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L. iff it has only one non zero element in each row
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A Tesler matrix is called **permutational ”
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A Tesler matrix is called **permutational ”
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A Tesler matrix is called **permutational ”

. iff it has only one non zero element in each row
Definition

We call the “support” of a permutational Tesler matrix the set of positions of its non zero entries

Proposition
For any given choice of corner weights uy,usy, ..., Uy,

there are n! Permutational Tesler matrices
Proof

Given a triangular sequence 1 < i3 < s (for 1 < s < n)
(1) place u; in row 1 and column ;.

(2) having filled rows 1,2...,s — 1, place in row s and column ¢,
us plus the sum of the elements in column s

1 ® 1 1 1
. 5 2 2| |2
e 32 1
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Permutational Tesler matrices

Every Tesler matrix with positive corner weights has at least one positive entry in each row
A Tesler matrix is called **permutational ”

. iff it has only one non zero element in each row
Definition

We call the “support” of a permutational Tesler matrix the set of positions of its non zero entries

Proposition
For any given choice of corner weights uy,usy, ..., Uy,

there are n! Permutational Tesler matrices
Proof
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Every Tesler matrix with positive corner weights has at least one positive entry in each row
A Tesler matrix is called **permutational ”

. iff it has only one non zero element in each row
Definition

We call the “support” of a permutational Tesler matrix the set of positions of its non zero entries

Proposition
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Proof
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Permutational Tesler matrices

Every Tesler matrix with positive corner weights has at least one positive entry in each row
A Tesler matrix is called **permutational ”

. iff it has only one non zero element in each row
Definition

We call the “support” of a permutational Tesler matrix the set of positions of its non zero entries

Proposition
For any given choice of corner weights uy,usy, ..., Uy,

there are n! Permutational Tesler matrices
Proof
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Every Tesler matrix with positive corner weights has at least one positive entry in each row
A Tesler matrix is called **permutational ”

. iff it has only one non zero element in each row
Definition

We call the “support” of a permutational Tesler matrix the set of positions of its non zero entries

Proposition
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. iff it has only one non zero element in each row
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We call the “support” of a permutational Tesler matrix the set of positions of its non zero entries
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For any given choice of corner weights uy,usy, ..., Uy,

there are n! Permutational Tesler matrices
Proof
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

0
00

00

"l _._"-’

0

e ' - S L
Yo T Na

[0 0
0 1,

00 p

M

0

T Ma
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00 y,
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iy A Ky

0 b 0
0 7 —?~_r'2 0
0 0 ]
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

[ 0 0
00 »+y
L T

3

[0 0
0 1,

00 p

map (evamat,yMA3);

M

|
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T Va
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00 y,
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v
0y +3, 0
0 0 ]

(3 0 0
00 y
0 0y, +

[ |

0 p, 0

0 0
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

0y, 0 [ oo » ][00 [ [ % 8] [noe & ] [ne8]
00 »+y 0w, 0 00 s 0y, +y, 0 00 y 0 » 0
L T T 00+ 00y +y+xn - 0 0 g 00y,+y | 0 0 .

map (evamat,yMA3) ;

by (_I'I -%—_1'2) (_l'l + +.I'3),_l'|.l'2 (-"l —%-'r'3)._.|'l.r2 (-"I + —%—_1'3),_r'| (-"l -%-_1'3)_1'3._.1'1_1'2 (_r__, '?‘_1'3),_1'[_!'2.!'3]!
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

[0 y, 0 ] [o0 5 ][00 » I i ae @ (50 8 ] (5, 0 0]
00 »+y 0w, 0 00 Vs 0y +3, 0 00 y, 0 0
00y +y+y 00+ 00y +y+ - 0 0 ) 0 0y, + | 0 0 1y .

map(evamat,yMA3);.
| (_I'I -%—_1'2) (-"I + -%-_1'3),_1"_1'_, (.1'1 —%-'1'3)._.1'1.1'2 (-"I + —é-.l'_,‘).__r'l (_1'] -%-_1'3)_1'3._.1'1_1'2 (_r__, +_l’3),_l'l_l'2.l'3]l

factor(convert (%, + ));
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factor(convert (%, + ));
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

[0 y, 0 ] [o0 5 ][00 » I i ae @ (50 8 ] (5, 0 0]
00 »+y 0w, 0 00 Vs 0y +3, 0 00 y, 0 0
00y +y+y 00+ 00y +y+ 0 0 ) 0 0y, + | 0 0 1y .

map (evamat,yMA3) ;
»” (-"I +-"2) (-"I + +_l'3).,_l'|_"3 (-"l —%-.['3),_'1".!’2 (-"I + —é-.l'_,‘).__r'l (_1'] -%-_1'3)_1'3,.!'1_!'3 (_l'__, +_l’3),_"|,l'3,l'3]|

factor(convert (%, + ));

Theorem
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

RiE 0 ] foo » ] |00 2 I e g W (50 0 ] (5, 0 0]
00 »+y 0 1, 0 00 s 0y, +y, 0 00 y 0 » 0
00y +y+ | 00 y+ i1 00y +y+xn | 0 0 ) 0 0y, + | 0 0 1y -

map (evamat,yMA3);

by (_t'l -%-_1'2) (_l'l + -?-.I'S),.l'l.l'_, (-"l —+-'r'3)._.|'|.|'2 (-"I + —%—_1'3),_1'| (-"l —%—_1'3).1'3,.1'1_1'_, (.1'2 -%—_13)._1'1_1'3)'3]!

factor(convert (%, + ));

Theorem (D. Armstrong-B. Sagan)
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

RiE 0 ] foo » ] |00 2 I e g W (50 0 ] (5, 0 0]
00 »+y 0w, 0 00 s 0y +3, 0 1 A8 0 » 0
00y +y+ | 00 y+ i1 00y, +3t | 0 0 ) 0 0y, + | 0 0 1y ‘

map (evamat,yMA3) ;

by (_t'l -+-_r_,) (-"I + --.1'3),.1'“'_, (-"l -*-.1'3),.1'1.1’3 (-"l + ), —%—_1'3),_1'| (."l —%—_1'3))'3._.1']_1'2 (.1'2 -?-_l}\)..l'l_l'z_l'}]l

factor(convert (%, + ));

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y1,¥2,...,¥n) IS
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

[ 0 0 »
00 »+y 0w, 0
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map (evamat,yMA3) ;
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map (evamat,yMA3) ;
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00 y,

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y1,y2

where here
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

RiE 0 ] foo » ] |00 2 I e g W (50 0 ] (5, 0 0]
00 »+y 0w, 0 00 Vs 0y, +5, 0 00 0 3, 0
L T T 00+ 00y +y+ 0 0 g 0 0y +, 0 0

map (evamat, yMA3) ;

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y1,¥2,...,¥n) IS

yi(yi1+ny2)(y1 +y2+(n—-1)ysz)---(y1 +y2+ -+ ¥n-1+ 2yn)

where here

w(A) = H aj
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Permutational Tessler matrices

Tesler matrices with hook weights Y1, Y2, Y3

[ 0 0

00 »+y
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00 p

map (evamat,yMA3);
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M

[0 0
00

00 y,

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y1,y2
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v
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0 0 ]
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The tall and the target of an entry of a permutation

target = smallest larger element to the right

Target(9) = 10

4 2 7 8 6 912 3 1 1011 5
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Target(9) = 10

4 2 7 8 6 912 3 1 1011 5
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taill = longest contiguous segment to the left
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target = smallest larger element to the right

Target(9) = 10

4 2 7 8 6 912 3 1 1011 5
example
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The tall and the target of an entry of a permutation

target = smallest larger element to the right

Target(9) = 10

4 2 7 8 6 912 3 1 1011 5
example

taill = longest contiguous segment to the left

Tail(9)={9,8,7,6}
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The tall and the target of an entry of a permutation

target = smallest larger element to the right

Target(9) = 10

4 2 7 8 6 912 3 1 1011 5
example

taill = longest contiguous segment to the left

Tail(9)={9,8,7,6}
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g-Counting Permutational Tesler matrices
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For any o € S,, set

Pl) = Y gD
filling(pf)=a
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any « € S,, set

P)) = Y g
filling(pf)=a

For each n there is a bijection o +» A(«)
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any « € S,, set

Pl) = Y gD
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any « € S,, set

Pl) = Y gD
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that

:H [U«i,j]q — Pa(Q)
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any « € S,, set

P,(q) = ), gD
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that

; H [a-a;,j]q — Pa(Q)

a;, >0
Proof :
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any « € S,, set

P,(q) = ), gD
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
H @il = P,(q)
a;, >0
Proof :

Let a be a filling permutation, to construct A(e) € 1I[1,1,...,1] we simply set
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any « € S,, set

P,(q) = ), gD
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
H @il = P,(q)
a;, >0
Proof :

Let a be a filling permutation, to construct A(e) € 1I[1,1,...,1] we simply set

Qs j — #tail(as)
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any « € S,, set

P)) = Y g
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
H @il = P,(q)
a;, >0
Proof :

Let a be a filling permutation, to construct A(e) € 1I[1,1,...,1] we simply set

Qg j — #tail(as)
if the target of a; is «;.
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any « € S,, set

P)) = Y g
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
H @il = P.lq)
a;, >0
Proof :

Let v be a filling permutation, to construct A(a) € II[1,1,...,1] we simply set

Qg j — #tail(as)
if the target of a; is «;.
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g-Counting Permutational Tesler matrices

Theorem @.Levande)

For any o € S,, set

P)) = Y g
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
H @il = P.lq)
a;, >0
Proof :

Let a be a filling permutation, to construct A(a) € II[1,1,...,1] we simply set

Qg j — #tail(as)
if the target of a; is «;.

3614725] — >
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g-Counting Permutational Tesler matrices

Theorem (P.Levande)

For any o € S,, set

P = Y gl
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
H @il = P.lq)
a;, ;>0
Proof :

Let a be a filling permutation, to construct A(a) € II[1,1,...,1] we simply set

Qg j = #tail(as)
if the target of a; is «;.
1 2 3 4 5 0.

2

3614725] — > 4
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g-Counting Permutational Tesler matrices

Theorem (P.Levande)

For any o € S,, set

P = Y gl
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
H @il = P.lq)
a;, ;>0
Proof :

Let a be a filling permutation, to construct A(a) € II[1,1,...,1] we simply set

Qg j = #tail(as)
if the target of a; is «;.
1 2 3 4 5 0.
1 1
2
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Theorem (P.Levande)

For any o € S,, set

Pl = Y gl
filling(pf)=a
For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
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For any o € S,, set

P = Y gl
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
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Theorem (P.Levande)

For any o € S,, set

P = Y gl
filling(pf)=a

For each n there is a bijection o« <+ A(c) between S, and I1I[1,1,...,1] such that
H @il = P.lq)
a;, ;>0
Proof :

Let a be a filling permutation, to construct A(a) € II[1,1,...,1] we simply set

Qg j = #tail(as)
if the target of a; is «;.
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g-Counting Permutational Tesler matrices

Theorem (P.Levande)
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