < · · · < tk ≤ 1 be k real numbers in [0, 1].

First, notice that for any fixed t in [0, 1]

wn(t) = wn

(⌊nt⌋
n

)

+ {nt}
(

wn

(⌊nt+ 1⌋
n

)

− wn

(⌊nt⌋
n

))

.
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and then, wn(t)−wn(⌊nt⌋/n) tends to 0 in probability, because wn(t)− wn(⌊nt⌋/n) is N (0, 1n(t−
⌊nt⌋
n )2) distributed. Therefore, the same holds for

(

wn(t1), . . . , wn(tk)
)

−
(

wn(⌊nt1⌋/n), . . . , wn(⌊ntk⌋/n)
)

which goes to the null vector of Rk in probability. We study the limit law of the second vector

(the first will have the same limit, if any, by the remark following Proposition 11). Consider

the random vector w(n) =
(

wn(
⌊nt1⌋
n ), . . . , wn(

⌊ntk⌋
n )

)

. Let λ1, . . . , λk be fixed real numbers. The

Fourier transforms of w(n) is

Φw(n)(λ1, . . . , λk) = E



exp



i

k
∑

j=1

λjwn(⌊ntj⌋/n)







 .

In writing wn(
⌊ntj⌋
n ) =

∑j
l=1(wn(

⌊ntl⌋
n )− wn(

⌊ntl−1⌋
n )) (where by convention, t0 = 0), we get

Φw(n)(λ1, . . . , λk) = E

(

exp
(

i

k
∑

j=1

λj

j
∑

l=1

(wn(
⌊ntl⌋
n

)− wn(
⌊ntl−1⌋
n

))
)

)

= E

(

exp
(

i

k
∑

l=1

(λl + · · ·+ λk)(wn(
⌊ntl⌋
n

)− wn(
⌊ntl−1⌋
n

))
)

)

=
k
∏

l=1

E
(

exp
(

i(λl + · · ·+ λk)(wn(
⌊ntl⌋
n

)−wn(
⌊ntl−1⌋
n

))
)

)

The last equality comes from the independence of the “pieces” of path, used in each sum (each sum

using some distinct increments Xi). The factor E
(

(exp
(

i(λl + · · ·+ λk)(wn(
⌊ntl⌋
n )−wn(

⌊ntl−1⌋
n ))

)

)

converges to the Fourier transform of the Gaussian N (0, tl− tl−1) distribution taken in λl+ · · ·+λk
(by the limit central theorem). Eventually, we get

(

wn(t1), . . . , wn(tk)
) d−−→

n

(

w(t1), . . . , w(tk)
)

where w(ti) ∼ N(0, ti) and where the r.v. w(ti+1)−w(ti)’s are independent, and have lawN (0, ti+1−
ti); therefore, we have proved that the FDD converge to those of W (introduced page 55).

Tension : From Lemma 17, it suffices to bound E|wn(t) − wn(s)|α for t = k/n and s = k′/n for

c|t− s|α/2 for a certain c > 0. We have

E|wn(t)− wn(s)|α =
E(|N(|k′ − k|)|α)

nα/2
=

|k − k′|α/2
nα/2

E(|N(0, 1)|α)

= |t− s|α/2E(|N(0, 1)|α)

where we have denoted by N(a) a r.v. with distribution N(0, a). According to Theorem 10,

choosing α > 2, the sequence (Pwn , n ≥ 1) is tight. �
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5.7 Weak convergence of Lukaciewish walks

Theorem 11 (Donsker) Let (Xi, i ≥ 1) be a sequence of i.i.d. r.v, having mean 0 and variance

σ2 ∈]0,+∞[. Let W be the r.v. defined by W0 = 0 and Wk = X1 + · · · +Xk (for k ≥ 1). Let

wn(t) =
W⌊nt⌋ + {nt}(W⌊nt+1⌋ −W⌊nt⌋)

σ
√
n

for t ∈ [0, 1]

the normalized random walk and let Pwn its distribution. We have

Pwn

(weak.)−−−−→
n

W,

in the space of probability measures on (C[0, 1],B(C[0, 1])).

Proof . A complete proof use the tightness control using the modulus of continuity (it can be

found in Billingsley, convergence of probability measure).

We give a proof under the additional assumption that increments own some finite moments of

order p, for a p > 2 (hypothesis used to prove the tightness). The proof of the convergence of the

FDD is identical to the previous one (try!) .

For the tightness, we will admit the following Lemma, very useful to bound the sum of i.i.d. random

variables : (See Petrov’s book, Sums of independent random variables, p68-69). If (Xi, i ≥ 1) is a

sequence of i.i.d. r.v. with mean 0, and having some moments order p ≥ 2; we have

E|X1 + · · ·+Xm|p ≤ C(p)mp/2

where C(p) is a constant which depends only on p and of the distribution of the Xi’s.

With this result, the end of the proof is easy. For s and t such that ns and nt are integer :

E|wn(t)− wn(s)|p =
E|Wn(t−s)|p

np/2
≤ C(p)

(

n(t− s)
)p/2)

np/2
≤ C(p)(t− s)p/2

By Lemma 17, the proof is finished (provided that p > 2). �

5.7 Weak convergence of Lukaciewish walks

Consider W be a random walk whose increments are i.i.d., have distribution (µi, i ≥ −1) with

µi = pi+1 for all i ≥ −1. As usual p is assumed to have mean 1, variance σ2p ∈ (0,+∞) (this is an

unconditioned version of the DFQ associated with a GW tree with offspring distribution p). We

denote now W+ the random variable W conditioned by Hit−1(W ) = n (for n in PTSp as defined

in page 31). Denote

en(t) =
W+(⌊nt⌋) + {nt}(W+(⌊nt+ 1⌋)−W+(⌊nt⌋))

σp
√
n

for t ∈ [0, 1],

the normalized discrete Lukaciewish path. This is a.s. an element of C[0, 1], and then Pen is a

probability measure on (C[0, 1],B(C[0, 1])).
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5.7 Weak convergence of Lukaciewish walks

Proposition 13 (Kaigh- 1976) When n goes to +∞ in PTSp, the sequence Pen weakly con-

verges to a measure Pe, called the distribution of the normalized Brownian excursion, in the

space of probability measures on (C[0, 1],B(C[0, 1])).

A process e having distribution Pe is called the “normalized Brownian excursion”.

Proposition 14 A.s. e(0) = e(1) = 0. For any 0 < t1 < · · · < tk < 1, the distribution of

(e(t1), . . . , e(tk)) owns a density ft1,...,tk with respect to the Lebesgue measure on Rk. They are

given as follows. First, for t ∈ (0, 1) fixed, the density of e(t) is

ft(x) = 2
x2 exp(− x2

2t(1−t) )
√

2πt3(1− t)3
Ix≥0.

Set

p0(t, x) =
xe−

x2

2t√
2πt3/2

Ix≥0 and p(t1, x1, t2, x2) =
e
− (x1−x2)

2

2(t2−t1) − e
− (x1+x2)

2

2(t2−t1)

√

2π(t2 − t1)
Ix1≥0Ix2≥0;

the density of (e(t1), . . . , e(tk)) is

ft1,...,tk(x1, . . . , xk) = 2
√
2πp0(t1, x1)

(

k−1
∏

i=1

p(ti, xi, ti+1, xi+1)
)

p0(1− tk, xk)

Admitted.

Let see where these formula come from; we will see this on the following particular case : take

forW , the random walk with i.i.d. increments, taking values ±1 with proba. 1/2. We will condition

afterward by Hit−1(W ) = n, for an odd n. Notice that this will provide the uniform distribution

on the set of Lukaciewish paths of size n, having step ±1.

Let us compute P(W (⌊nt1⌋) = x1,W (⌊nt1⌋) = x2 | Hit−1(W ) = n); the computation with more

points is very similar because random walks conditioned to be Lukaciewish paths are Markov

processes. Under the uniform distribution, we only have to count the trajectories such that

{W (⌊nt1⌋) = x1,W (⌊nt1⌋) = x2,Hit−1(W ) = n} and divide by the total number of trajecto-

ries. For this, we decompose the trajectories from {W (⌊nt1⌋) = x1,W (⌊nt1⌋) = x2,Hit−1(W ) = n}
into three parts, on the intervals J0, ⌊nt1⌋K, J⌊nt1⌋, ⌊nt2⌋K, and J⌊nt2⌋, nK. Set by convention

(n
k

)

= 0

if k /∈ J0, nK. On the following points we count the number of (restriction of paths) valid on each

of the pieces described above.

• On J0, ⌊nt1⌋K, the number of good trajectories is
x1 + 1

⌊nt1⌋+ 1

( ⌊nt1⌋+ 1
⌊nt1⌋+x1+1

2

)

.

• on J⌊nt2⌋, nK, the number of good trajectories is
x2 + 1

n− ⌊nt2⌋

(

n− ⌊nt2⌋
n−⌊nt2⌋+x2+1

2

)

• on J⌊nt1⌋, ⌊nt2⌋K, there are

( ⌊nt2⌋ − ⌊nt1⌋
⌊nt2⌋−⌊nt1⌋+x2−x1

2

)

−
( ⌊nt2⌋ − ⌊nt1⌋

⌊nt2⌋−⌊nt1⌋−x2−x1−2
2

)

The two first results
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5.7 Weak convergence of Lukaciewish walks

come from the following facts : for k ∈ N⋆

P(Hit−k(W ) = n) =
k

n
P(Wn = −k).

To get the results we proceed as follows : add a first step (−1,−1), (0, 0) to the piece on J0, ⌊nt1⌋K.
By turning back the time (on starting from (⌊nt1⌋, x1) we consider this piece as a random walk

hitting position −x1 − 1 at time ⌊nt1⌋+1. The number of such trajectories is (x1 +1)/(⌊nt1⌋+1)

multiplied by the number of trajectories going from (⌊nt1⌋, x1) to (−1,−1). There are
( ⌊nt1⌋+1

⌊nt1⌋+x1+1
2

)

such path.

The second formula can be computed with the same method (except that it is not useful to add a

step).

The last formula is computed thanks to the reflection principle (we search the number of trajectories

having a non negative minimum on J⌊nt1⌋, ⌊nt2⌋K). The reflection principle says that there are as

many trajectories from a > 0 to b > 0 having length n that hits −1 than those from a to −2 − b

(why?).

x1

x2
n

⌊nt1⌋ ⌊nt2⌋

Figure 22: Decomposition of the excursion

Hence, we get

P(W (⌊nt1⌋) = x1,W (⌊nt1⌋) = x2 | Hit−1(W ) = n)

=
x1+1
nt1+1Pnt1+1(x1 + 1)

(

Pnt2−nt1(x2 − x1 + 1)− Pnt2−nt1(x2 + x1 + 2)
)

x2+1
n−nt2Pn−nt2(x2 + 1)

P(Z ∈ Ln)
(38)

where the signs ⌊⌋ have been deleted so save some room. The sign Pk(l) is used as a notation for

P(Wk = l). We already saw that P(Z ∈ Ln) ∼ (
√
2π)−1n−3/2. Observe the numerator. By the

central local limit theorem, we have for t1 ∈]0, 1] fixed,

|
√
nt1Pnt1(k)−

1√
2π
e−k2/(2nt1)| −→ 0 unif. in k.

Let t1 and t2 fixed, n → +∞). We multiply the numerator and the denominator of (38) by√
nt1
√

n(t2 − t1)
√

n(n− nt2) in order to use the local central limit theorem. We get the following

approximation

(x1 + 1)e
− (x1+1)2

2(nt1+1) (e
− (x2−x1+1)2

2n(t2−t1) − e
− (x2+x1+2)2

2n(t2−t1) )(x2 + 1)e
− (x2+1)2

2(n−nt2)

√
2π

3
(
√
2π)−1n2(t1(1− t2))3/2(t2 − t1)3/2

which is uniform in x1 and x2.
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5.8 Limit of the processes vn,hn, sn

In order to deduce the convergence from the local convergence we just obtained, we need a

theorem (this is not so obvious, even if natural: we didn’t prove the convergence of the cumulative

distribution function... but, in some sense, the convergence of the density). We then use a Theo-

rem (theorem 7.8 , Billingsley (Convergence of probability measures)) which states that the local

convergence implies the convergence in distribution (under some mild hypothesis).

The tightness can also be proved by bounding E|xn(s)− xn(t)|k (with integer power k larger than

3); there are other methods we admit it also.

————————————

Exercise 13 : Compute the distribution of the maximumM of the Brownian motion B on [0, a] (for a ∈ [0, 1]),

as well as the joint law of M and B1 (Brownian motion at time 1), using a discrete approach.

5.8 Limit of the processes vn,hn, sn

According to Kaigh’s Theorem, we have for the normalized DFQ defined page 55 (the same

holds for the normalized BFQ, of course);

sn
(d)−−→
n

σpe

here again, are assumed the criticality of the distribution of the increments, the existence of a

variance, and this again, along subsequence in PTSp. We also used that if xn
(d)−−→
n

x in C[0, 1], then

for any deterministic constant α, αxn
(d)−−→
n

αx in C[0, 1]. If one assumes moreover the existence of

exponential moments : according to Theorem 6 (page 46), we saw that

P

(

∥

∥

∥

∥

sn − 2

σ2p
vn

∥

∥

∥

∥

∞
≥ ε

)

−→ 0 for any ε > 0;

we have much more than that, but this is sufficient by Proposition 11 to obtain

vn
(d)−−→
n

2

σp
e (39)

(this result, is due initially to Aldous (1993) who proved it with a very different method). By

Theorem 5 (page 41) and Proposition 11, we get :

hn
(d)−−→
n

2

σp
e (40)

We have also as a direct consequence of Theorem 6, Theorem 5

hn − vn
(d)−−→
n

0,
σ2p
2
hn − sn

(d)−−→
n

0

where 0 is the null process on [0, 1]. One can also deduce from the work above that on C([0, 1]2),

(vn, sn)
(d)−−→
n

( 2
σp
e, σpe) where the same excursion e appears as limit for vn and sn.
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5.8 Limit of the processes vn,hn, sn

5.8.1 Consequences in terms of trees

In this section, we are talking about trees under Pp(. | |T| = n). Even if not stated, we

are taking limit in PTSp, and p is assumed to have mean 1, a variance in (0,+∞), exponential

moments.

Convergence of the height

The height of a tree T coincides with maxkHT (k). Hence, let T be a tree under Pp(. | |T| = n);

let Hn := maxkHT(k). be its height. According to page 55,

Hn/
√
n

(d)
= max

t∈[0,1]
hn(t).

Since the map

max : C[0, 1] −→ R+

f 7−→ max{f(x), x ∈ C[0, 1]}

is continuous, and since hn
(d)−−→
n

2
σp
e, therefore,

Hn√
n

(d)
= max ‖hn‖∞

(d)−−→
n

2

σ
max e.

(This does not give the limit, but the existence of a non degenerate limit, which is at the scale
√
n.

The distribution of max e is known.)

Total path length

It is defined for any tree T by TPLT =
∑

u∈T |u|. In order to get the limit of TPLT we use

the contour process (a similar work can be done using the height process). With any node u of

T different from the root ǫ, associate the edge below u; hence two steps of the contour process is

associated with each node. If |u| = k, then the two steps are from position k − 1 to k, and then

from k to k− 1. Below this steps on the graph of VT, the area is 2k− 1. Hence the area under the
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contour process satisfies

∫ 2(|T |−1)

0
VT(x) dx =

∑

u∈T,u 6=ǫ

2|u| − 1 = 2TPL(T )− (|T | − 1)
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5.8 Limit of the processes vn,hn, sn

Take now T under Pp(. | |T| = n), and recall the normalization which defined vn, page 55. Since we

have
∫ 2(n−1)
0 VT(x) dx = 2(n − 1)n1/2

∫ 1
0 vn(t)dt; therefore

∫ 2(n−1)
0 VT(x) dx

2(n−1)n1/2 =
∫ 1
0 vn(t)dt, and since

the map

max : C[0, 1] −→ R+

f 7−→
∫ 1
0 f(x)dx

is continuous, we have
∫ 1
0 vn(t)dt

d−−→
n

2
σp

∫ 1
0 e(t)dt; this says that

2TPL(T) + 1

2(n − 1)n1/2
d−−→
n

2

σp

∫ 1

0
e(t)dt.

We deduce from this (exercise) that

TPL(T)

n3/2
d−−→
n

2

σp

∫ 1

0
e(t)dt.

Again, the distribution of the height under the Brownian excursion is known.

Height of nodes

Take a random tree T (with size n) as above, and let uT(1), . . . , uT(n) be its nodes sorted

according to the lexicographical order. Take 0 < s1 < · · · < sk < 1, k fixed. Consider the k-tuple

(|u(⌊ns1⌋)|, ..., |u(⌊nsk⌋)|)

giving the height of the nodes u(⌊ns1⌋), . . . , u(⌊nsk⌋) in T.

We have (using hn(t) = n−1/2HT((n− 1)t), and HT(k) = |u(k + 1)|), we get

1√
n
(|u(⌊ns1⌋)|, ..., |u(⌊nsk⌋)|)

(d)
=

(

hn

(⌊ns1⌋ − 1

n− 1

)

, . . . ,hn

(⌊nsk⌋ − 1

n− 1

))

.

We then have (why ?)

1√
n
(|u(⌊ns1⌋)|, ..., |u(⌊nsk⌋)|)

(d)−−→
n

2

σp
(e(s1), . . . , e(sk)) .

Further, assume that you are interested instead by the height of the random node u(⌊nU⌋)
where U is uniform on [0, 1] and is chosen independently of T, (or having another distribution)

instead (or several of these kinds of nodes, with some i.i.d. (or not) Ui). Then this time, use that

the pair (U,hn) converges in distribution to (U, 2
σp
e) in probability measures on [0, 1]×C[0, 1] (with

associated product Borelian σ-fields). From there, we get

|u(⌊nU⌋)|√
n

(d)−−→
n

2

σp
e(U)

where U is independent of e (why?).
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5.9 Convergence of trees

Asymptotic metric properties of trees

Consider each tree T as a metric space: the distance dT (u, v) between two nodes u and v is as

usual, the number of edges between them. Can we say something about the asymptotic distance

between these points? Instead, of writing dT (u, v) which is not nice from a functional point of view,

consider the function DT defined on J1, nK2 by

DT (k, l) := dT (uT (k), uT (l));

it simply gives the distance in T between the lth and k nodes, according to the lexicographical

order. Take now a random tree T, as above, and s := (s1, . . . , sk) with the si’s as above. The

distance matrix

MT (s) := (DT (⌊nsi⌋, ⌊nsj⌋))i=1..k,j=1..k

gives all the relative distance of the nodes u(⌊nsi⌋). On the height process HT , we see that

|DT (k, l)− (HT (k) +HT (l)− 2min{HT (x), x ∈ Jk ∧ l, k ∨ lK}| ≤ 1.

(where k ∧ l (resp k ∨ l) is the minimum, (resp. maximum) between k and l (why?). Hence the

matrix, n−1/2MT(s) has the same limit (if any) as the matrix

Mn(s) =

(

hn

(⌊nsi⌋ − 1

n− 1

)

+ hn

(⌊nsj⌋ − 1

n− 1

)

− 2min{hn(x) | x ∈ Ji ∧ j, i ∨ jK}
)

i=1..k,j=1..k

But this matrix converges in distribution in the set of k× k matrices Mat(k) with real coordinates

(see these matrices as elements of Rk2 , and equipped with the corresponding Borelian σ-field). The

application Ψs from C[0, 1] onto Mat(k) defined by

Ψs : C[0, 1] −→ Mat(k)

f 7−→ Ψs(f) :=
(

f(si) + f(sj)− 2min{f(x) | x ∈ Jsi ∧ sj , si ∨ sjK}
)

i=1..k,j=1..k

is continuous. Therefore, it is not difficult to prove that

Mn(s)
d−−→
n

Ψs

(

2

σp
e

)

,

in the set of Borelian probability measure on Mat(k).

5.9 Convergence of trees

Here, we will present the main ideas, leading to a notion of convergence of trees. The reader must

understand that something arbitrary must be bring into play. This is the general notion of trees

that will be involved, together with the used topology of convergence : a notion that encompasses

discrete trees and their limits is needed. Indeed, all objects have to be considered as element of the

same topological space, in order to talk of convergence (and of course, it is simpler if this metric

space is Polish, in order to have access to simple notions/tools related to weak convergence).
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5.9 Convergence of trees

In the history, three embeddings have been used (as far as I know). The first one, historically

used by Aldous (91) in his series of paper “continuum random tree 1,2, and 3” consists in an

embedding in l1 (a tree is seen as a subset of l1, the space of sequences, with a finite sum). Aldous

deduces the convergence of the contour process from a nice but complicated construction, showing

first the convergence of trees.

If a direct proof for the convergence of the contour of trees is known, another approach of the

convergence to a continuum random tree can do provided (this is what we will do afterwards).

More recently, for various reasons, another topology appeared : the Gromov-Hausdorff topology

on compact metric spaces. The idea is to see trees as compact metric spaces (they are, as we

saw in the last paragraph, compact metric spaces). Gromov defined a metric on the set of com-

pact metric spaces (in fact, two compact metric spaces are considered to be equal if there exists

an isometry which sends the first one on the second one; the distance given by Gromov, is a

distance on equivalence classes of metric spaces). It is then possible to show that rescaled GW

with n nodes, has a limit in distribution for the associated notion of weak convergence (this is

also a consequence of the convergence of the contour process). We send the interested reader to

the lecture notes ”Random trees and applications” by Jean-François Le Gall (on its web page

http://www.dma.ens.fr/∼legall/indexbis.html) for complements. Here we will present a soft ver-

sion of convergence to a continuum random trees, which is the richest one, when only ordered trees

are considered.

This construction is due to JF Le Gall, and raises entirely on the convergence vn
(d)−−→
n

2
σp
e. The

idea is to define a tree from a function, as in the discrete case, the contour process encodes a tree.

Let C+[0, 1] be the set of continuous functions g from [0, 1] with values in R+, such that

g(0) = g(1) = 0. With each function g in C+[0, 1], we define an equivalence relation in [0, 1] by

x ∼
g
y ⇐⇒ g(x) = g(y) = ǧ(x, y),

where

ǧ(x, y) = inf{g(u) | u ∈ [x ∧ y, x ∨ y]}.

Let Eg = [0, 1]/ ∼g be the set of equivalence classes modulo ∼
g
; this set is considered as a tree, its

elements being considered as the nodes. We denote by Fg the canonical surjection from [0, 1] into

Eg

Fg : [0, 1] −→ Eg

x 7−→ Fg(x) = ẋ := {y | y ∈ [0, 1], x ∼
g
y}

which associates with each real number x the class {y | y ∈ [0, 1], x ∼
g
y}; it is the continuous

analogous of the function FT (defined in page 23). The set Eg is totally ordered: ẋ < ẏ if inf ẋ <

inf ẏ for the usual order on R. The class 0̇ is the root of Eg.

The set Eg is considered as a metric space. A distance on Eg is defined as follows. Let x and y

be representative of ẋ and ẏ. The element ż in Eg defined by z ∈ [x, y] and g(z) = ǧ(x, y) does not
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5.9 Convergence of trees

depend on the chosen representative x and y. The point ż is called the highest common ancestor

of ẋ and ẏ. The distance between ẋ and ẏ is defined by

dg(ẋ, ẏ) = dT (x, y) = g(x) + g(y)− 2g(z) = g(x) + g(y)− 2ǧ(x, y).

The function g is considered as the contour process of Eg since

dg(0̇, ẋ) = g(x)

as in the discrete case. From there, we can define the notion of ancestor, descendent, subtrees

branch, as in the discrete case (exercise). It can also be shown that Eg is also connected and

contains no cycle.

Let K = {tg := (Eg, dg) | g ∈ C+[0, 1]} be the set of such trees. We endow this space with

the following metric which sends the topology from C[0, 1] onto K : the distance in K between

tg and tf is dK(tg, tf ) = ‖g − f‖∞. This makes of K a Polish space, and of course, if a sequence

of function (fn) converges in C[0, 1] to f , then tfn converges to tf in K (it is the same metric on

both spaces). Also, weak convergence in both space are equivalent : if xn
weak−−−→
n

x on C+[0, 1] then

txn

weak−−−→
n

tx in the set of Borelian probability measures on K.

Why this is indeed a convergence of trees? What means that two trees are close? Assume that

‖f − g‖∞ < ε, and that both f and g are in C+[0, 1]. Consider ẋ, the class of x, in the two trees

Eg and Ef . We have
∣

∣dg(0̇, ẋ)− df (0̇, ẋ)
∣

∣ ≤ ε;

also a short computation (or a small picture) shows that

max
u,v∈[0,1]

|dg(u̇, v̇)− df (u̇, v̇)| ≤ 3ε;

hence, seen as metric spaces, the two trees Eg and Ef are close.

Theorem 12 Consider p a critical GW OD, having exponential moments. For n → +∞ in

PTSp, we have for vn (the normalized contour process as defined on page 55), tvn
weak−−−→
n

t 2
σp

e =
(

Ee,
2
σp
de

)

in the space of probability measures on K.

[This is hence just a consequence of vn → 2
σp
e]. Notice that the nodes in Eg and in Ecg are the same

for any c > 0, and that dcg = cdg. The limiting tree which appears in the theorem, is then defined

to be the tree associated to the normalized Brownian excursion, up to some factors. Aldous, in his

word, called continuum random tree (CRT) the tree associated with 2e. Notice again that the limit

is the same whatever is the starting distribution p provided that it is critical and has exponential

moments (in fact, Aldous showed the result under the existence of the variance, only).

Remark 3 • We should also mention that the present construction can be completed as follows.

The tree tg, additionally to its branching structure, can be equipped with a measure. The aim of this
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5.9 Convergence of trees

measure is to provide an information on the “density of nodes” in the different regions of the tree .

The idea, here, is to following : in the discrete case, it was possible to choose one node uniformly

in the tree, because there were only a finite number of nodes, and this had a sense. On a tree on

tg for a general g, it is still possible, starting from a measure on [0, 1], and considering the image

measure on Eg. Aldous, shows that starting from the uniform measure on the set of nodes in the

discrete case, the limiting corresponding measure on [0, 1] is the Lebesgue measure. This allows one

to take one node at random on the continuum random tree (we did similar thing in the previous

subsection, when we saw clearly, using H, that choosing a node uniformly on the discrete case,

corresponds, at the limit to taking a uniform position on [0, 1]).

• the passage to the limit for the Gromov-Hausdorff topology has for aim to provide a maybe less

arbitrary construction of the limiting object (because it relies on a pre-existing topology). The idea

is to show, as we seen in the previous subsection, that indeed, seen as metric spaces, trees converge

weakly. When dealing with metric spaces, it is reasonable to identify isometric metric spaces.

Hence, the Gromov-Hausdorff topology is a topology on equivalence classes of isometric compact

metric spaces. In the framework we are dealing with, the proof is similar to that we have provided

on K (because, the topology of Gromov-Hausdorff is quite weak)... but here, the satisfaction to be

on roads already followed by other people, disappoints a bit since the cost is the lost of the tree order

(only the partial order “to be ancestor” is kept.

• A question remains, what have we done when we have said that (tvn) converges, instead of saying

that rescaled trees converges? In fact, if we consider the discrete trees, as a discrete metric space,

the passage to tvn has made of it a continuous space where some points on “the edges” have been

transformed into points in the space. This difference can be quantified if one works on a space of

metric spaces, equipped with the Gromov-Hausdorff topology (it goes to 0, with this topology). If

we don’t want to work with this topology, it should be kept in mind that the trees which converges

is tvn, and then, to be careful when one desires to show convergence of functional of trees: it has

to be shown that they can be expressed simply in term of tvn .

74



6 BROWNIAN MOTION

6 Brownian motion

We will here give some properties of the standard Brownian motion. To learn more, we rec-

ommend the book of Revuz & Yor (Continuous Martingales and Brownian motion), Karatzas &

Shreve (Brownian motion and Stochastic calculus) and Breiman (Probability).

6.1 Brownian motion on R

First, notice that we have defined the Brownian motion on [0, 1]. The same construction can

be done, more generally on R+; for this (in order to see the Brownian motion as a limit of rescaled

random walk), another topology should be used : this is the topology of uniform convergence on

all compact sets. A metric is given by

d =
∑

k≥1

dk
2k(1 + dk)

,

where dk(f, g) = sup{|f(x) − g(x)|, x ∈ [0, k]}. (This approach is explained in a French book:

Dacuhna-Castelle & Duflo).

————————————

Exercise 14 : Let f, f1, f2 . . . , be some functions defined from R+, with values in R. Show that
(

the sequence (fn) converge to f on all compact subset of R+
)

⇔
(

d(f, fn) → 0
)

Hence, there exists a probability measure W̃ on C[0,+∞), for which the canonical process

B = (Bt)t∈[0,+∞[ has the two following properties :

• B0 = 0 a.s..

• the increments of B are independant (Btk −Btk−1
⊥ · · · ⊥ Bt2 −Bt1 ⊥ Bt1 for all t1 < t2 < · · · <

tk), and the law of Btj −Btj−1 is N (0, tj − ti).

————————————
Note 6 : Often, we express the distribution of the vector (Bt1 , . . . , Btk) as :

For all t1, . . . , tk ∈ [0,+∞)k, (Bt1 , . . . , Btk) is a centered Gaussian vector with covariance function

cov(Bti , Btj ) = ti ∧ tj .

Indeed, if ti = tj , this says that the variance of Bti is ti; taking into account the other facts, this means

Bti ∼ N (0, ti). In the other hand, if ti < tj using that Btj = Bti + (Btj −Bti) and the fact that Btj −Bti

is independent from B(ti) and has distribution N (0, tj − ti),

cov(Btj , Bti) = cov(Bti + (B(tj)−B(ti)), Bti) = ti = ti ∧ tj .
Conversely, using that the FDD characterizes the distribution of continuous processes (also true

on C[0,+∞)), any process having these distributions has distribution W̃ .
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6.2 Irregularities of Brownian trajectories

Proposition 15 LetB be a Brownian motion, we have :

(i) (Markov property) For any s > 0, the process (Bt+s − Bs)t≥0 is a Brownian motion

(independent from the family (Bu)u≤s).

(ii) (Symmetry) The process (−Bs)s≥0 is a Brownian motion.

(iii) (Scaling) For any c > 0, the process (cBt/c2)t≥0 is a Brownian motion (equivalently

(Bct√
c
)t≥0 is a Brownian motion).

Proof . In each case, we are dealing with centered Gaussian processes. In the case (i) and (iii),

the covariance function can be easily computed : for s < t

cov(cBs/c2 , cBt/c2) = cov(cBs/c2 , cBs/c2 + (cBt/c2 − cBs/c2))

= cov(cBs/c2 , cBs/c2) + cov(cBs/c2 , cBt/c2 − cBs/c2)

= c2
s

c2
+ 0 = s = s ∧ t

in this last line, we used that B is a Brownian motion, has independent increments, and the known

covariance function.

For (ii), it suffices to say that the Gaussian distribution is symmetrical. �

————————————

Exercise 15 : Let (Bt)t∈[0,1] a Brownian motion of [0, 1]. Prove that the process (B1−s − B1)s≥0 is also a

Brownian motion on [0,1] (time reversal formula).

6.2 Irregularities of Brownian trajectories

Theorem 13 (Dvoreski, Erdös et Kakutani) Almost surely, the Brownian motion is nowhere

differentiable on [0, 1].

This result is also true on R+, since the Brownian motion is in some sense, the concatenation of

Brownian motions on [0, 1].

Proof . Let β > 0 fixed; let x a function defined on [0, 1], differentiable at a point s and such that

|x′(s)| ≤ β. Then, there exists n0 such that ∀n ≥ n0

|x(t)− x(s)| < 2β|t− s| for |t− s| < 2/n.

Hence, for

An = {x | ∃s s.t. |x(s)− x(t)| ≤ 2β|t− s|, for |t− s| < 2/n} (41)

we have : the sequence An is increasing and A = ∪n≥1An contains every function having at least

in one point, a derivative with an absolute value smaller than β.

If (x, s) satisfies |x(s) − x(t)| ≤ 2β|t − s|, for |t − s| < 2/n, the function x at point s is between
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6.2 Irregularities of Brownian trajectories

the two straight lines with slope 2β and −2β and passing via (s, x(s)); by a small computation, or

a small figure, one see that

for k = max{j, j/n ≤ s} = ⌊ns⌋,

yk = max
{∣

∣x(
k + 2

n
)− x(

k + 1

n
)
∣

∣,
∣

∣x(
k + 1

n
)− x(

k

n
)
∣

∣,
∣

∣x(
k

n
)− x(

k − 1

n
)
∣

∣

}

≤ 6β/n.

Hence, if Dn =
{

x | ∃yk, yk ≤ 6β/n
}

then An ⊂ Bn. To show that P(A) = P(limAn) =

limn P(An) = 0 it suffices to establish that limn P(Dn) = 0. For this, write :

Dn =
n−1
⋃

k=1

{x | yk ≤ 6β/n},

which leads to

P(B ∈ Dn) ≤
n−1
⋃

k=1

P

(

max
{∣

∣B(
k + 2

n
)−B(

k + 1

n
)
∣

∣,
∣

∣B(
k + 1

n
)−B(

k

n
)
∣

∣,
∣

∣B(
k

n
)−x(k − 1

n
)
∣

∣

}

≤ 6β/n
)

By using that the Brownian motion has independent increments with same distribution (on interval

of the same size), the probabilities in the last formula are equal. Using the formula giving the

distribution of the maximum of independent r.v. we get :

P(B ∈ Dn) ≤ nP3(|B(1/n)| ≤ 6β/n)

= n
(

2

∫ 6β/n

0

√
ne−

nx2

2√
2π

dx
)3

≤ n
(

2
6β

n
max

{√
n
e−

nx2

2√
2π

})3
= O(n−1/2).

Hence, P(A) = 0 and thus, a.s. the Brownian motion admits no derivative smaller than β. We

write now A(β) instead of A. The set of functions which admits at least a derivative in a least one

point on [0, 1] is thus contained in ∪n∈NA(n). But P(∪nA
(n)) = 0, since it is a countable union of

negligible sets. This ends the proof. �

Proposition 16 Let M1 = max{Bt, t ∈ [0, 1]}. We have M1
d
= |N (0, 1)|.

Proof . Let (Wk)k∈[0,n] be a random walk with i.i.d. increments ±1 with probability 1/2. For

r ≥ 0, by the reflection principle, we have :

P( max
k∈J0,nK

Wk ≥ r) =
∑

j∈N
P( max

k∈J0,nK
Wk ≥ r,Wn = j)

=
∑

j<r

P( max
k∈J0,nK

Wk ≥ r,Wn = j) +
∑

j≥r

P( max
k∈J0,nK

Wk ≥ r,Wn = j)

=
∑

j<r

P(Wn = 2r − j) +
∑

j≥r

P(Wn = j)

=
∑

j>r

P(Wn = j) +
∑

j≥r

P(Wn = j)

= 2P(Wn > r) + P(Wn = r)
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6.2 Irregularities of Brownian trajectories

We have for any λ > 0,

P

(maxk∈J0,nKWk√
n

≥ λ
)

− 2P
(Wn√

n
≥ λ

)

−→ 0

point-wise, for all λ > 0. To conclude, we use
maxk∈J0,nK Wk√

n

d−−→
n

M1 (corollary of Donsker’s theorem),

and Wn√
n

d−−→
n

N (0, 1) (Central limit theorem).

Corollary 3 Let [a, b] be an interval, included in [0, 1], we have

max
t∈[a,b]

Bt −Ba
loi
=

√
b− aM1.

Proof . (Bt −Ba)t∈[a,b] is a Brownian motion, according to Proposition 15. Therefore

max
t∈[a,b]

Bt −Ba
d
= max

t∈[0,b−a]
Bt.

According to Proposition 15 (iv),
√
b− aB̃t/(b−a) = Bt is a Brownian motion. Thus

max
t∈[0,b−a]

Bt
d
= max

t∈[0,b−a]

√
b− aB̃t/(b−a)

= max
t∈[0,1]

√
b− aB̃t

d
=

√
b− aM1.

As a by-product, we obtained that if Mt = max{Bs, s ∈ [0, t]} (for t > 0) then

Mt
d
=

√
tM1. (42)

Corollary 4 Let a > 0 and Ta = inf{t, Bt = a} the hitting time of a by the Brownian motion.

We have

Ta
d
=

a2

(N (0, 1))2

Proof . Let (Bt)t≥0 be a Brownian motion. For a > 0 and t > 0,

{Ta ≤ t} = {Mt ≥ a}.

Hence

P(Ta ≤ t) = P(Mt ≥ a) = P(
√
t|N(0, 1)| ≥ a) = P

(

a2

|N(0, 1)|2 ≥ t

)

.

Therefore, clearly Ta as the same distribution as a2

|N(0,1)|2�.

Corollary 5 A.s., all local maxima of B are different.
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6.2 Irregularities of Brownian trajectories

Of course, the same property holds for the minima of Brownian motion (this will appear to have

an application in terms of limiting tree).

Proof . Let

A =

{

x | x ∈ C[0, 1],∃(a, b), (c, d), b < c s.t. max
t∈(a,b)

xt = max
t∈(c,d)

xt

}

,

be the set of continuous functions having (at least) two equal local maxima. First, the set A is the

same, if instead of taking all a, b, c and d, these points are taken in Q. The result of this restriction

is that only a countable pairs of intervals are to be tested. IF we can prove that for a, b, c, d, b 6= c

rational numbers, we have

P

(

max
t∈(a,b)

Bt = max
t∈(c,d)

Bt

)

= 0

one will be able to prove P(B ∈ A) = 0 since the countable union of negligible sets is still negligible.

Since the evolution of the Brownian motion on [c, d) is independent on the part on [0, c), and since

the maximum on [c, d) has a density (conditionally on Bc), then P
(

maxt∈(a,b)Bt = maxt∈(c,d)Bt

)

=

0 (one may condition first by the value of Bc if the argument seems not sufficient). �

Notice that the same argument works exactly the same on R+ instead, since the only used

argument is the countability of the number of intervals with rational extremities on R+.

The following theorem gives a very nice property of the Brownian motion around 0, and then

by Markovianity, around each position.

Proposition 17 (Law of the Iterated Logarithm for the Brownian motion) Let φ(t) =
√

2t log log(1/t). We have

lim sup
t↓0

Bt/φ(t) = 1 a.s..

Proof . this is a proof in two steps.

a) For all δ > 0,

P

(

lim sup
t↓0

Bt/φ(t) > 1 + δ

)

= 0.

b) For all δ > 0,

P

(

lim sup
t↓0

Bt/φ(t) > 1− δ

)

= 1.

Proof of (a) Let q ∈]0, 1[; set tn = qn. Let us show that

Cn = {x | x(t) > (1 + δ)φ(t) for at least one t ∈ [tn+1, tn]},

then P(B ∈ Cn infinitely often) = 0, that is, the probability that B ∈ lim inf Cn, that is that B

satisfies infinitely often Bt > (1 + δ)φ(t) for at least one t ∈ [tn+1, tn] is 0. But, we have :

Cn ⊂ {Mtn > (1 + δ)φ(tn+1)},
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6.2 Irregularities of Brownian trajectories

since φ(t) increases with t. Thanks to the bound

P

(

Mtn√
tn
> x

)

=
2√
2π

∫ +∞

x
e−z2/2dz

≤
√
2

x
√
π

∫ +∞

x
ze−z2/2dz

=

√

2

π

e−x2/2

x

one sees that if q ∈]0, 1[ is chosen in such a way that (1 + δ)2q > 1 then,

P(Mtn ≥ (1 + δ)φ(tn+1))

is the term of a converging sum. By the Borel-Cantelli theorem, we deduce that the probability for

Cn to be satisfied infinitely often is 0.

proof of (b) : Let q ∈]0, 1[; let Zn = Btn −Btn+1 . The Zi are independent. Assume for a moment

that

P(Zn > (1− ε)φ(tn) infinitely often ) = 1. (43)

From (a), since −B is also a Brownian motion, with probability 1, there exists n0 such that for

any n ≥ n0,

Btn+1 ≥ −(1 + ε)φ(tn+1);

indeed, this formula is false for a finite number of n only.

From Btn = Zn +Btn+1 , we get

Btn ≥ (1− ǫ)φ(tn)− (1 + ǫ)φ(tn+1)

= φ(tn)

(

1− ε− (1 + ε)
φ(tn+1)

φ(tn)

)

infinitely often. But φ(tn+1)/φ(tn) −→ √
q. Hence, for q and ε sufficiently small (we can choose

them as wanted), we have

1− ε− 2(1 + ε)
√
q ≥ 1− δ,

and then (b) is established. It remains to establish (43). We have

P(Zn > (1− ε)φ(tn)) = P

(

N >
(1− ε)φ(tn)√
tn − tn+1

)

,

for N ∼ N (0, 1), by using the formula of scaling of the Brownian motion. We have

(1 − ε)φ(tn)√
tn − tn+1

=
1− ε

1− q

√
2
√

log(n log 1/q). (44)

It remains to find a good bound of the tail of the distribution of N . Write
∫ +∞

x

e−z2/2

√
2π

dz ∼
+∞

e−x2/2

x
√
2π

;

which is obtained by an integration by part. After a simple computation, we get if (1−ε)2/(1−q) < 1

then P(Zn > (1−ε)φ(tn)) is the term of a diverging sum (it suffices for this to take q small enough).

According to Borel-Cantelli, (43) holds true. �
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6.2 Irregularities of Brownian trajectories

Corollary 6 A.s., in any neighborhood of 0, the Brownian motion crosses the x-axis an infinite

number of times.

Proof . By symmetry

lim inf
t↓0

Bt/φ(t) = −1 a.s..

Using the intermediate value theorem, the Brownian motion crosses 0, an infinite number of times

in [0, t] for any t. Notice again, that since the Brownian motion is constant on no interval (if it

were, its derivative would exist and be 0 on this interval), this result is not trivial. �

Proposition 18 Let (Bt)t≥0 be a Brownian motion on R+; then the process B̃, defined by

B̃0 = 0, B̃t = tB1/t for t > 0 is a Brownian motion.

Proof . First it is a centered Gaussian process. We have for 0 < s < t,

cov(B̃s, B̃t) = cov(sB1/s, tB1/t)

= st cov(B1/s, B1/t)

= st

(

1

s
∧ 1

t

)

= st (1/t) = s = s ∧ t.

We just show that on (0,+∞), the FDD were those of the Brownian motion; the continuity on

(0,+∞) is clear (continuous transform of continuous function). It remains to show the continuity

at 0. We have to show that limt−→0 tB1/t = 0 (that is, the limit exists, and is 0). We will show

that limx−→+∞ x−1Bx = 0. First, according to the law of large numbers,

lim
n−→+∞

n∈N

Bn

n
= 0.

Set Zk = maxt∈[0,1] |Bk+t −Bk|. We have for t in [k, k + 1],

∣

∣

∣

Bt

t
− Bk

k

∣

∣

∣ =
∣

∣

∣

Bt −Bk

t
+ (

1

t
− 1

k
)Bk

∣

∣

∣

≤ Zk

k
+

|Bk|
k2

It remains to control Zk
k . The distribution of Zk is equal to that of max{|Bt|, t ∈ [0, 1]}. This r.v.

admits a finite mean since max |B| ≤ maxB +max−B and also of order 2 since E((max |B|)2) ≤
E((maxB +max−B)2) ≤ E((maxB)2) + E((max−B)2) + 2E((maxB)(max−B)); this last mean

is bounded (according to Cauchy-Schwarz) by (E((maxB)2)E((max−B)2))1/2 (recall that the dis-

tribution of maxB is known : it’s the law of the absolute value of a normal r.v.. Thus

P(
Zk

k
≥ ε) = P(

Z2
k

k2
≥ ε2) ≤ E(Zk)

2

k2ε
= O(1/k2).

Hence, by the Borel-Cantelli lemma,
Z2
k

k2
can be larger than ǫ only a finite number of times (almost

surely). Hence, lim
t−→+∞

Bt

t
= 0 a.s.. �
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6.2 Irregularities of Brownian trajectories

Proposition 19 (Law of the iterated logarithm in +∞)

lim sup
t−→+∞

Bt√
2t log log t

a.s.
= 1

lim inf
t−→+∞

Bt√
2t log log t

a.s.
= −1

Proof .

lim sup
t−→+∞

Bt√
2t log log t

= lim sup
t−→+∞

tB̃1/t√
2t log log t

= lim sup
x−→0

1/xB̃x
√

(2/x) log log 1/x
= 1

according to law of the iterated logarithm at 0. �

Proposition 20 (Normalized Brownian excursion and Brownian motion) Let (Bt)t≥0 be a

Brownian motion. Let g = max{t | t < 1, Bt = 0} and d = inf{t | t > 1, Bt = 0}. Then :

• a.s. g < 1 and d > 1.

• The process a.s. defined by
∣

∣

Bg+(d−g)t√
d− g

∣

∣ is a normalized Brownian excursion.

Sketch of proof (due to Csaki & Mohanty) : Take a random walk W with i.i.d. increments ±1

with proba. 1/2, having length Kn with K > 1. On this random walk we are interested in

the part of the trajectory which straddles position n. Let gn := max{k ≤ n | Wk = 0}, and

dn = min{k ≥ n | Wk = 0}. This last moment exists with proba. pnK , depending on K, for pnK → 1

when K → +∞ (a computation is needed, here). Hence, for all ε > 0, there exists K such that

dn ≤ Kn with probability 1 − ε at least. Consider the set of trajectories for which dn ≤ Kn.

Consider now the part on [gn, dn]. By symmetry, conditionally on gn−dn = l, the absolute value of

the trajectory on the interval [gn, dn] is uniform among the paths of size l, positive strictly between

[gn + 1, dn − 1]. Moreover, it is clear also, that for any ε > 0, there exists K such that for n large

enough P(K/n ≤ dn−gn ≤ Kn) ≥ 1−ε (that is, in the discrete case, the portion of the path which

straddles n as length which goes to ∞, but linearly, in proba..

Take λ > 0. Conditioned on gn − dn = ⌊λn⌋, and after normalization, the (absolute value

of the) path between gn and dn converges to the Brownian excursion for any λ > 0. Since this

“conditioned” limit law (on dn − gn large, but not too much, and, on next, on dn − gn = λn) is the

same for all λ > 0, we are very close to the results: it remains to let K goes to +∞, and to show

that the limit of the part between gn and dn indeed converges to the part between d and g on the

Brownian motion. �

This proposition allows one to show that a lot of local properties of the Brownian motion are

still true for the normalized Brownian excursion. Some of these properties can be translated in

terms of the CRT (for example, since the local minima of the Brownian excursion are pairwise

different, the CRT is an unary binary tree).
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