Simple maps: distances
and convergence

Gwendal Collet (TU Wien)

joint work with Marie Albenque (LIX), Olivier
Bernardi (Brandeis University) and Eric Fusy (LIX)

JCB 2015
February 3rd 2015



Random simple maps

Simple planar map: rooted planar map
with no loops nor multiple edges = planar
graph embedded on the sphere, considered
up to continuous deformation.

S, = { Simple maps with n edges }
S, uniform random element of §,,



Random simple maps

Simple planar map: rooted planar map
with no loops nor multiple edges = planar
graph embedded on the sphere, considered
up to continuous deformation.

S, = { Simple maps with n edges }
uniform random element of §,,

-
||

(V(Sn),dgr) metric space for graph distance
Behaviour of 5,, when n goes to infinity?

Typical distance? Distance distribution? Scaling limit?

Remark: Study of outertriangular simple maps is enough
— Simple map has a.s. a giant outertriangular core
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(V(Sn),dyr) metric space for graph distance

Behaviour of 5,, when n goes to infinity?
Typical distance? Distance distribution? Scaling limit?

Well known:
— Chassaing—Schaeffer (2004):

typical distance in rooted plane quadrangulations

with n faces ~ n'/* when n — oo
+ distance profile converges towards ISE

— Le Gall (2007, 2012), Miermont (2012):
quadrangulations converge towards the Brownian map

when rescaled by n=1/4 }
extended to 2p-angulations and triangulations
— Abraham (2013): Bipartite maps ——
— Addario-Berry—Albenque (2013):
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— Bettinelli-Jacob—Miermont (2013): General maps
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typical distance in rooted plane quadrangulations

with n faces ~ n'/* when n — oo
+ distance profile converges towards ISE

— Le Gall (2007, 2012), Miermont (2012);
quadrangulations converge towards the

);
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when rescaled by n=1/4

extended to 2p-angulations and triangulations
— Abraham (2013): Bipartite maps ——
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Random simple maps

(V(Sn),dyr) metric space for graph distance

Behaviour of 5,, when n goes to infinity?
Typical distance? Distance distribution? Scaling limit?

Brownian map ) universal limit for "reasonable” classes of maps

Idea: General method in Le Gall (2013)

e Encode maps with some (labeled, blossoming...) trees
e Study the limit of these trees
e Interpret distance on the map as a function on the tree

e Technical conditions: tightness, invariance upon rerooting



The results
Ve € E(S,) : dg, (e) = length of the shortest path from e to eg
Profile : (fx)r>1, where fi := %ZeeEM Ods, (e)
Radius : (M) := max(d(e),e € Eur)
Theorem [Bernardi, C., Fusy 2014]:

fk/(Qn)1/4 ﬂ ISE positively shifted

r/(2n)t/4 19D, width of ISE (also holds for moments)

Theorem [Albenque, Bernardi, C., Fusy 2015]:

(V(Sn),( )1/4615 ) GA (M, D*) Brownian map
for the distance of Gromov—Hausdorff on metric spaces.

Remark: Same rescaling factor n'/4, typical of planar maps
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orientation of edges and outgoing buds s.t.:
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Orientation for outertriangular simple maps

3-orientation with buds=
orientation of edges and outgoing buds s.t.:

P
out(e) =1
out(e) =3

+ each face of degree has « buds

[Bernardi, Fusy '10]
These orientations characterize
outertriangular simple maps

Moreover, there is a unique one
without clockwise circuit and with

local ruIe:/;}



Rightmost paths (RMP) in simple maps

€ : . : :
’ S,, endowed with its 3-orientation

eo root, e € E(S,):
drps(e) = length of the rightmost
€ path from e to e

|[Addario-Berry, Albenque '13] (adapted to simple maps)
For e > 0, let A,,  be the event that there exists e € S}, such
that dras(e) > dg, (e) + en'/?

Then under the uniform law on S,,, for all e > 0: P(A,, ) — 0

= Rightmost paths are almost surely quasi-geodesic

= We can consider profile of dras, up to n'/? scaling
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Bijection with eulerian triangulations

First step: Inflate inner edges and vertices

SR S

Second step: Merge remaining edges

degree 2d + 3 .
Eulerian triangulation



Distance profile

Outertriangular simple map Eulerian triangulation
Remark: Preserves rightmost paths

= dg, ~ drps ~ distance in oriented forest



Distance profile
[Chassaing—Schaeffer 2004], [Le Gall 2006]:

The distance profile in the oriented forest of a rooted eulerian

triangulation, rescaled by (2n)‘1/4, converges to positively shifted
ISE.

very-well-labelled tree rooted
Eulerian triangulation with 2n faces on a vertex of minimum label

with vertices labelled by geodesic distance



Distance profile
[Chassaing—Schaeffer 2004], [Le Gall 2006]:

The distance profile in the oriented forest of a rooted eulerian

triangulation, rescaled by (2n)_1/4, converges to positively shifted
ISE.

labelled Galton-Walson tree
where the labels behave as a +—
random walk on the tree

very-well-labelled tree rooted
on a vertex of minimum label
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Encoding with trees: first bijection
|[Bousquet-Mélou—Schaeffer 2004| (specialization):

There Is a bijection between:

Rooted eulerian triangulations PN Balanced oriented binary trees
with 2n faces . with n — 1 inner edges

e Rooted binary tree with
oriented inner edges

e Apply the following rule:

S

e Closure a la Schaeffer
3 unmatched edges

root unmatched = balanced

e Unmatched edges closed
at oo to obtain a rooted
bipartite cubic map

— dual of eulerian triangulations



Encoding with trees: first bijection

There Is a bijection between:

Rooted outertriangular simple maps PN Balanced oriented binary trees
with n + 2 edges ~ with n — 1 inner edges

e Apply the following rule:
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Encoding with trees: first bijection

There Is a bijection between:

Rooted outertriangular simple maps PN Balanced oriented binary trees
with n 4+ 2 edges

with n — 1 inner edges

-

e Apply the following rule:
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Encoding with trees: first bijection

There Is a bijection between:
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e Counterclockwise closure:
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edge crossed

\

. e Add 3 outer vertices and
close remaining buds

e Connect outer vertices
to form the outer triangle




Encoding with trees: first bijection

There Is a bijection between:

Rooted outertriangular simple maps PN Balanced oriented binary trees
with n + 2 edges with n — 1 inner edges

e Apply the following rule:

-
-, Phe
4 .

@

e Counterclockwise closure:

one dashed
edge crossed

e Add 3 outer vertices and
close remaining buds

e Connect outer vertices
to form the outer triangle
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Encoding with trees: second bijection

Idea: Shorcut the bicubic maps with labels on corners

e label(root) =0

e Counterclockwise: leaf +1
ingoing edge —1
~ depth of the face in the bicubic map

e Unmatched leaves =
last O, 1 and 2 corners
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Encoding with trees: second bijection

Idea: Shorcut the bicubic maps with labels on corners

e label(root) =0

e Counterclockwise: leaf 41
ingoing edge —1
~ depth of the face in the bicubic map

e 2

0c A

2 Outertriangular simple map

9 label = length of RMP
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From oriented binary trees to labeled trees

Labeled trees = Galton-Watson trees with random displacements on edges

[Marckert '08] Converges to Brownian snake when labels rescaled by (271)1/4



Study of the limit of labeled trees

Contour and label processes of a labeled tree

ON0 (2
o O (D
@ @ ©
oWs0 AR /\}\/\
O
ch() Z'()

T
[Marckert '08]

For a sequence in Sj,, and the associated labeled trees (17,),>0:

(8n)~2Col[nt]), @n) " Zu([0)) s (et Ze)ose<

Brownian snake

+ Brownian motion
conditioned on the tree

e;: Brownian excursion  [Aldous| Brownian tree
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Interpretation of the distances

Zvujv Zvuﬂ} — H-lin{ZS7 u S S S U}

Z=2 5 Zuw-1
2 O 2

U



Interpretation of the distances

Blue path of length: Zy, + Zy — 272y + 2
Since (n~1/%Z,,) converges, (dn)n>0 tight
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Interpretation of the distances

Blue path of length: T+ Zyy — QZVU,U + 2
Since (n~1/%Z,,) converges, (dn)n>0 tight

dg, < T+ Zy — QZUU + 2 — ) D™ distance in the Brownian map
D°(s,t) = Zs+ Zy — Qmax{ mf tZu,tégés Zn}

D*(a,b) = mf{Z Do(az, azH) k>1l,a=ayq,...,a; = b}



Thank you!

(©Nicolas Curien



