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Simple planar map: rooted planar map
with no loops nor multiple edges = planar
graph embedded on the sphere, considered
up to continuous deformation.

Sn = { Simple maps with n edges }
Sn = uniform random element of Sn

(V (Sn), dgr) metric space for graph distance
Behaviour of Sn when n goes to infinity?
Typical distance? Distance distribution? Scaling limit?

Remark: Study of outertriangular simple maps is enough
→ Simple map has a.s. a giant outertriangular core
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Behaviour of Sn when n goes to infinity?
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Well known:
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Random simple maps

(V (Sn), dgr) metric space for graph distance
Behaviour of Sn when n goes to infinity?
Typical distance? Distance distribution? Scaling limit?

Brownian map universal limit for ”reasonable” classes of maps

Idea: General method in Le Gall (2013)

• Encode maps with some (labeled, blossoming...) trees

• Study the limit of these trees

• Interpret distance on the map as a function on the tree

• Technical conditions: tightness, invariance upon rerooting



The results

Profile : (fk)k≥1, where fk := 1
n

∑
e∈EM

δdSn (e)

Radius : r(M) := max(d(e), e ∈ EM )

∀e ∈ E(Sn) : dSn
(e) = length of the shortest path from e to e0

Theorem [Bernardi, C., Fusy 2014]:

fk/(2n)1/4
(d)−→ ISE positively shifted

r/(2n)1/4
(d)−→ width of ISE (also holds for moments)

Theorem [Albenque, Bernardi, C., Fusy 2015]:(
V (Sn),

(
1
2n

)1/4
dSn

)
(d)−→ (M,D?) Brownian map

for the distance of Gromov–Hausdorff on metric spaces.

Remark: Same rescaling factor n1/4, typical of planar maps
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Orientation for outertriangular simple maps

3-orientation with buds=
orientation of edges and outgoing buds s.t.:

out( ) = 1
out( ) = 3

+ each face of degree d+ 3 has d buds

[Bernardi, Fusy ’10]

These orientations characterize
outertriangular simple maps

Moreover, there is a unique one
without clockwise circuit and with
local rule:



Rightmost paths (RMP) in simple maps

e0

e

e0 root, e ∈ E(Sn):

dRM (e) = length of the rightmost
path from e to e0

[Addario-Berry, Albenque ’13] (adapted to simple maps)

Sn endowed with its 3-orientation

For ε > 0, let An,ε be the event that there exists e ∈ Sn such
that dRM (e) ≥ dSn

(e) + εn1/4

Then under the uniform law on Sn, for all ε > 0: P(An,ε)→ 0

⇒ Rightmost paths are almost surely quasi-geodesic

⇒ We can consider profile of dRM , up to n1/4 scaling
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Bijection with eulerian triangulations

First step: Inflate inner edges and vertices

↔ ↔

Second step: Merge remaining edges

degree 2d+ 3

Eulerian triangulation



Distance profile

Eulerian triangulationOutertriangular simple map

Remark: Preserves rightmost paths

⇒ dSn
≈ dRM ≈ distance in oriented forest



Distance profile

[Chassaing–Schaeffer 2004], [Le Gall 2006]:

The distance profile in the oriented forest of a rooted eulerian
triangulation, rescaled by (2n)−1/4, converges to positively shifted
ISE.
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Eulerian triangulation with 2n faces
with vertices labelled by geodesic distance
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on a vertex of minimum label
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Distance profile

[Chassaing–Schaeffer 2004], [Le Gall 2006]:

The distance profile in the oriented forest of a rooted eulerian
triangulation, rescaled by (2n)−1/4, converges to positively shifted
ISE.
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very-well-labelled tree rooted
on a vertex of minimum label

←→

2

1

labelled Galton-Walson tree
where the labels behave as a
random walk on the tree



Encoding with trees: first bijection

[Bousquet-Mélou–Schaeffer 2004] (specialization):

There is a bijection between:

Rooted eulerian triangulations

with 2n faces
↔ Balanced oriented binary trees

with n− 1 inner edges
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Encoding with trees: first bijection

[Bousquet-Mélou–Schaeffer 2004] (specialization):

There is a bijection between:

↔ Balanced oriented binary trees

with n− 1 inner edges

• Rooted binary tree with
oriented inner edges

• Apply the following rule:

• Closure à la Schaeffer
3 unmatched edges

root unmatched = balanced

• Unmatched edges closed
at ∞ to obtain a rooted
bipartite cubic map

→ dual of eulerian triangulations

Rooted eulerian triangulations

with 2n faces
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Idea: Shorcut the bicubic maps with labels on corners
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Encoding with trees: second bijection

Idea: Shorcut the bicubic maps with labels on corners

• label(root) = 0

• Counterclockwise: leaf +1
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last 0, 1 and 2 corners
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Encoding with trees: second bijection

Idea: Shorcut the bicubic maps with labels on corners

• label(root) = 0

• Counterclockwise: leaf +1
ingoing edge −1
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≈ depth of the face in the bicubic map

1 3

2

1

0

Outertriangular simple map

label = length of RMP



From oriented binary trees to labeled trees
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From oriented binary trees to labeled trees
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Labeled trees = Galton-Watson trees with random displacements on edges

[Marckert ’08] Converges to Brownian snake when labels rescaled by (2n)1/4



Study of the limit of labeled trees
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T CT (.) Z̃T (.)

Contour and label processes of a labeled tree

[Marckert ’08]

For a sequence in Sn, and the associated labeled trees (Tn)n≥0:(8n)−1/2Cn(bntc), (2n)−1/4Z̃n(bntc)

0≤t≤1

(d)−→
n→∞ (et, Zt)0≤t≤1

Brownian snake

et: Brownian excursion [Aldous] Brownian tree

+ Brownian motion
conditioned on the tree
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Žu,v Žu,v = min{Zs, u ≤ s ≤ v}



Interpretation of the distances

u v
Zu Zv

Zu–1

Zu–2
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Interpretation of the distances

u v
Z̃u Z̃v

Z̃u–1

Z̃u–2

Žu,v Žu,v = min{Z̃s, u ≤ s ≤ v}

Žu,v–1

Blue path of length: Z̃u + Z̃v − 2Žu,v + 2

Since (n−1/4Z̃n) converges, (dn)n≥0 tight

dSn ≤ Z̃u + Z̃v − 2Žu,v + 2
(d)−→ D? distance in the Brownian map

D◦(s, t) = Zs + Zt − 2 max{ inf
s≤u≤t

Zu, inf
t≤u≤s

Zv}

D?(a, b) = inf
Σk−1

i=0 D
◦(ai, ai+1) : k ≥ 1, a = a1, . . . , ak = b





Thank you!

c©Nicolas Curien


