THE SPACE OF DIAGONAL HARMONICS

We will work with polynomials

We will work with polynomials

$$P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$$

We will work with polynomials

$$P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$$

and set

We will work with polynomials

$$P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$$

and set

$$\stackrel{\mathrm{t}}{DH}_n[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^n \partial^h_{x_i} \partial^k_{y_i} P(x;y) = 0, \ \forall \quad h+k > 0 \right\}$$

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_n[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^n \partial_{x_i}^h \partial_{y_i}^k P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$\stackrel{\text{t}}{DH}_n[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^n \partial_{x_i}^h \partial_{y_i}^k P(x;y) = 0, \ \forall \quad h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_n[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^n \partial_{x_i}^h \partial_{y_i}^k P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le \binom{n}{2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_n[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^n \partial_{x_i}^h \partial_{y_i}^k P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le \binom{n}{2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_n[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^n \partial_{x_i}^h \partial_{y_i}^k P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le {n \choose 2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

that are bi-homogeneous of degree h in x_1, \ldots, x_n and degree k in y_1, \ldots, y_n

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_{n}[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^{n} \partial_{x_{i}}^{h} \partial_{y_{i}}^{k} P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le {n \choose 2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

that are bi-homogeneous of degree h in x_1, \ldots, x_n and degree k in y_1, \ldots, y_n The Hilbert series of $DH_n[X;Y]$

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_{n}[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^{n} \partial_{x_{i}}^{h} \partial_{y_{i}}^{k} P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le {n \choose 2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

that are bi-homogeneous of degree h in x_1, \ldots, x_n and degree k in y_1, \ldots, y_n The Hilbert series of $DH_n[X;Y]$

$$H_{DH_n}(t,q) \;=\; \sum_{0\leq h+k\leq {n \choose 2}} t^h q^k \dim \mathcal{H}_{h,k}ig(DH_n[X;Y]ig)$$

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_{n}[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^{n} \partial_{x_{i}}^{h} \partial_{y_{i}}^{k} P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le {n \choose 2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

that are bi-homogeneous of degree h in x_1, \ldots, x_n and degree k in y_1, \ldots, y_n The Hilbert series of $DH_n[X;Y]$

$$H_{DH_n}(t,q) = \sum_{0 \le h+k \le {n \choose 2}} t^h q^k \dim \mathcal{H}_{h,k}(DH_n[X;Y])$$

Theorem (Conj. 1991)

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_n[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^n \partial_{x_i}^h \partial_{y_i}^k P(x;y) = 0, \ \forall \quad h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le {n \choose 2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

that are bi-homogeneous of degree h in x_1, \ldots, x_n and degree k in y_1, \ldots, y_n The Hilbert series of $DH_n[X;Y]$

$$H_{DH_n}(t,q) = \sum_{0 \le h+k \le {n \choose 2}} t^h q^k \dim \mathcal{H}_{h,k} ig(DH_n[X;Y] ig)$$

Theorem (Conj. 1991) (Proved in 2000 by M. Haiman)

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_{n}[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^{n} \partial_{x_{i}}^{h} \partial_{y_{i}}^{k} P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le {n \choose 2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

that are bi-homogeneous of degree h in x_1, \ldots, x_n and degree k in y_1, \ldots, y_n The Hilbert series of $DH_n[X;Y]$

$$H_{DH_n}(t,q) = \sum_{0 \le h+k \le {n \choose 2}} t^h q^k \dim \mathcal{H}_{h,k}(DH_n[X;Y])$$

Theorem (Conj. 1991) (Proved in 2000 by M. Haiman)

$$q^{\binom{n}{2}}H_{DH_n}(q,1/q) = (1+q+q^2+\cdots+q^n)^{n-1} = [n+1]_q^{n-1}$$

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_n[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^n \partial_{x_i}^h \partial_{y_i}^k P(x;y) = 0, \ \forall \quad h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le {n \choose 2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

that are bi-homogeneous of degree h in x_1, \ldots, x_n and degree k in y_1, \ldots, y_n The Hilbert series of $DH_n[X;Y]$

$$H_{DH_n}(t,q) = \sum_{0 \le h+k \le {n \choose 2}} t^h q^k \dim \mathcal{H}_{h,k} ig(DH_n[X;Y] ig)$$

Theorem (Conj. 1991) (Proved in 2000 by M. Haiman)

A q-enumerator of spanning trees of K_{n+1}

$$q^{\binom{n}{2}}H_{DH_n}(q,1/q) = (1+q+q^2+\cdots+q^n)^{n-1} = [n+1]_q^{n-1}$$

We will work with polynomials

 $P(x;y) = P(x_1,\ldots,x_n;y_1,\ldots,y_n) \in \mathbb{Q}[x_1,\ldots,x_n;y_1,\ldots,y_n] = \mathbb{Q}[x;y]$

and set

$$DH_{n}[X;Y] = \left\{ P(x;y) \in \mathbb{Q}[x;y] : \sum_{i=1}^{n} \partial_{x_{i}}^{h} \partial_{y_{i}}^{k} P(x;y) = 0, \forall h+k > 0 \right\}$$

we call the elements of $D_n[X;Y]$ "Diagonal Harmonic".

Note, we have

$$DH_n[X;Y] = \bigoplus_{0 \le h+k \le {n \choose 2}} \mathcal{H}_{h,k}(DH_n[X;Y])$$

 $\mathcal{H}_{h,k}(DH_n[X;Y])$ denotes the subspace of Diagonal Harmonics

that are bi-homogeneous of degree h in x_1, \ldots, x_n and degree k in y_1, \ldots, y_n The Hilbert series of $DH_n[X;Y]$

$$H_{DH_n}(t,q) = \sum_{0 \le h+k \le {n \choose 2}} t^h q^k \dim \mathcal{H}_{h,k} ig(DH_n[X;Y] ig)$$

Theorem (Conj. 1991) (Proved in 2000 by M. Haiman)

$$q^{\binom{n}{2}}H_{DH_n}(q,1/q) = (1+q+q^2+\dots+q^n)^{n-1} = [n+1]_q^{n-1}$$

A q-enumerator of spanning trees of K_{n+}

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial_{x_1}^a + y_2 \partial_{x_2}^a + \dots + y_n \partial_{x_n}^a$$

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)\Delta_n(X)\right\}_{1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}$$

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)\Delta_n(X)\right\}_{1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}$$

For $P(x) \in \mathbb{Q}[x_1, x_2, \dots, x_n]$ set

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)\Delta_n(X)\right\}_{1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}$$

For
$$P(x) \in \mathbb{Q}[x_1, x_2, \dots, x_n]$$
 set
 $P(\partial_x) = P(\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_n})$

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)\Delta_n(X)\right\}_{1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}$$

For
$$P(x) \in \mathbb{Q}[x_1, x_2, \dots, x_n]$$
 set
 $P(\partial_x) = P(\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_n})$

The space $DH_n[X;Y]$ is spanned by the polynomials

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)\Delta_n(X)\right\}_{1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}$$

For
$$P(x) \in \mathbb{Q}[x_1, x_2, \dots, x_n]$$
 set
 $P(\partial_x) = P(\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_n})$

The space $DH_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)P(\partial_x)\Delta_n(X)\right\}_{\substack{P(x)\in\mathbb{Q}[x]\\1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}}$$

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)\Delta_n(X)\right\}_{1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}$$

For
$$P(x) \in \mathbb{Q}[x_1, x_2, \dots, x_n]$$
 set
 $P(\partial_x) = P(\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_n})$

The space $DH_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)P(\partial_x)\Delta_n(X)\right\}_{\substack{P(x)\in\mathbb{Q}[x]\\1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}}$$

OPEN PROBLEM:

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)\Delta_n(X)\right\}_{1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}$$

For
$$P(x) \in \mathbb{Q}[x_1, x_2, \dots, x_n]$$
 set
 $P(\partial_x) = P(\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_n})$

The space $DH_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)P(\partial_x)\Delta_n(X)\right\}_{\substack{P(x)\in\mathbb{Q}[x]\\1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}}$$

OPEN PROBLEM:

Find explicit Bases

$$\Delta_n(X) ~=~ \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

For a > 0 set

$$R_a(\partial_x) = y_1 \partial^a_{x_1} + y_2 \partial^a_{x_2} + \dots + y_n \partial^a_{x_n}$$

The space $DHA_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)\Delta_n(X)\right\}_{1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}$$

For
$$P(x) \in \mathbb{Q}[x_1, x_2, \dots, x_n]$$
 set
 $P(\partial_x) = P(\partial_{x_1}, \partial_{x_2}, \dots, \partial_{x_n})$

The space $DH_n[X;Y]$ is spanned by the polynomials

$$\left\{R_{a_1}(\partial_x)R_{a_2}(\partial_x)\cdots R_{a_k}(\partial_x)P(\partial_x)\Delta_n(X)\right\}_{\substack{P(x)\in\mathbb{Q}[x]\\1\leq a_1\leq a_2\leq\cdots\leq a_k\leq n-1}}$$

OPEN PROBLEM:

Find explicit Bases

SL₂ ACTION ON DIAGONAL HARMONICS

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}}$$

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}}$$

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{x}_i} \qquad \mathbf{F} = \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{y}_i} \qquad \mathbf{H} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{y}_i} - \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{x}_i}$$

with

The following operators act on Diagonal Harmonics

$$\mathbf{E} \ = \ \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{x}_i} \qquad \mathbf{F} \ = \ \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{y}_i} \qquad \mathbf{H} \ = \ \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{y}_i} - \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{x}_i}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{x}_i} \qquad \mathbf{F} = \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{y}_i} \qquad \mathbf{H} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{y}_i} - \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{x}_i}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H} \qquad [\mathbf{H},\mathbf{E}] = \mathbf{2E}$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{x}_i} \qquad \mathbf{F} = \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{y}_i} \qquad \mathbf{H} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{y}_i} - \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{x}_i}$$

with

$$[\mathbf{E},\mathbf{F}] = \mathbf{H}$$
 $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{x}_i} \qquad \mathbf{F} = \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{y}_i} \qquad \mathbf{H} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{y}_i} - \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{x}_i}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

It follows from this that if

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

It follows from this that if $\mathbf{P} \in \mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH}_{\mathbf{n}}]$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{x}_i} \qquad \mathbf{F} = \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{y}_i} \qquad \mathbf{H} = \sum_{i=1}^n \mathbf{y}_i \partial_{\mathbf{y}_i} - \sum_{i=1}^n \mathbf{x}_i \partial_{\mathbf{x}_i}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

It follows from this that if $\mathbf{P} \in \mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH}_{\mathbf{n}}]$ and

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

It follows from this that if $\mathbf{P} \in \mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH}_{\mathbf{n}}]$ and $\mathbf{FP} = \mathbf{0}$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

It follows from this that if $\mathbf{P} \in \mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH}_{\mathbf{n}}]$ and $\mathbf{FP} = \mathbf{0}$

then P generates an sl₂-string

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

It follows from this that if $\mathbf{P} \in \mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH}_{\mathbf{n}}]$ and $\mathbf{FP} = \mathbf{0}$

then P generates an sl₂-string

 $\mathbf{P} {\rightarrow} \mathbf{E} \mathbf{P} {\rightarrow} \mathbf{E}^2 \mathbf{P} {\rightarrow} {\cdots} {\rightarrow} \mathbf{E}^{\mathbf{h} - \mathbf{k}} \mathbf{P}$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

 $\mbox{ It follows from this that if } \quad P \in \mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH_n}] \qquad \mbox{and} \quad \mathbf{FP} = \mathbf{0} \\$

then P generates an sl₂-string

 $\mathbf{P} {\rightarrow} \mathbf{E} \mathbf{P} {\rightarrow} \mathbf{E}^2 \mathbf{P} {\rightarrow} {\cdots} {\rightarrow} \mathbf{E}^{\mathbf{h} - \mathbf{k}} \mathbf{P}$

with

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

 $\mbox{ It follows from this that if } \quad P \in \mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH_n}] \qquad \mbox{ and } \quad \mathbf{FP} = \mathbf{0} \\$

then P generates an sl₂-string

 $\mathbf{P} {\rightarrow} \mathbf{E} \mathbf{P} {\rightarrow} \mathbf{E}^2 \mathbf{P} {\rightarrow} {\cdots} {\rightarrow} \mathbf{E}^{\mathbf{h} - \mathbf{k}} \mathbf{P}$

with $\mathbf{E^iP} \in \mathcal{H}_{\mathbf{h}-\mathbf{i},\mathbf{k}+\mathbf{i}}[\mathbf{DH_n}]$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

It follows from this that if $\mathbf{P}\in\mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH}_{\mathbf{n}}]$ and $\mathbf{FP}=\mathbf{0}$

then P generates an sl₂-string

 $\mathbf{P} {\rightarrow} \mathbf{E} \mathbf{P} {\rightarrow} \mathbf{E}^2 \mathbf{P} {\rightarrow} {\cdots} {\rightarrow} \mathbf{E}^{\mathbf{h} - \mathbf{k}} \mathbf{P}$

with $\mathbf{E}^{\mathbf{i}}\mathbf{P}\in\mathcal{H}_{\mathbf{h}-\mathbf{i},\mathbf{k}+\mathbf{i}}[\mathbf{D}\mathbf{H}_{\mathbf{n}}]$ and

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

 $[\mathbf{E},\mathbf{F}] = \mathbf{H}$ $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

It follows from this that if $\mathbf{P}\in\mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH}_{\mathbf{n}}]$ and $\mathbf{FP}=\mathbf{0}$

then P generates an sl₂-string

$$P \rightarrow EP \rightarrow E^2P \rightarrow \cdots \rightarrow E^{h-k}P$$

with $\mathbf{E}^{\mathbf{i}}\mathbf{P}\in\mathcal{H}_{\mathbf{h}-\mathbf{i},\mathbf{k}+\mathbf{i}}[\mathbf{D}\mathbf{H}_{\mathbf{n}}]$ and $\mathbf{E}^{\mathbf{h}-\mathbf{k}+\mathbf{1}}\mathbf{P}=\mathbf{0}$

The following operators act on Diagonal Harmonics

$$\mathbf{E} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{x}_{i}} \qquad \mathbf{F} = \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{y}_{i}} \qquad \mathbf{H} = \sum_{i=1}^{n} \mathbf{y}_{i} \partial_{\mathbf{y}_{i}} - \sum_{i=1}^{n} \mathbf{x}_{i} \partial_{\mathbf{x}_{i}}$$

with

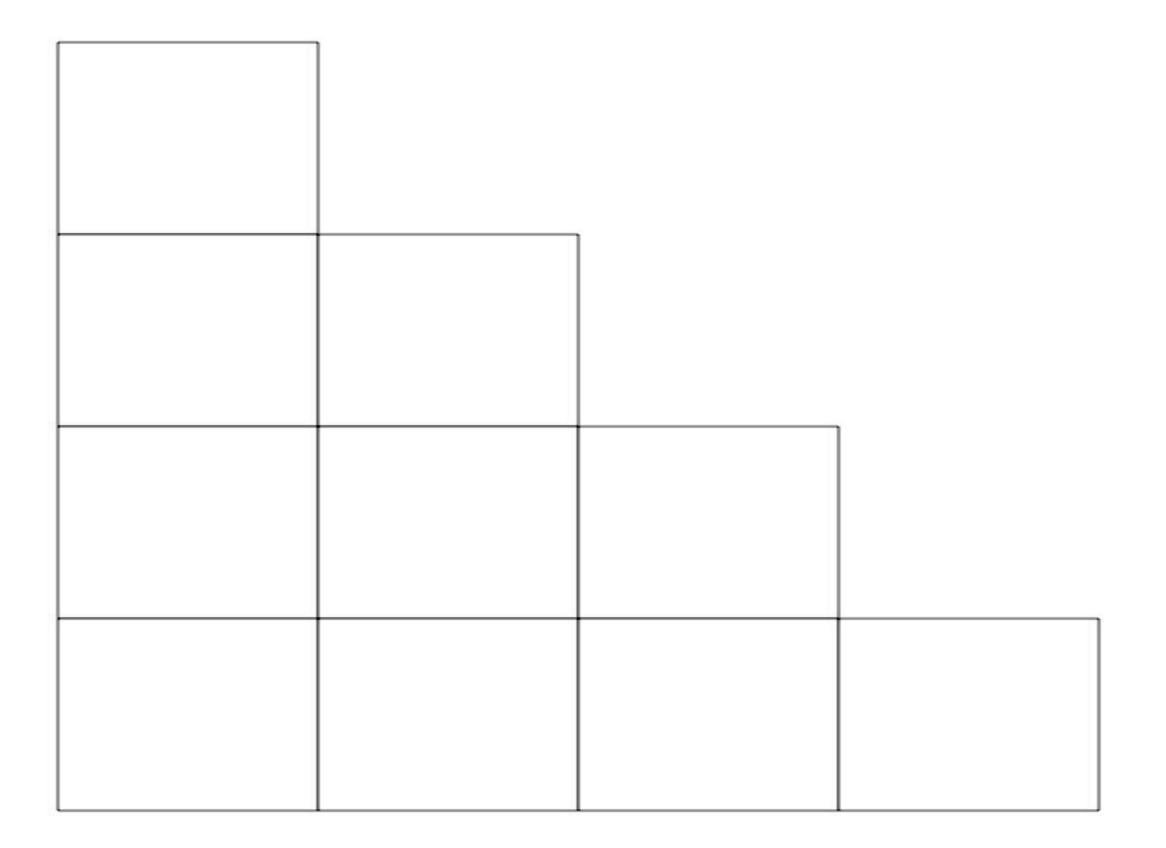
$$[\mathbf{E},\mathbf{F}] = \mathbf{H}$$
 $[\mathbf{H},\mathbf{E}] = 2\mathbf{E}$ $[\mathbf{H},\mathbf{F}] = -2\mathbf{F}$

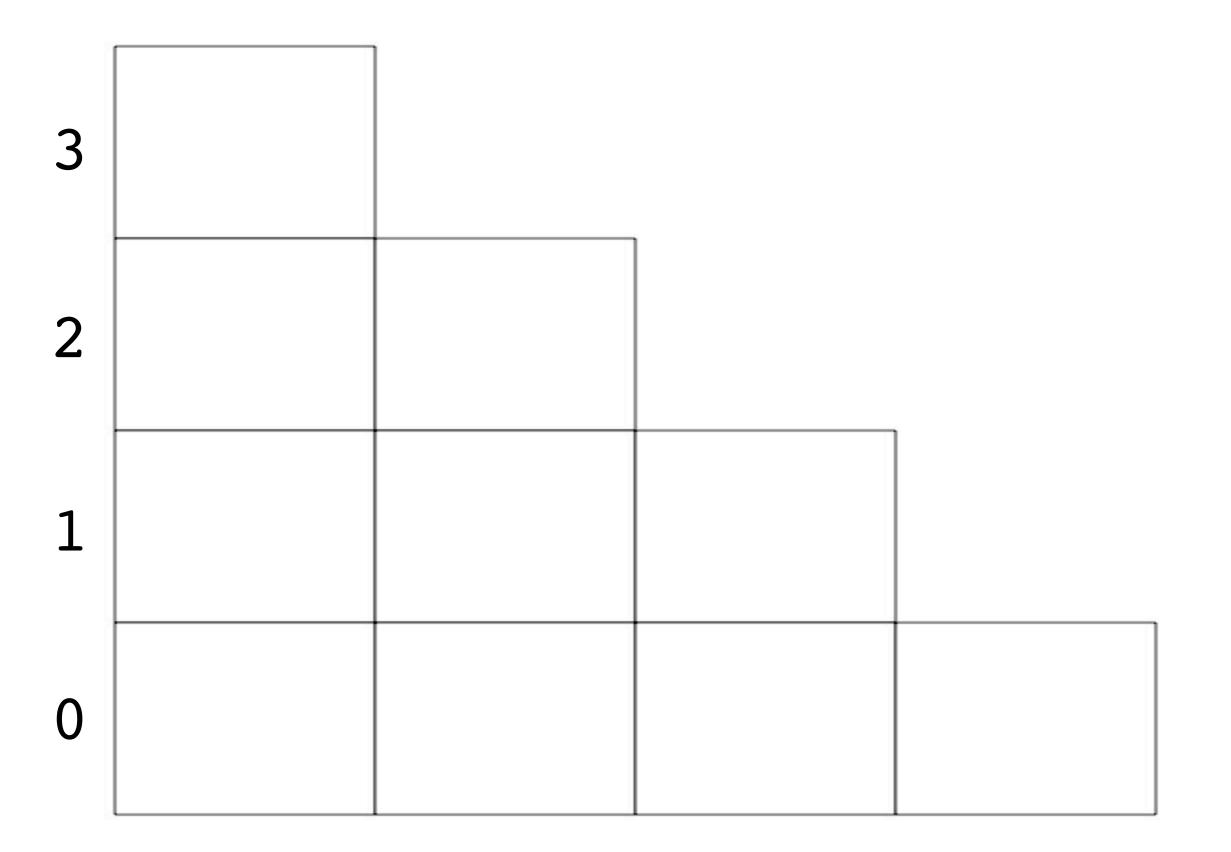
It follows from this that if $\mathbf{P} \in \mathcal{H}_{\mathbf{h},\mathbf{k}}[\mathbf{DH}_{\mathbf{n}}]$ and $\mathbf{FP} = \mathbf{0}$

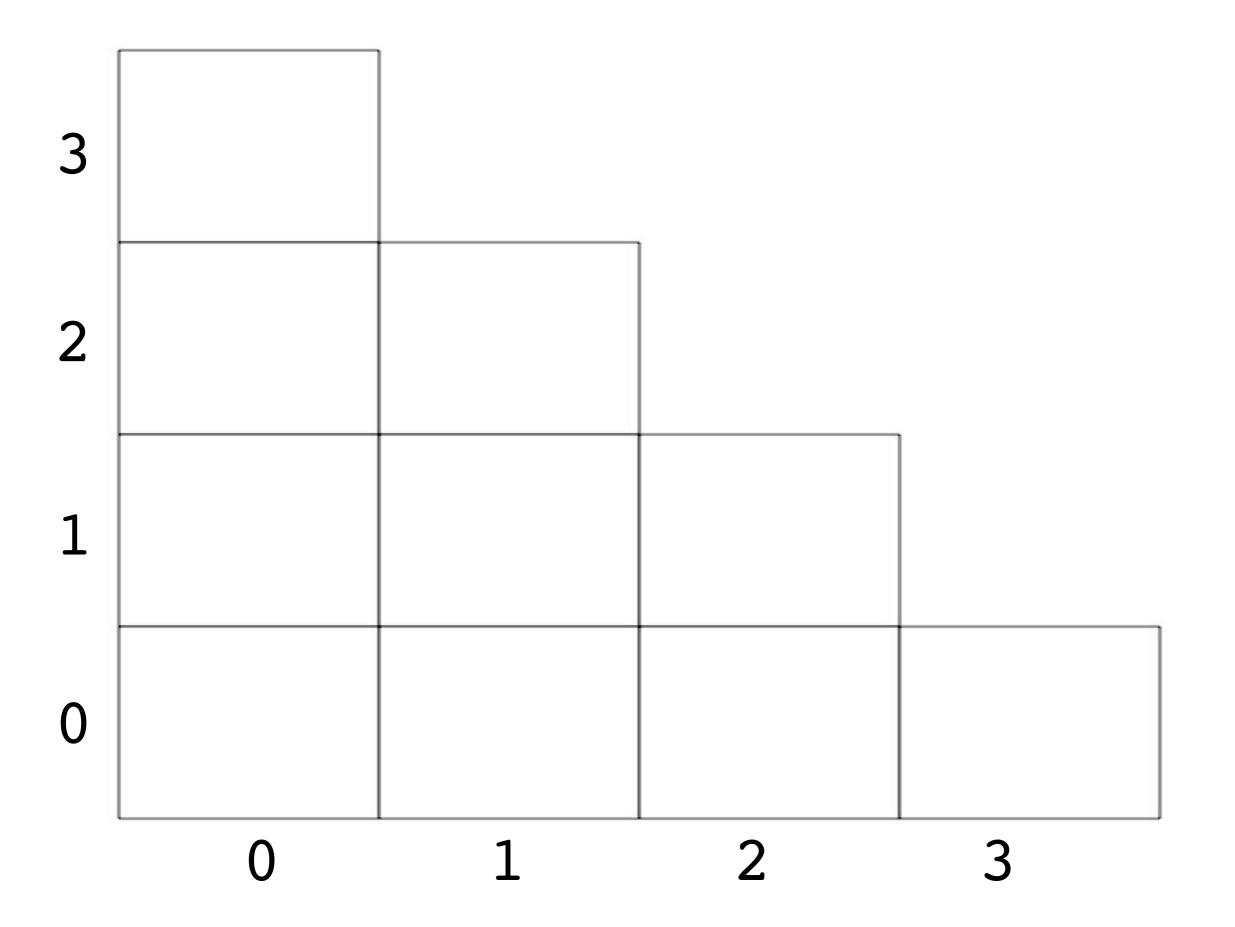
then P generates an sl₂-string

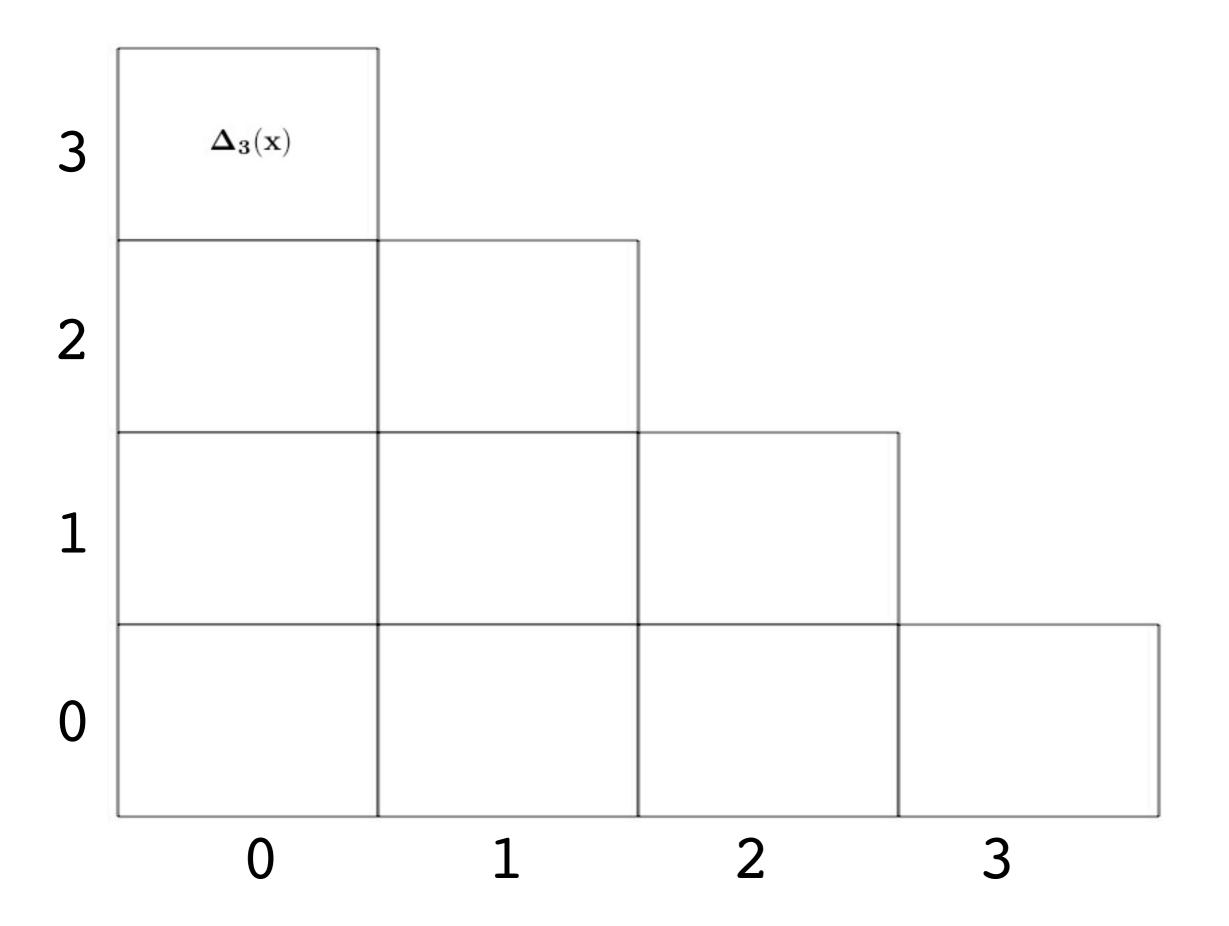
$$\mathbf{P} \rightarrow \mathbf{EP} \rightarrow \mathbf{E^2P} \rightarrow \cdots \rightarrow \mathbf{E^{h-k}P}$$

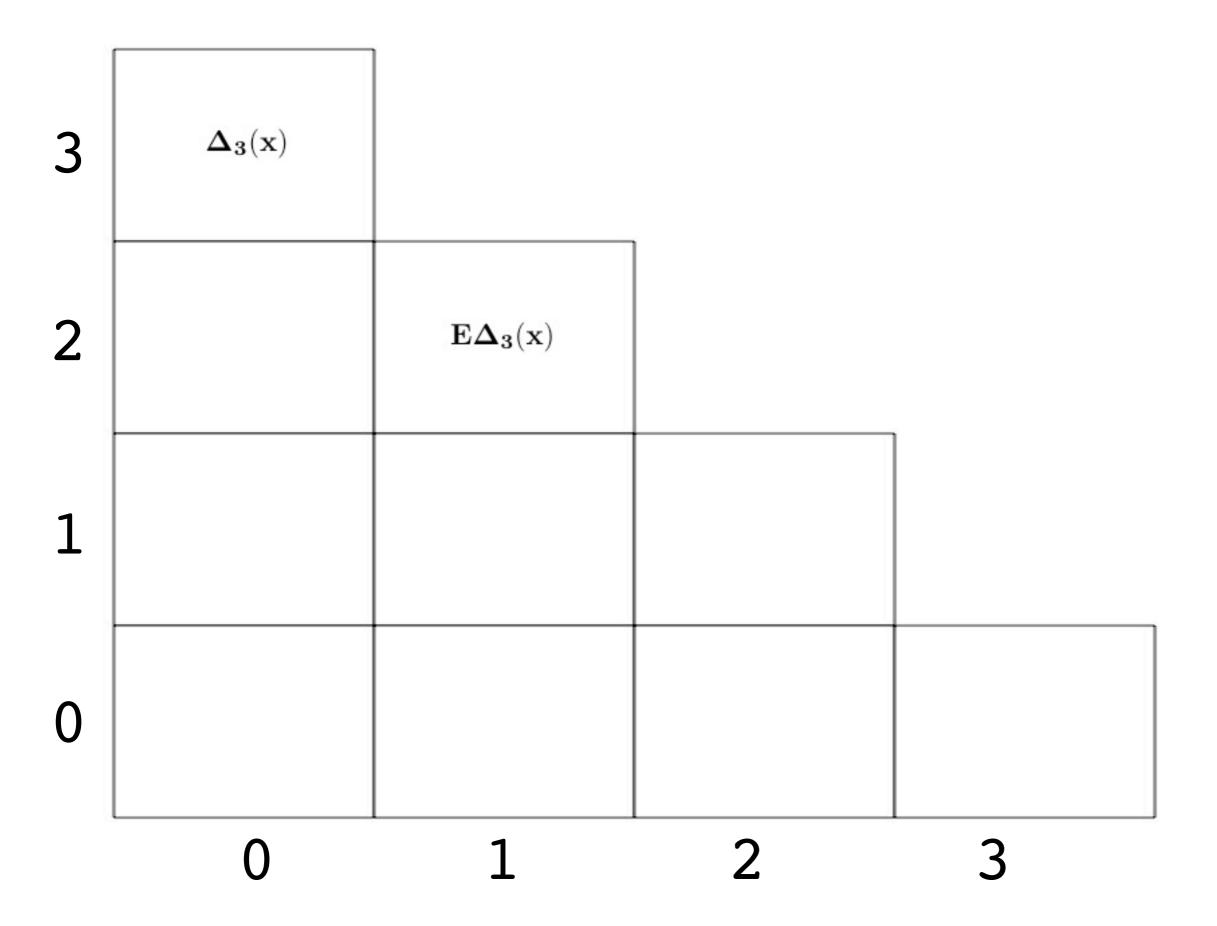
with $\mathbf{E}^{\mathbf{i}}\mathbf{P}\in\mathcal{H}_{\mathbf{h}-\mathbf{i},\mathbf{k}+\mathbf{i}}[\mathbf{D}\mathbf{H}_{\mathbf{n}}]$ and $\mathbf{E}^{\mathbf{h}-\mathbf{k}+\mathbf{1}}\mathbf{P}=\mathbf{0}$

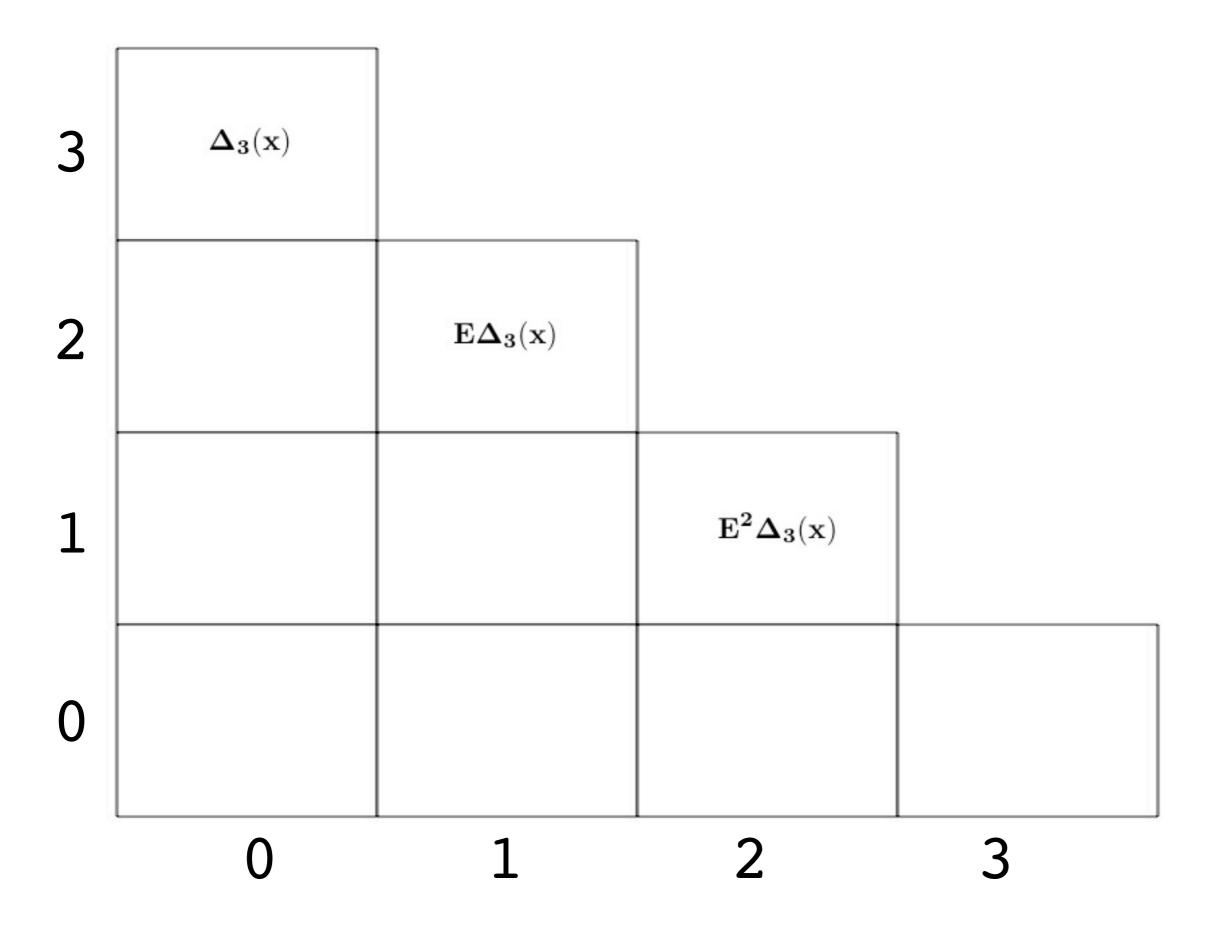


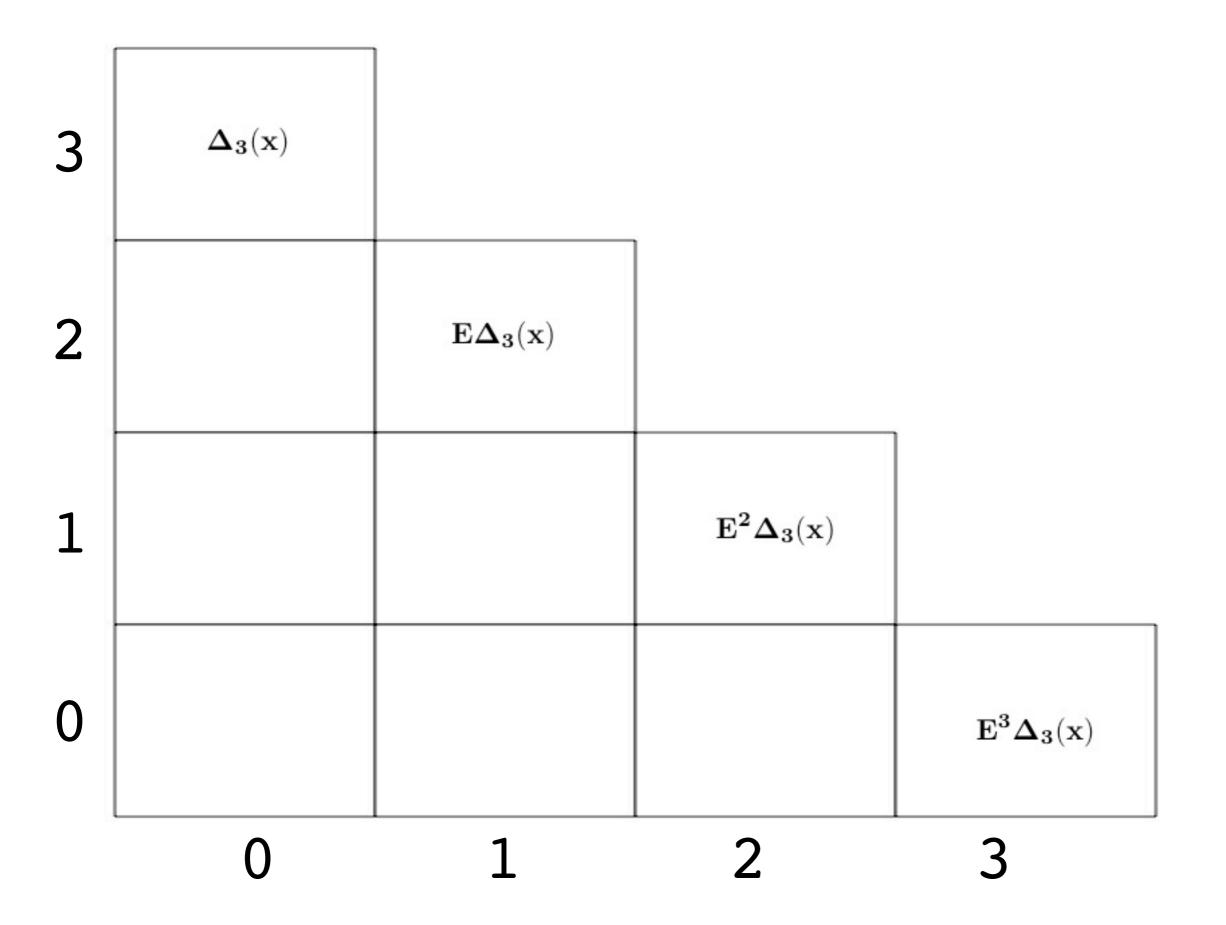




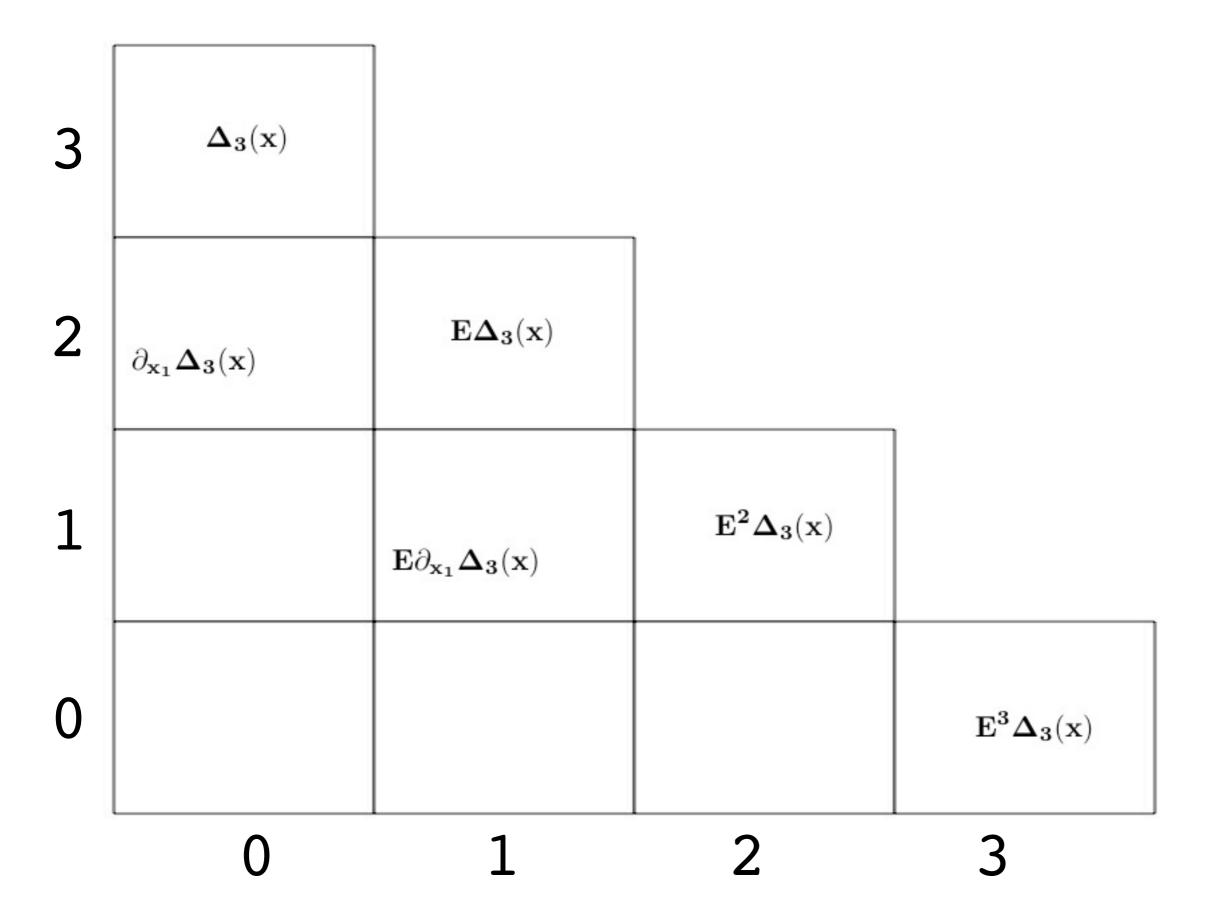


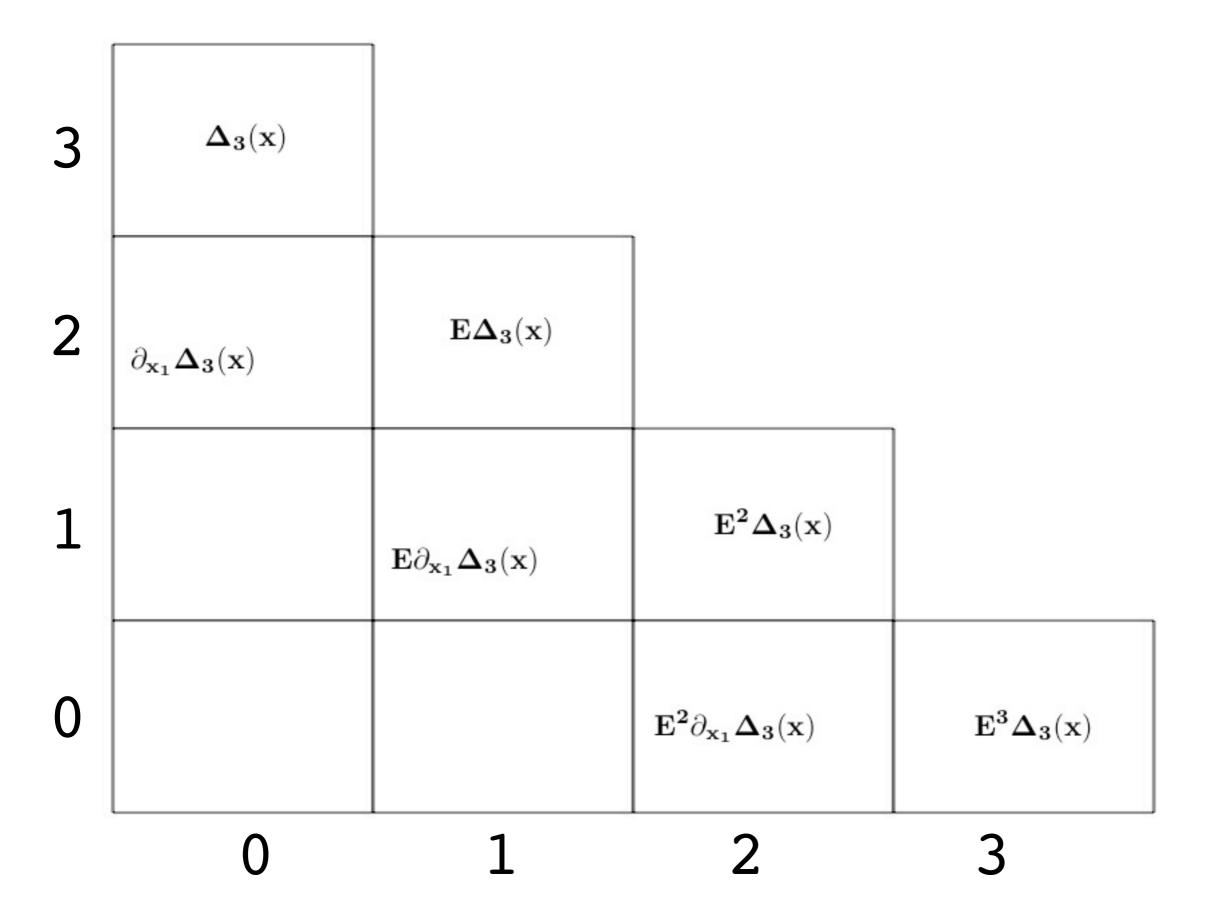


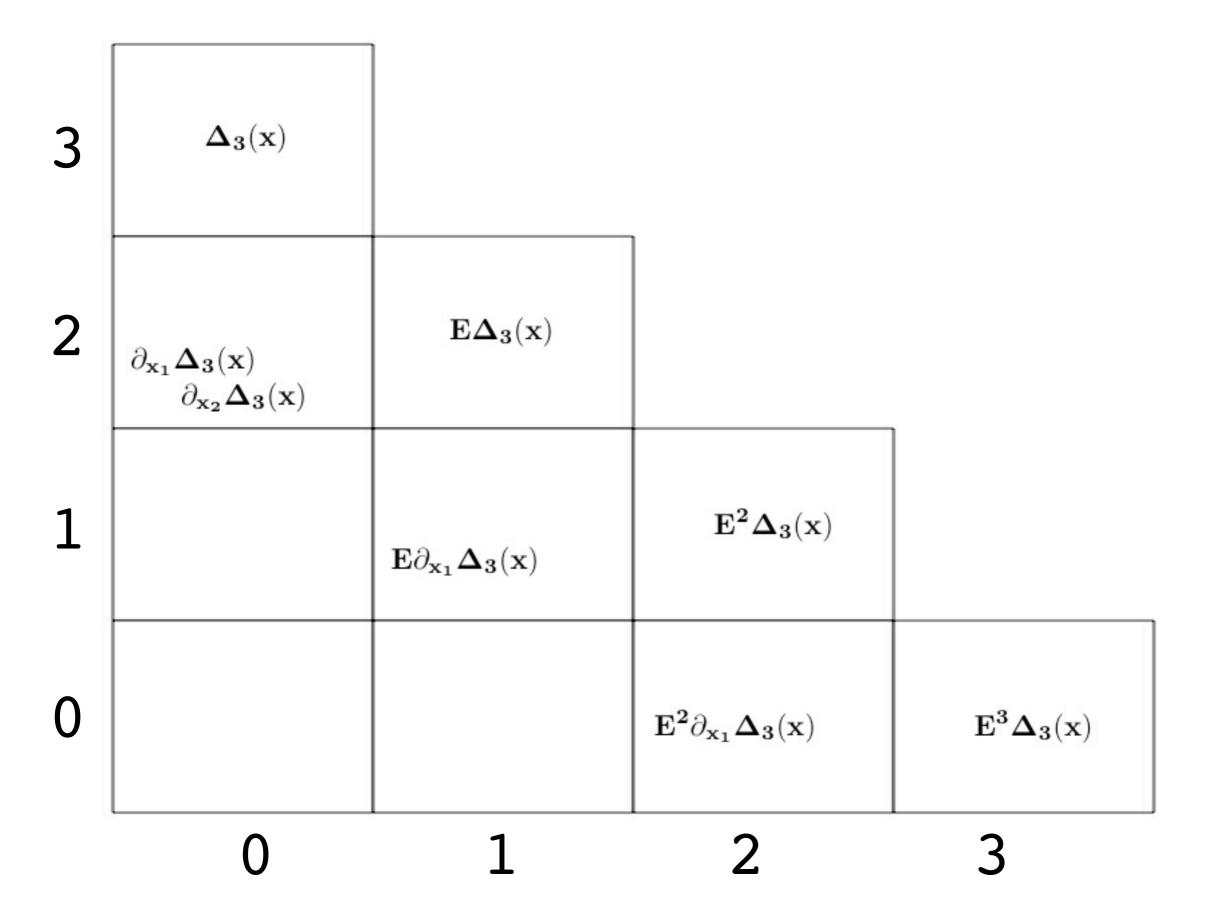


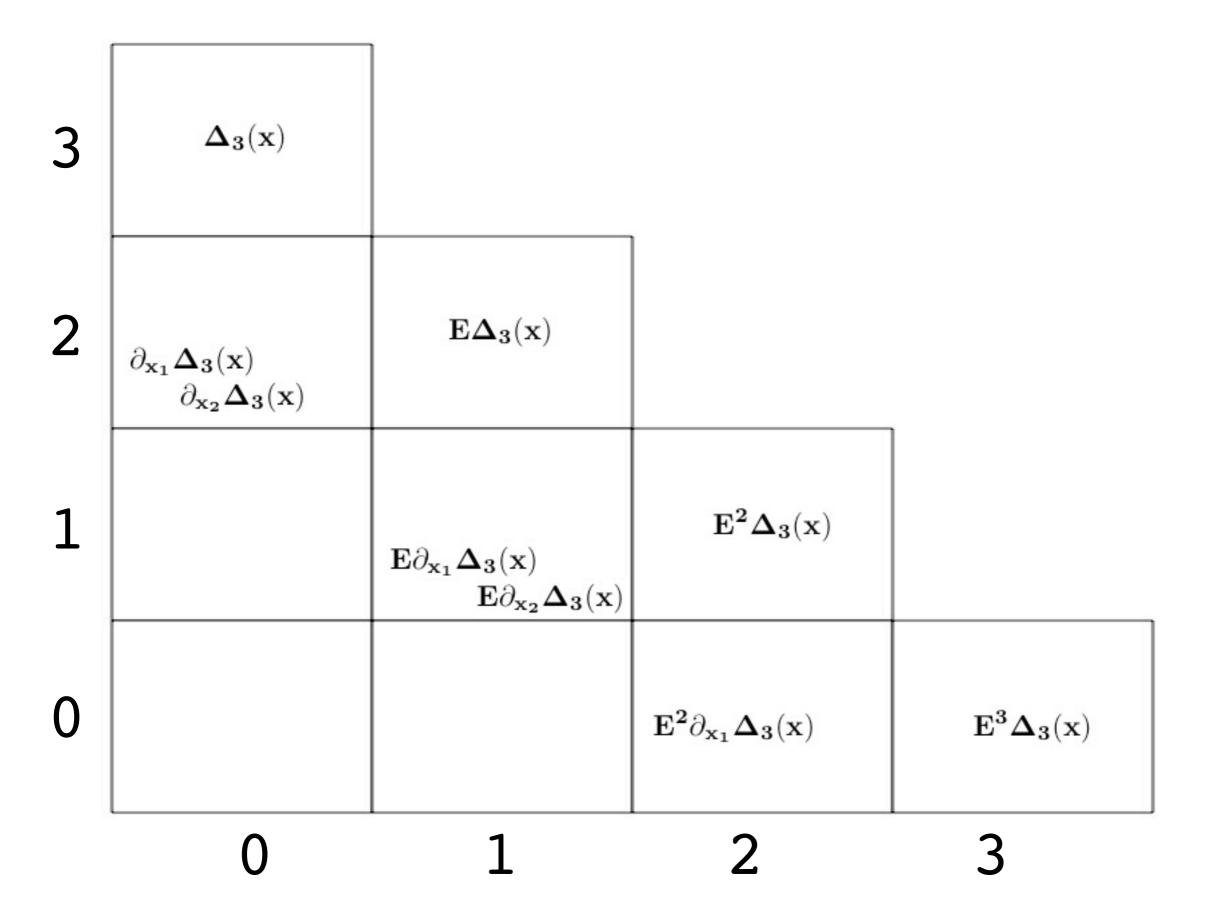


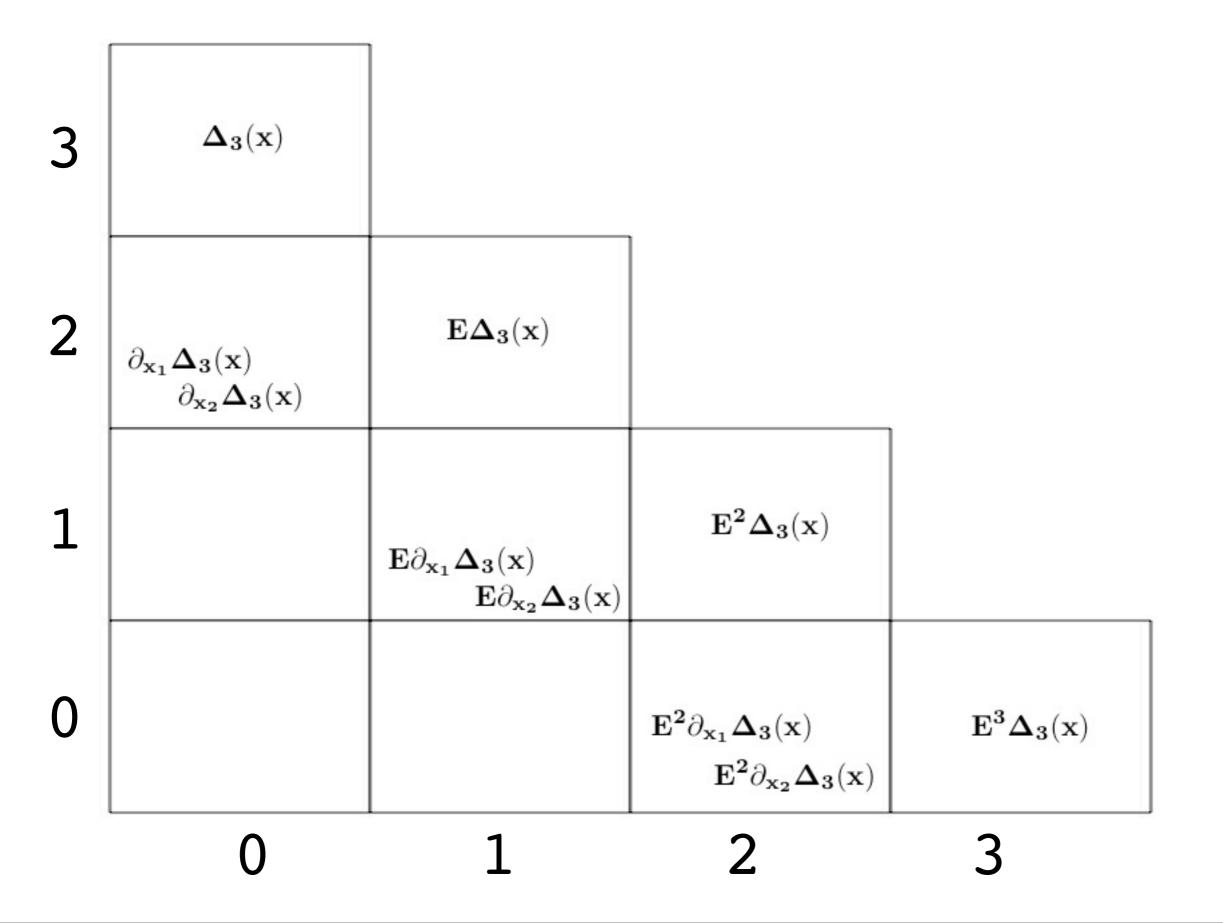


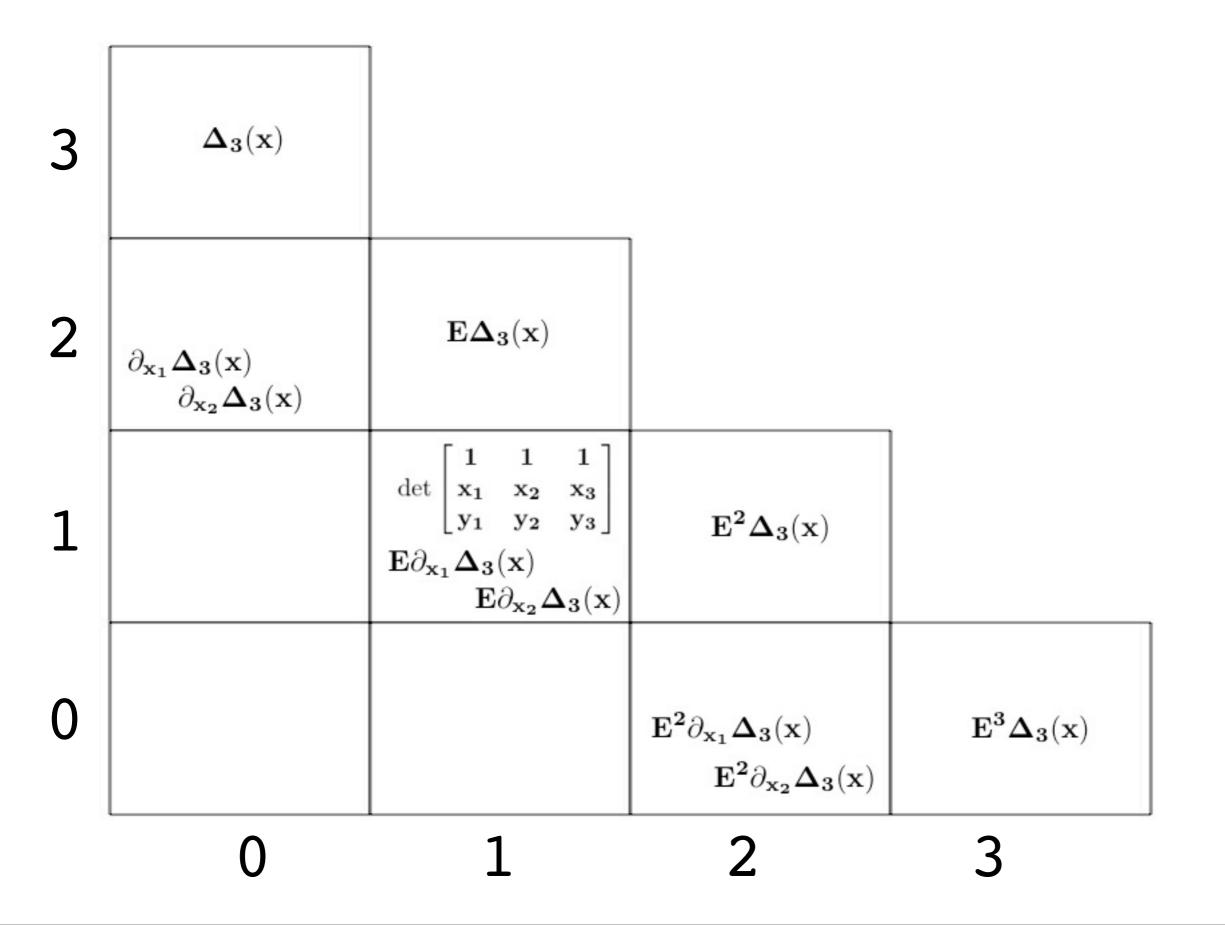


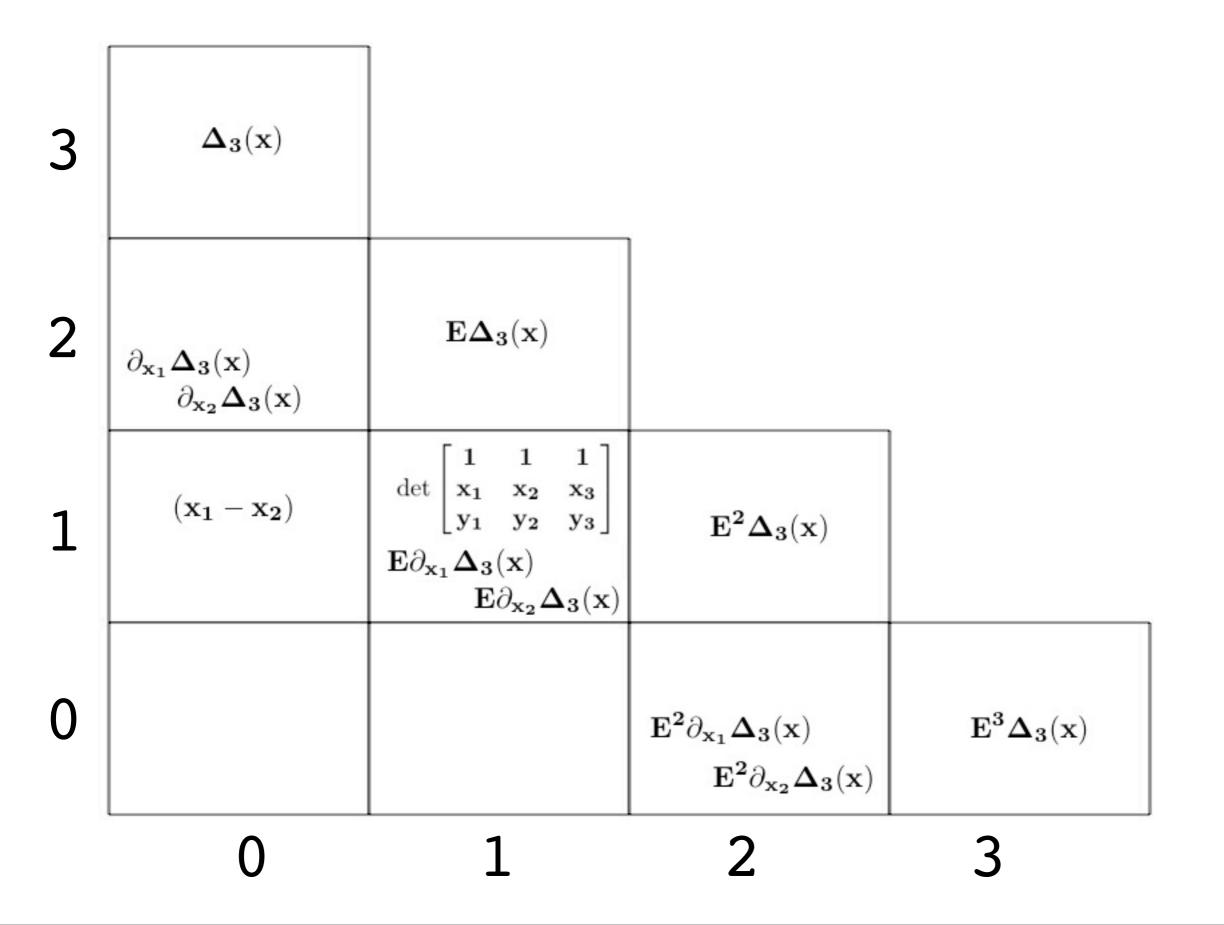


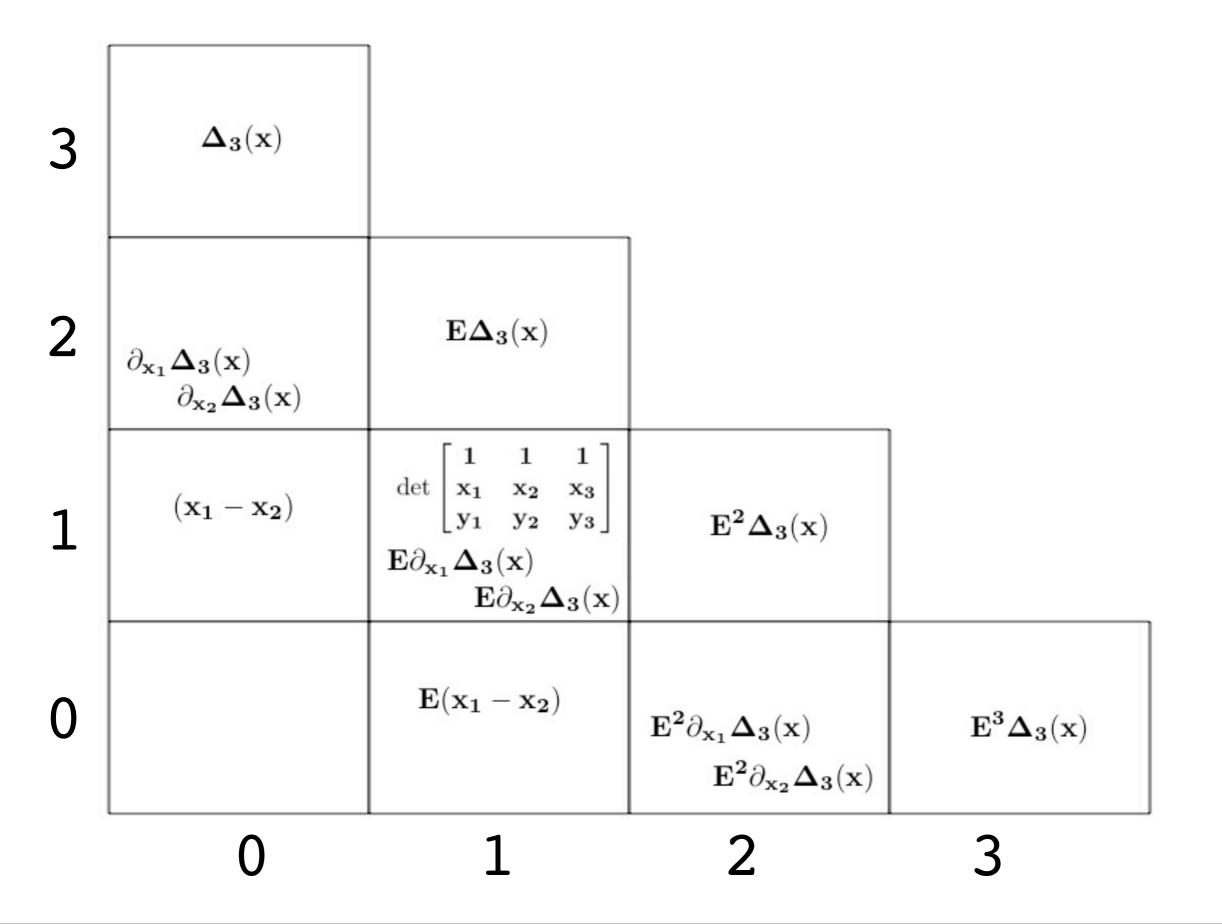


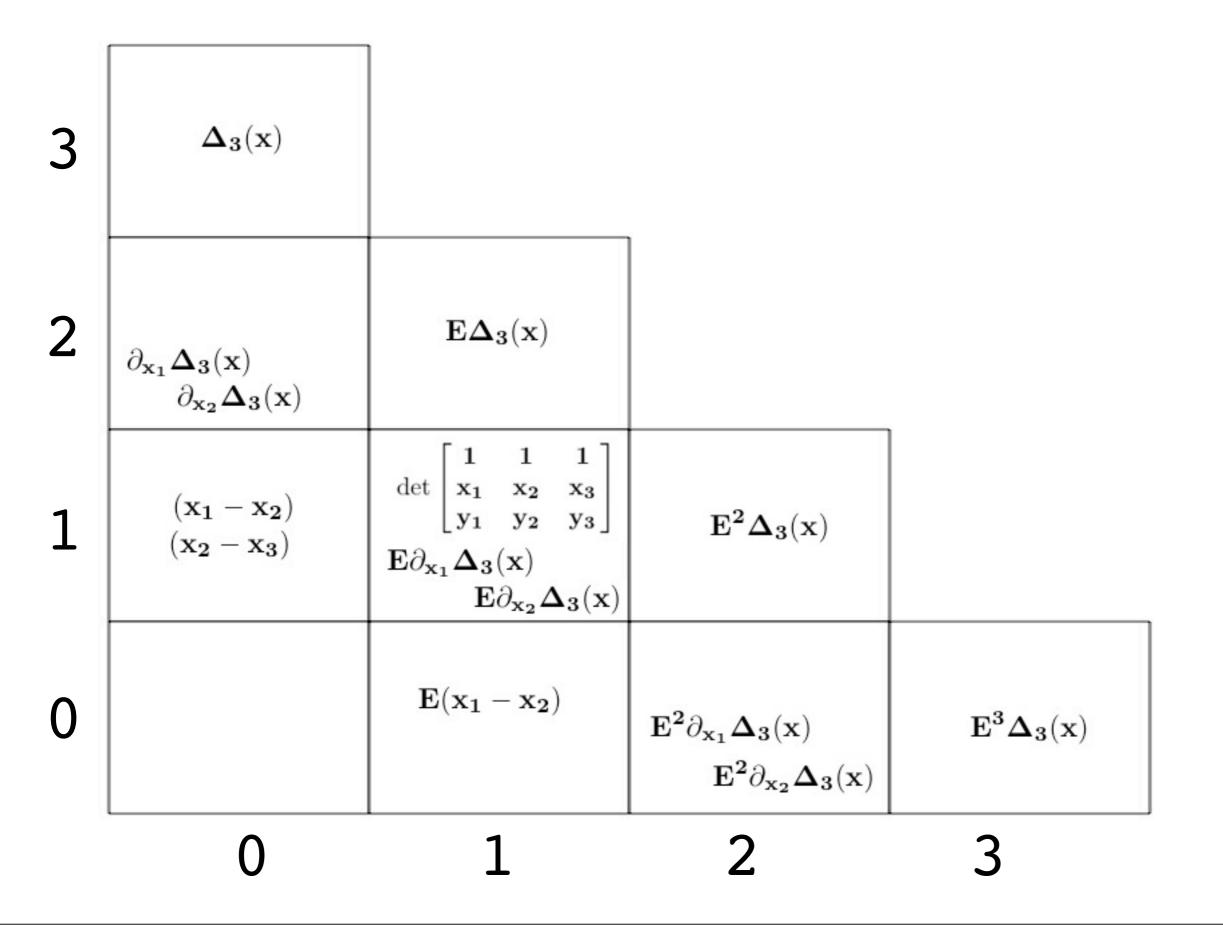


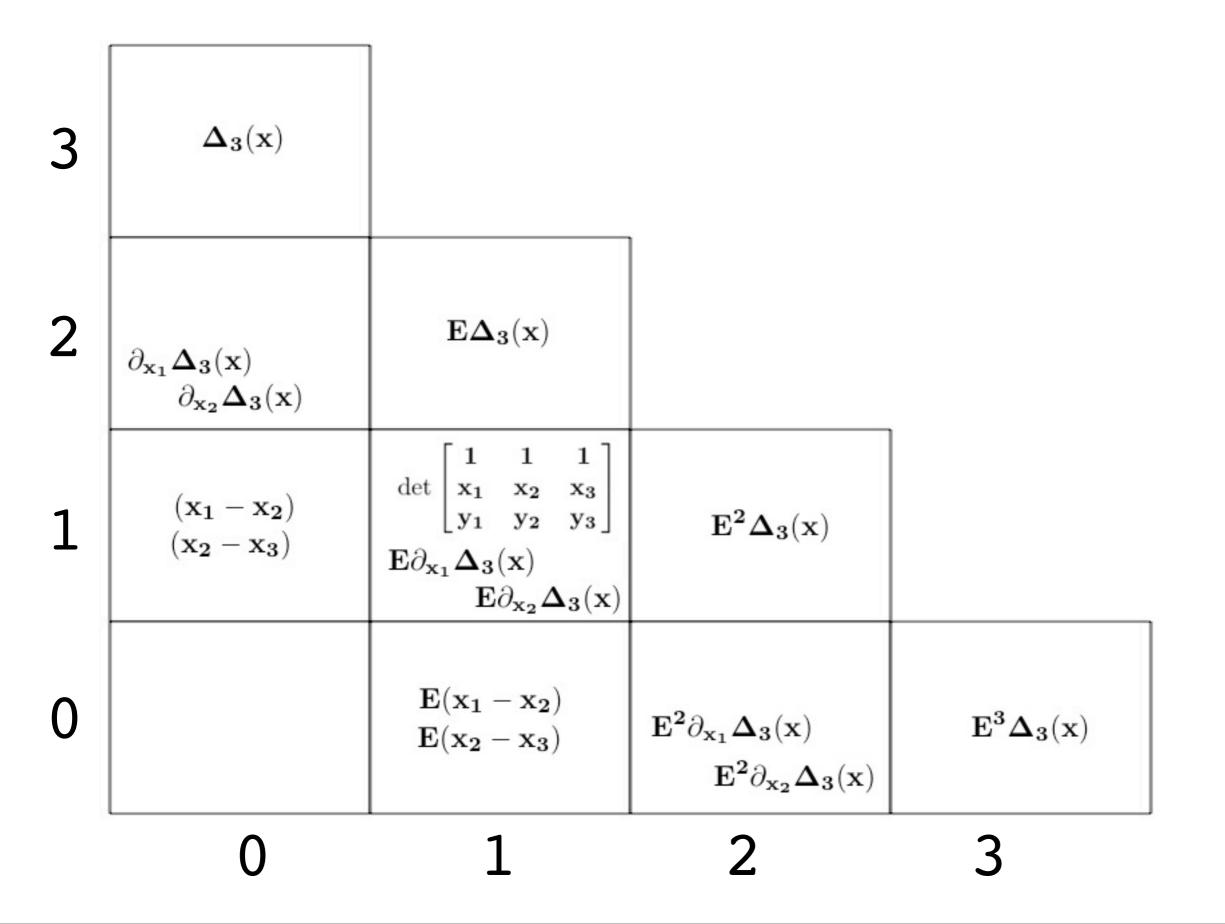


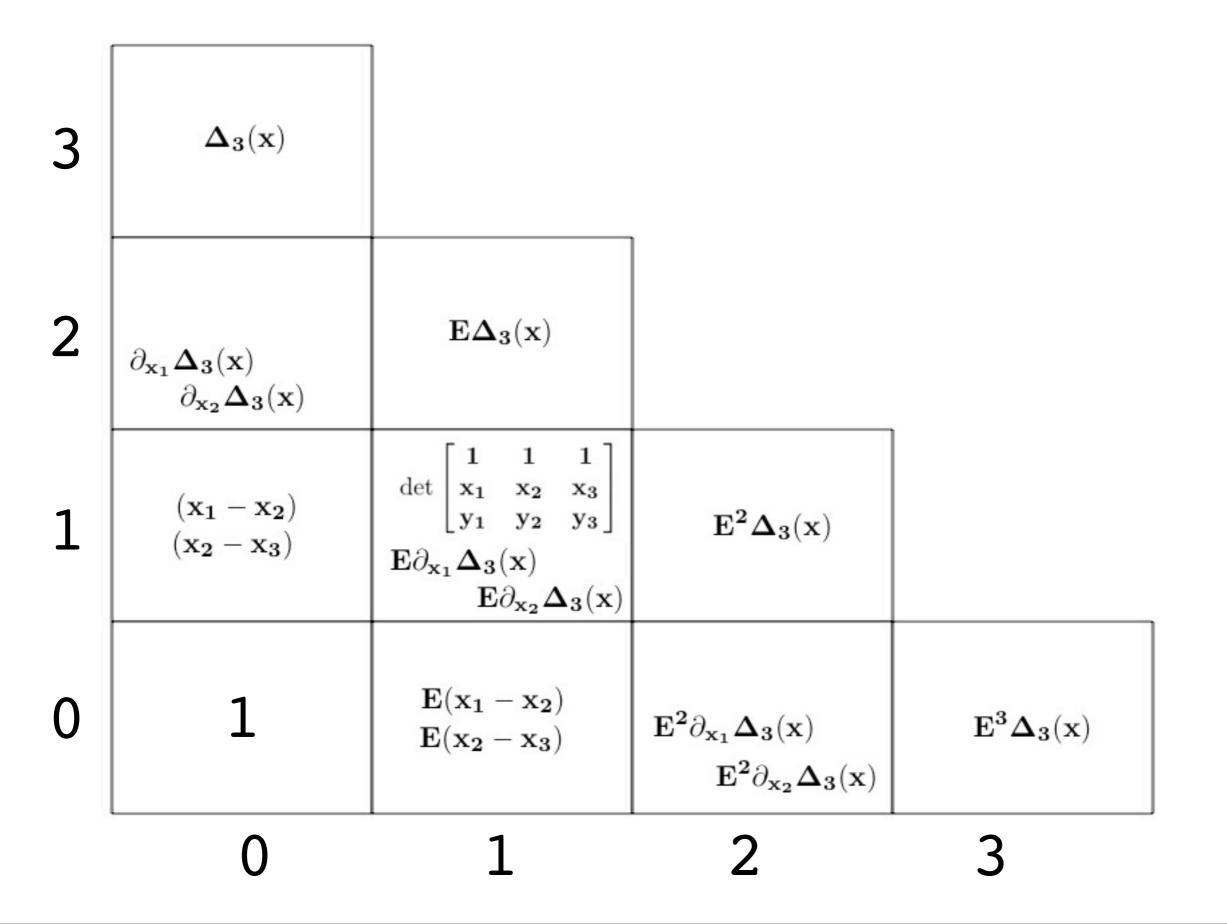


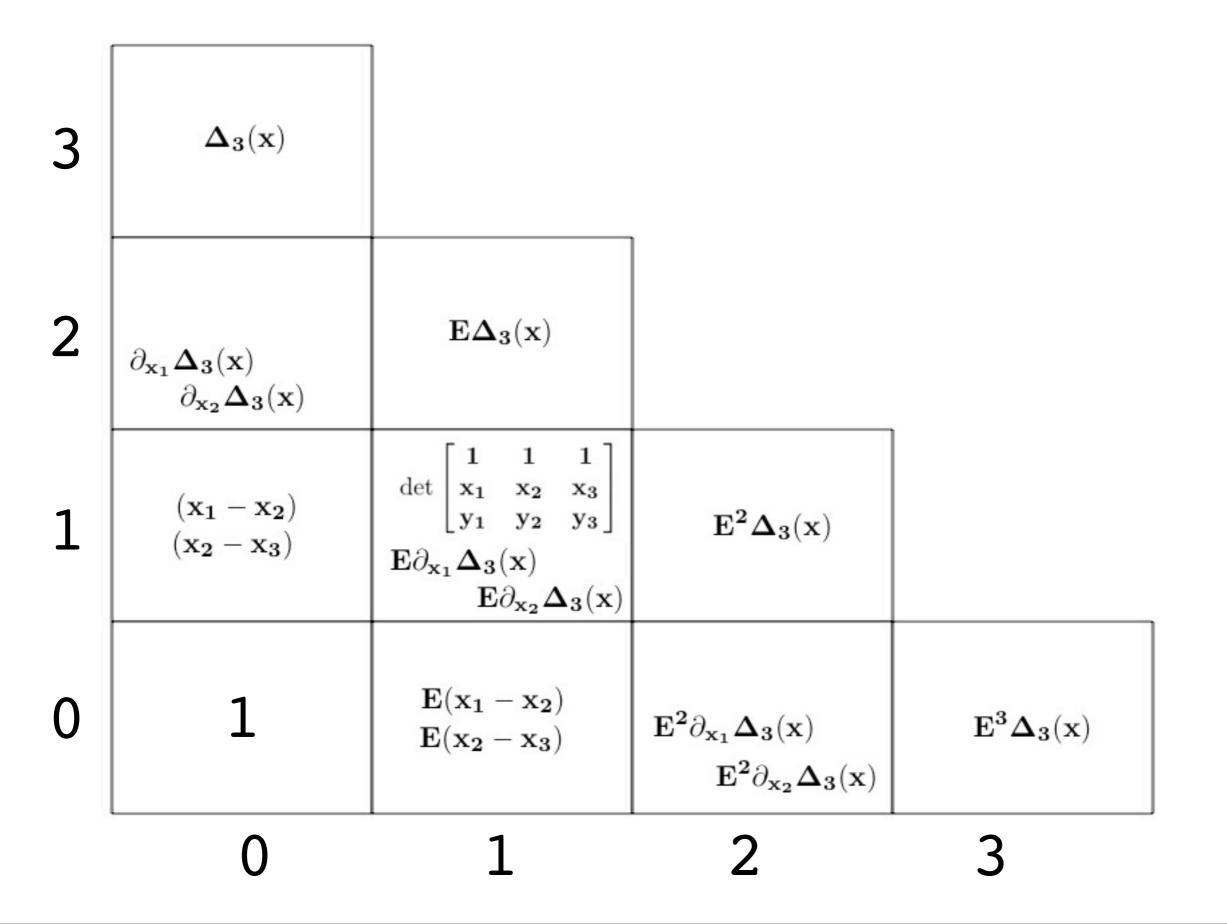


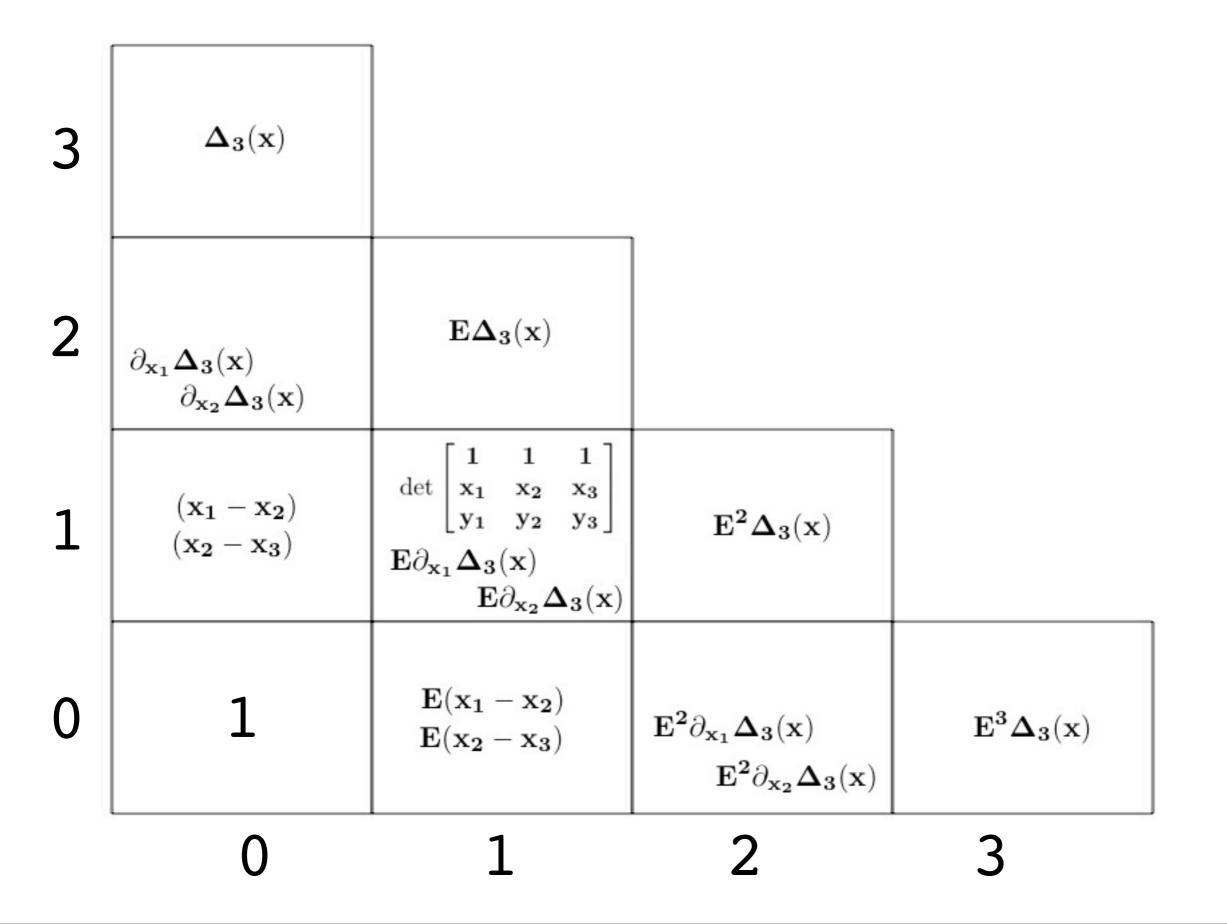


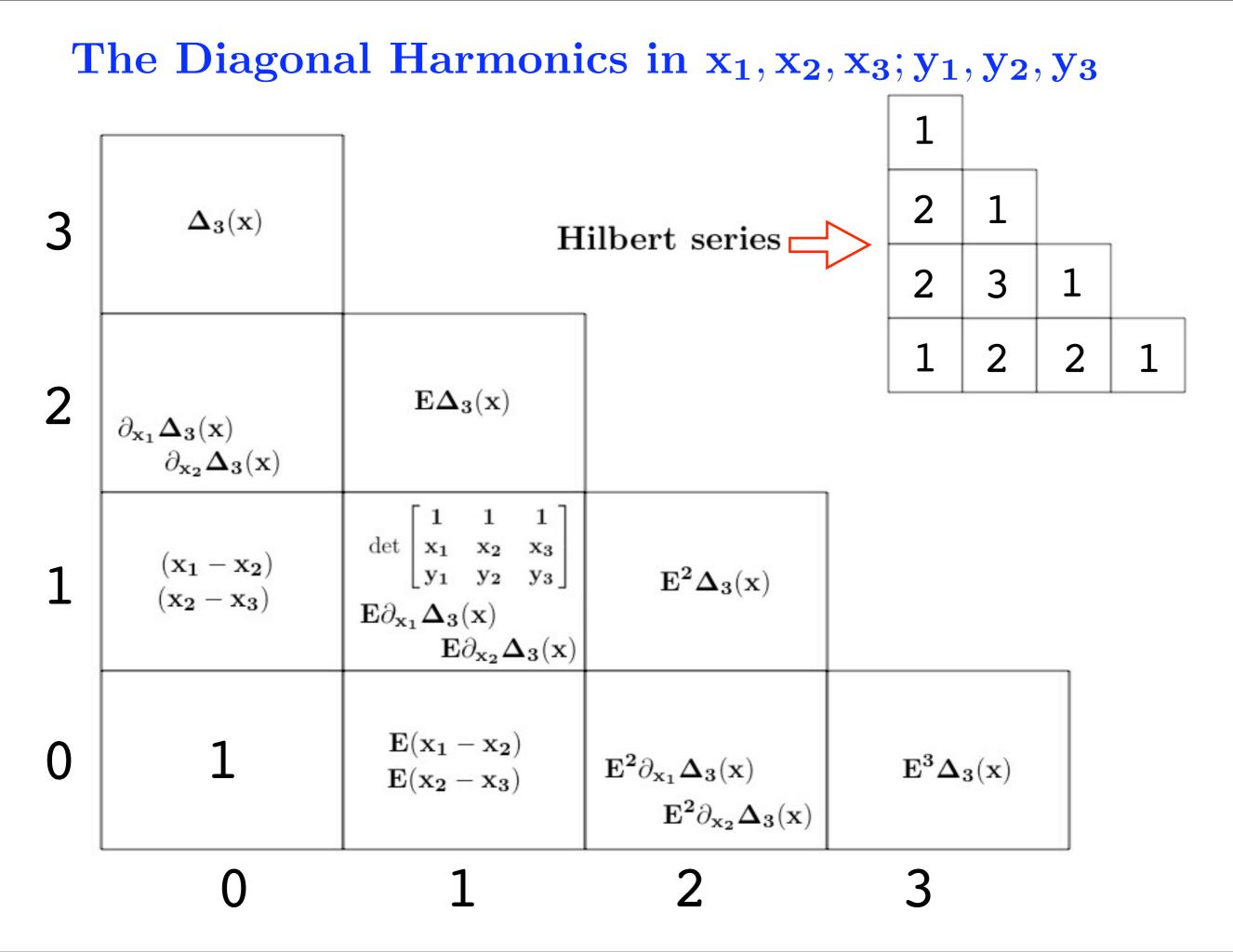


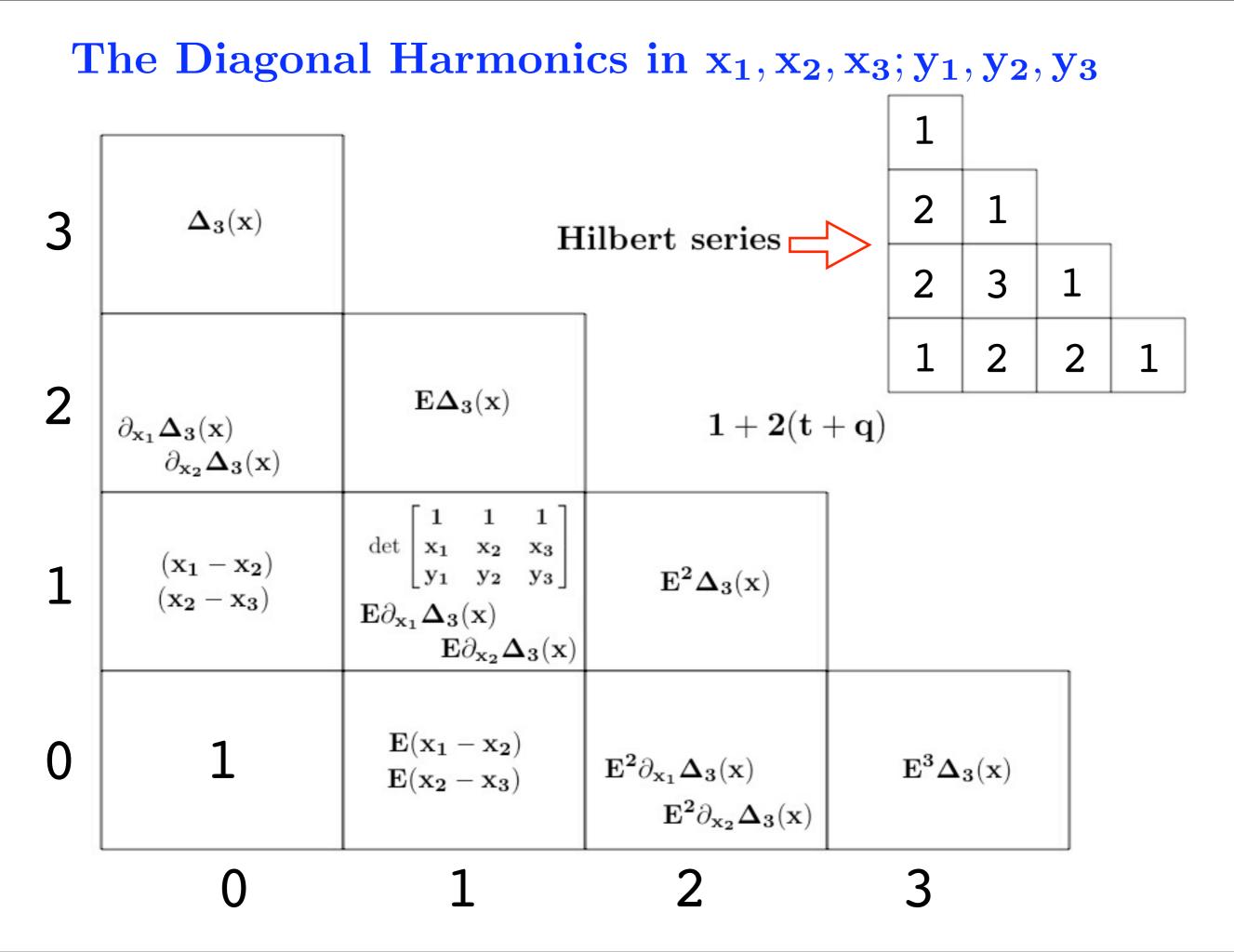


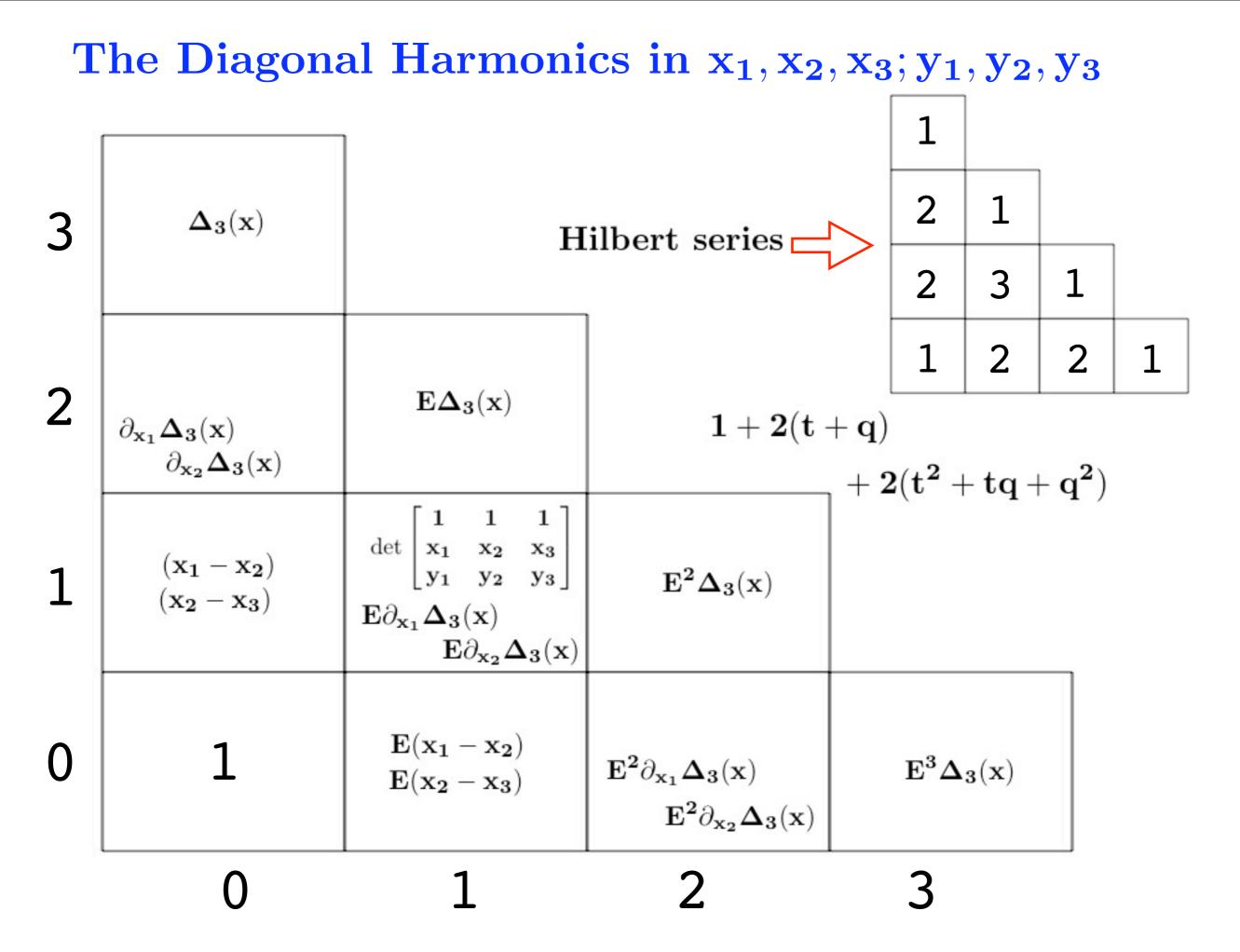


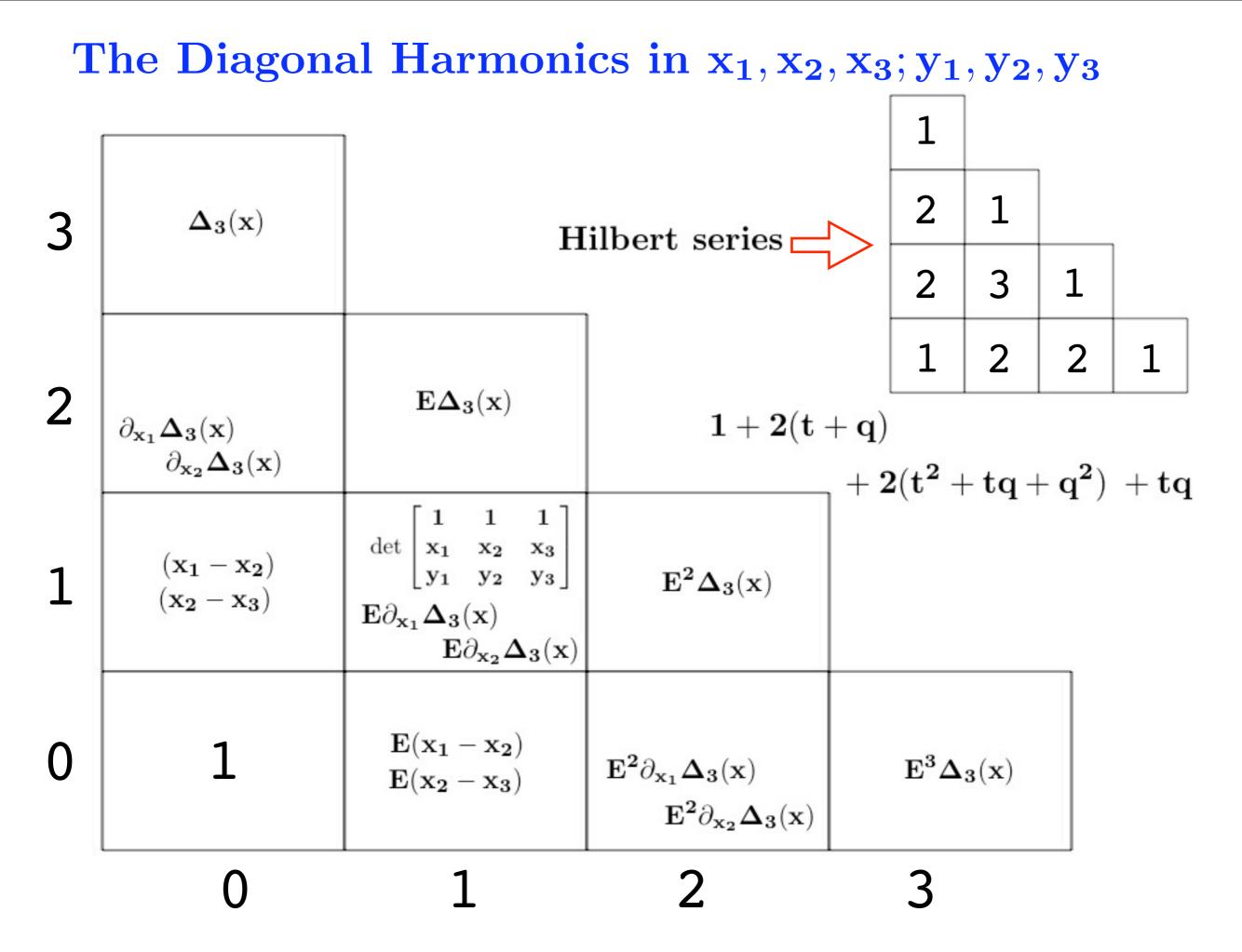


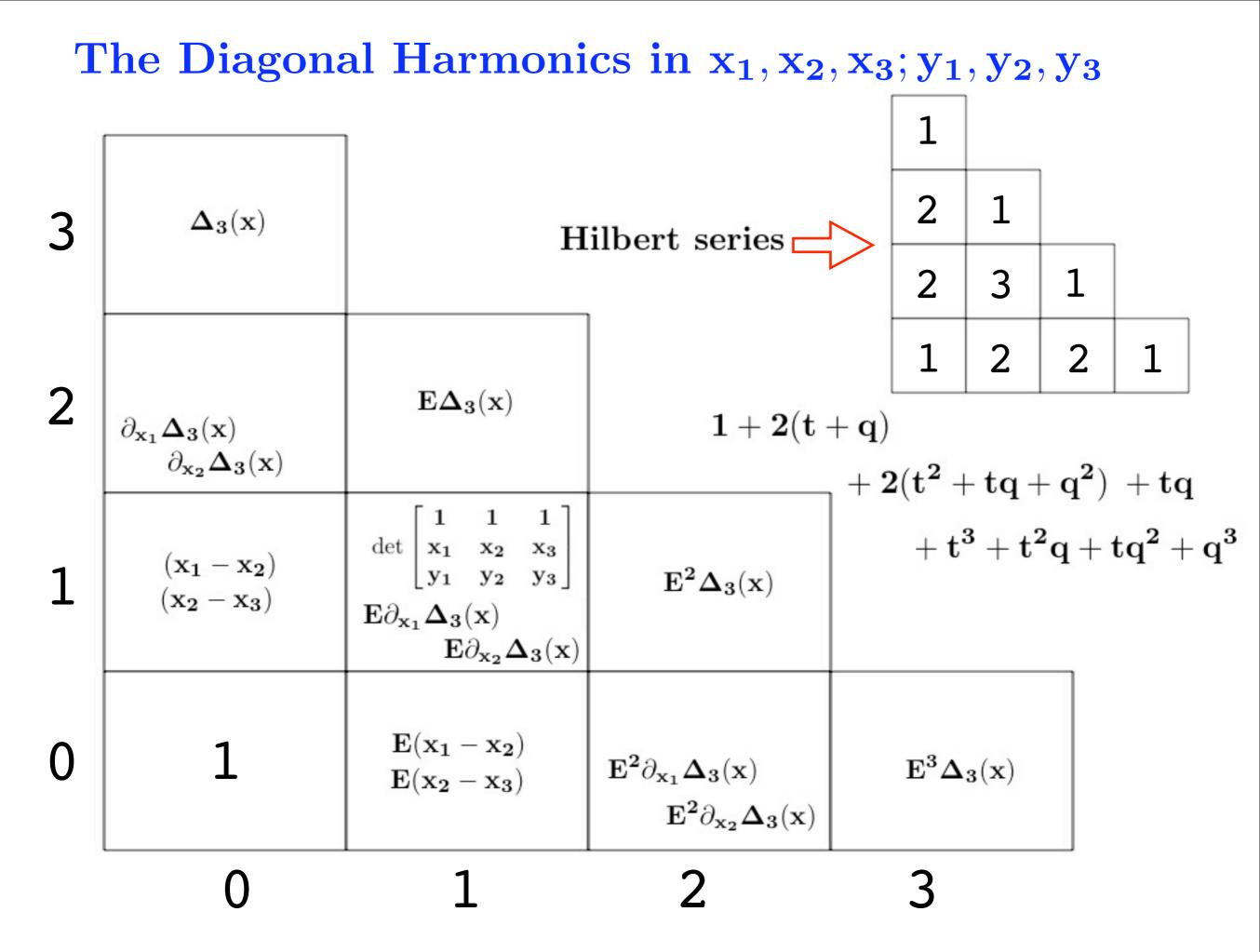


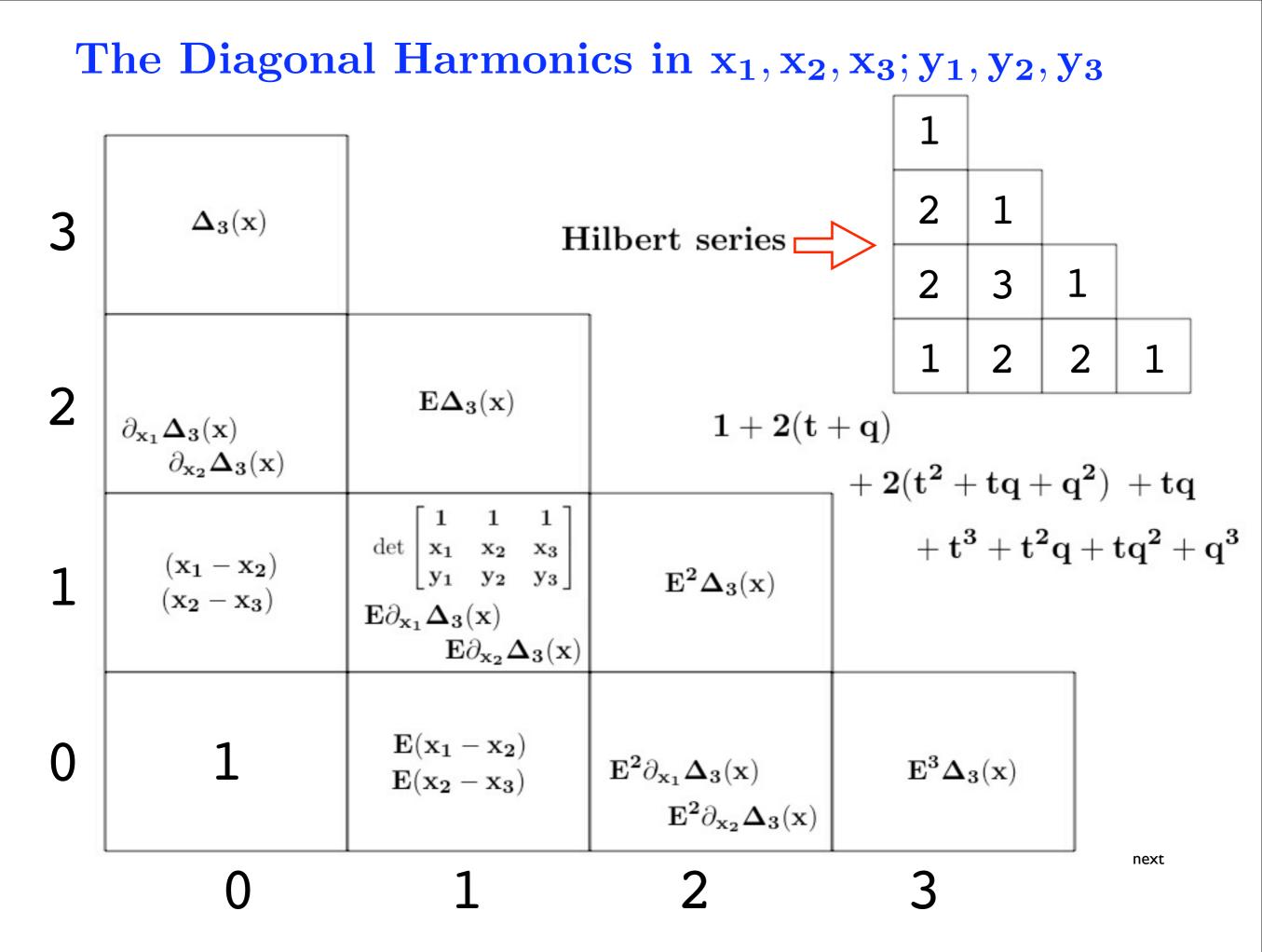


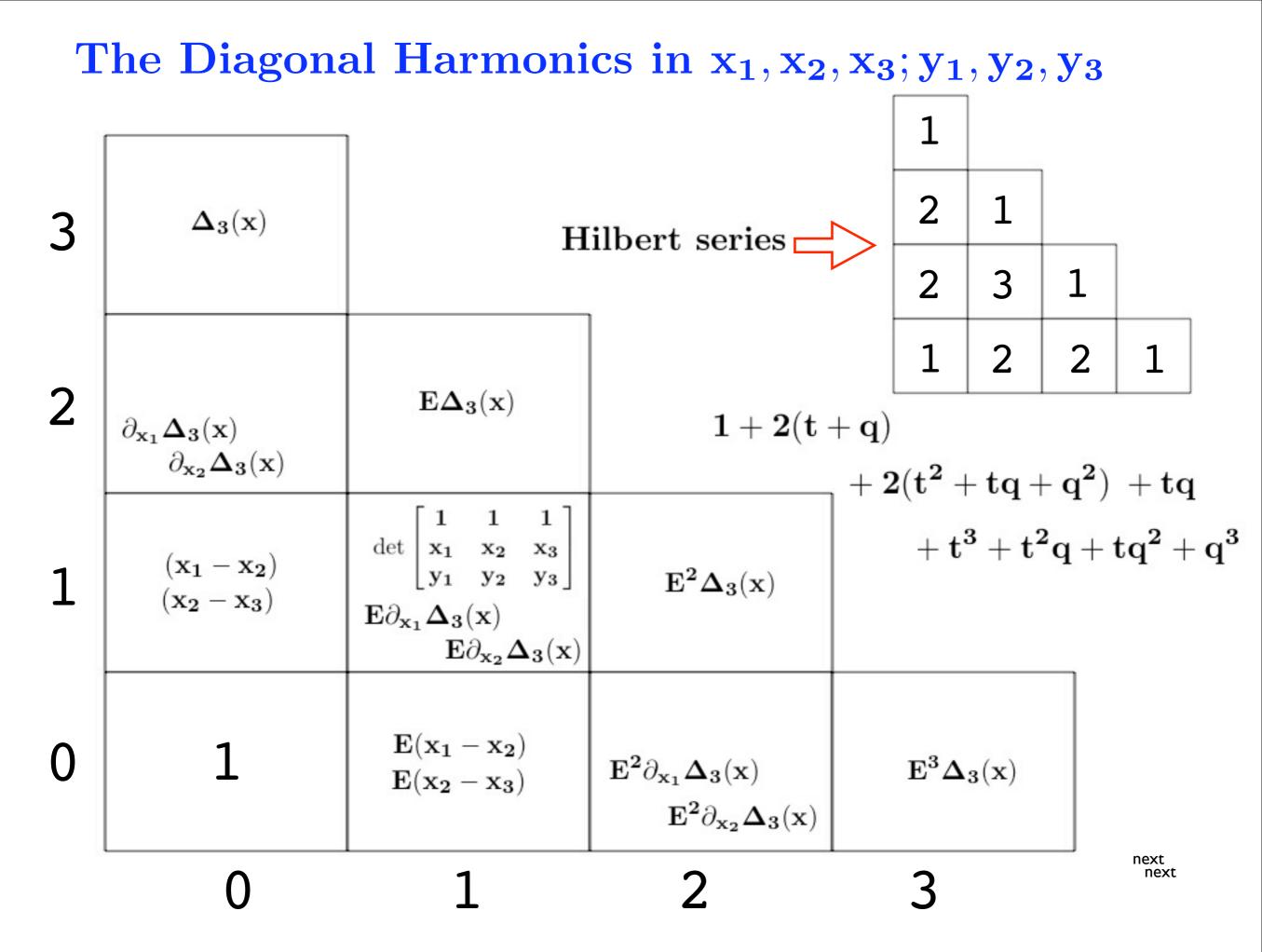


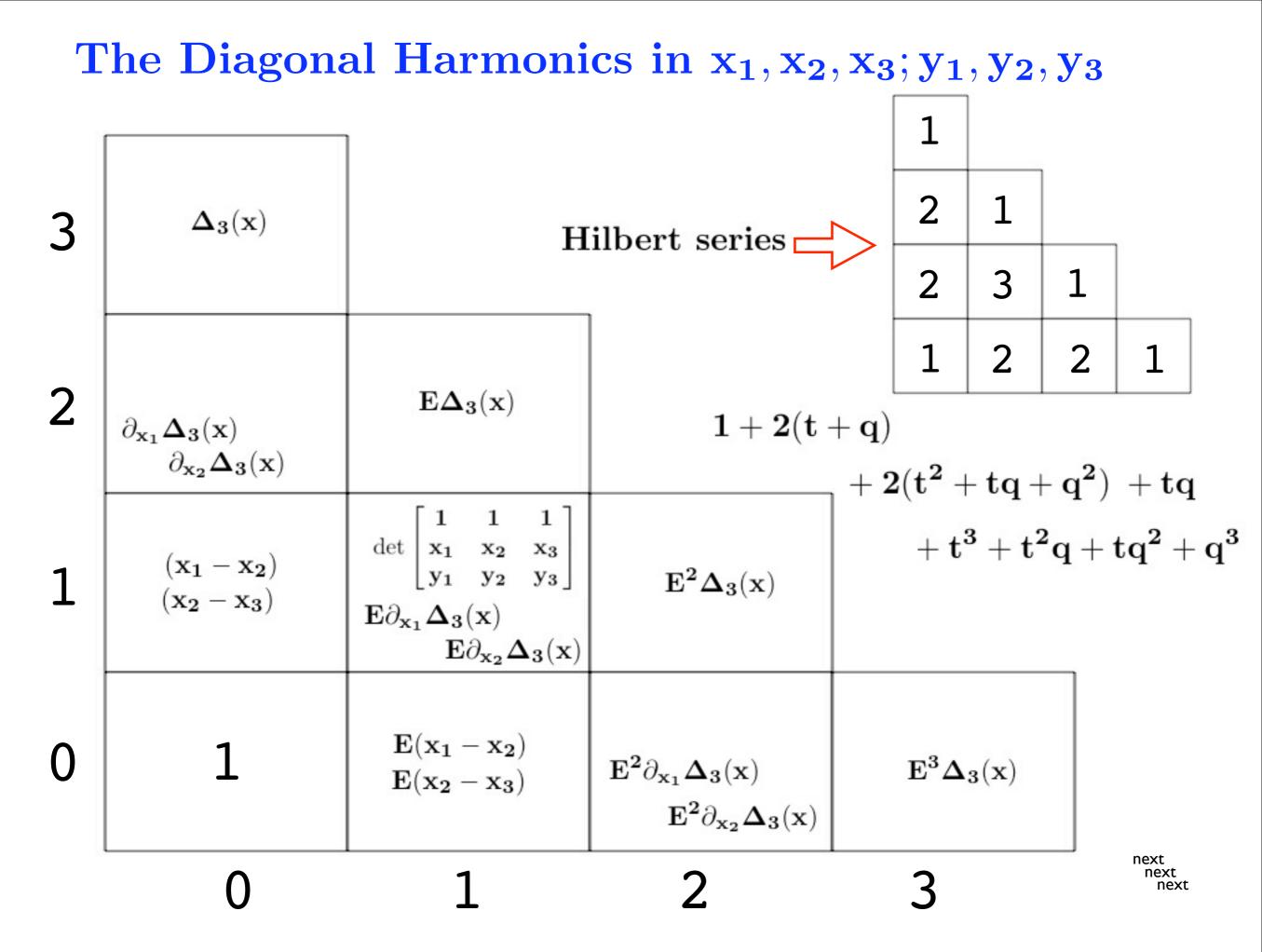


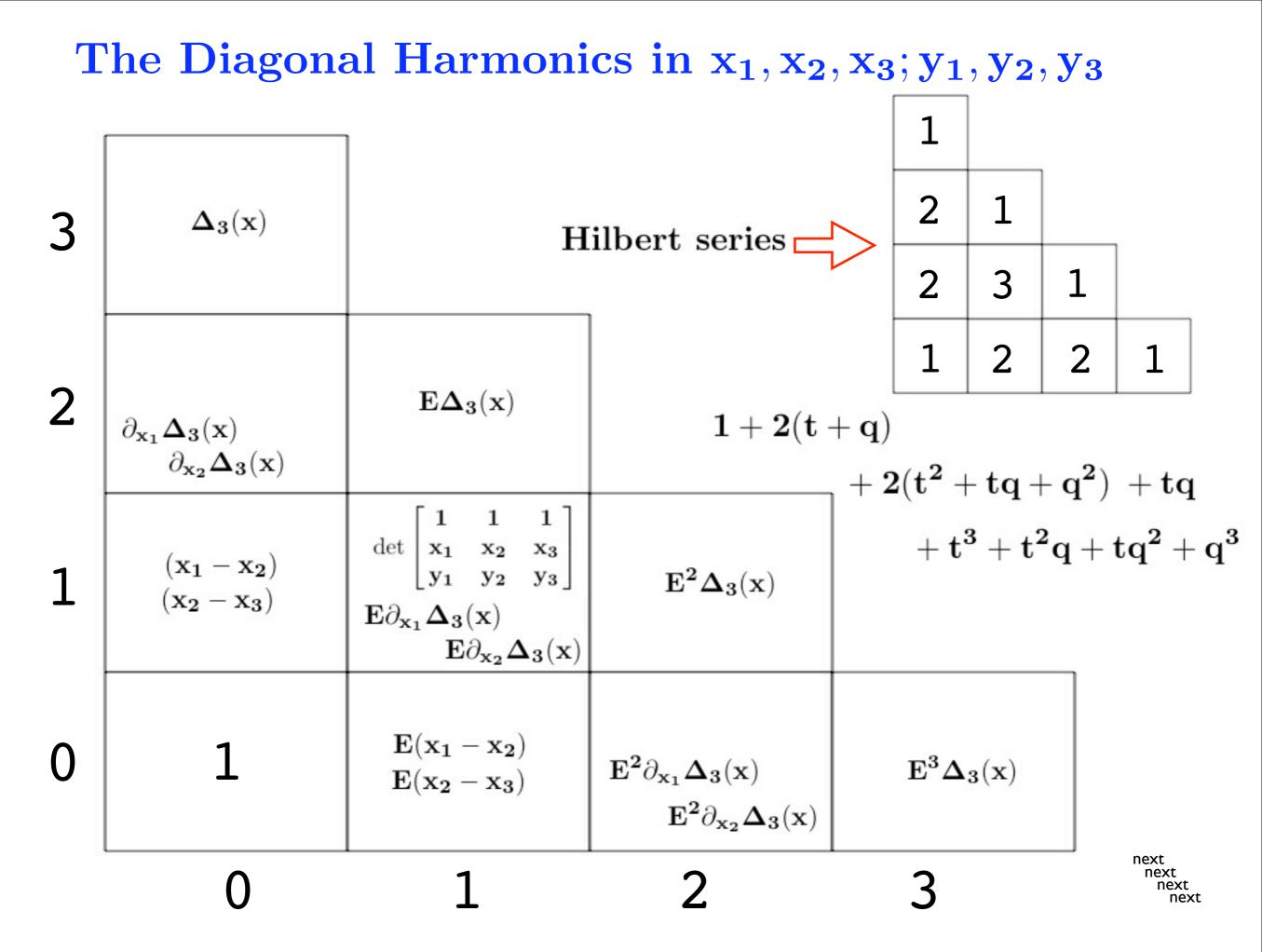


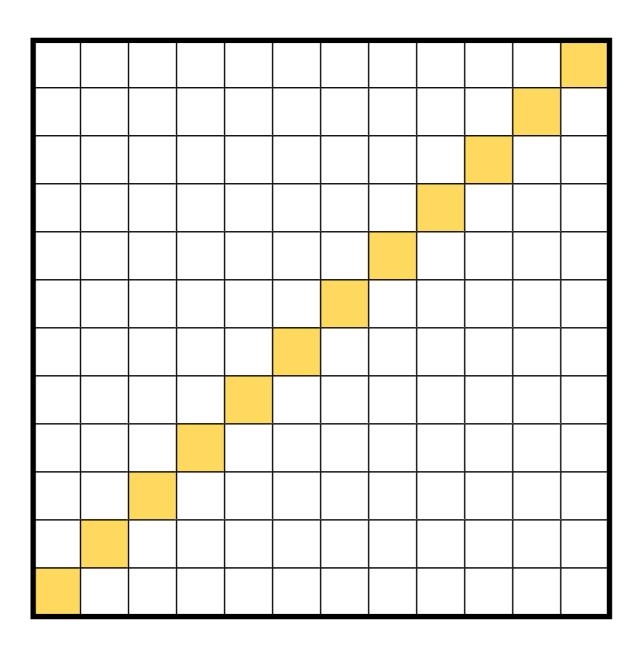


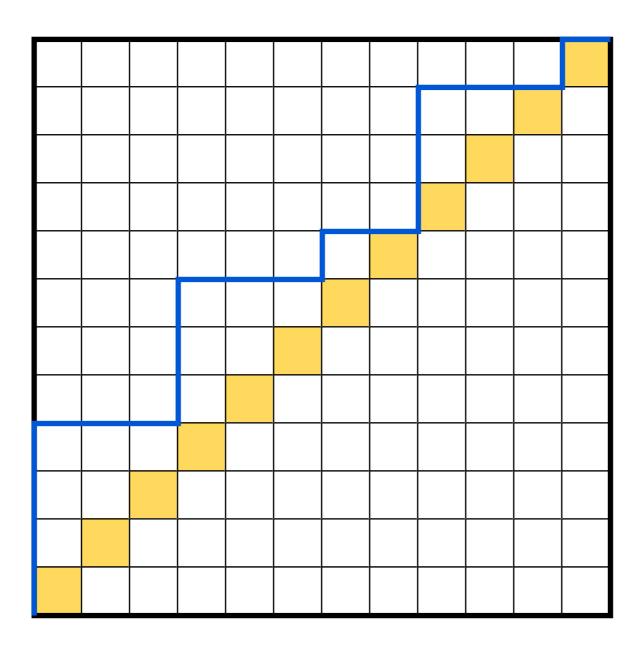


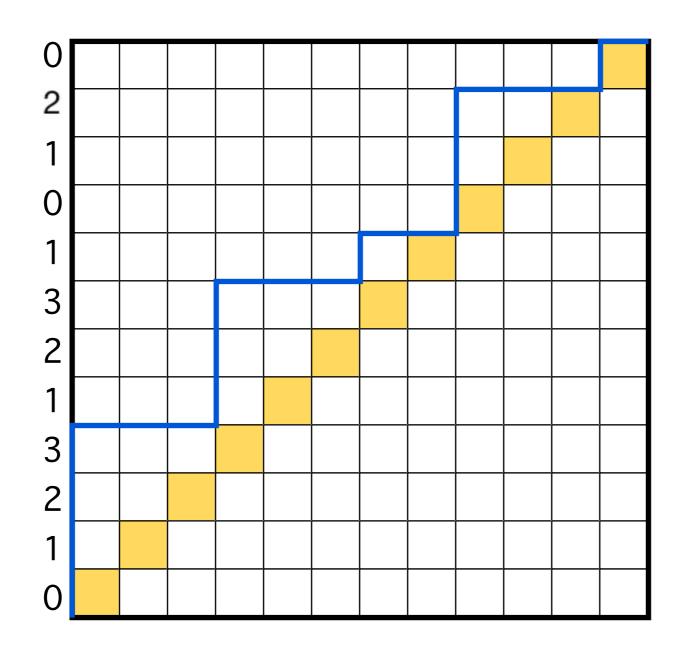


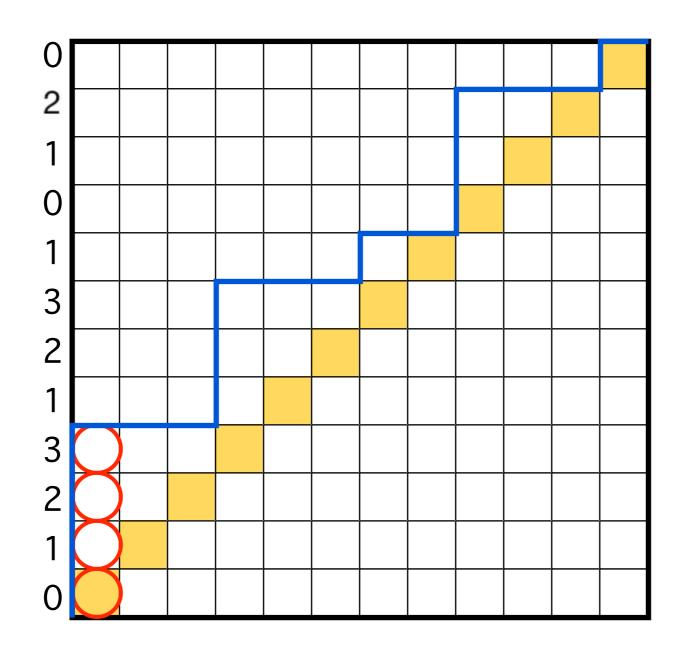


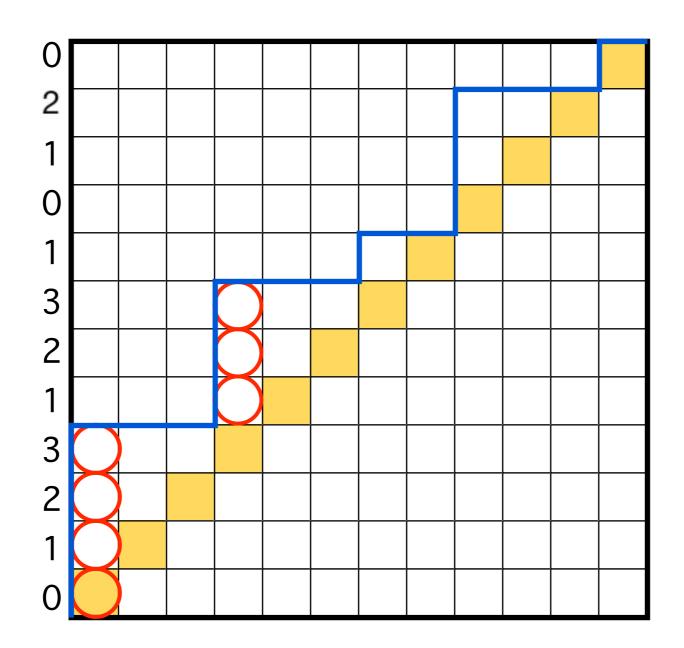


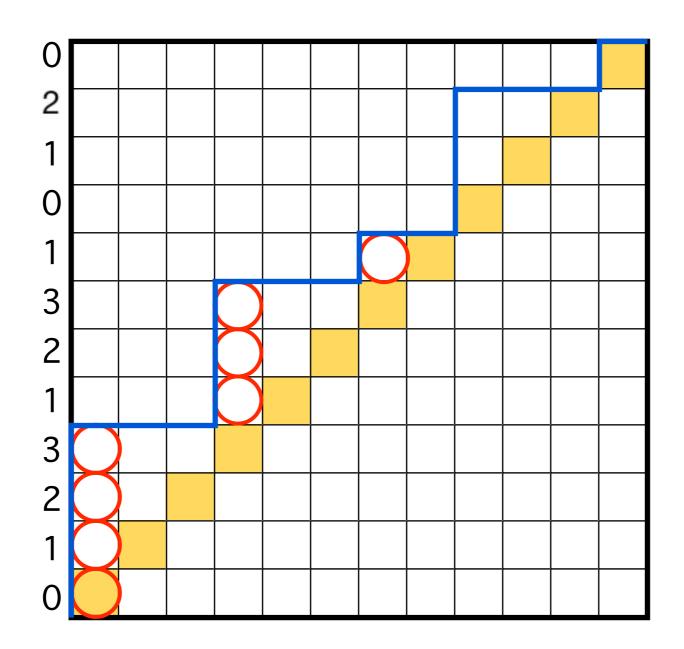


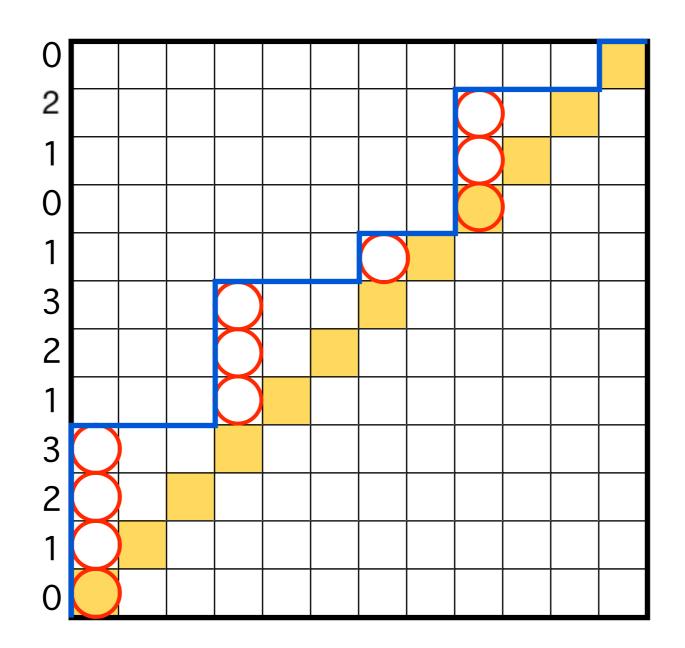


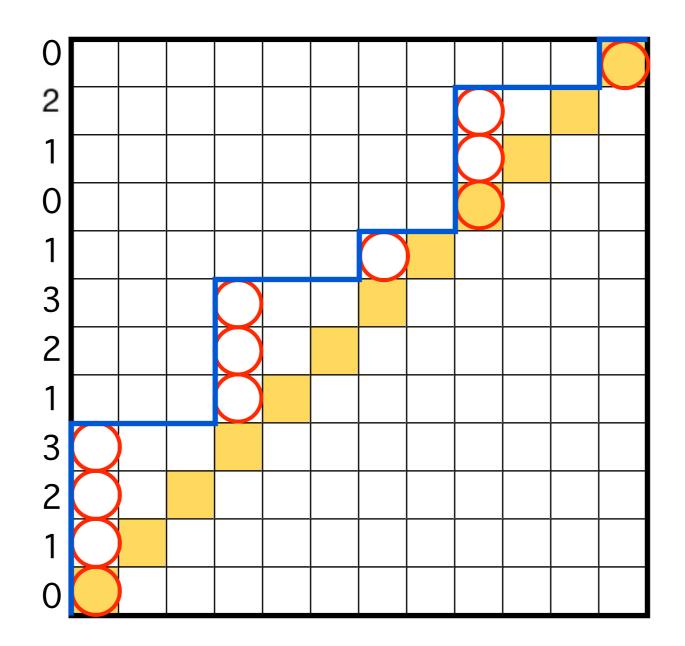


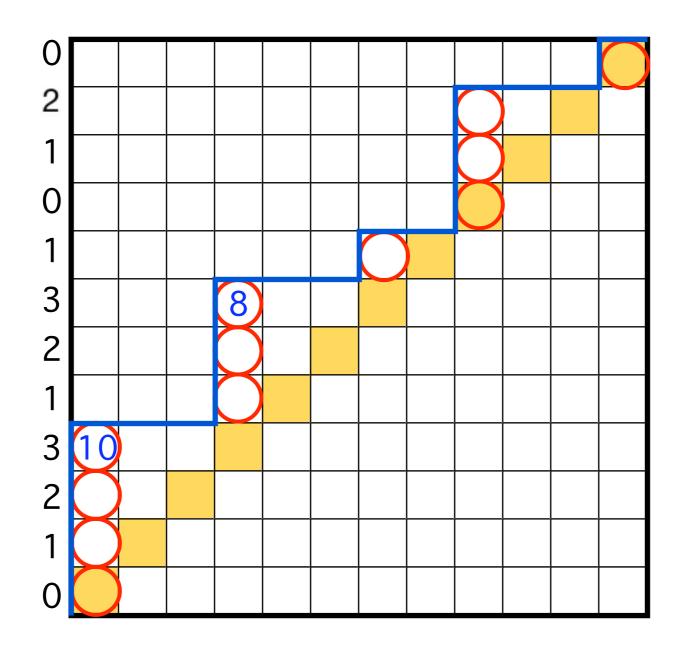


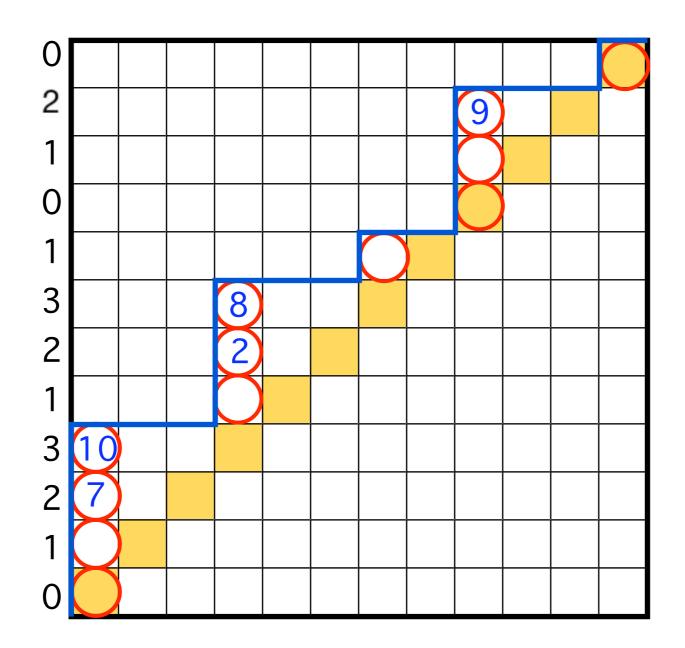


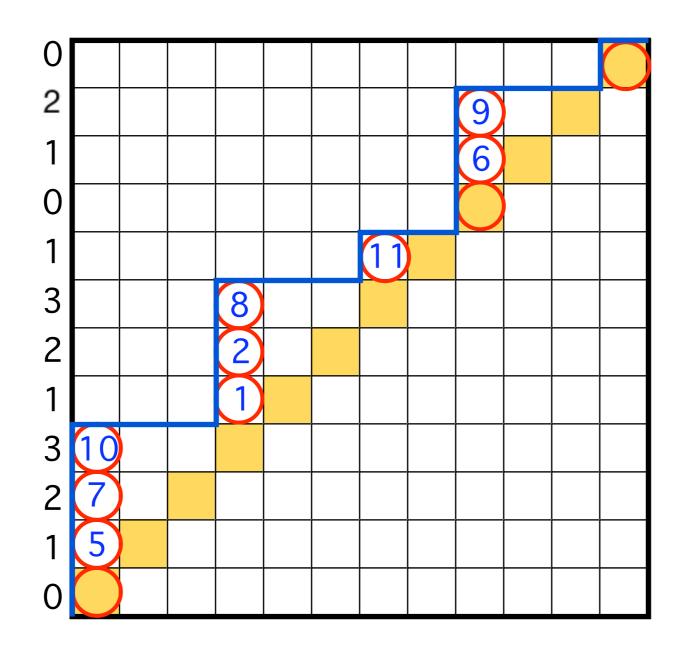


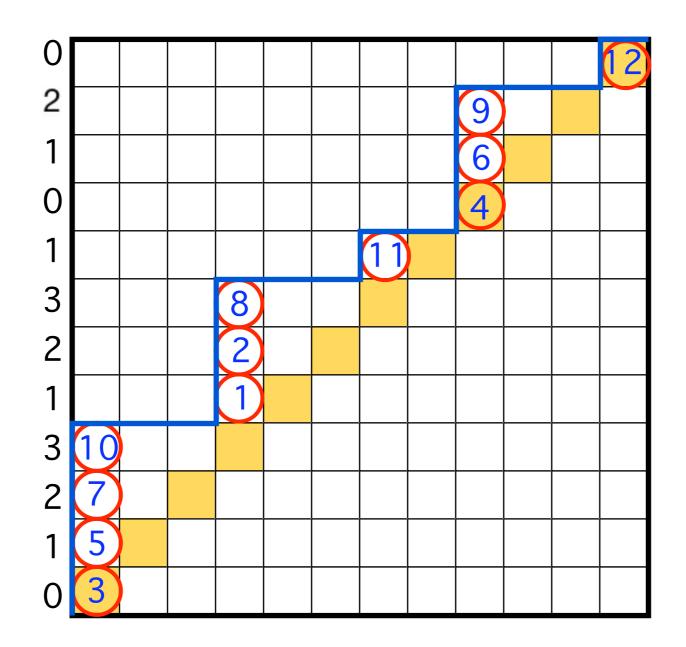


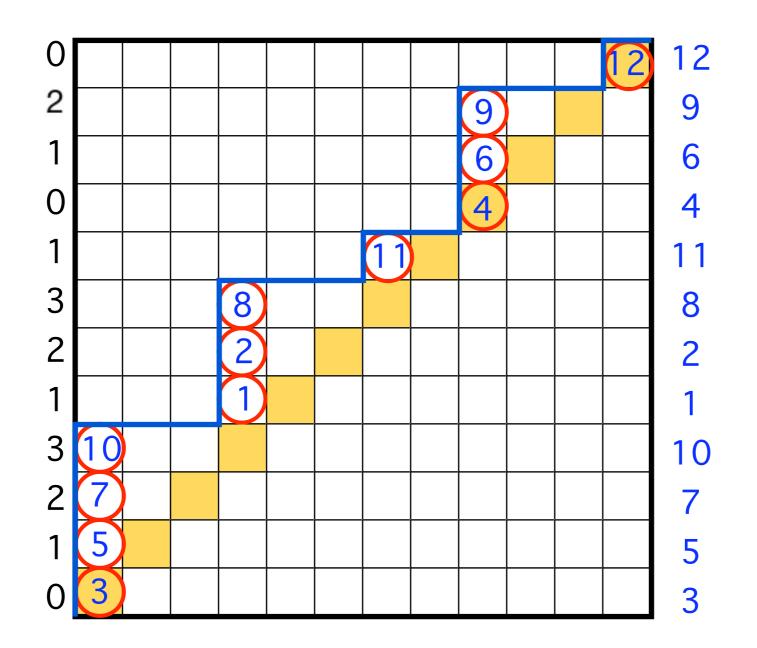


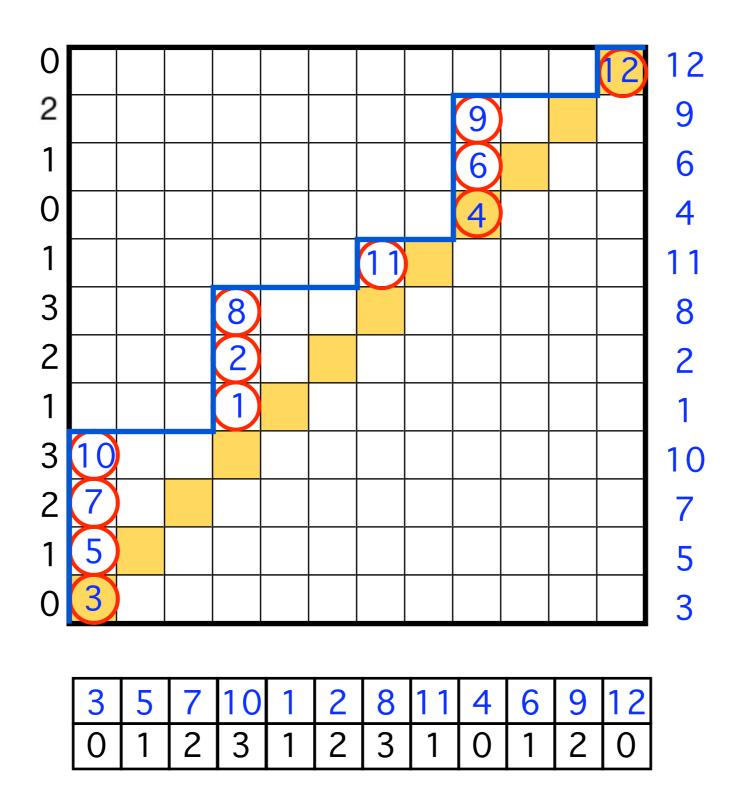


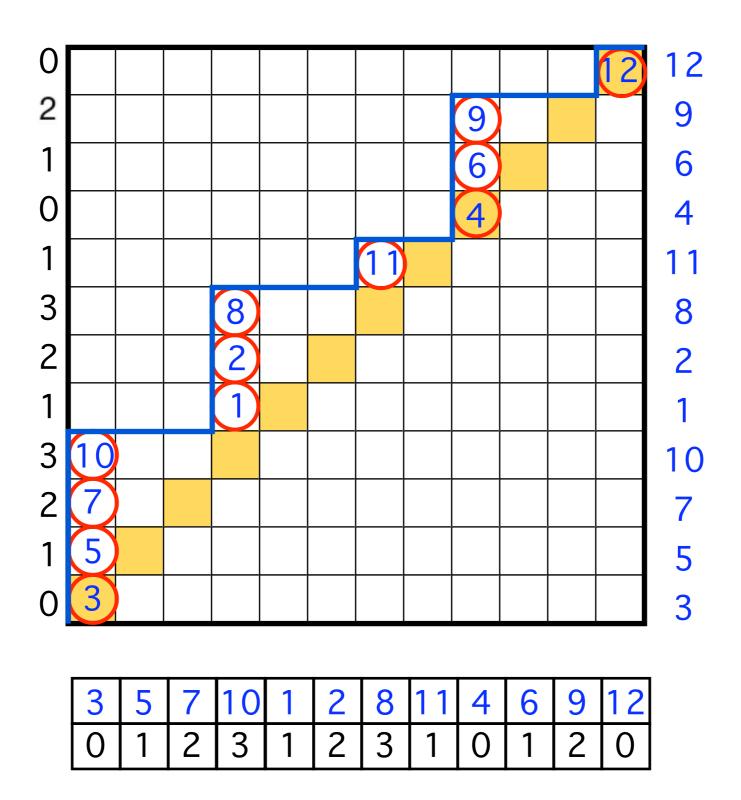






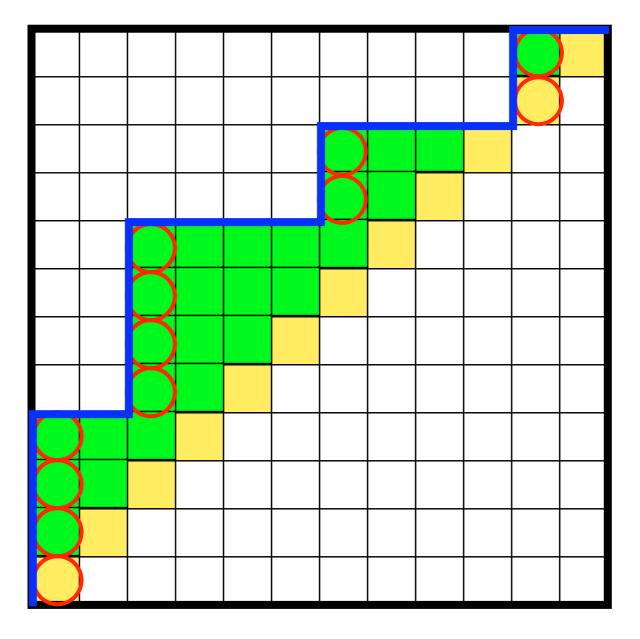




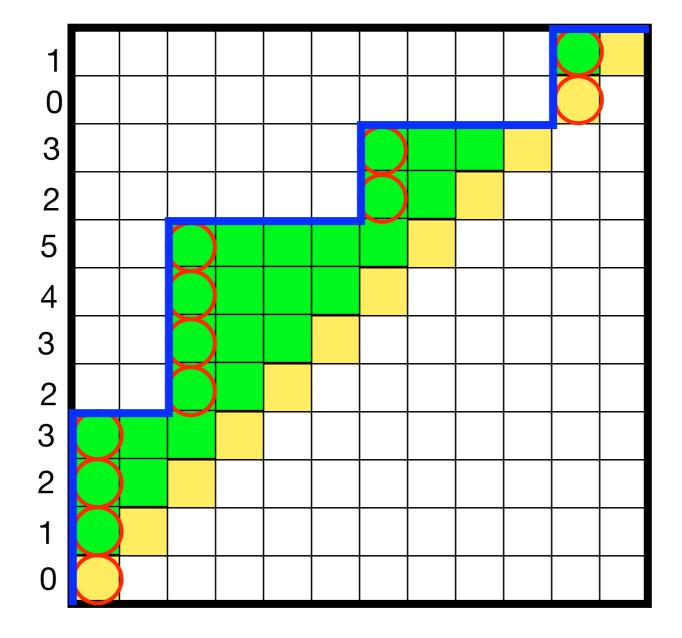


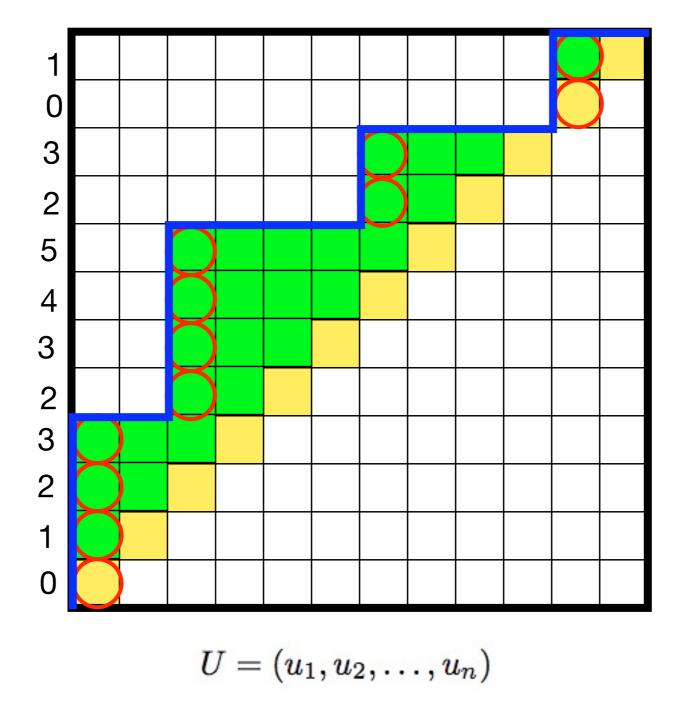
The Area of a Parking Function

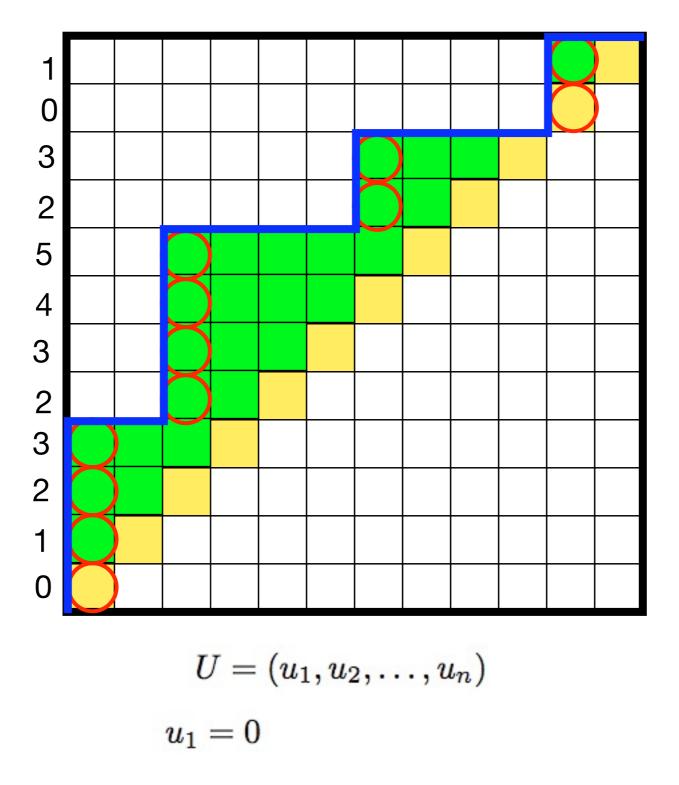
The Area of a Parking Function

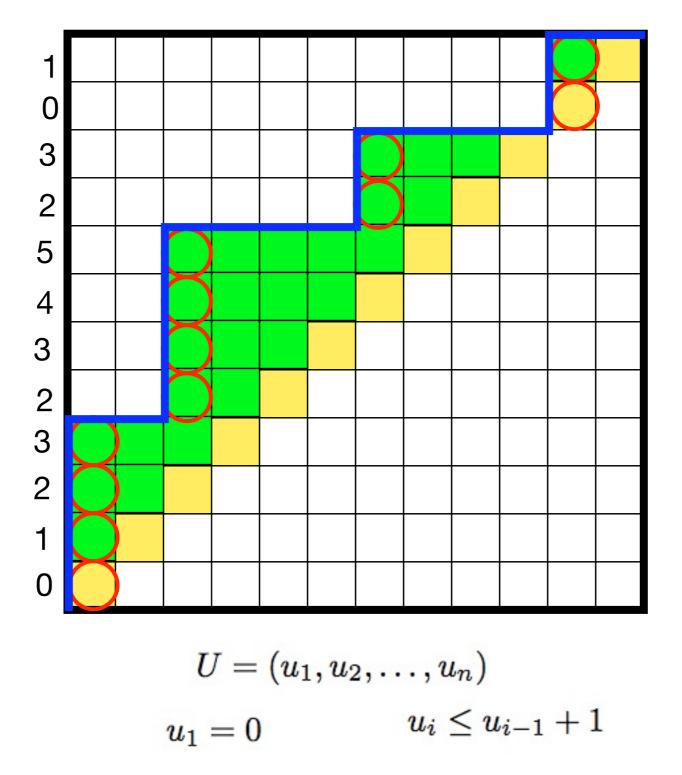


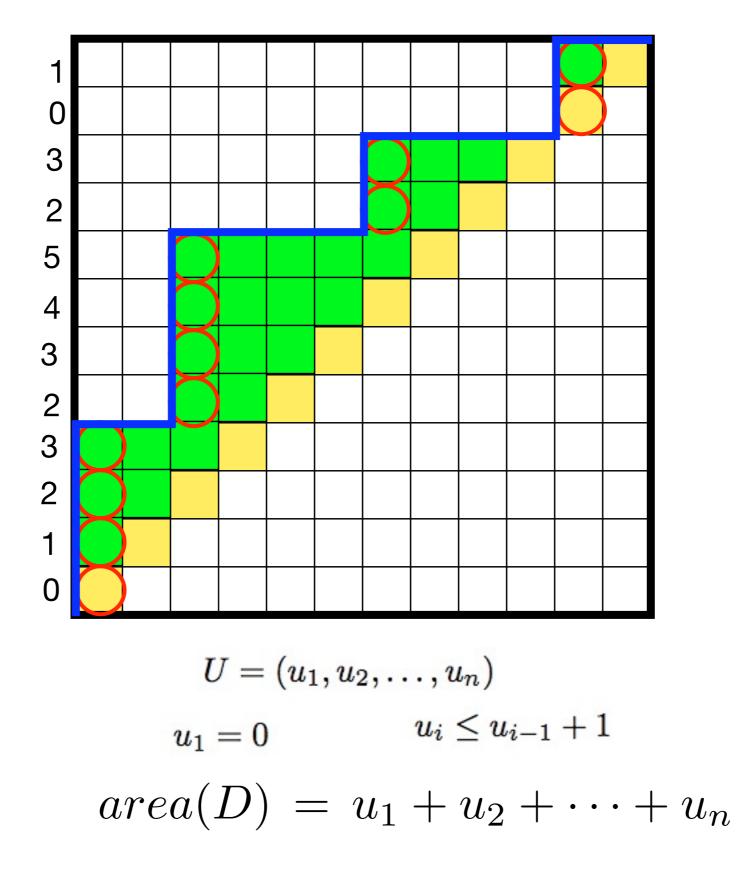
The Area of a Parking Function

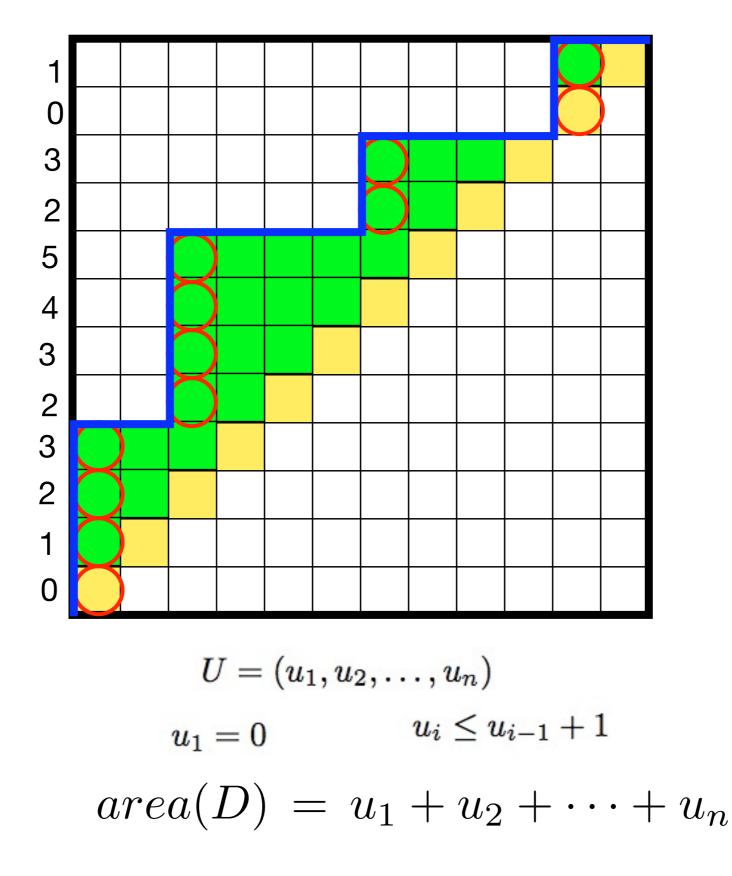


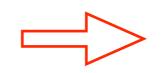




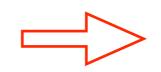






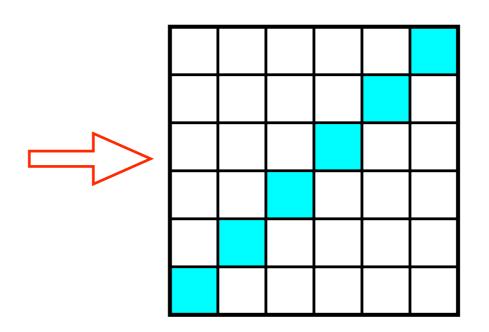


Preference Function Tableau



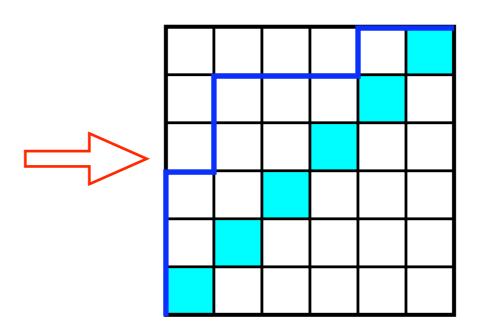
Preference Function

Tableau



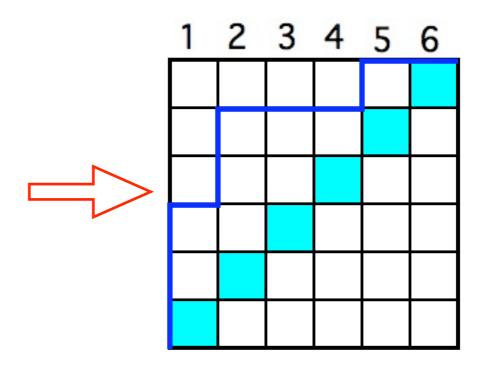
Preference Function

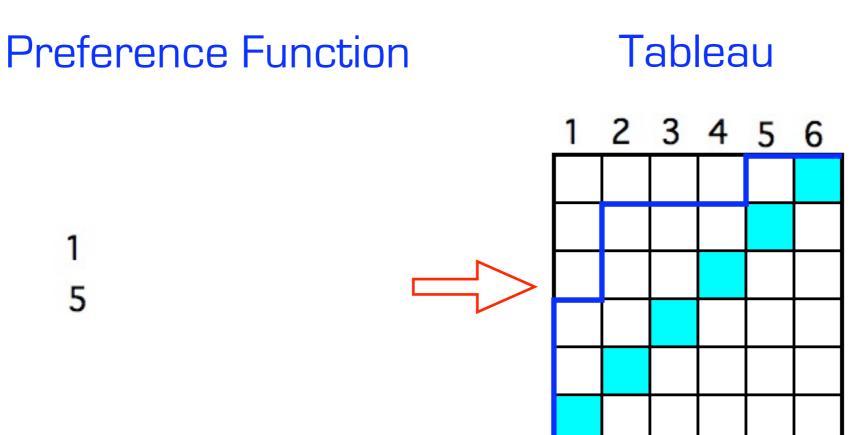
Tableau

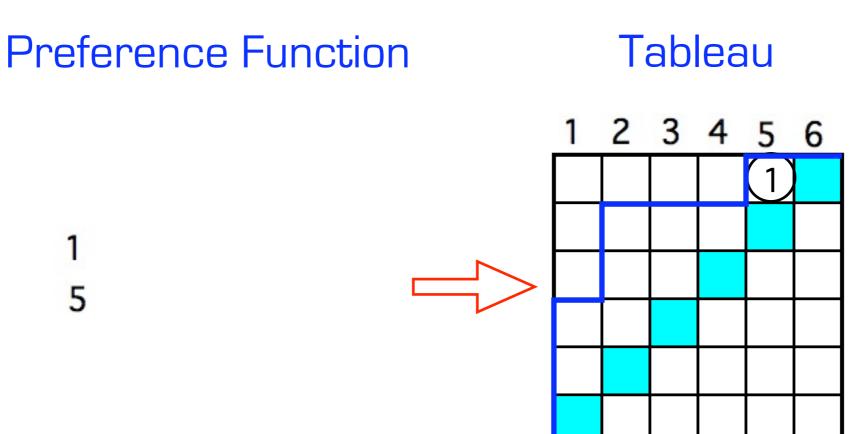


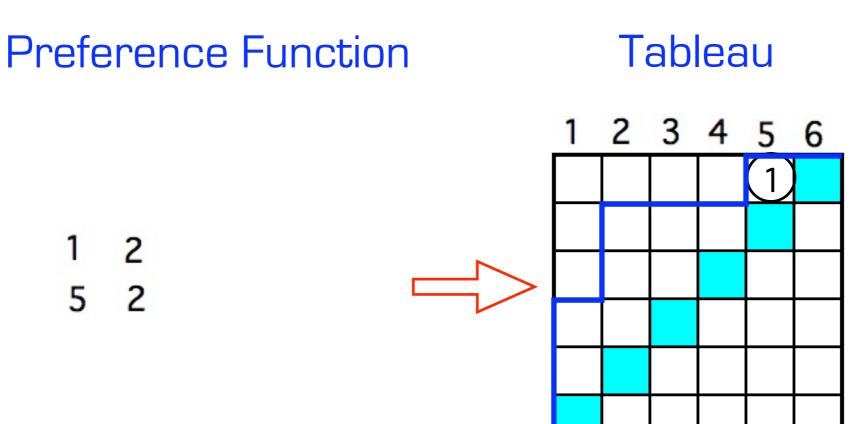
Preference Function

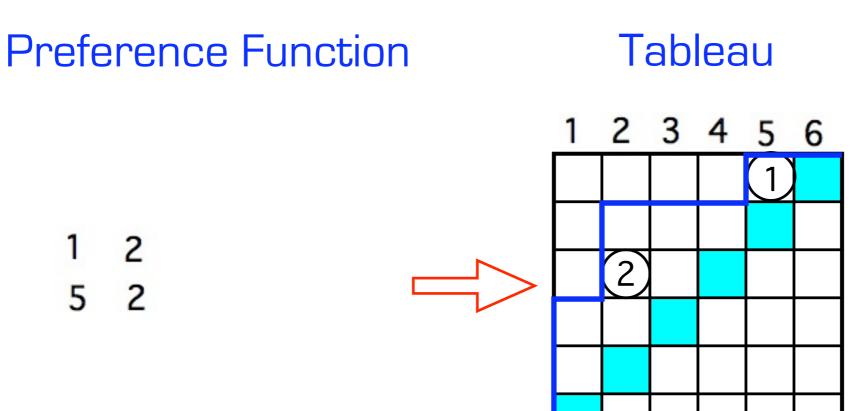
Tableau







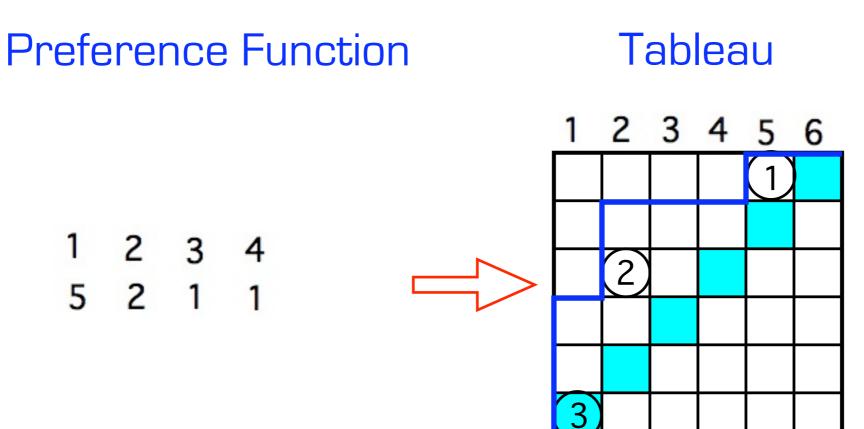


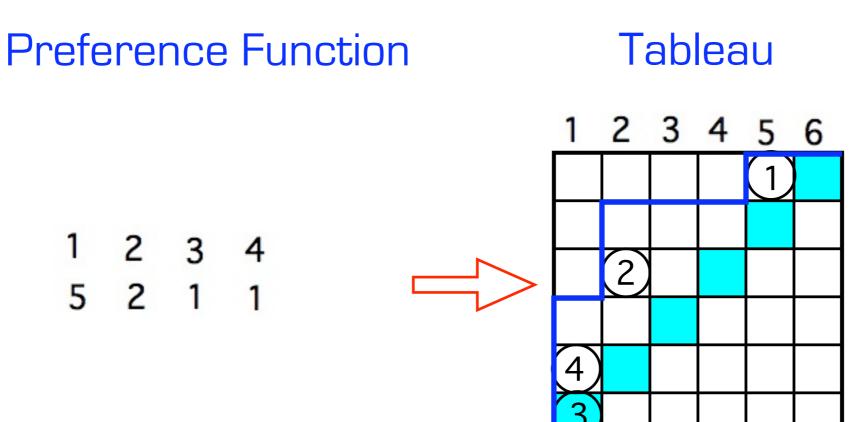


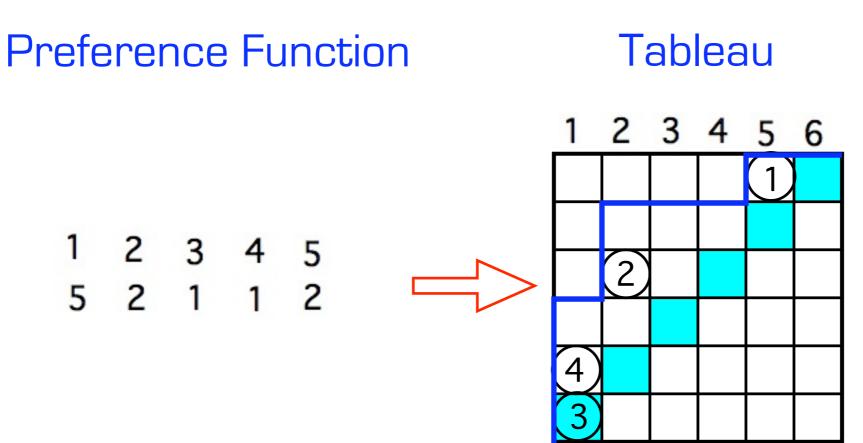
Preference Function Tableau 1 2 3 4 5 6 1 2 3 4 5 6 2 1 2 1 2 1 1 2 3 4 5 6 2 1 2 1 1 2 3 4 5 6 2 1 2 1 1 2 3 4 5 6 2 1 1 2 3 4 5 6 1 2 4 5 6 1 4 5 6 1 4

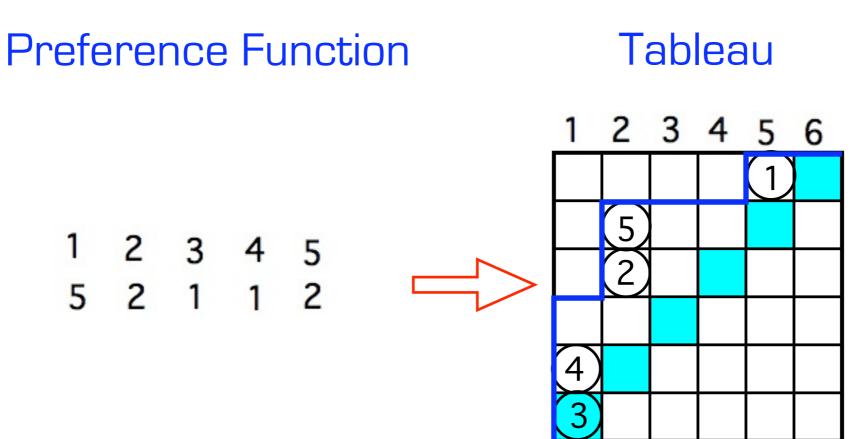
Preference Function Tableau

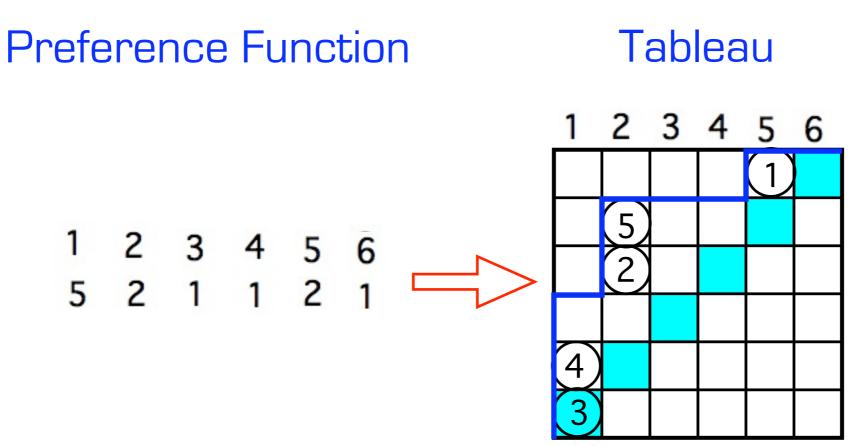
3

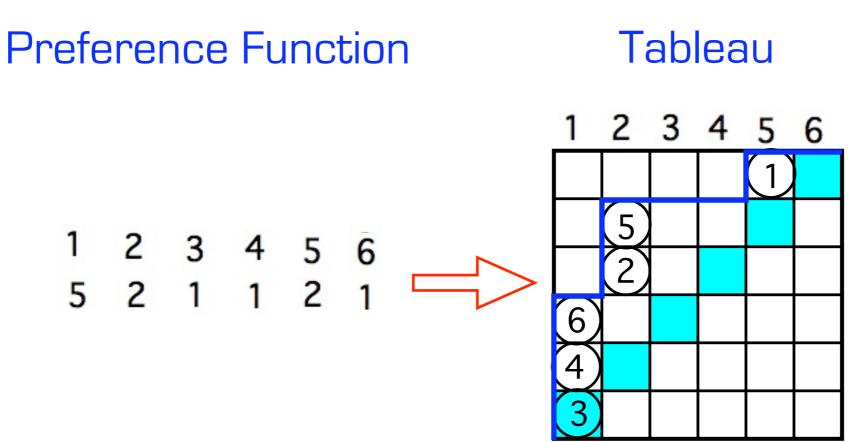


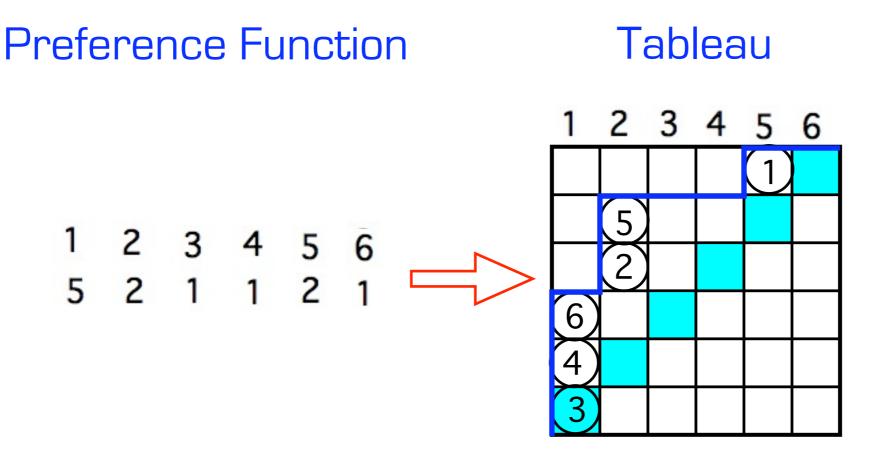


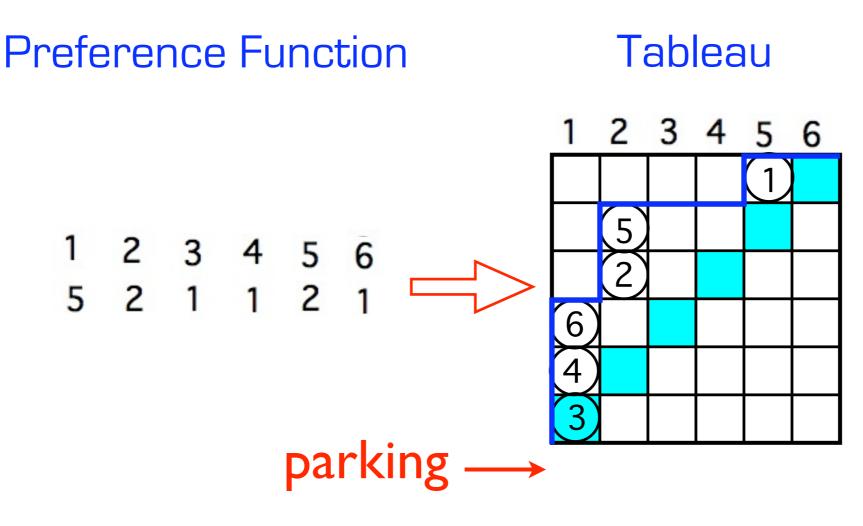


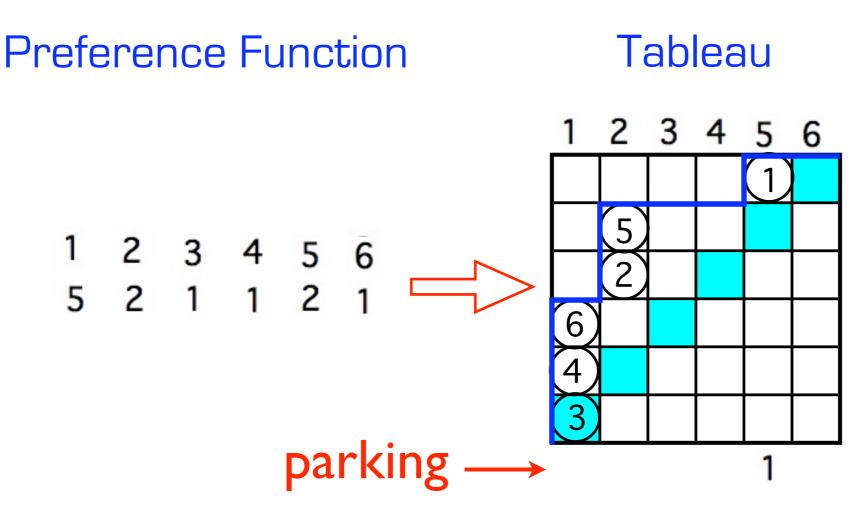


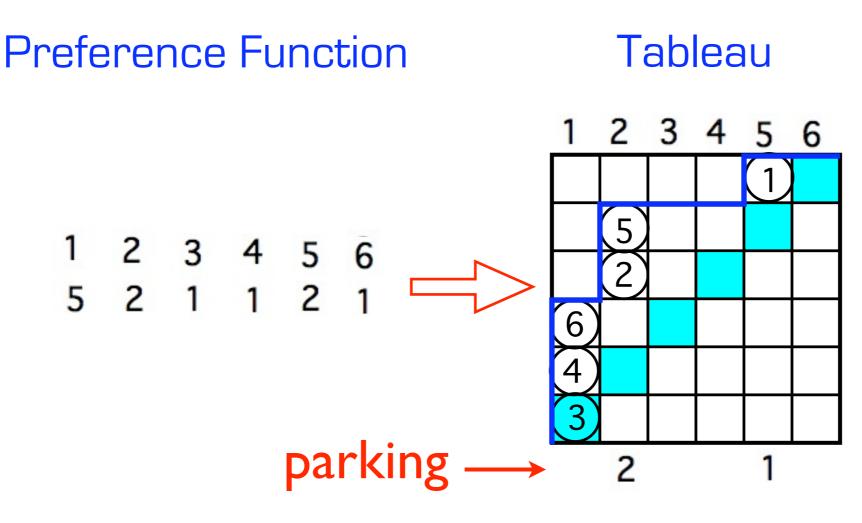


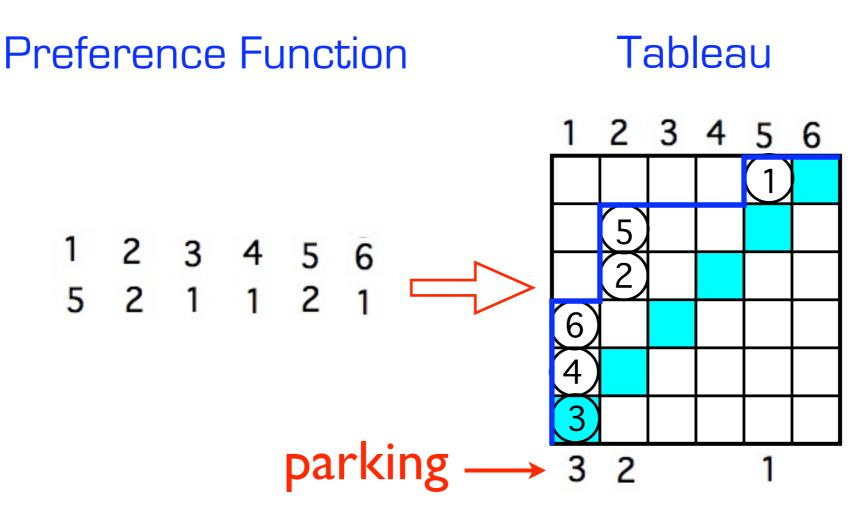


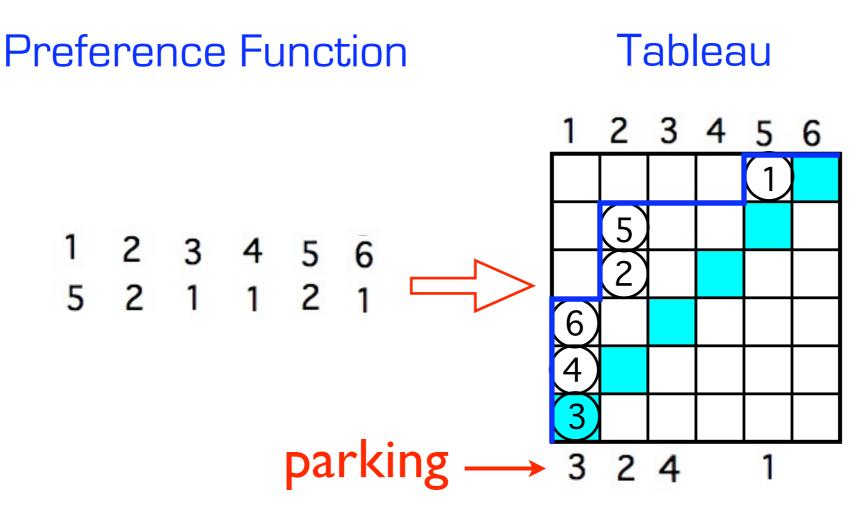


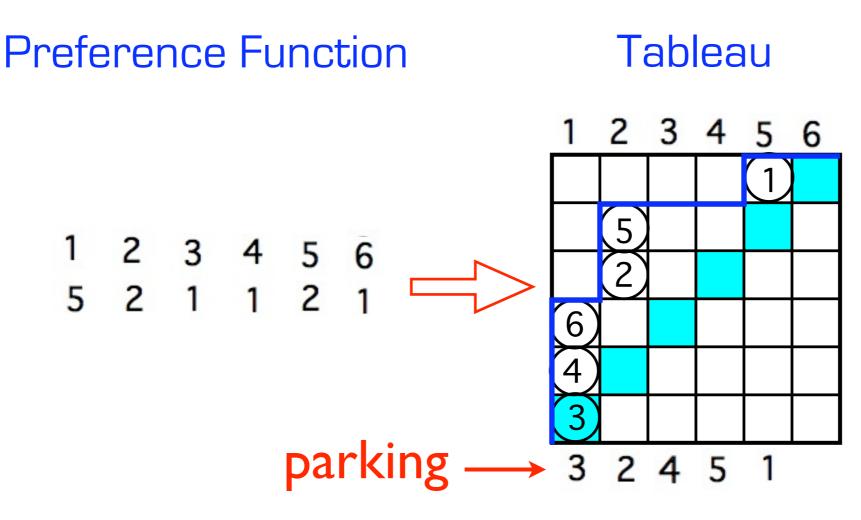




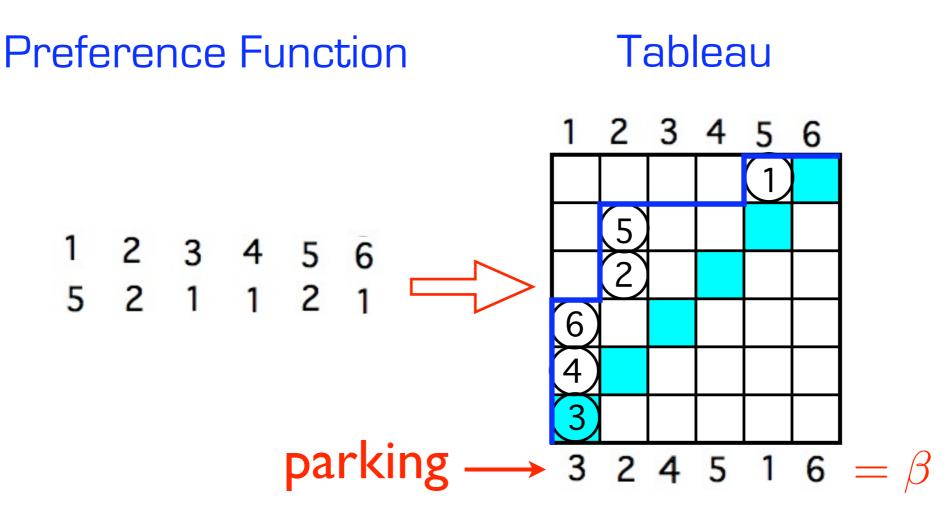


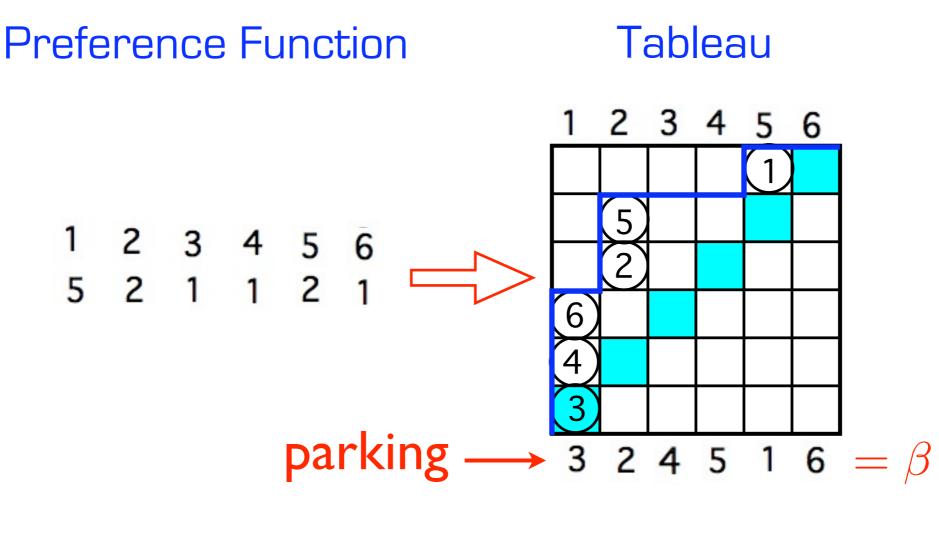






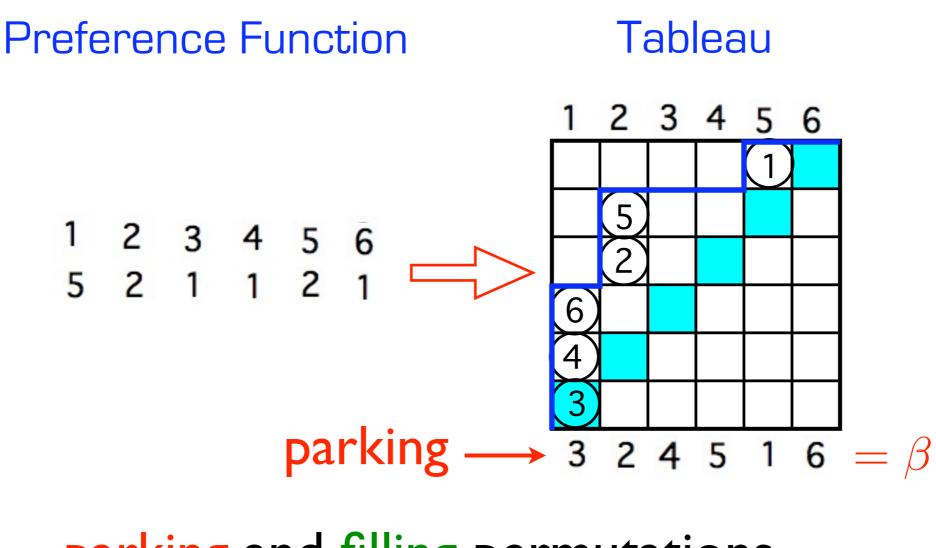






parking and filling permutations

filling →



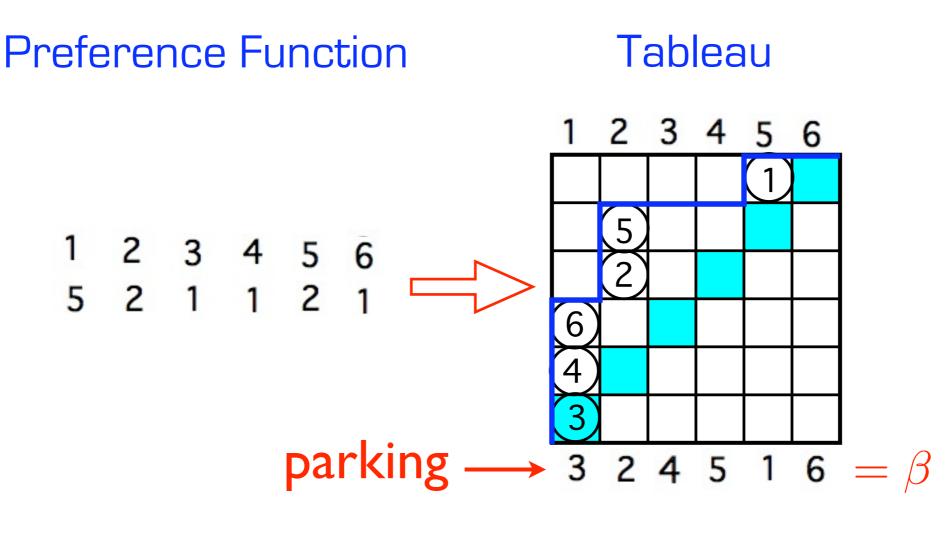
parking and filling permutations

filling $\longrightarrow 5$



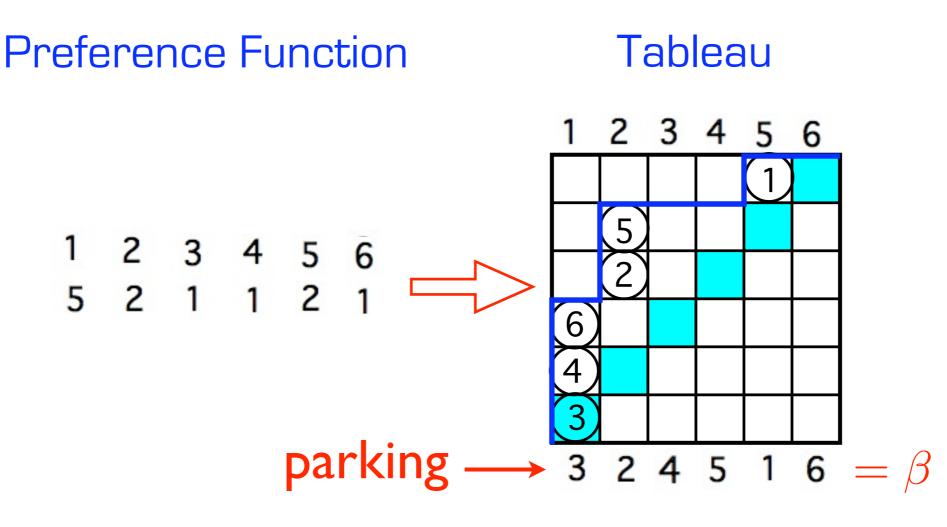
parking and filling permutations

filling \rightarrow 5 2



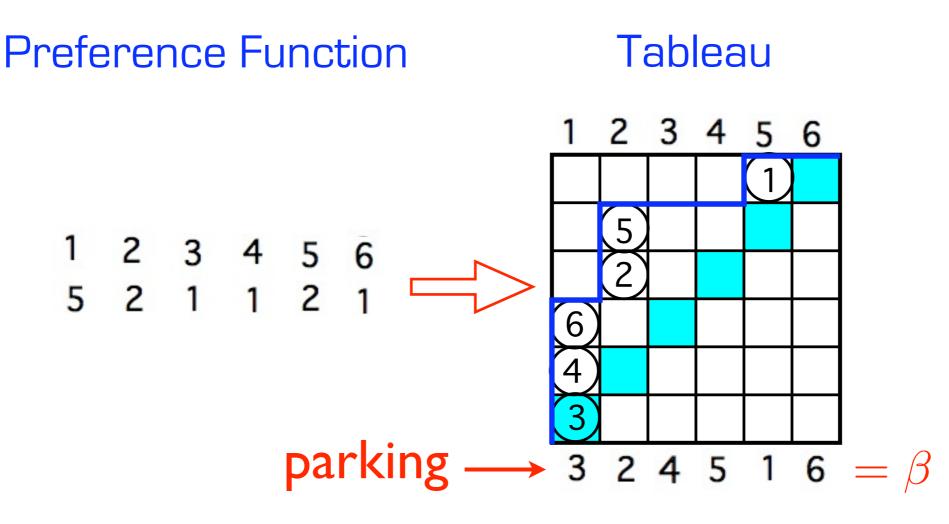
parking and filling permutations

filling \rightarrow 5 2 1



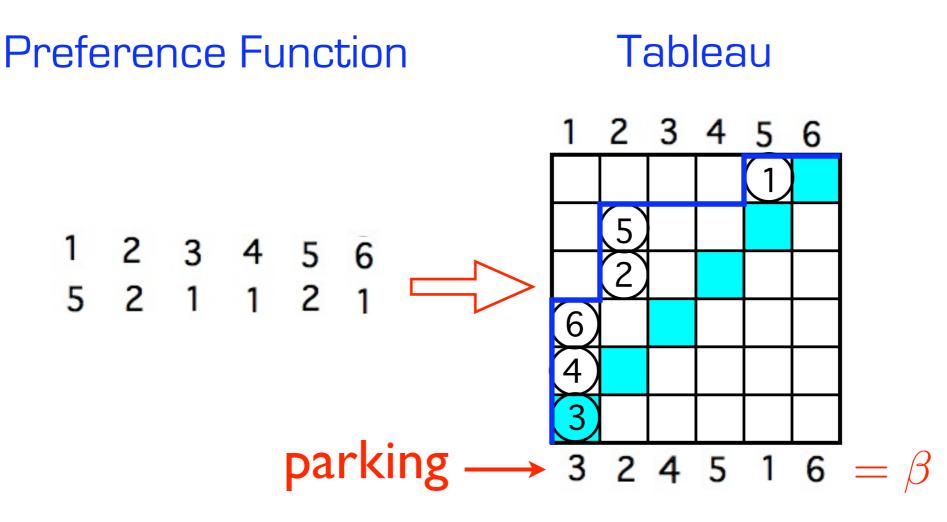
parking and filling permutations

filling \rightarrow 5 2 1 3



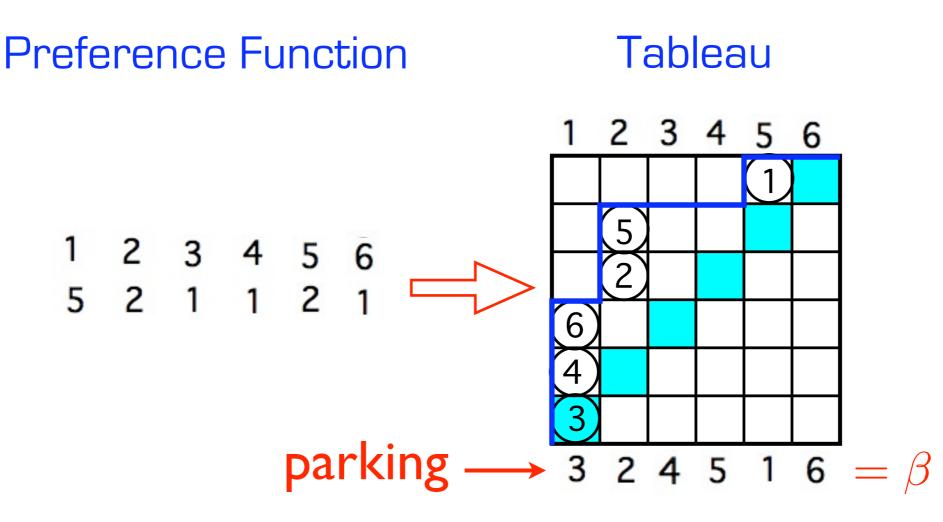
parking and filling permutations

filling \rightarrow 5 2 1 3 4



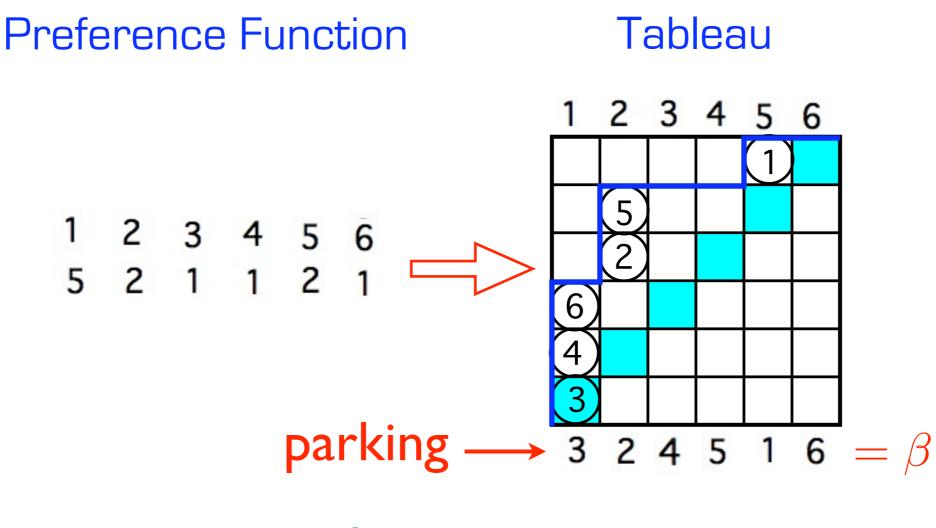
parking and filling permutations

filling \rightarrow 5 2 1 3 4 6



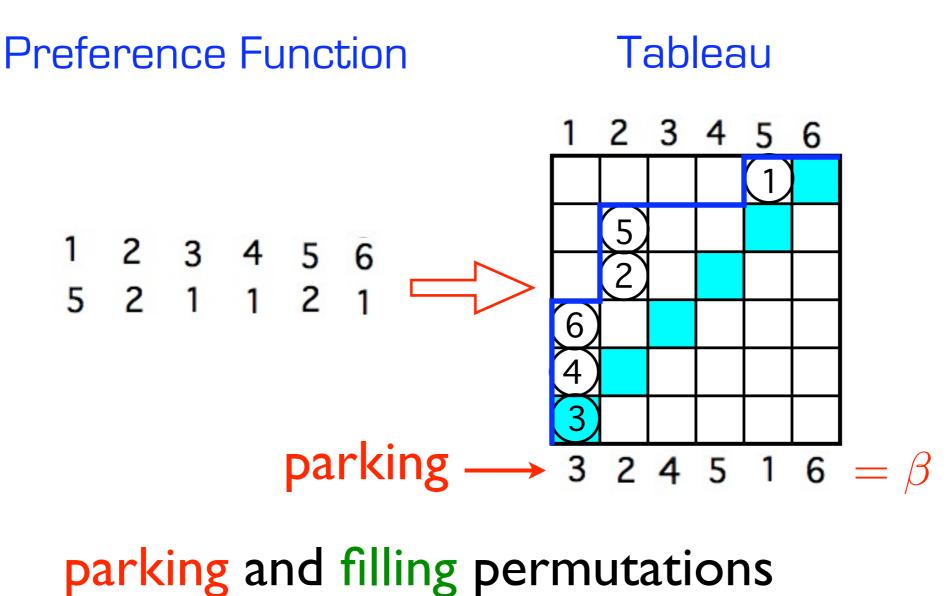
parking and filling permutations

filling \rightarrow 5 2 1 3 4 6 = α

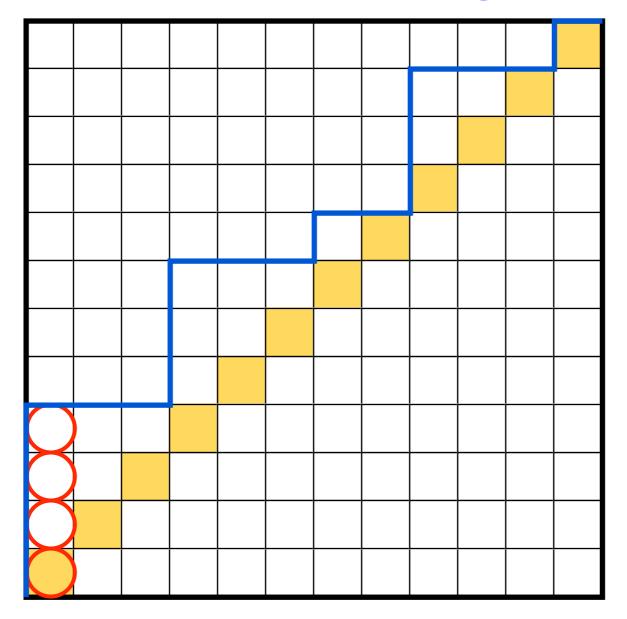


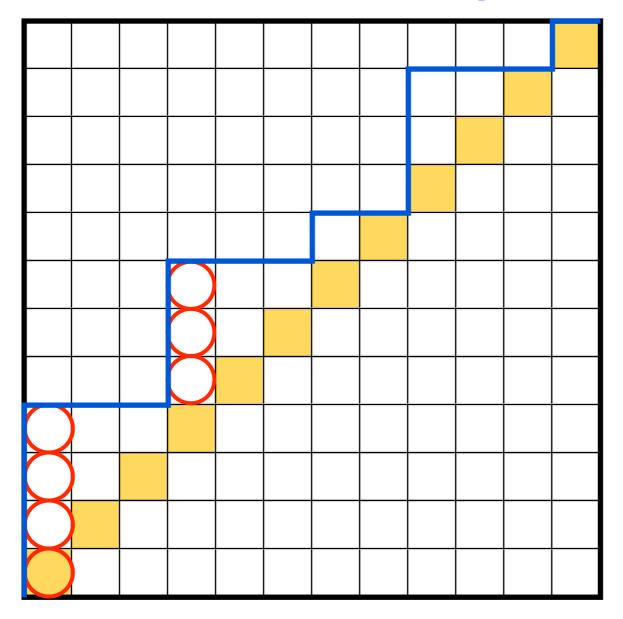
parking and filling permutations

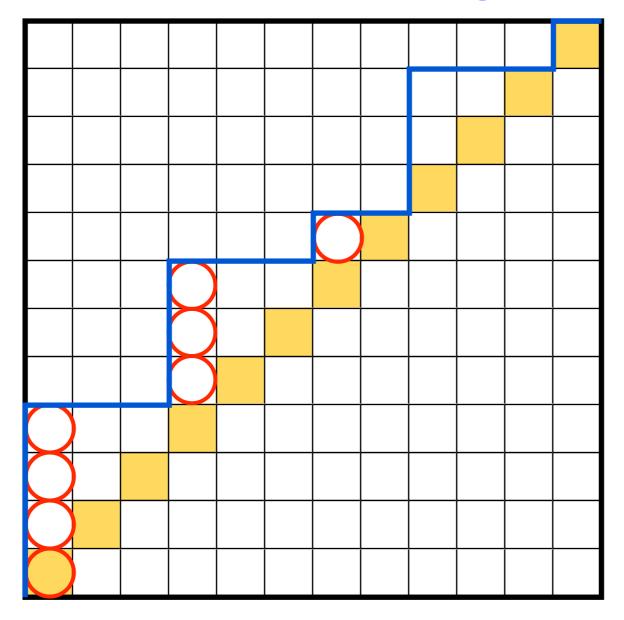
filling
$$\rightarrow$$
 521346 = α
 $\beta = \alpha^{-1}$

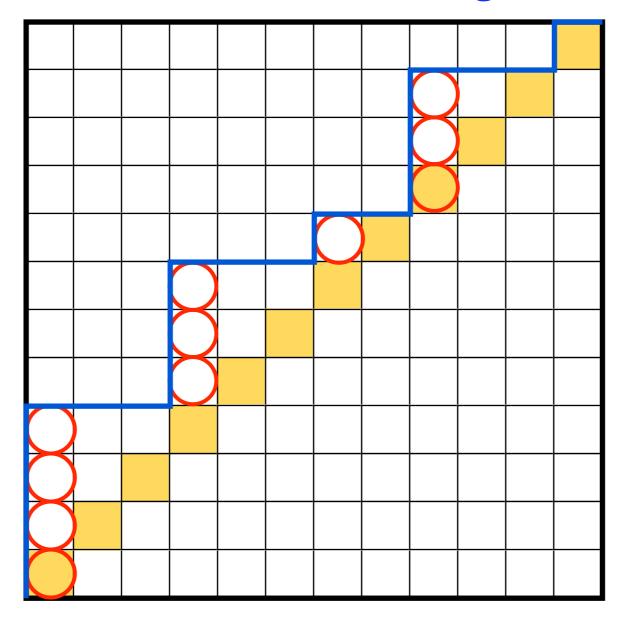


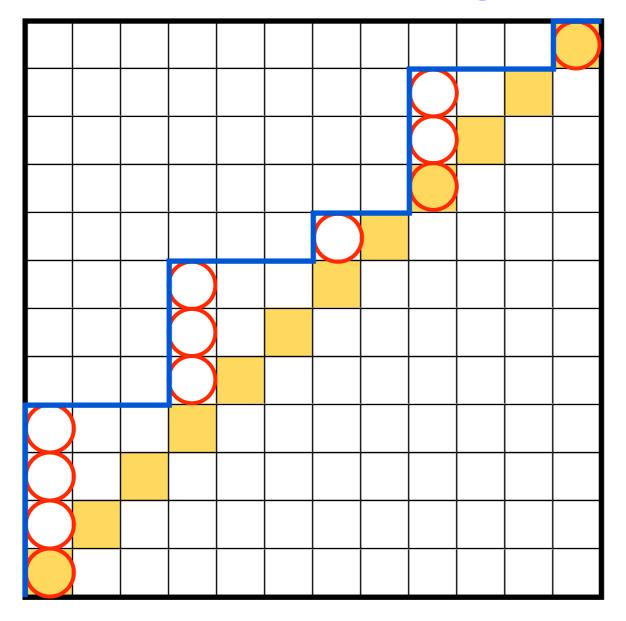
filling \longrightarrow 5 2 1 3 4 6 = α $\beta = \alpha^{-1}$

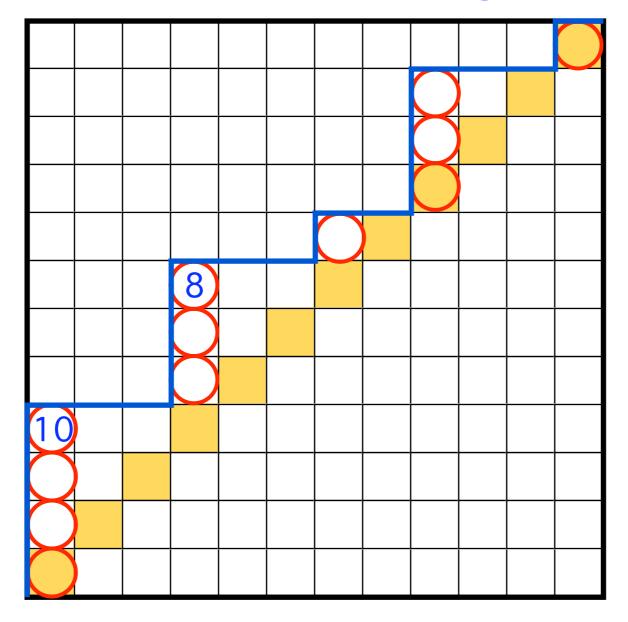


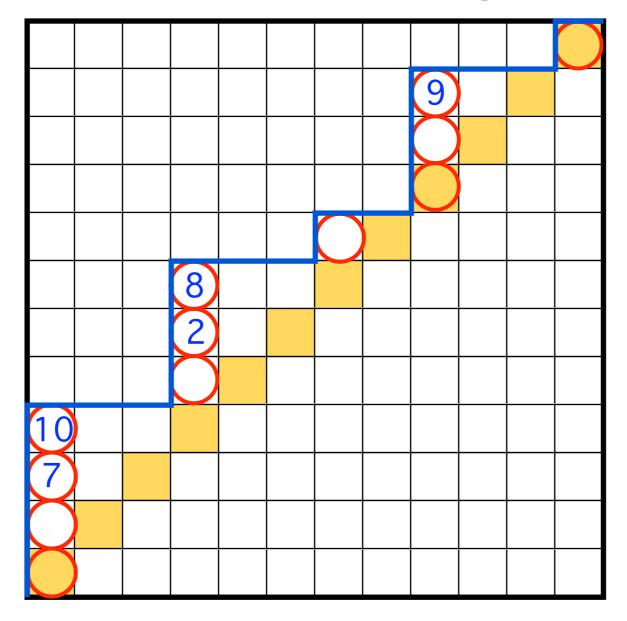


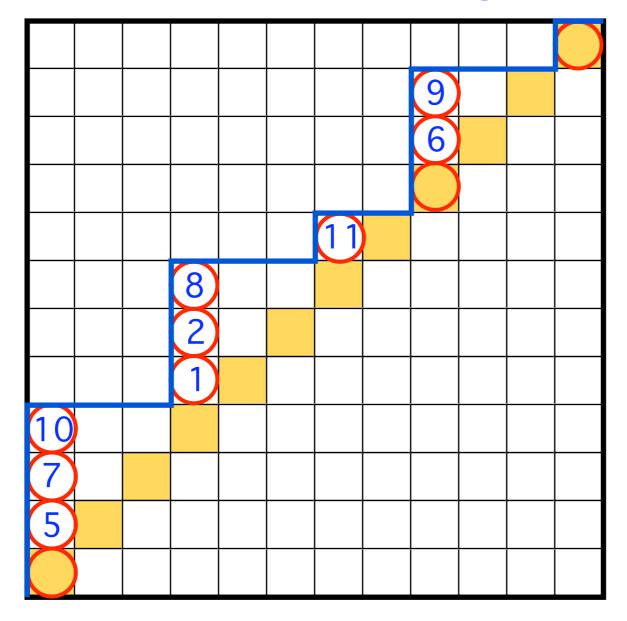


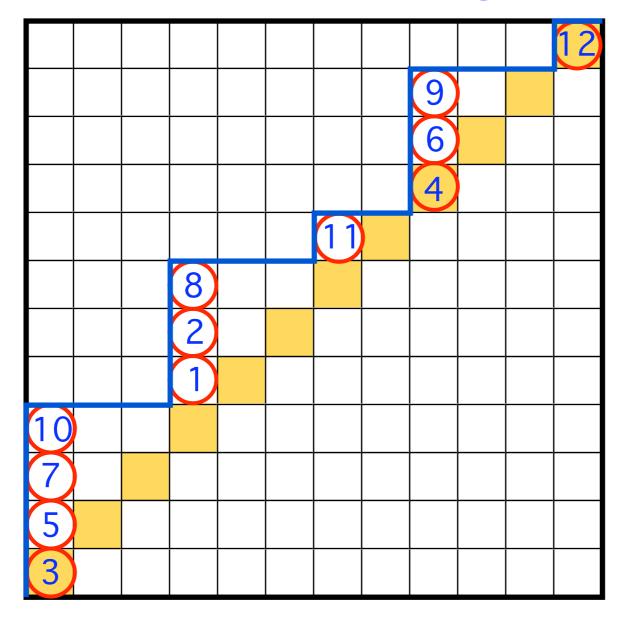


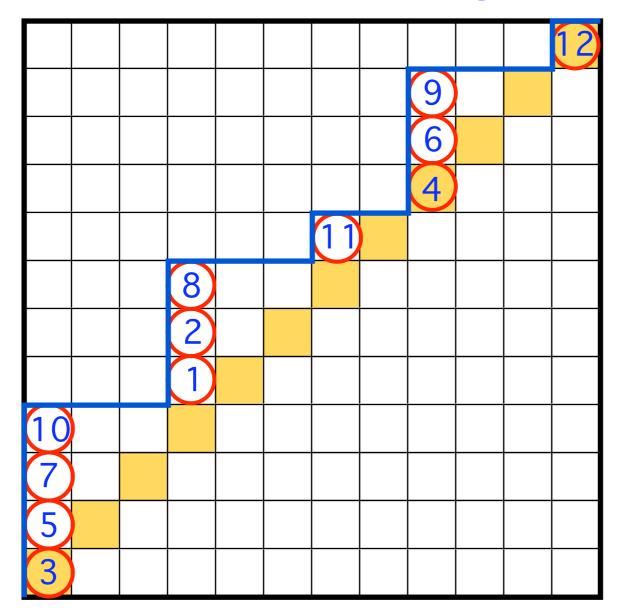




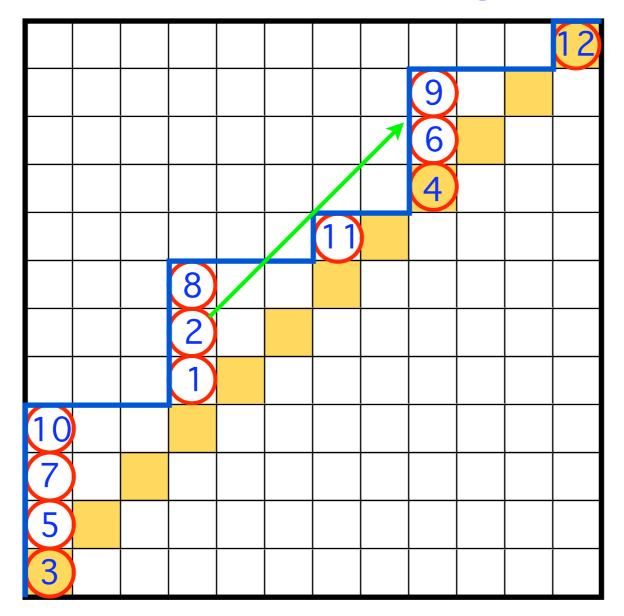




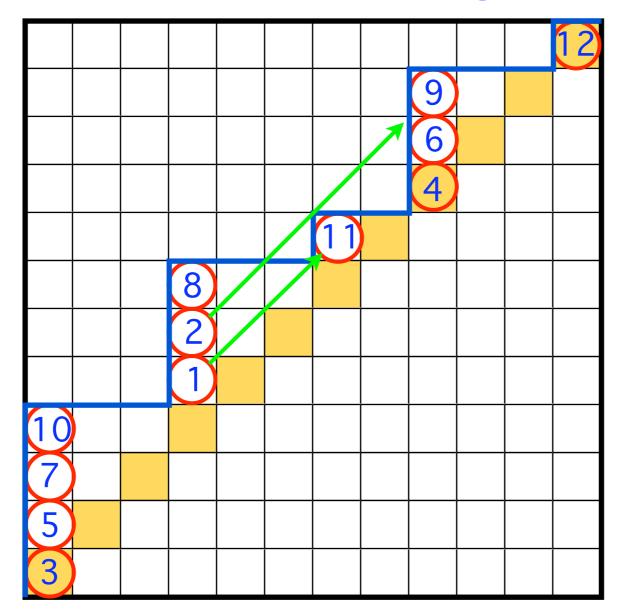




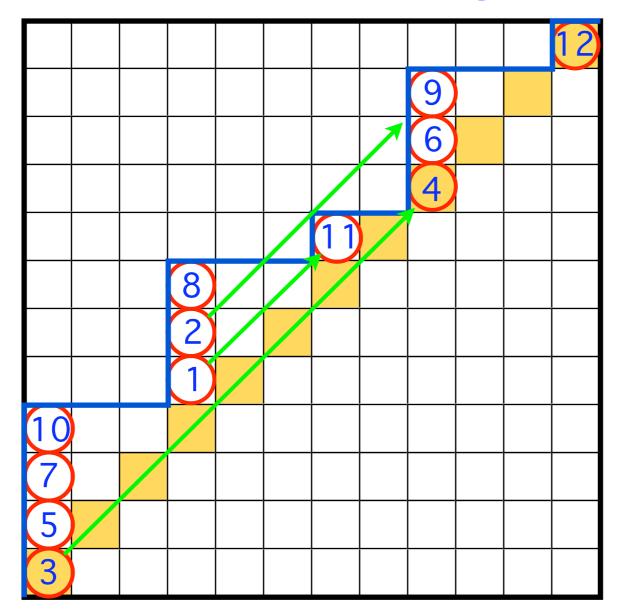
$$area(PF) = 16$$

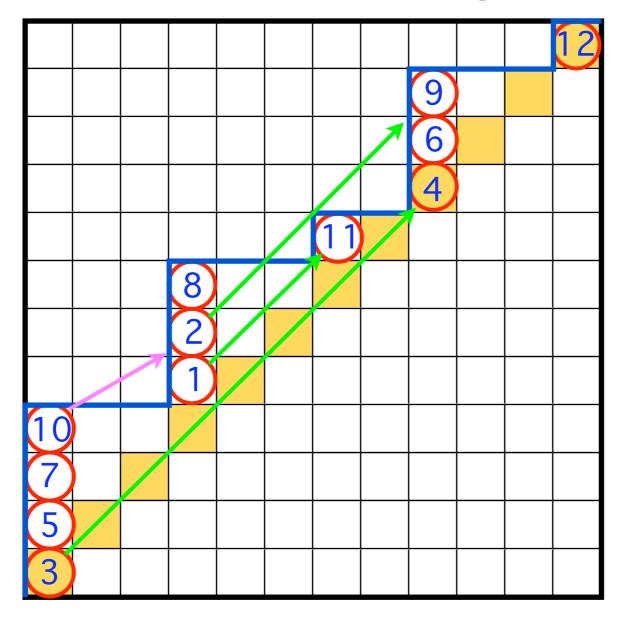


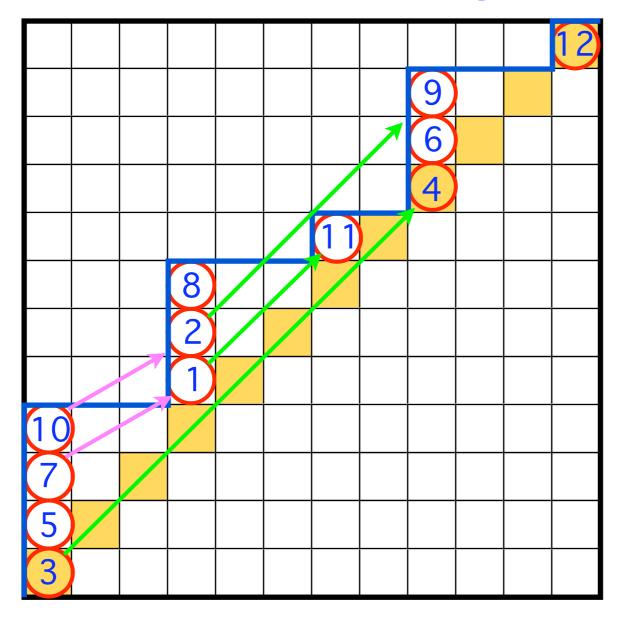
$$area(PF) = 16$$

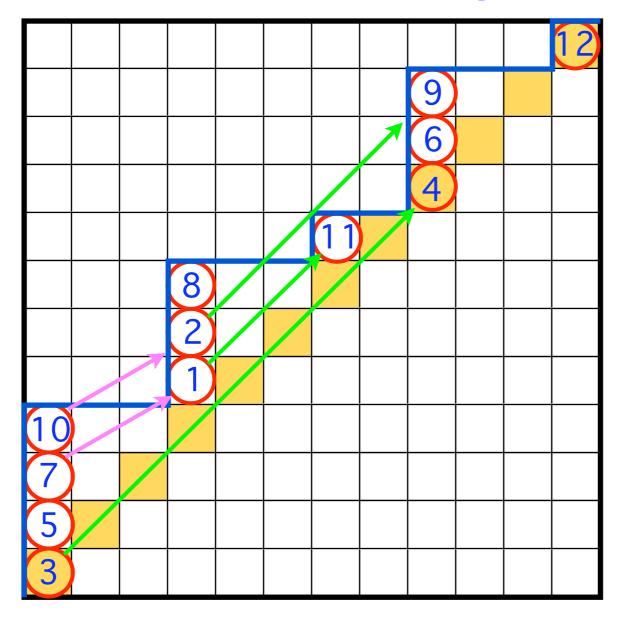


$$area(PF) = 16$$



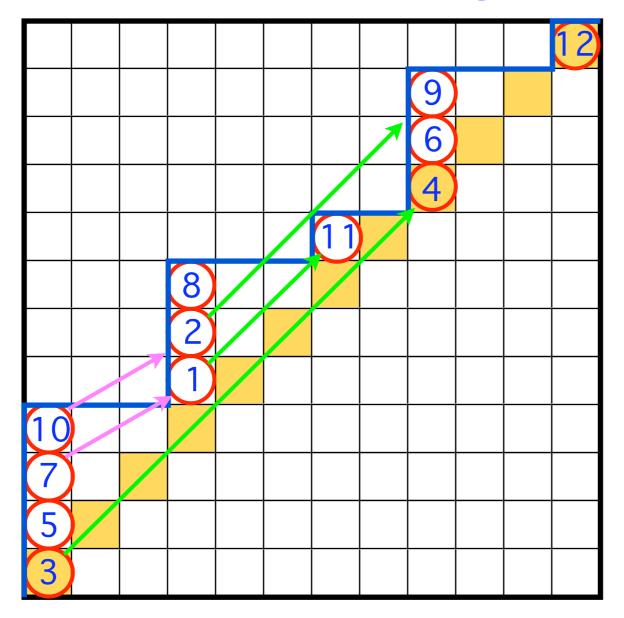






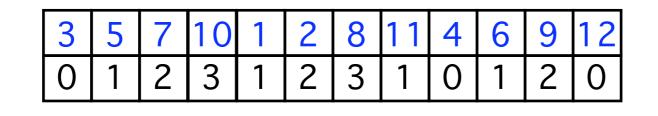
$$area(PF) = 16$$

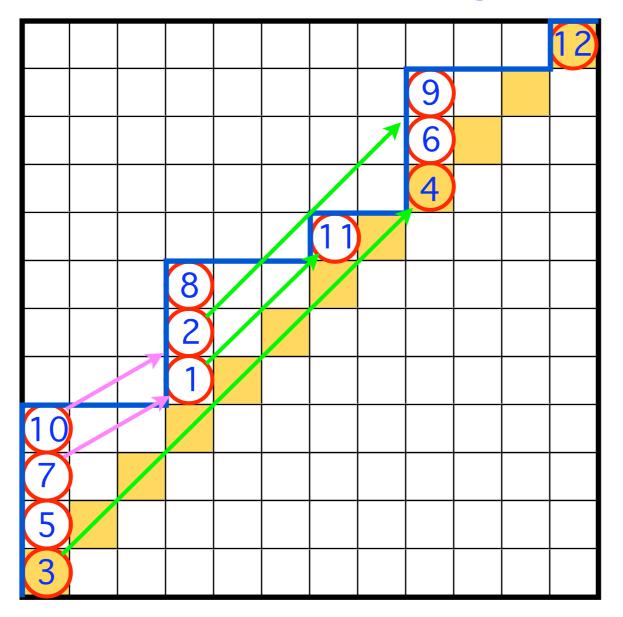
$$dinv(PF) = 15$$



$$area(PF) = 16$$

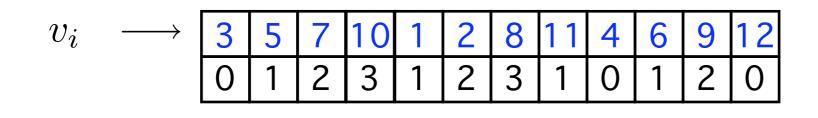
$$dinv(PF) = 15$$

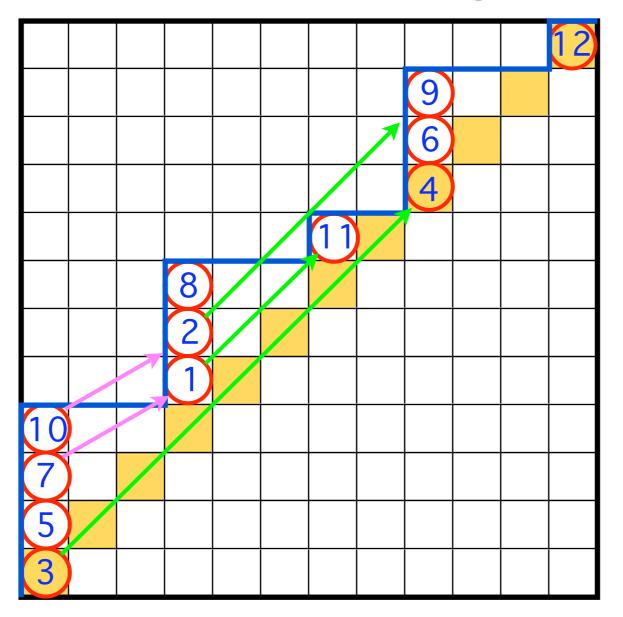




$$area(PF) = 16$$

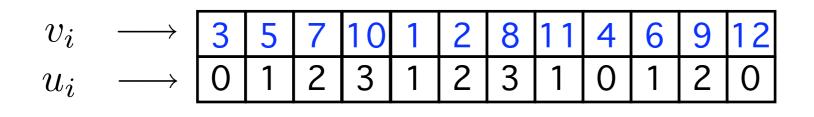
$$dinv(PF) = 15$$

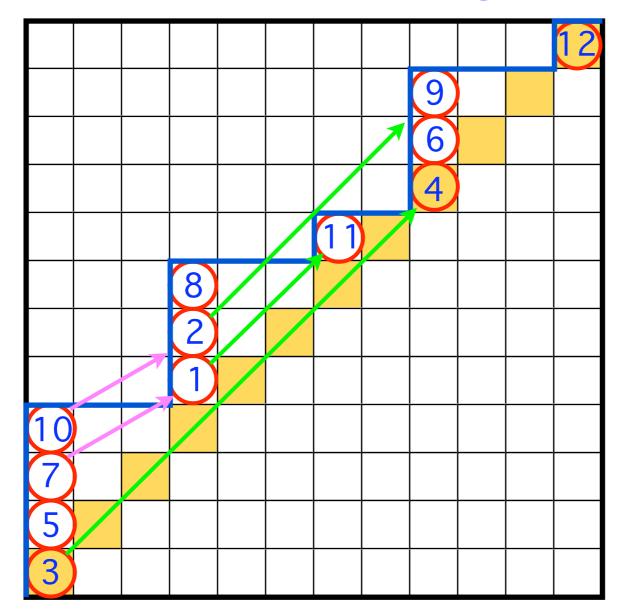




$$area(PF) = 16$$

$$dinv(PF) = 15$$

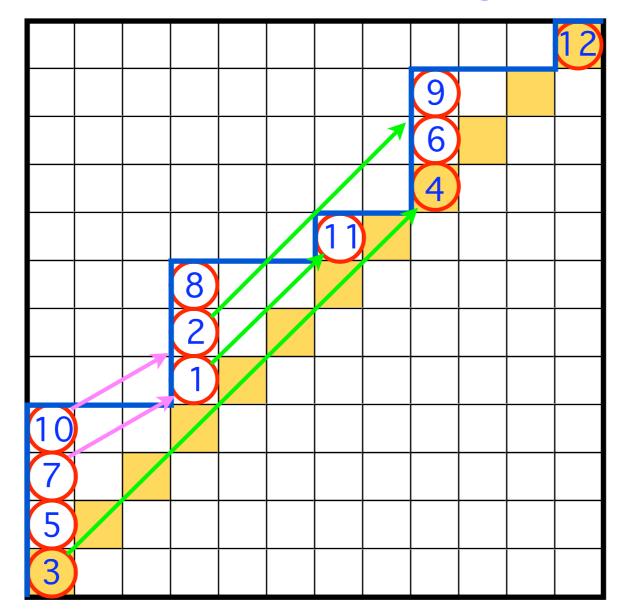




$$area(PF) = 16$$

$$dinv(PF) = 15$$

$$dinv(PF) = \sum_{1 \le i < j \le n} \left(\chi (u_i = u_j \& v_i < v_j) + \chi (u_i = u_j + 1 \& v_i > v_j) \right)$$



$$area(PF) = 16$$

$$dinv(PF) = 15$$

$$dinv(PF) \;\;=\;\; \sum_{1 \leq i < j \leq n} \Big(\chi ig(u_i = u_j \ \& \ v_i < v_j ig) + \chi ig(u_i = u_j + 1 \ \& \ v_i > v_j ig) \Big)$$

The Haglund-Loehr Conjecture (2002)

The Haglund-Loehr Conjecture (2002)

The Hilbert series of Diagonal Harmonics

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area}(\mathbf{PF})} \mathbf{q^{dinv}(\mathbf{PF})}$$

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area(PF)}} \mathbf{q^{dinv(PF)}}$$

1			
2	1		
2	3	1	
1	2	2	1

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area(PF)}} \mathbf{q^{dinv(PF)}}$$

1 2 1 2 3 1 1 2 2 1

mkallpark(3);

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area}(\mathbf{PF})} \mathbf{q^{dinv}(\mathbf{PF})}$$

mkallpark(3);

$$\begin{bmatrix} & & & 3 \\ & & 2 \\ & & & 1 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 3 \\ & & & 1 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 1 \\ & & & 3 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 1 \\ & & & 1 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 1 \\ & & & 1 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 1 \\ & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & 3 & o \\ & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 3 & o \\ & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 3 & o \\ & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 3 & o \\ & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & 3 & o \\ & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & & 3 & o \\ & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & & 3 & o \\ & & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & & & & 3 \\ & & & & 2 \\ & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & & & & 3 \\ & & & & & 2 \\ & & & & & 1 \end{bmatrix}, \begin{bmatrix} & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\$$

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area}(\mathbf{PF})} \mathbf{q^{dinv}(\mathbf{PF})}$$

mkallpark(3);

$$\begin{bmatrix} \cdot & \cdot & 3 \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 3 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 3 \\ \cdot & 1 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 1 & \cdot \\ 3 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ \cdot & 1 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & o \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & o \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 3 & o & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 3 & 0 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 3 & 0 & o \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 &$$

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area}(\mathbf{PF})} \mathbf{q^{dinv}(\mathbf{PF})}$$

mkallpark(3);

stat:=PF->t^area(PF)*q^dinv(PF);

 $stat := PF \mapsto t^{area(PF)} q^{dinv(PF)}$

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area}(\mathbf{PF})} \mathbf{q^{dinv}(\mathbf{PF})}$$

mkallpark(3);

$$\begin{bmatrix} \cdot & \cdot & 3 \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 3 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 3 \\ \cdot & 1 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 1 & \cdot \\ 3 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ \cdot & 1 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ 3 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & o \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & o \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 3 & o & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 3 & 0 & o \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0 &$$

stat:=PF->t^area(PF)*q^dinv(PF);

 $stat := PF \mapsto t^{area(PF)} q^{dinv(PF)}$

convert (map (stat, PF3), `+`);; $q^3 + q^2 t + qt^2 + t^3 + 2q^2 + 3qt + 2t^2 + 2q + 2t + 1$

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area}(\mathbf{PF})} \mathbf{q^{dinv}(\mathbf{PF})}$$

mkallpark(3);

$$\begin{bmatrix} \cdot & \cdot & 3 \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 3 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 3 \\ \cdot & 1 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 1 & \cdot \\ 3 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ \cdot & 1 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ 3 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & o \\ 3 & 0 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & o \\ 3 & 0 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 3 & o & o \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 3 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0$$

stat:=PF->t^area(PF)*q^dinv(PF);

 $stat := PF \mapsto t^{area(PF)} q^{dinv(PF)}$

convert(map(stat, PF3), `+`);; $q^3 + q^2 t + qt^2 + t^3 + 2q^2 + 3qt + 2t^2 + 2q + 2t + 1$

1	0	0	0
2	1	0	0
1 2 2 1	3	1	0
1	2	2	1

The Hilbert series of Diagonal Harmonics

$$\mathbf{H_n}(\mathbf{q}, \mathbf{t}) \ = \ \sum_{\mathbf{PF} \in \mathcal{PF_n}} \mathbf{t^{area}(\mathbf{PF})} \mathbf{q^{dinv}(\mathbf{PF})}$$

mkallpark(3);

$$\begin{bmatrix} \cdot & \cdot & 3 \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 3 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 3 \\ \cdot & 1 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 1 & \cdot \\ 3 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ \cdot & 2 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ \cdot & 1 & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ \cdot & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 2 \\ 3 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & \cdot & 1 \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & o \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 3 & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} \cdot & 1 & o \\ 3 & o & \cdot \\ 2 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 3 & o & o \\ 2 & o & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 3 & 0 & o \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & \cdot \\ 1 & \cdot & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & \cdot \\ 0 & 0 &$$

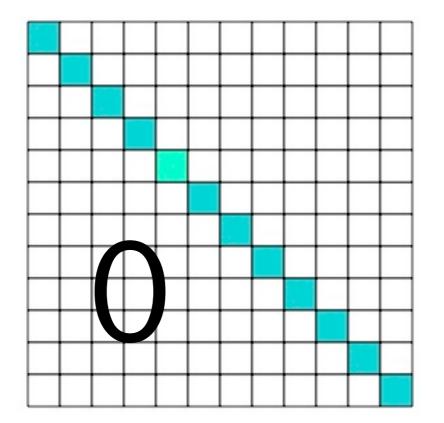
stat:=PF->t^area(PF)*q^dinv(PF);

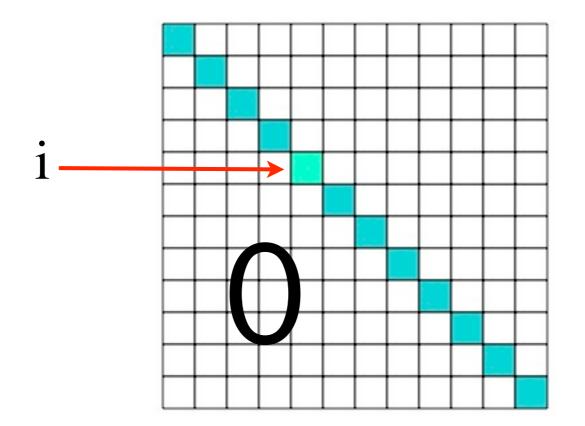
 $stat := PF \mapsto t^{area(PF)} q^{dinv(PF)}$

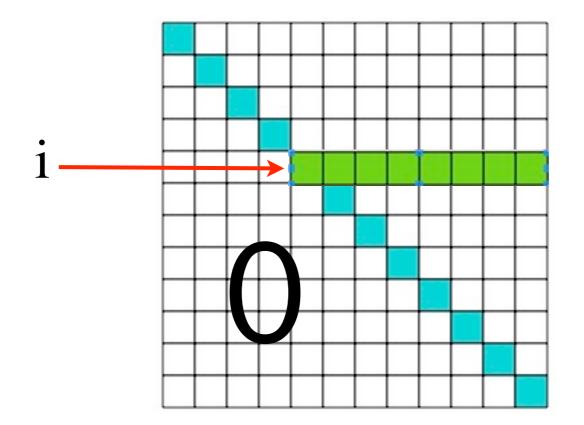
convert(map(stat, PF3), `+`);; $q^{3} + q^{2}t + qt^{2} + t^{3} + 2q^{2} + 3qt + 2t^{2} + 2q + 2t + 1$

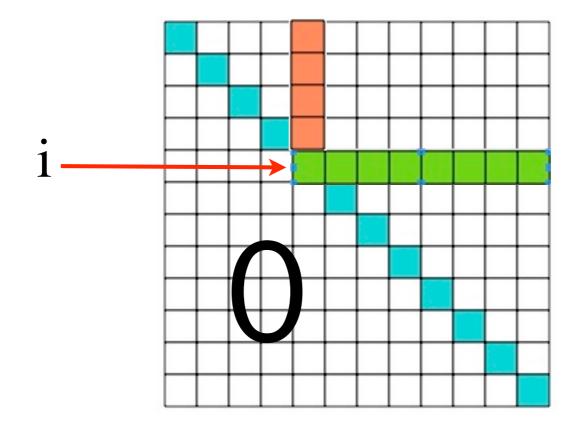
1	0	0	0
2	1	0	0
2	3	1	0
1	2	2	1

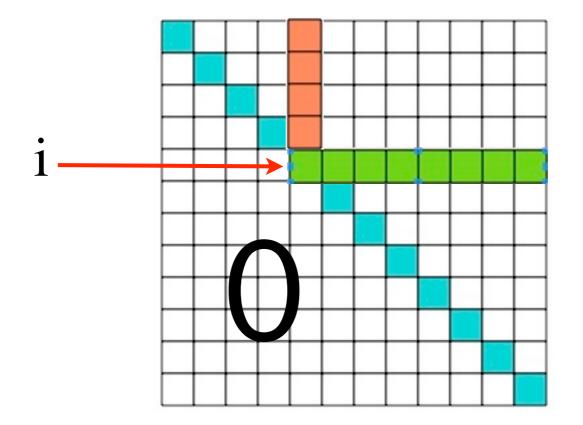
Tesler Matrices with hook weights $y_1, y_2, y_3, \dots, y_n$

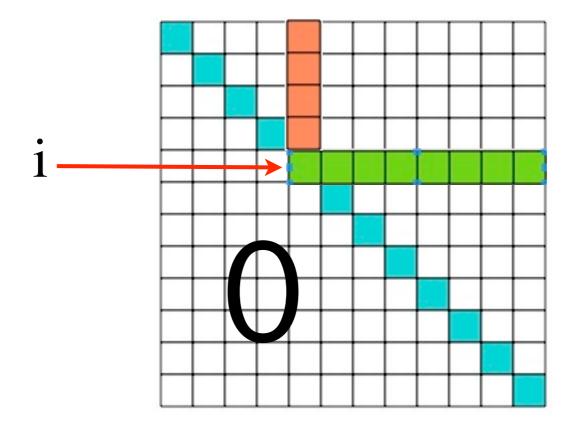


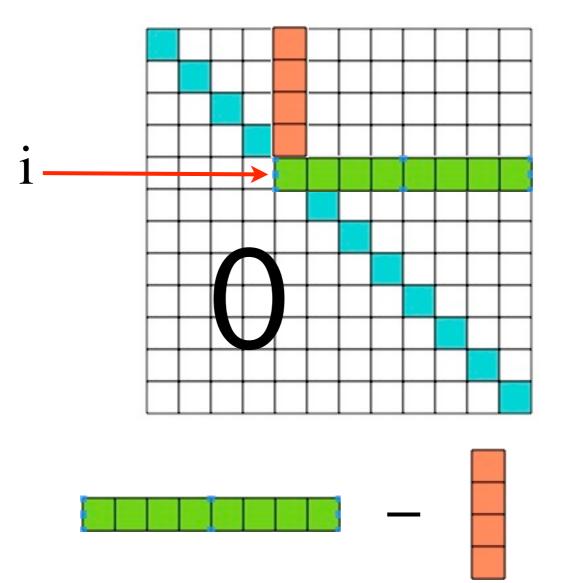


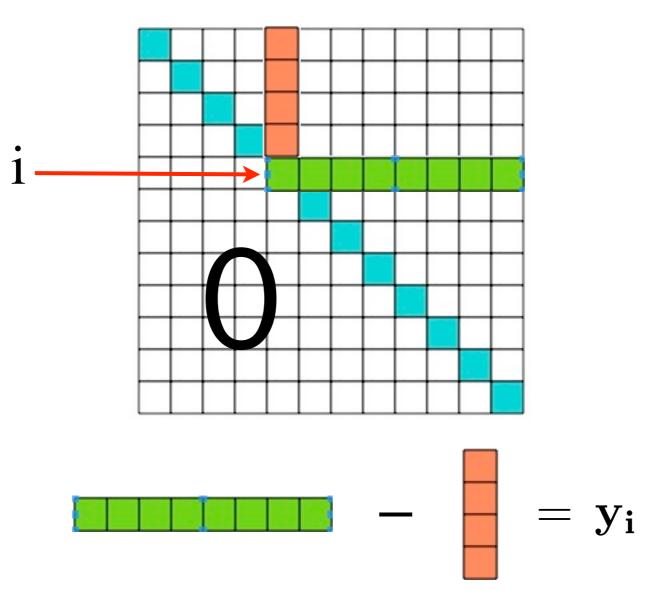




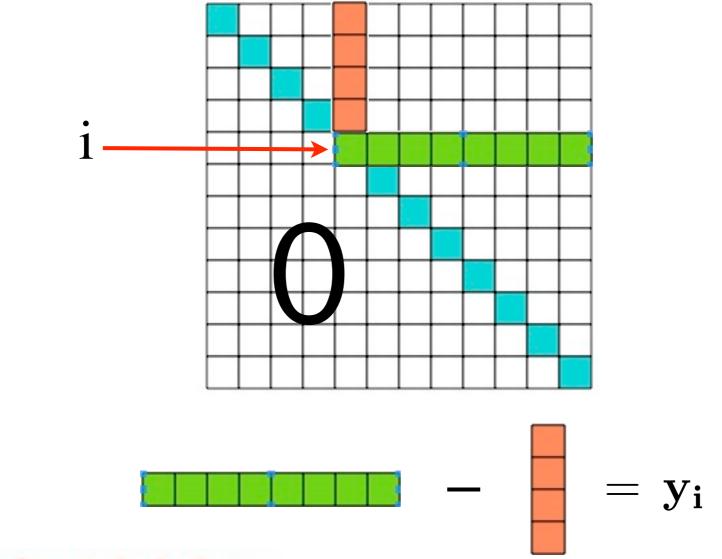




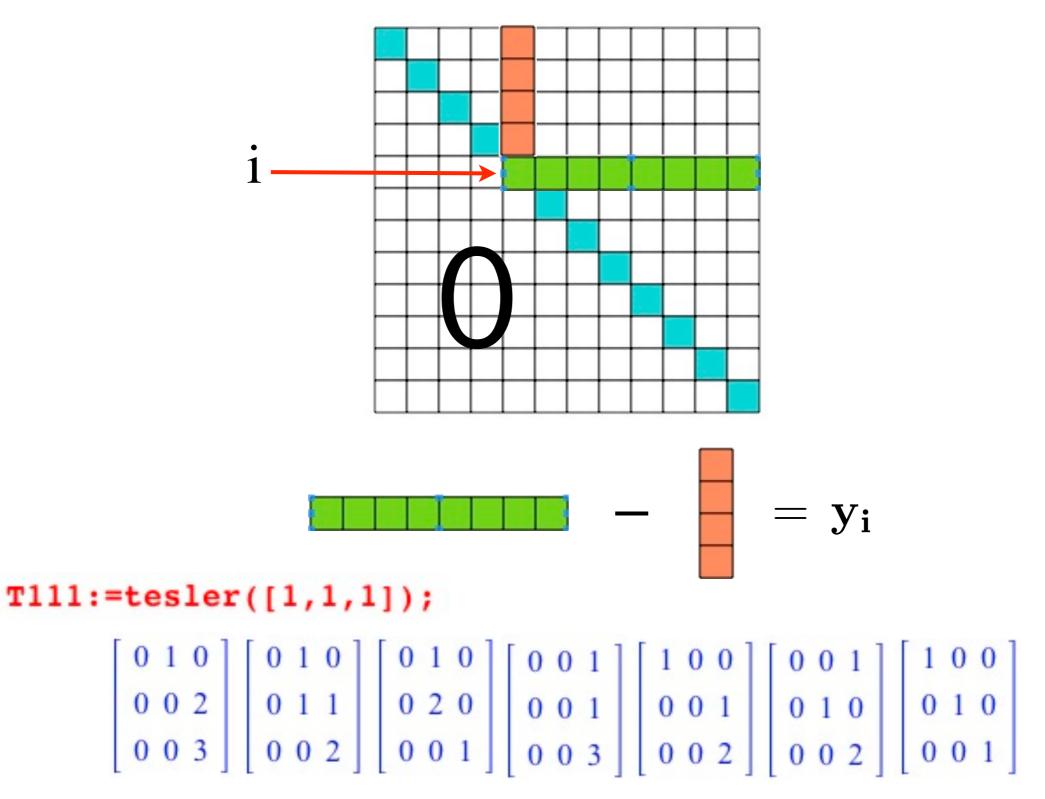


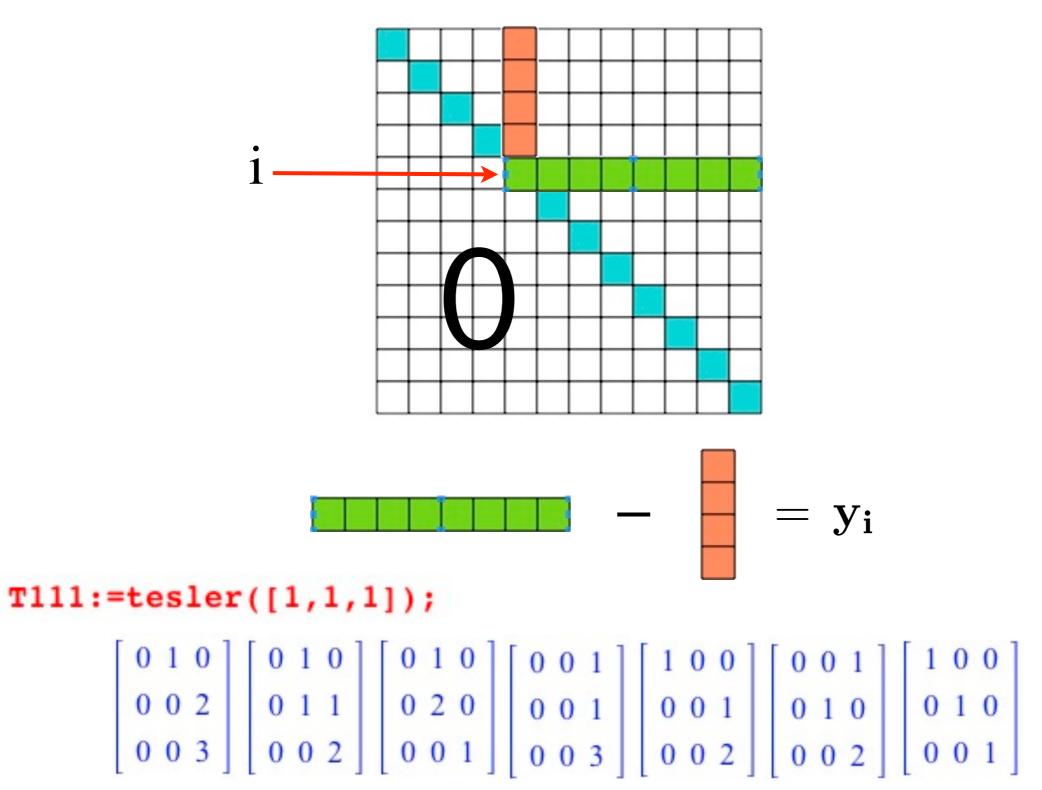


 $\mathbf{y_1}, \mathbf{y_2}, \mathbf{y_3}, \dots, \mathbf{y_n}$



T111:=tesler([1,1,1]);





Theorem

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{array}{lll} H(q,t) & = & \frac{(-1)^n}{(1-q)^n(1-t)^n} \sum_{A \in \mathbf{Tesler}[1,1,\dots,1]} w_H(A) \end{array}$$

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{array}{lll} H(q,t) & = & \frac{(-1)^n}{(1-q)^n(1-t)^n} \sum_{A \in \mathbf{Tesler}[1,1,...,1]} w_H(A) \end{array}$$

If $\mathbf{A} = \|\mathbf{a_{i,j}}\|_{i,j=1}^n$ then

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{array}{lll} {\bf H}({\bf q},{\bf t}) & = & \frac{(-1)^n}{(1-{\bf q})^n(1-{\bf t})^n} \sum_{{\bf A} \in {\bf Tesler}[1,1,...,1]} {\bf w}_{{\bf H}}({\bf A}) \end{array} \\ \end{array}$$

$$If \ A = \|\mathbf{a}_{i,j}\|_{i,j=1}^n \ then \qquad w_H(A) \ = \ \prod_{\mathbf{a}_{i,j} > 0} \Big(-(1-t)(1-q)[\mathbf{a}_{i,j}]_{\mathbf{q},t} \Big)$$

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{split} \mathbf{H}(\mathbf{q}, \mathbf{t}) &= \frac{(-1)^n}{(1-\mathbf{q})^n (1-\mathbf{t})^n} \sum_{\mathbf{A} \in \mathbf{Tesler}[1, 1, \dots, 1]} \mathbf{w}_{\mathbf{H}}(\mathbf{A}) \\ \mathbf{If} \ \mathbf{A} &= \|\mathbf{a}_{\mathbf{i}, \mathbf{j}}\|_{\mathbf{i}, \mathbf{j} = 1}^n \ \mathbf{then} \quad \mathbf{w}_{\mathbf{H}}(\mathbf{A}) &= \prod_{\mathbf{a}_{\mathbf{i}, \mathbf{j}} > \mathbf{0}} \left(-(1-\mathbf{t})(1-\mathbf{q})[\mathbf{a}_{\mathbf{i}, \mathbf{j}}]_{\mathbf{q}, \mathbf{t}} \right) \\ & \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{split}$$

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{split} \mathbf{H}(\mathbf{q}, \mathbf{t}) &= \frac{(-1)^n}{(1-\mathbf{q})^n (1-\mathbf{t})^n} \sum_{\mathbf{A} \in \mathbf{Tesler}[1, 1, \dots, 1]} \mathbf{w}_{\mathbf{H}}(\mathbf{A}) \\ \mathbf{If} \ \mathbf{A} &= \|\mathbf{a}_{i,j}\|_{i,j=1}^n \ \mathbf{then} \qquad \mathbf{w}_{\mathbf{H}}(\mathbf{A}) &= \prod_{\mathbf{a}_{i,j} > \mathbf{0}} \left(-(1-\mathbf{t})(1-\mathbf{q})[\mathbf{a}_{i,j}]_{\mathbf{q},\mathbf{t}} \right) \\ & \begin{bmatrix} 0 \ 1 \ 0 \\ 0 \ 0 \ 2 \\ 0 \ 0 \ 3 \end{bmatrix} \begin{bmatrix} 0 \ 1 \ 0 \\ 0 \ 1 \ 1 \\ 0 \ 0 \ 2 \end{bmatrix} \begin{bmatrix} 0 \ 1 \ 0 \\ 0 \ 2 \ 0 \\ 0 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} 0 \ 0 \ 1 \\ 0 \ 0 \ 1 \\ 0 \ 0 \ 3 \end{bmatrix} \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \\ 0 \ 0 \ 2 \end{bmatrix} \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \end{bmatrix} \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 0 \ 1 \\ 0 \ 0 \ 2 \end{bmatrix} \begin{bmatrix} 1 \ 0 \ 0 \\ 0 \ 1 \ 0 \\ 0 \ 0 \ 1 \end{bmatrix} \end{split}$$

map(cvrtmatqt,T111);

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{array}{lll} {\bf H}({\bf q},{\bf t}) & = & \frac{(-1)^n}{(1-{\bf q})^n(1-{\bf t})^n} \sum_{{\bf A} \in {\bf Tesler}[1,1,...,1]} {\bf w}_{{\bf H}}({\bf A}) \end{array} \\ \end{array}$$

map(cvrtmatqt,T111);

 $\left[(q+t)\left(t^{2}+t\,q+q^{2}\right),\,-(t-1)\left(q-1\right)\left(q+t\right),\,q+t,\,t^{2}+t\,q+q^{2},\,q+t,\,q+t,\,1\right]$

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{array}{lll} {\bf H}({\bf q},{\bf t}) & = & \frac{(-1)^n}{(1-{\bf q})^n(1-{\bf t})^n} \sum_{{\bf A} \in {\bf Tesler}[1,1,\ldots,1]} {\bf w}_{\bf H}({\bf A}) \end{array}$$

map(cvrtmatqt,T111);

 $[(q+t)(t^{2}+tq+q^{2}), -(t-1)(q-1)(q+t), q+t, t^{2}+tq+q^{2}, q+t, q+t, 1]$ convert(%, `+`);

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\mathbf{H}(\mathbf{q}, \mathbf{t}) \ = \ \tfrac{(-1)^n}{(1-q)^n (1-t)^n} \sum_{\mathbf{A} \in \mathbf{Tesler}[1, 1, ..., 1]} \mathbf{w}_{\mathbf{H}}(\mathbf{A})$$

$$\begin{aligned} \text{If } \mathbf{A} &= \|\mathbf{a}_{\mathbf{i},\mathbf{j}}\|_{\mathbf{i},\mathbf{j}=1}^{\mathbf{n}} \text{ then } & \mathbf{w}_{\mathbf{H}}(\mathbf{A}) &= \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}}>\mathbf{0}} \left(-(\mathbf{1}-\mathbf{t})(\mathbf{1}-\mathbf{q})[\mathbf{a}_{\mathbf{i},\mathbf{j}}]_{\mathbf{q},\mathbf{t}} \right) \\ & \left[\begin{matrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 3 \end{matrix} \right] \left[\begin{matrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{matrix} \right] \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \\ & \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 3 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \\ & \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{matrix} \right] \right] \\ & \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 3 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 1 \end{matrix} \right] \\ & \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \right] \\ & \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 & 1 \\ 0 & 0 & 2 \end{matrix} \right] \left[\begin{matrix} 0 & 0 &$$

map(cvrtmatqt,T111);

 $[(q+t)(t^{2}+tq+q^{2}), -(t-1)(q-1)(q+t), q+t, t^{2}+tq+q^{2}, q+t, q+t, 1]$ convert(%, `+`);

 $1 + (q+t) \left(t^2 + t \, q + q^2\right) - (t-1) \left(q-1\right) \left(q+t\right) + 3 \, q + 3 \, t + t^2 + t \, q + q^2$

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\mathbf{H}(\mathbf{q}, \mathbf{t}) \ = \ \tfrac{(-1)^n}{(1-q)^n (1-t)^n} \sum_{\mathbf{A} \in \mathbf{Tesler}[1, 1, ..., 1]} \mathbf{w}_{\mathbf{H}}(\mathbf{A})$$

map(cvrtmatqt,T111);

 $[(q+t)(t^{2}+tq+q^{2}), -(t-1)(q-1)(q+t), q+t, t^{2}+tq+q^{2}, q+t, q+t, 1]$ convert(%, `+`);

$$1 + (q+t)(t^{2} + tq + q^{2}) - (t-1)(q-1)(q+t) + 3q + 3t + t^{2} + tq + q^{2}$$

marcopolo(%);

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{array}{lll} {\bf H}({\bf q},t) & = & \frac{(-1)^n}{(1-q)^n(1-t)^n} \sum_{{\bf A} \in {\bf Tesler}[1,1,...,1]} {\bf w}_{{\bf H}}({\bf A}) \end{array} \\ \end{array} \\$$

map(cvrtmatqt,T111);

 $[(q+t)(t^{2}+tq+q^{2}), -(t-1)(q-1)(q+t), q+t, t^{2}+tq+q^{2}, q+t, q+t, 1]$ convert(%, `+`);

 $1 + (q+t)(t^{2} + tq + q^{2}) - (t-1)(q-1)(q+t) + 3q + 3t + t^{2} + tq + q^{2}$

<pre>marcopolo(%);</pre>	1000
	2 1 0 0
	2 3 1 0
	1 2 2 1

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{array}{lll} {\bf H}({\bf q},{\bf t}) & = & \frac{(-1)^n}{(1-q)^n(1-t)^n} \sum_{{\bf A} \in {\bf Tesler}[1,1,\ldots,1]} {\bf w}_{{\bf H}}({\bf A}) \end{array} \\ \end{array} \\$$

map(cvrtmatqt,T111);

 $[(q+t)(t^{2}+tq+q^{2}), -(t-1)(q-1)(q+t), q+t, t^{2}+tq+q^{2}, q+t, q+t, 1]$ convert(%, `+`);

 $1 + (q+t)(t^{2} + tq + q^{2}) - (t-1)(q-1)(q+t) + 3q + 3t + t^{2} + tq + q^{2}$

marcopolo(%);

1000	
2100	(familiar?)
2310	(rannar: ,
1221	

Theorem

The Hilbert series if the Diagonal Harmonics is a weighted sum

of Tesler matrices with hook weights $y_i = 1$

$$\begin{array}{lll} {\bf H}({\bf q},{\bf t}) & = & \frac{(-1)^n}{(1-q)^n(1-t)^n} \sum_{{\bf A} \in {\bf Tesler}[1,1,\ldots,1]} {\bf w}_{{\bf H}}({\bf A}) \end{array} \\ \end{array} \\$$

map(cvrtmatqt,T111);

 $[(q+t)(t^{2}+tq+q^{2}), -(t-1)(q-1)(q+t), q+t, t^{2}+tq+q^{2}, q+t, q+t, 1]$ convert(%, `+`);

 $1 + (q+t)(t^{2} + tq + q^{2}) - (t-1)(q-1)(q+t) + 3q + 3t + t^{2} + tq + q^{2}$

marcopolo(%);

[1000]	
2100	(familiar?)
2310	(lanniai:)
1 2 2 1	

Every Tesler matrix with positive corner weights has at least one positive entry in each row

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

Definition

iff it has only one non zero element in each row

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

Definition

iff it has only one non zero element in each row

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

there are n! Permutational Tesler matrices

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries **Proposition**

For any given choice of corner weights u_1, u_2, \ldots, u_n

there are n! Permutational Tesler matrices

Proof

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

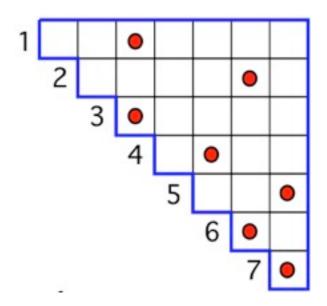
We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

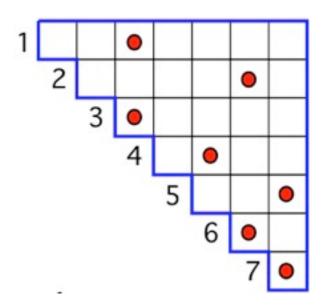
For any given choice of corner weights u_1, u_2, \ldots, u_n

Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

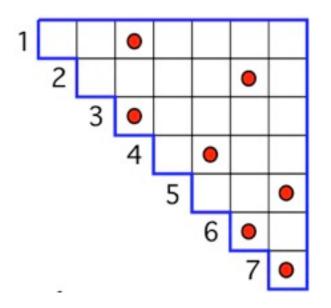
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2 \dots, s - 1$, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

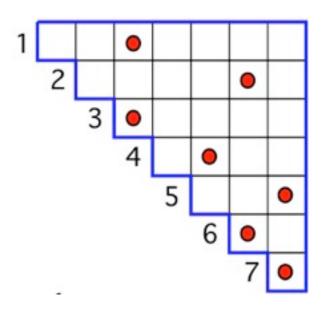
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows 1, 2..., s-1, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

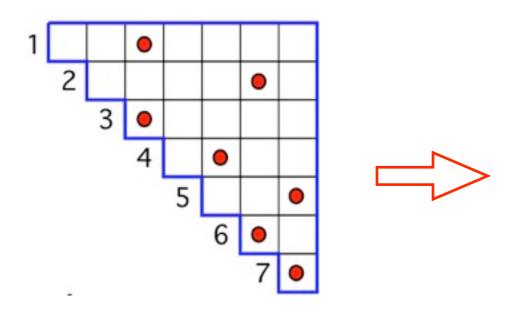
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows 1, 2..., s-1, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries **Proposition**

For any given choice of corner weights u_1, u_2, \ldots, u_n

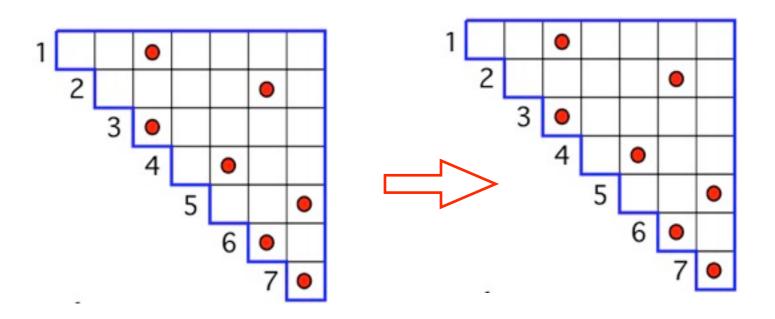
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2, \ldots, s - 1$, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries **Proposition**

For any given choice of corner weights u_1, u_2, \ldots, u_n

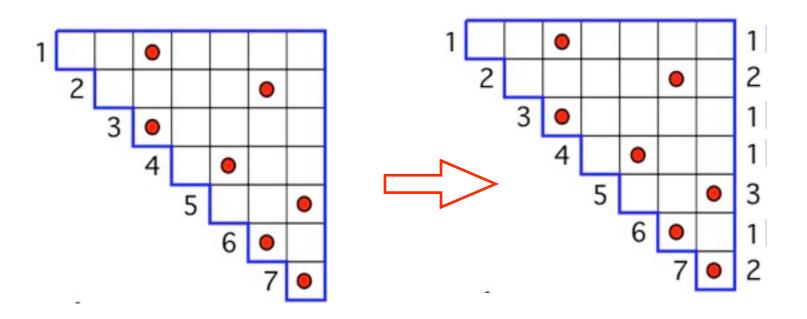
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2, \ldots, s-1$, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

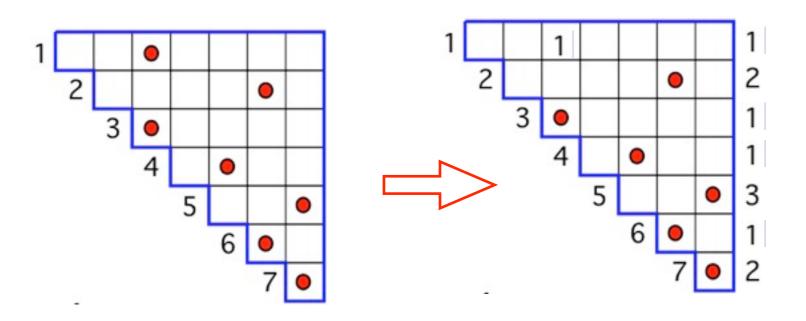
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2, \ldots, s-1$, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries **Proposition**

For any given choice of corner weights u_1, u_2, \ldots, u_n

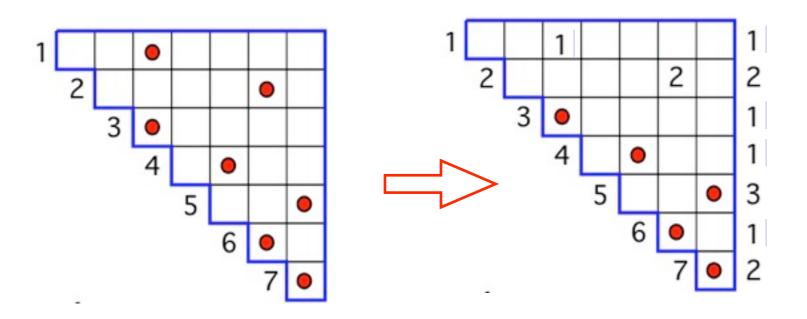
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2, \ldots, s-1$, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

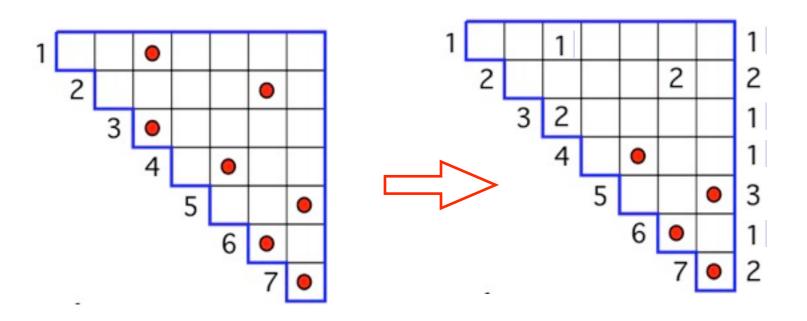
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2, \ldots, s-1$, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

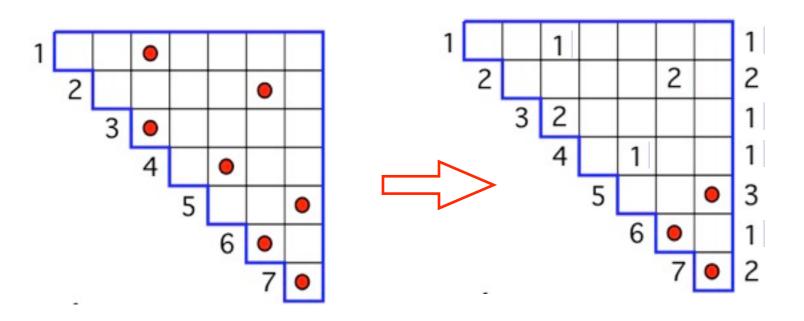
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows 1, 2..., s-1, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries **Proposition**

For any given choice of corner weights u_1, u_2, \ldots, u_n

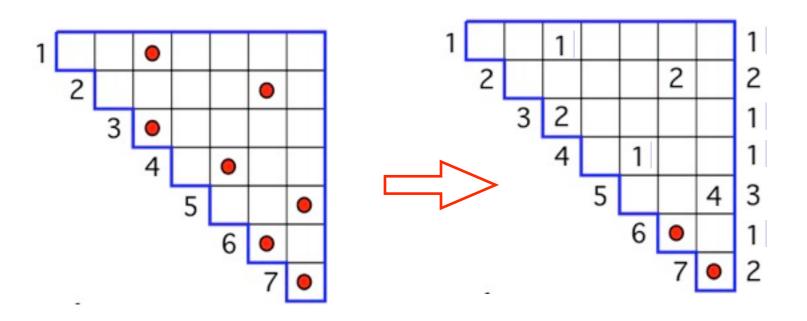
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2, \ldots, s-1$, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

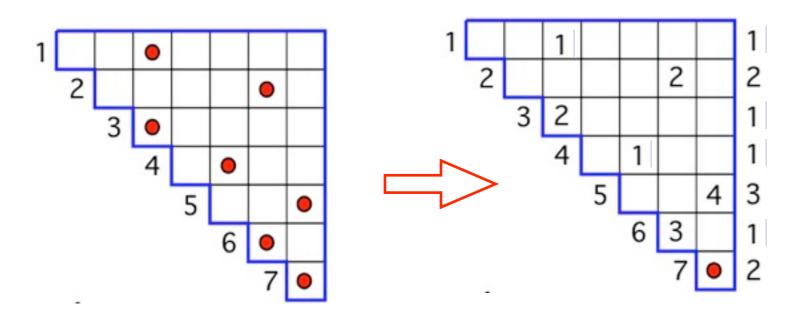
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2, \ldots, s - 1$, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries Proposition

For any given choice of corner weights u_1, u_2, \ldots, u_n

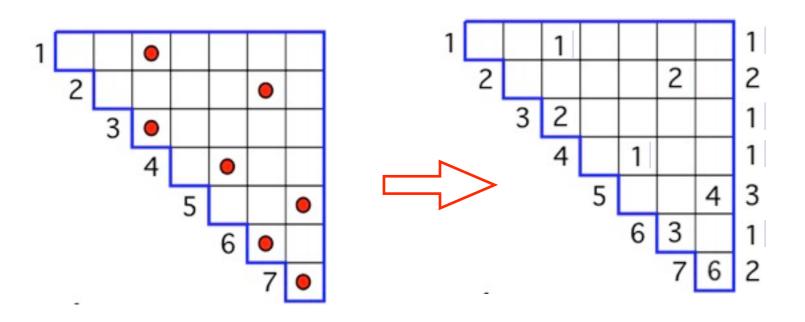
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows 1, 2..., s-1, place in row s and column i_s ,



Every Tesler matrix with positive corner weights has at least one positive entry in each row A Tesler matrix is called "permutational"

iff it has only one non zero element in each row

Definition

We call the "support" of a permutational Tesler matrix the set of positions of its non zero entries **Proposition**

For any given choice of corner weights u_1, u_2, \ldots, u_n

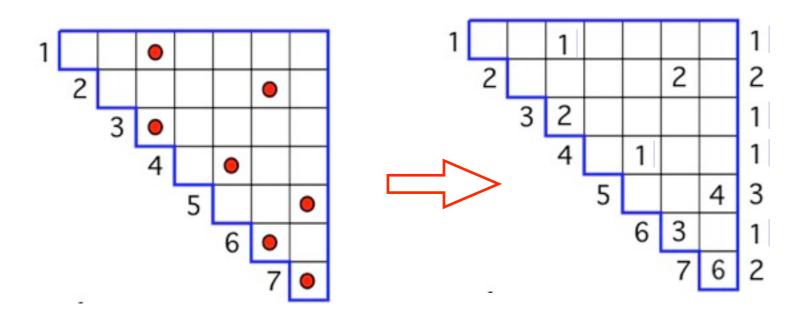
Proof

there are n! Permutational Tesler matrices

Given a triangular sequence $1 \le i_s \le s$ (for $1 \le s \le n$)

(1) place u_1 in row 1 and column i_1 .

(2) having filled rows $1, 2, \ldots, s - 1$, place in row s and column i_s ,



Tesler matrices with hook weights y_1, y_2, y_3

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix}$	0]	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0	$y_1 + y_2$	0 y ₂ 0	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y ₂ 0
$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$+y_2 + y_3$	$\left[\begin{array}{ccc} 0 & 0 & y_1 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_1 \\ 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

Tesler matrices with hook weights y_1, y_2, y_3

$$\begin{bmatrix} 0 & y_1 & 0 \\ 0 & 0 & y_1 + y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & y_1 \\ 0 & y_2 & 0 \\ 0 & 0 & y_1 + y_3 \end{bmatrix} \begin{bmatrix} 0 & 0 & y_1 \\ 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix} \begin{bmatrix} 0 & y_1 & 0 \\ 0 & y_1 + y_2 & 0 \\ 0 & 0 & y_3 \end{bmatrix} \begin{bmatrix} y_1 & 0 & 0 \\ 0 & y_1 + y_2 & 0 \\ 0 & 0 & y_2 \end{bmatrix} \begin{bmatrix} y_1 & 0 & 0 \\ 0 & y_2 & 0 \\ 0 & 0 & y_2 \end{bmatrix}$$

map(evamat, yMA3);

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$		$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0 $y_1 + y_2$	0 y ₂ 0	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y2 0
$\begin{bmatrix} 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\left[\begin{array}{ccc} 0 & 0 & y_1 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix} = 0$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0 $y_1 + y_2$	0 y ₂ 0	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y2 0
$\begin{bmatrix} 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\left[\begin{array}{ccc} 0 & 0 & y_1 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\left[\begin{array}{cc} 0 & 0 & y_2 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

factor(convert(%, `+`));

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix} = 0$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0 $y_1 + y_2$	0 y ₂ 0	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y2 0
$\begin{bmatrix} 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\left[\begin{array}{ccc} 0 & 0 & y_1 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\left[\begin{array}{cc} 0 & 0 & y_2 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

factor(convert(%, `+`));

 $y_1(y_1 + 3y_2)(y_1 + y_2 + 2y_3)$

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix} = 0$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0 $y_1 + y_2$	0 y ₂ 0	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y2 0
$\begin{bmatrix} 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\left[\begin{array}{ccc} 0 & 0 & y_1 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\left[\begin{array}{cc} 0 & 0 & y_2 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

factor(convert(%, `+`));

 $y_1(y_1 + 3y_2)(y_1 + y_2 + 2y_3)$

Theorem

Tesler matrices with hook weights y_1, y_2, y_3

0 y ₁	0	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	0 0	\mathcal{Y}_1	0	$y_1 = 0$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0	$y_1 + y_2$	0 y ₂ 0	0 0	\mathcal{Y}_2	0 y	$1 + y_2 = 0$	00 y ₂	0 y ₂ 0
$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$+y_2 + y_3$	$\begin{bmatrix} 0 & 0 & y_1 + y_2 \end{bmatrix}$	$y_3 \begin{bmatrix} 0 & 0 & y \\ y & 0 \end{bmatrix}$	$y_1 + y_2 + y_3$	0	0 <i>y</i> ₃	$\begin{bmatrix} 0 & 0 & y_2 \\ 0 & 0 & y_2 + y_3 \end{bmatrix}$	$\left[\begin{array}{ccc} 0 & 0 & y_3 \end{array}\right]$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

factor(convert(%, `+`));

 $y_1(y_1 + 3y_2)(y_1 + y_2 + 2y_3)$

Theorem (D. Armstrong-B. Sagan)

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix}$	0	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0	$y_1 + y_2$	0 y ₂ 0	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y2 0
00 y	$1 + y_2 + y_3$	$\left[\begin{array}{ccc} 0 & 0 & y_1 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_1 \\ 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

factor(convert(%, `+`));

 $y_1(y_1 + 3y_2)(y_1 + y_2 + 2y_3)$

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y_1, y_2, \ldots, y_n) is

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix} = 0$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0 $y_1 + y_2$	0 y ₂ 0	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y ₂ 0
$\begin{bmatrix} 0 & 0 & y_1 + y_2 + y_2 \end{bmatrix}$	$_{3} \left[\begin{array}{ccc} 0 & 0 & y_{1} + y_{3} \end{array} \right]$	$\begin{bmatrix} 0 & 0 & y_1 \\ 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_1(y_1+y_2)(y_1+y_2+y_3), y_1y_2(y_1+y_3), y_1y_2(y_1+y_2+y_3), y_1(y_1+y_2)y_3, y_1y_2(y_2+y_3), y_1y_2y_3]$

factor(convert(%, `+`));

 $y_1(y_1 + 3y_2)(y_1 + y_2 + 2y_3)$

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y_1, y_2, \ldots, y_n) is

 $\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + 2\mathbf{y_n})$

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix} = 0$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0 $y_1 + y_2$	$0 y_2 0$	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y ₂ 0
$\begin{bmatrix} 0 & 0 & y_1 + y_2 + y_2 \end{bmatrix}$	$ v_{3} \begin{bmatrix} 0 & 0 & y_{1} \\ 0 & y_{2} & 0 \\ 0 & 0 & y_{1} + y_{3} \end{bmatrix} $	$\begin{bmatrix} 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

factor(convert(%, `+`));

 $y_1(y_1 + 3y_2)(y_1 + y_2 + 2y_3)$

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y_1, y_2, \ldots, y_n) is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + 2\mathbf{y_n})$$

where here

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix}$	0	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$\begin{bmatrix} 0 & y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 \end{bmatrix}$	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0	$y_1 + y_2$	0 y ₂ 0	00 y ₂	$0 y_1 + y_2 0$	00 y ₂	0 y ₂ 0
$\begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$+y_2 + y_3$	$\left[\begin{array}{ccc} 0 & 0 & y_1 + y_3 \end{array}\right]$	$\begin{bmatrix} 0 & 0 & y_1 \\ 0 & 0 & y_2 \\ 0 & 0 & y_1 + y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_2 + y_3 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

factor(convert(%, `+`));

 $y_1(y_1 + 3y_2)(y_1 + y_2 + 2y_3)$

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y_1, y_2, \ldots, y_n) is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + 2\mathbf{y_n})$$

where here

$$\mathbf{w}(\mathbf{A}) \ = \ \prod_{\mathbf{a}_{i,j} > 0} \mathbf{a}_{i,j}$$

Tesler matrices with hook weights y_1, y_2, y_3

$\begin{bmatrix} 0 \ y_1 \end{bmatrix}$	0 0 0	$y_1 = \begin{bmatrix} 0 & 0 \end{bmatrix}$	$y_1 \qquad 0$	$y_1 = 0$	y ₁ 0 0	$\begin{bmatrix} y_1 & 0 & 0 \end{bmatrix}$
0 0 y ₁ -	$+ y_2 = 0 y_2$	0 0 0	<i>y</i> ₂ 0	$y_1 + y_2 = 0$	00 y ₂	0 y ₂ 0
$\begin{bmatrix} 0 & 0 & y_1 + y_2 \end{bmatrix}$	$y_2 + y_3 \begin{bmatrix} 0 & 0 & y_2 \end{bmatrix}$	$v_1 + y_3 \begin{bmatrix} 0 & 0 & y_1 \end{bmatrix}$	$ \begin{bmatrix} y_1 \\ y_2 \\ + y_2 + y_3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} $	0 y ₃	$0 \ 0 \ y_2 + y_3$	$\begin{bmatrix} 0 & 0 & y_3 \end{bmatrix}$

map(evamat, yMA3);

 $y_{1}(y_{1}+y_{2})(y_{1}+y_{2}+y_{3}), y_{1}y_{2}(y_{1}+y_{3}), y_{1}y_{2}(y_{1}+y_{2}+y_{3}), y_{1}(y_{1}+y_{2})y_{3}, y_{1}y_{2}(y_{2}+y_{3}), y_{1}y_{2}y_{3}]$

factor(convert(%, `+`));

 $y_1(y_1 + 3y_2)(y_1 + y_2 + 2y_3)$

Theorem (D. Armstrong-B. Sagan)

The sum of the weights the permutational Tesler matrices with hook weights y_1, y_2, \ldots, y_n) is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + 2\mathbf{y_n})$$

where here

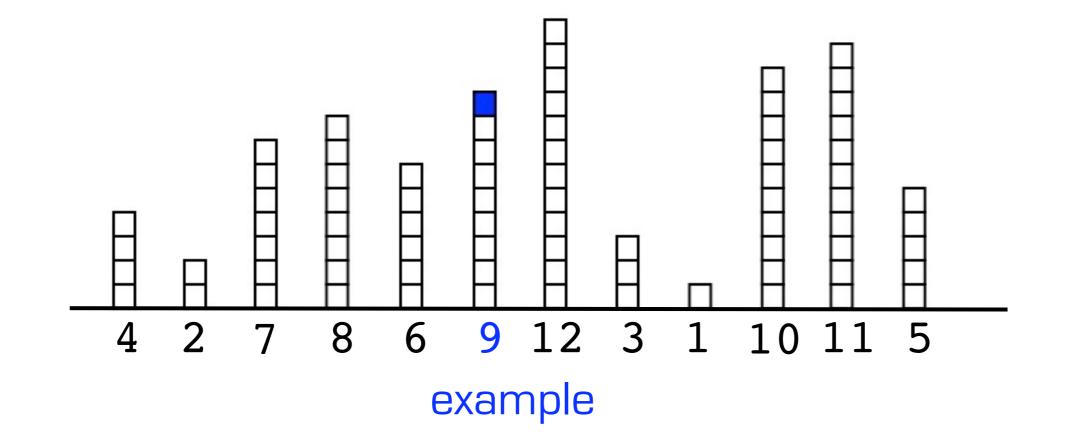
$$\mathbf{w}(\mathbf{A}) \ = \ \prod_{\mathbf{a}_{i,j} > 0} \mathbf{a}_{i,j}$$

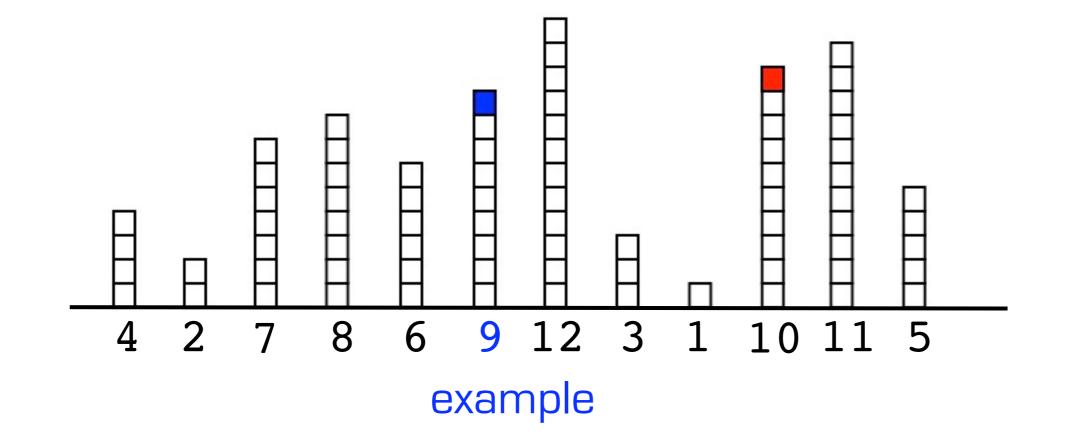
target = smallest larger element to the right

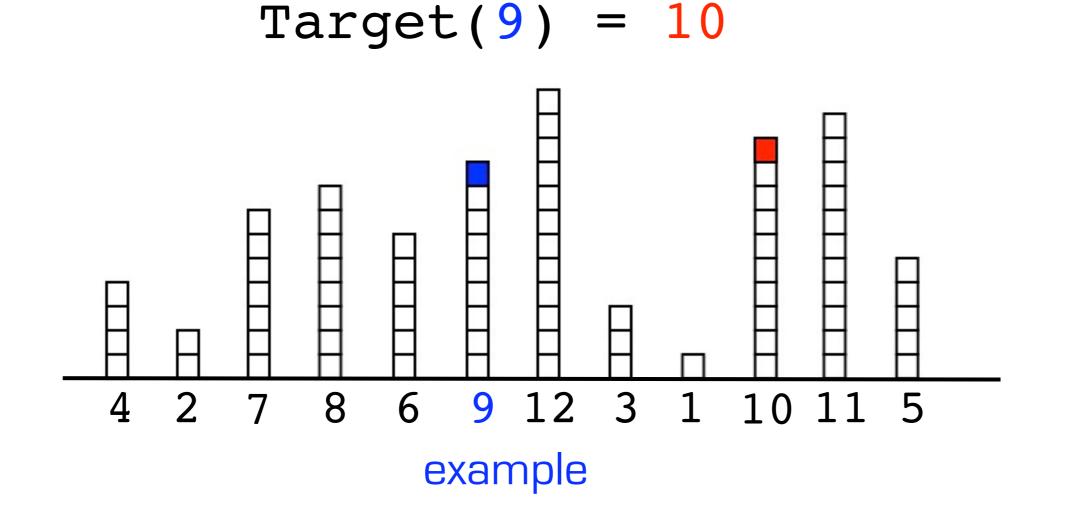
example

target = smallest larger element to the right

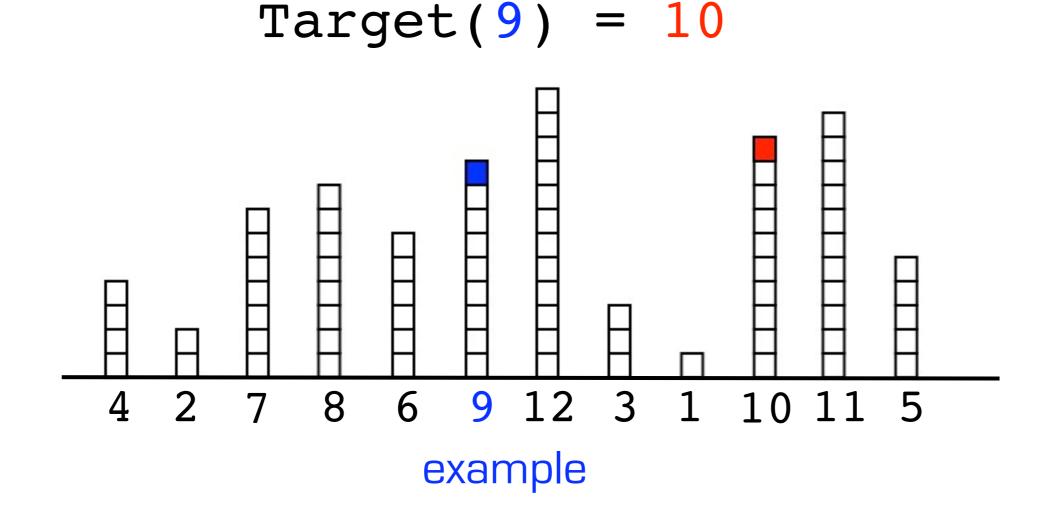
4 2 7 8 6 9 12 3 1 10 11 5 example



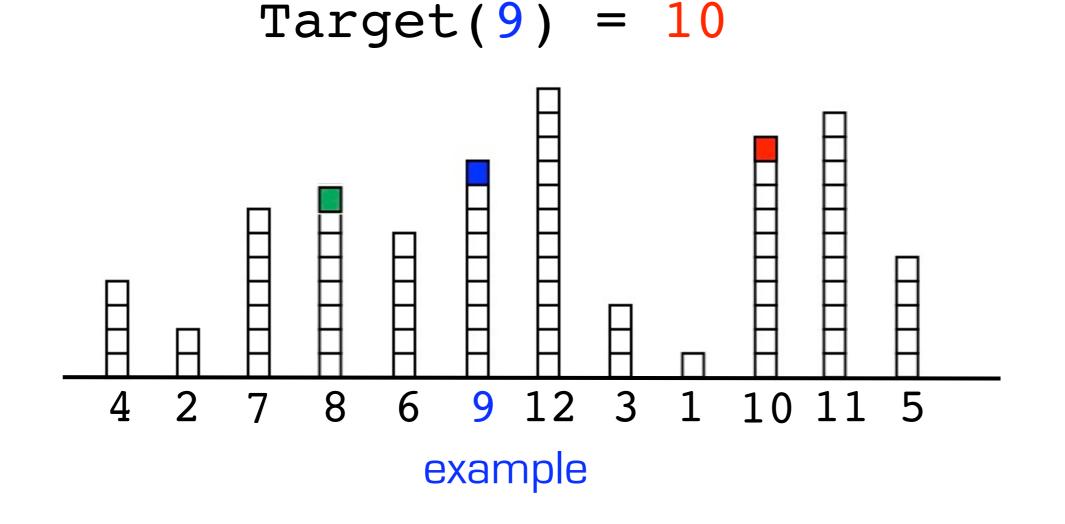




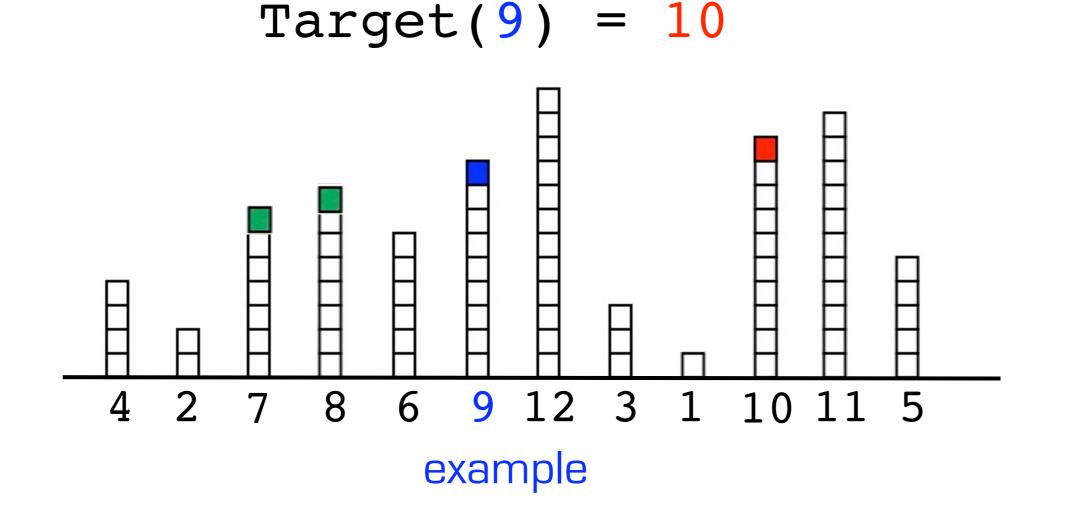
target = smallest larger element to the right



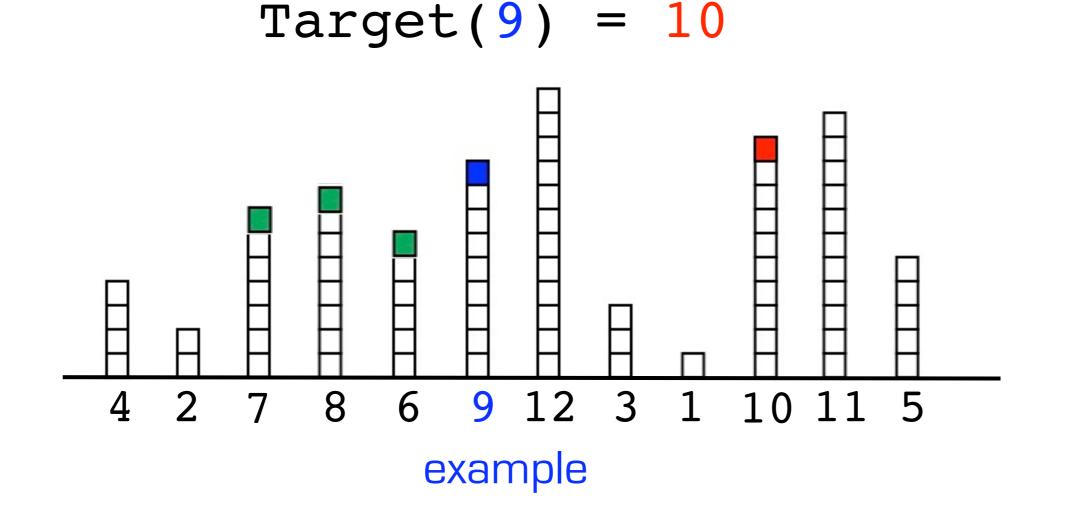
target = smallest larger element to the right



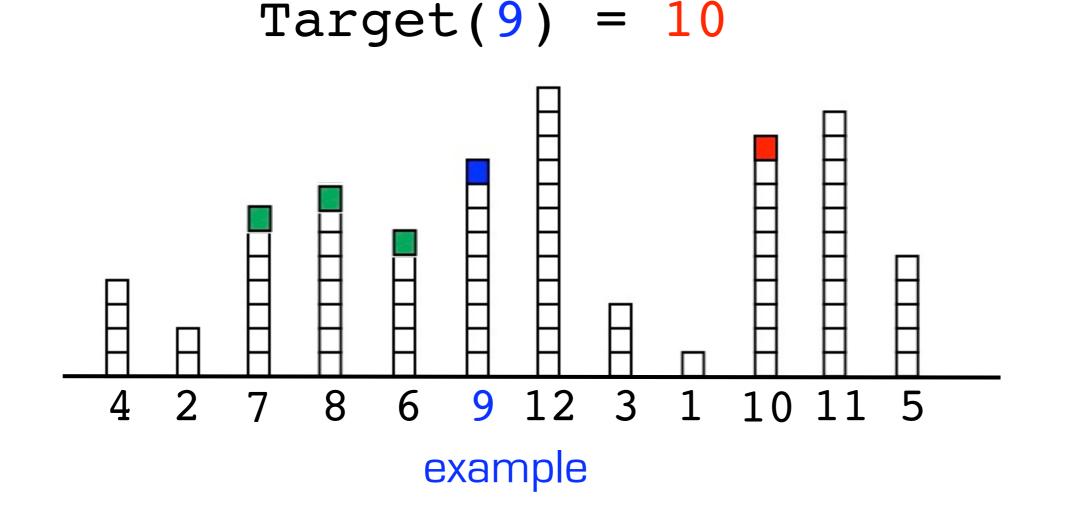
target = smallest larger element to the right



target = smallest larger element to the right



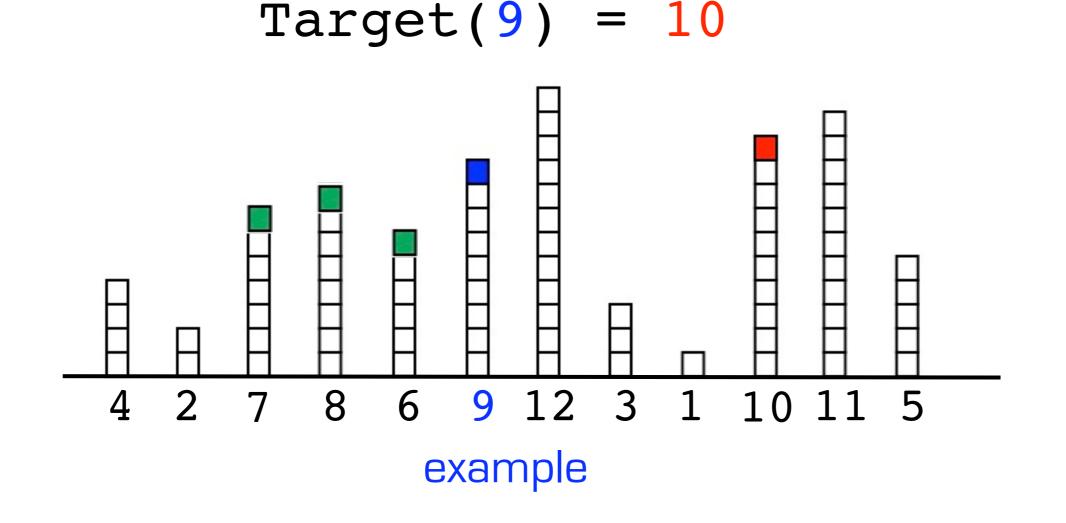
target = smallest larger element to the right



tail = longest contiguous segment to the left

Tail(9)={9,8,7,6}

target = smallest larger element to the right



tail = longest contiguous segment to the left

Tail(9) = {9, 8, 7, 6}

Theorem (P.Levande)

Theorem (P.Levande)

For any $\alpha \in S_n$ set

Theorem (P.Levande)

For any $\alpha \in S_n$ set $P_{lpha}(q) = \sum_{filling(pf)=lpha} q^{area(pf)}$

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{lpha}(q) = \sum_{filling(pf)=lpha} q^{area(pf)}$

For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

For each *n* there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Theorem (P.Levande)

For any

$$lpha \in S_n$$
 set
 $P_{lpha}(q) = \sum_{filling(pf)=lpha} q^{area(pf)}$

 $a_{i,i} > 0$

For each *n* there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that $\prod [a_{i,j}]_q = P_{\alpha}(q)$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

For each *n* there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_\alpha(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$

Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

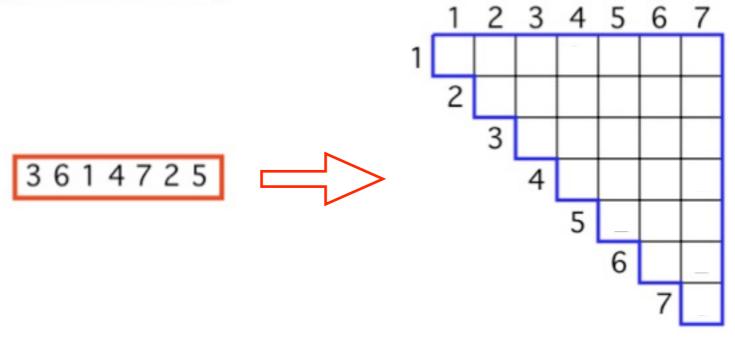
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

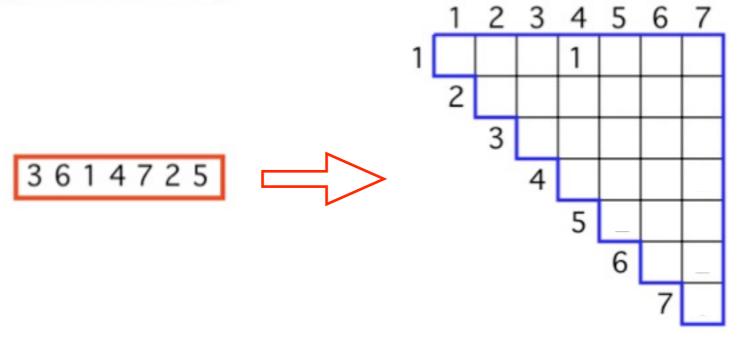
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

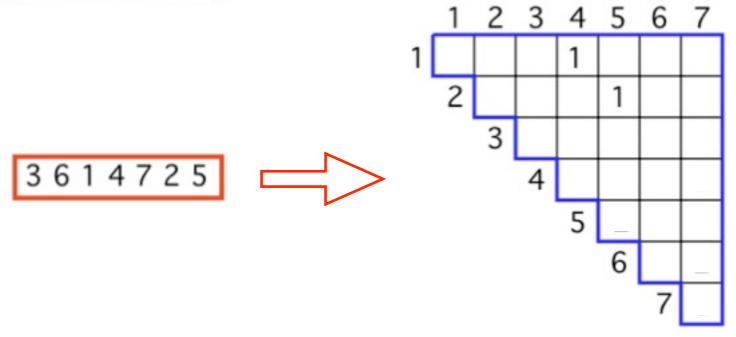
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

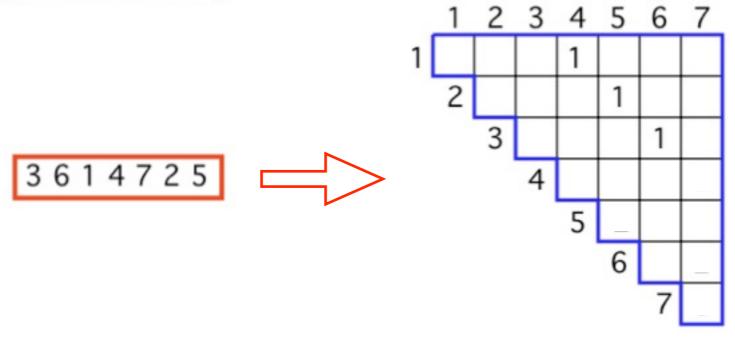
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

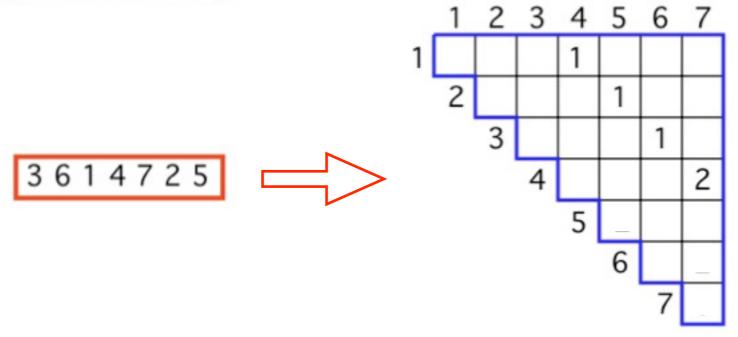
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

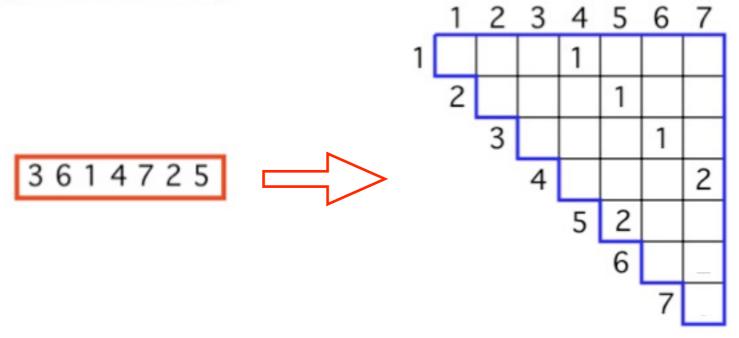
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

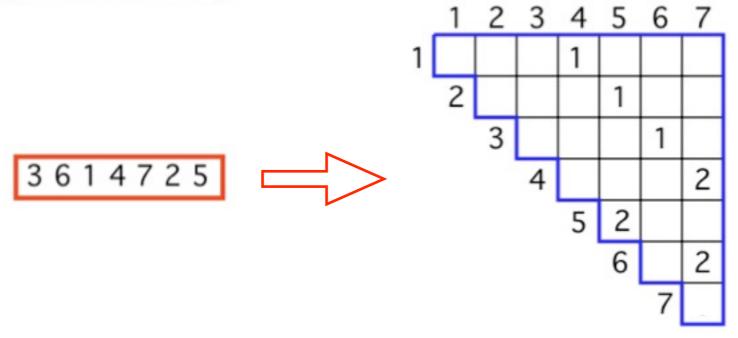
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

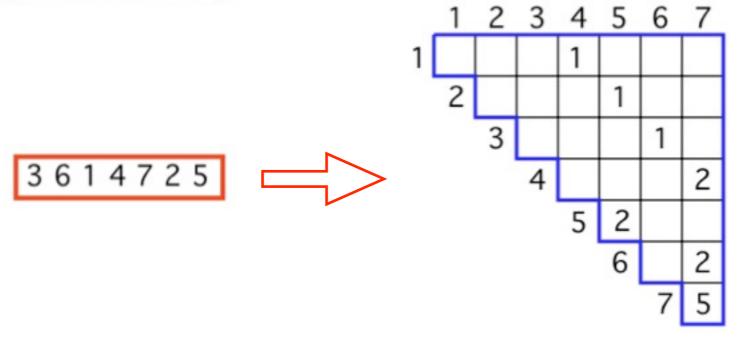
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

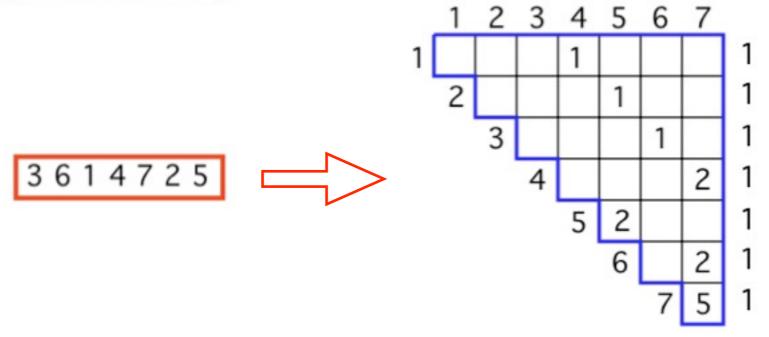
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

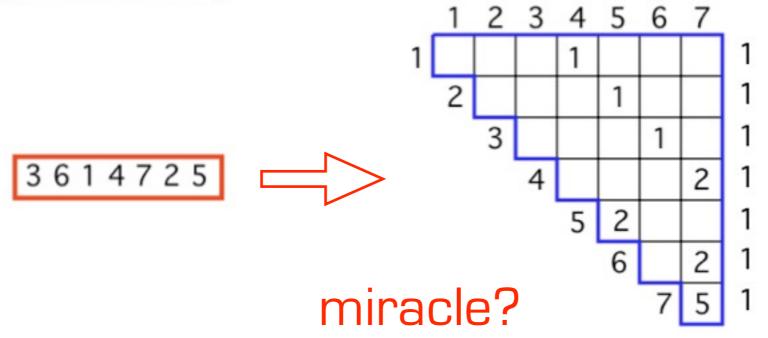
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

Proof

Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

$$a_{s,j} = \#tail(\alpha_s)$$



Theorem (P.Levande)

For any
$$\alpha \in S_n$$
 set
 $P_{\alpha}(q) = \sum_{filling(pf)=\alpha} q^{area(pf)}$

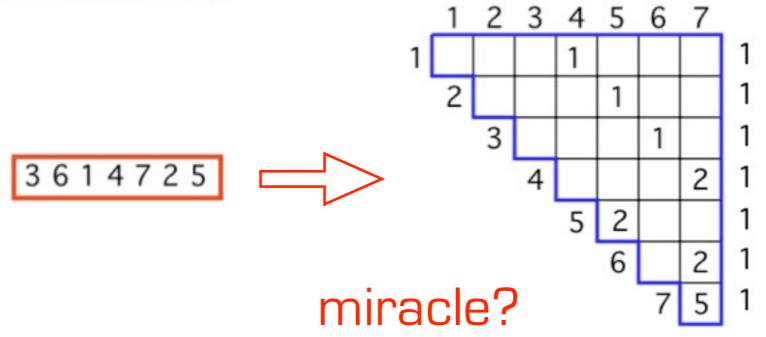
For each n there is a bijection $\alpha \leftrightarrow A(\alpha)$ between S_n and $\Pi[1, 1, ..., 1]$ such that

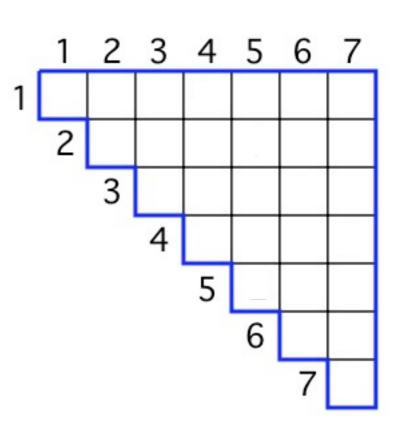
$$\prod_{a_{i,j}>0} [a_{i,j}]_q = P_{\alpha}(q)$$

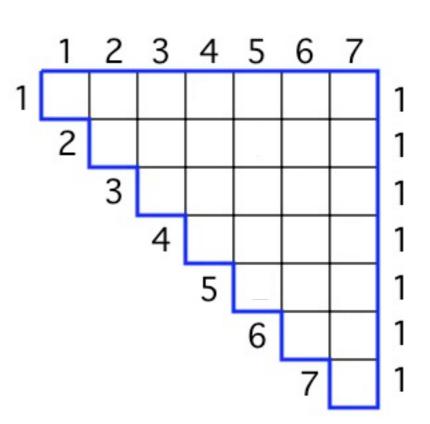
Proof

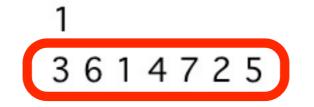
Let α be a filling permutation, to construct $A(\alpha) \in \Pi[1, 1, ..., 1]$ we simply set

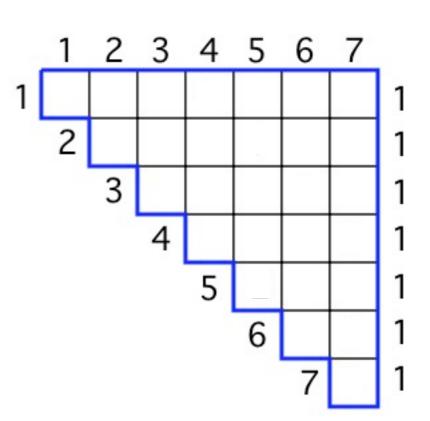
$$a_{s,j} = \#tail(\alpha_s)$$

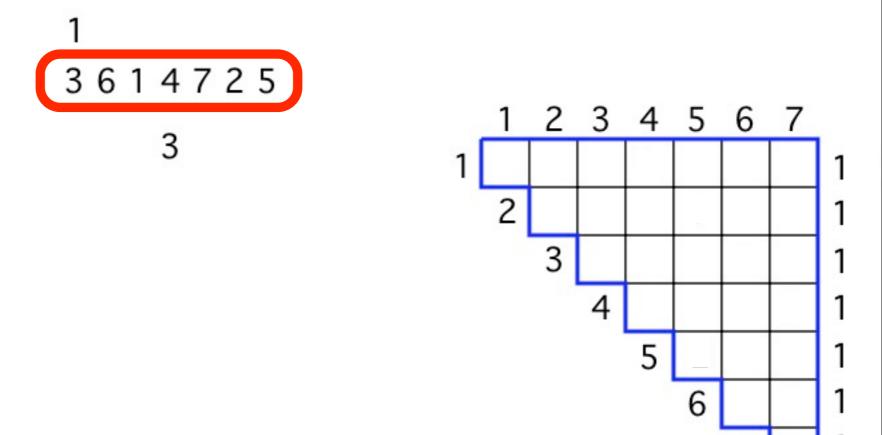


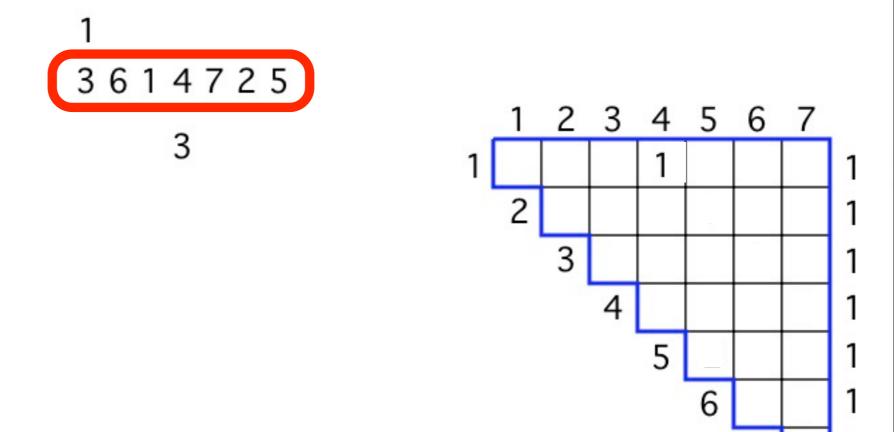


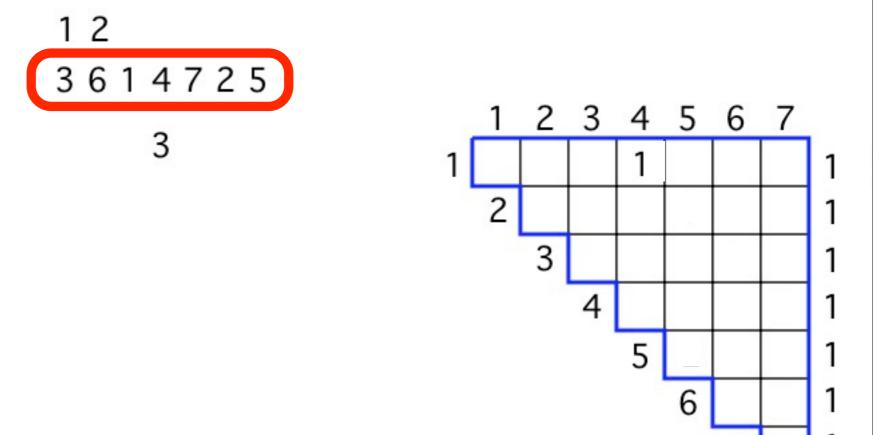


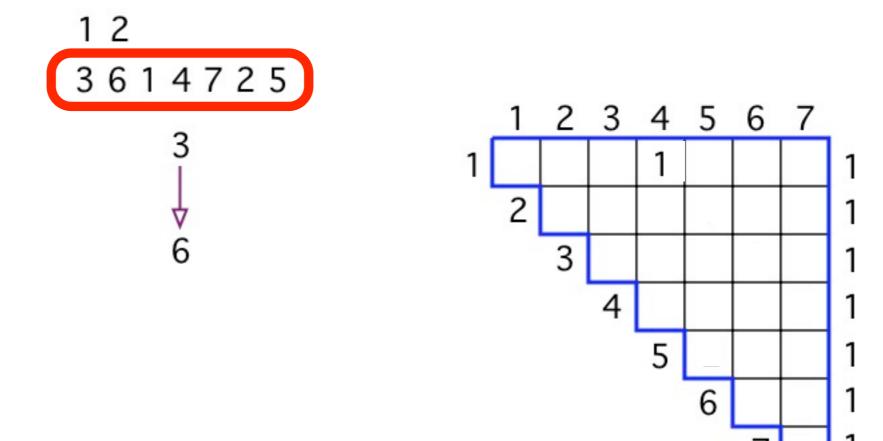


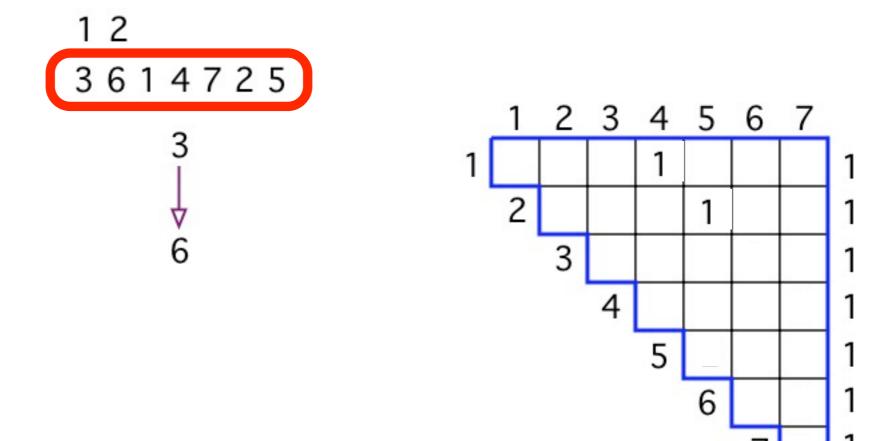


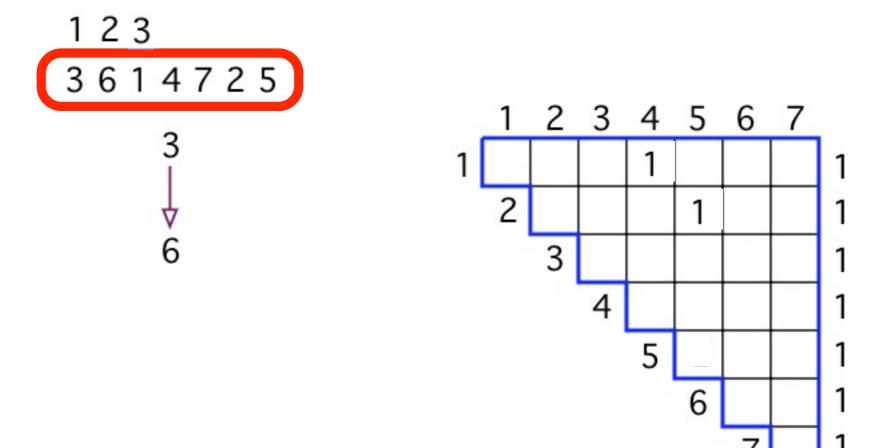


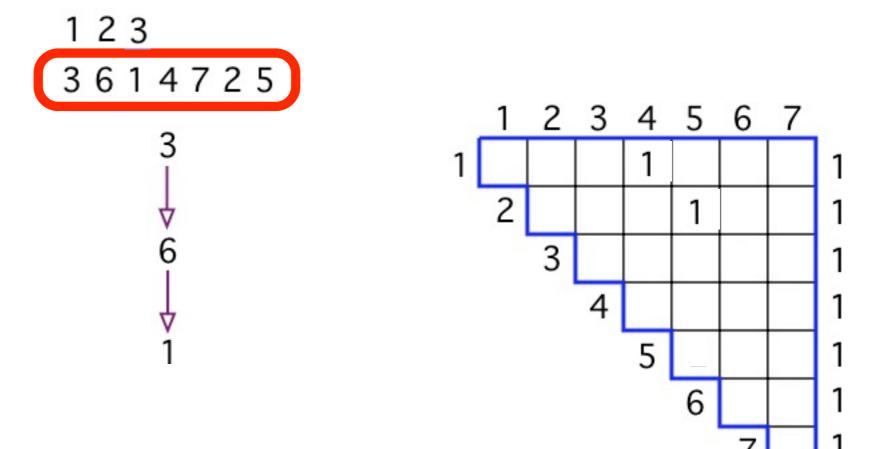


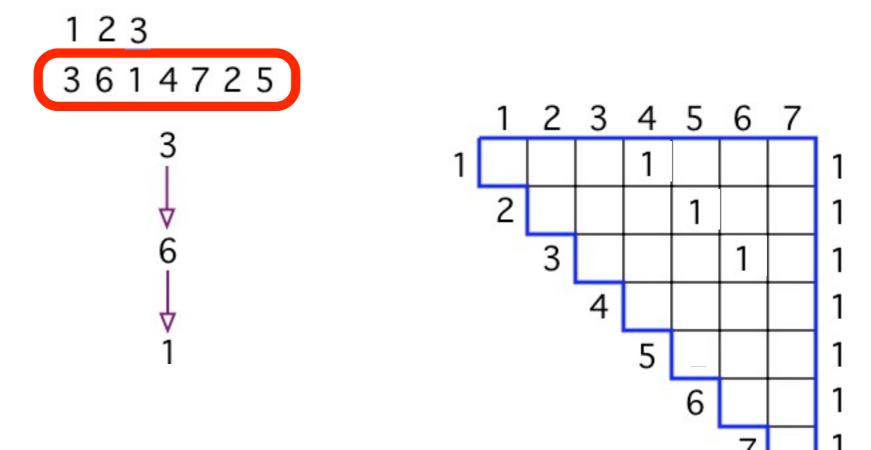


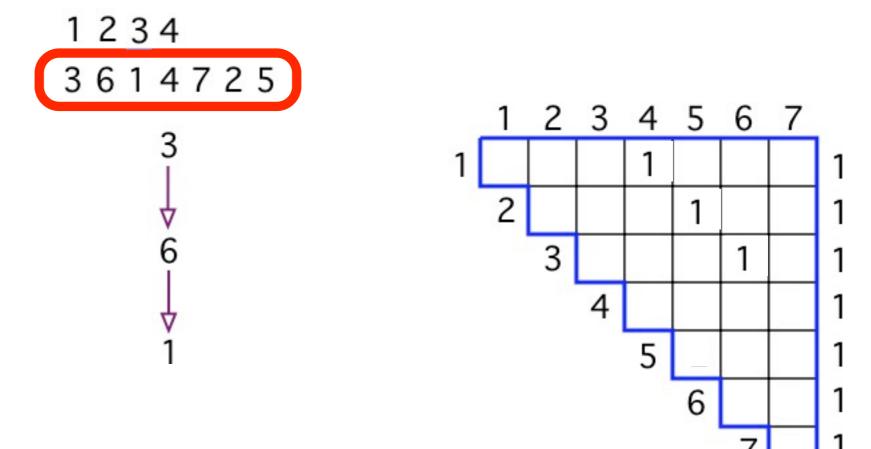


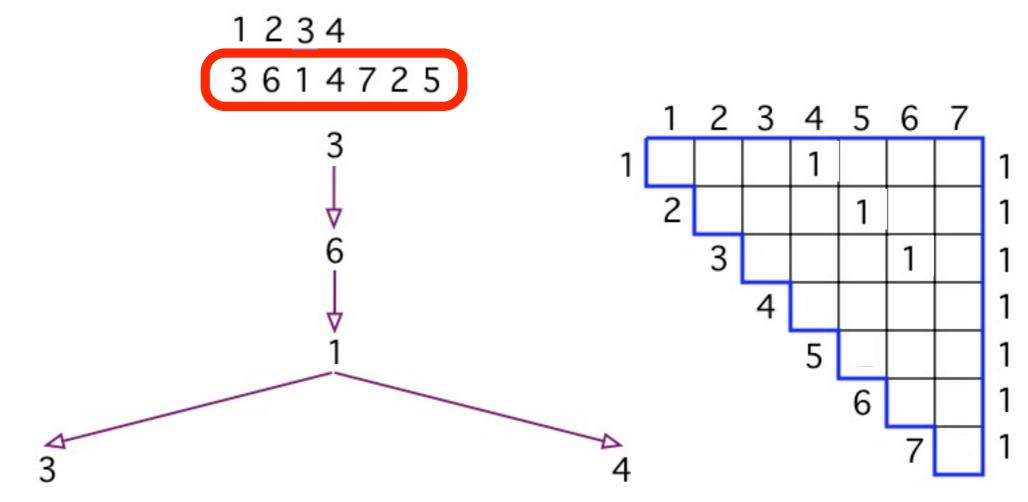


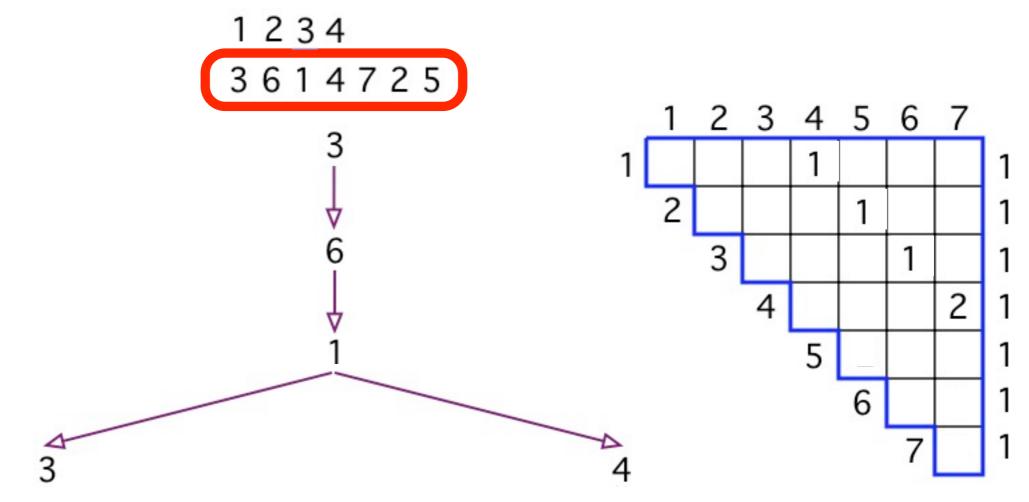


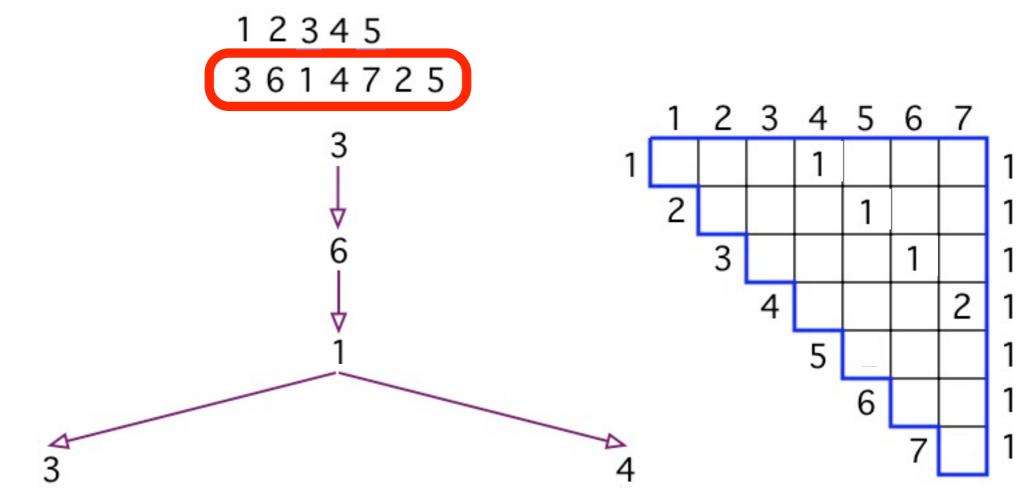


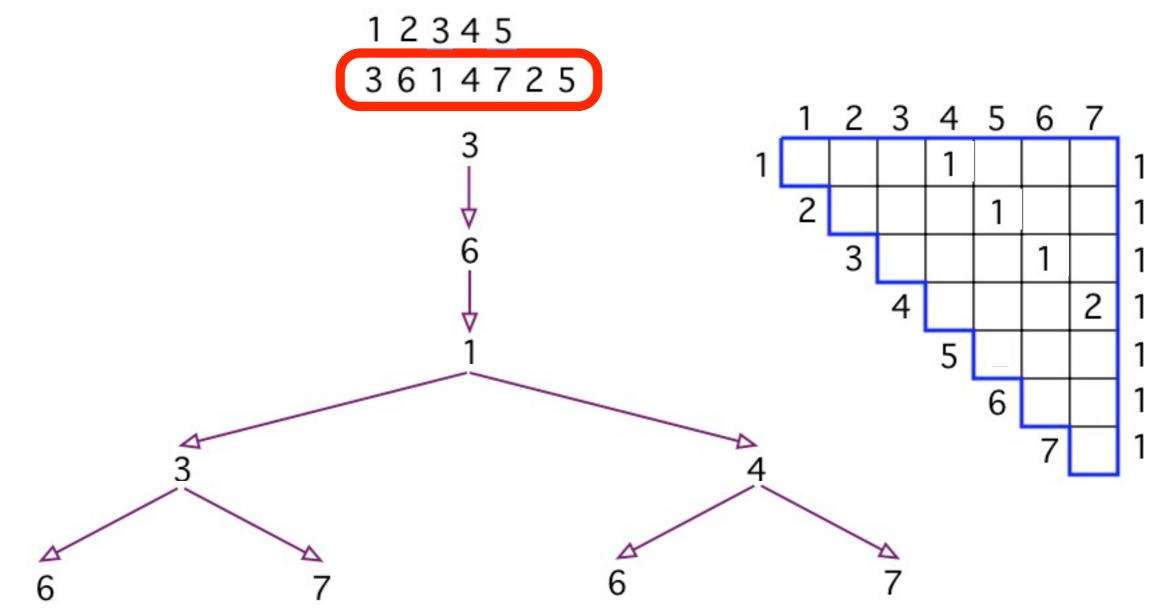


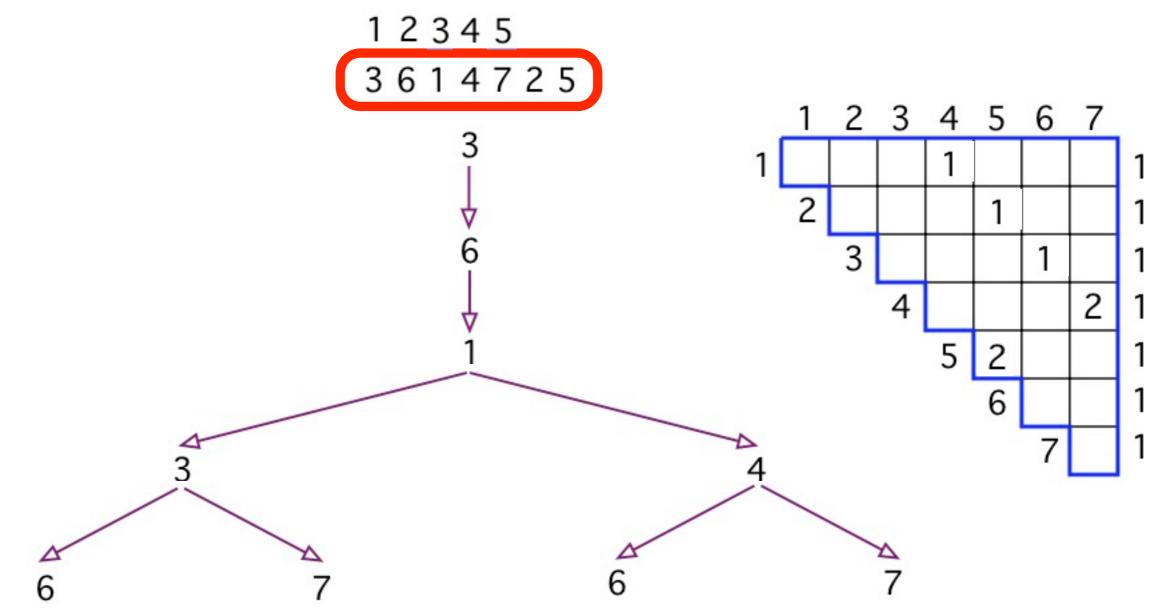


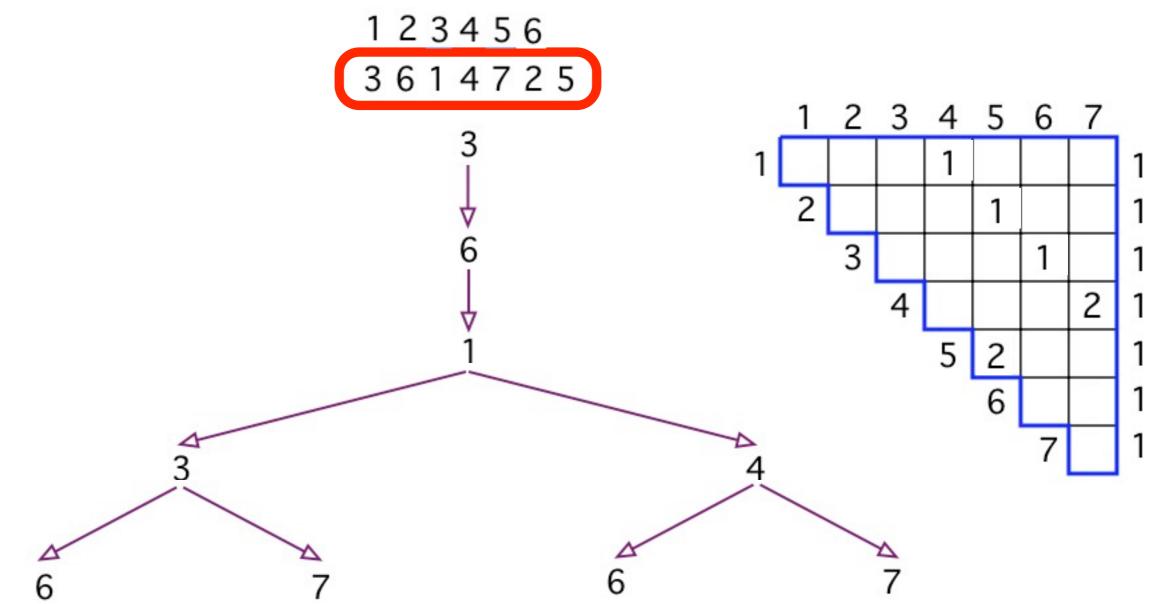


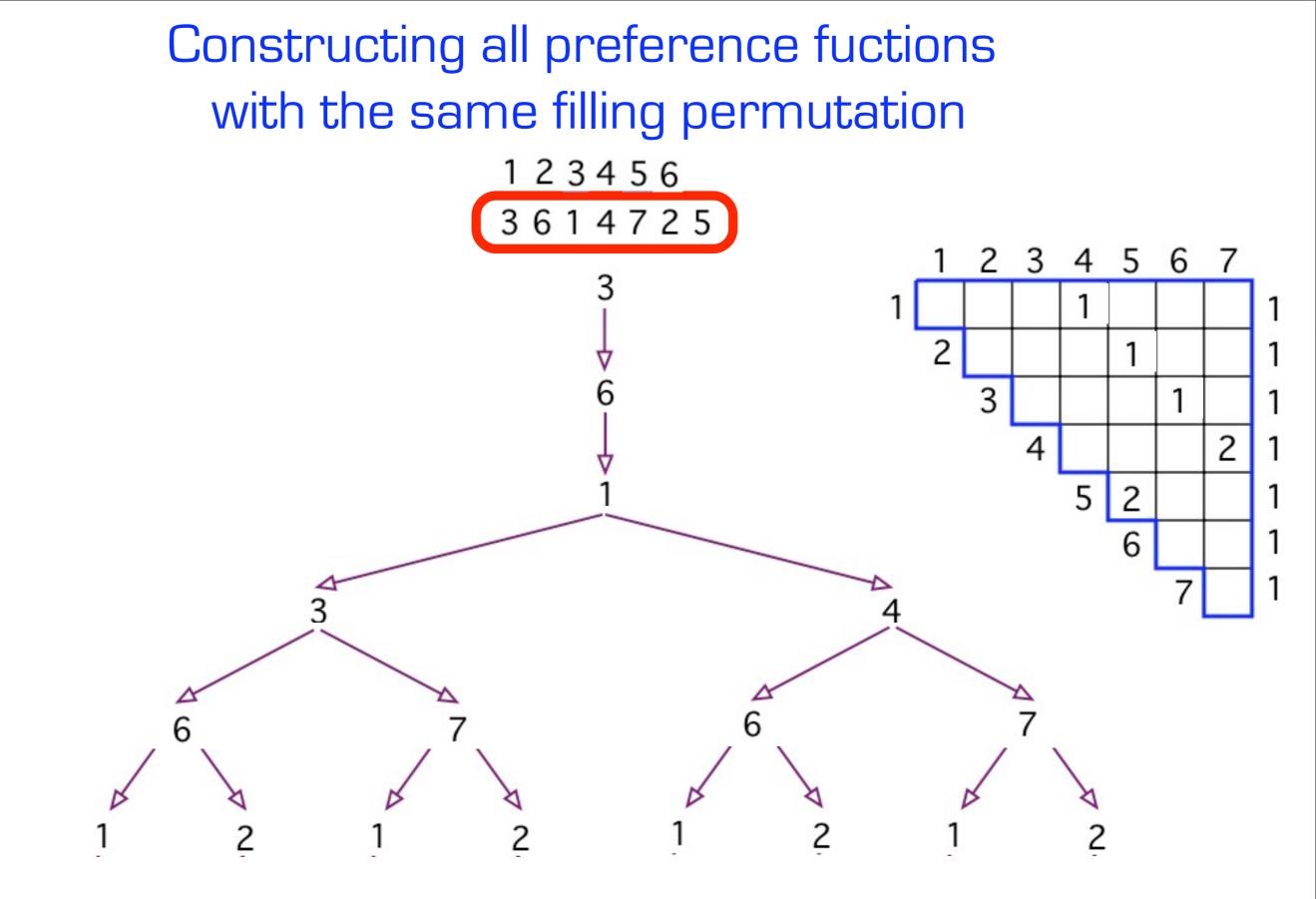


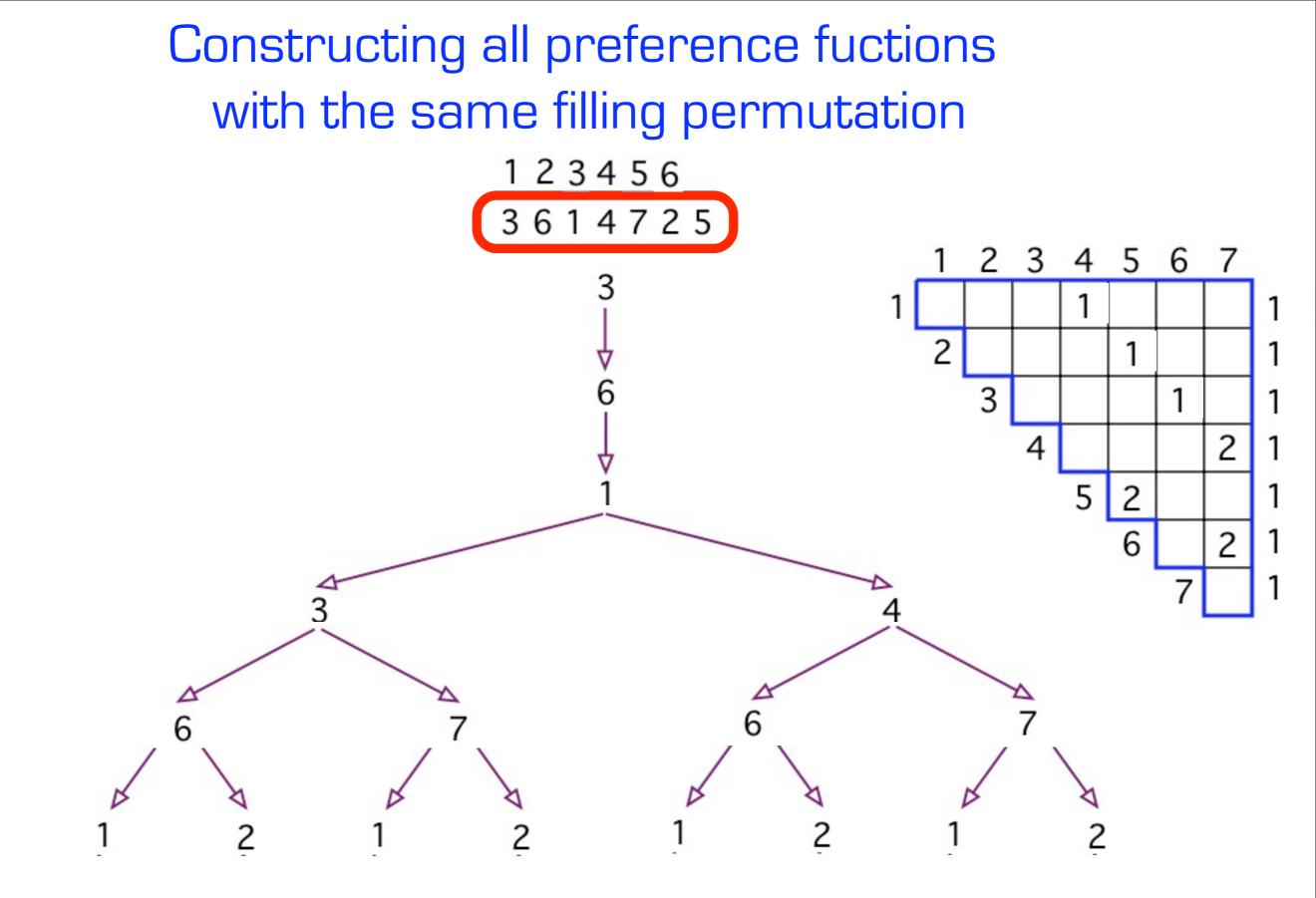


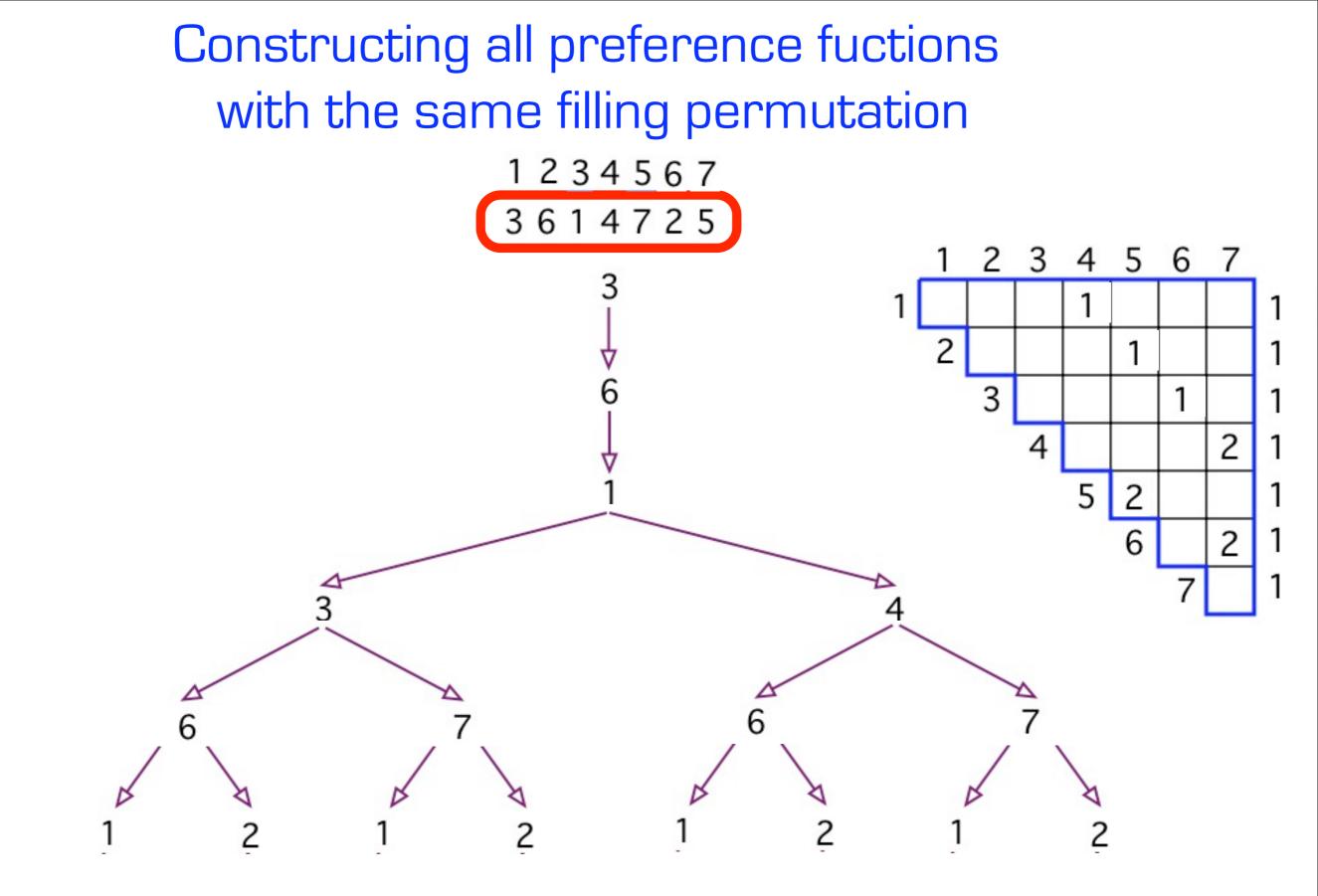


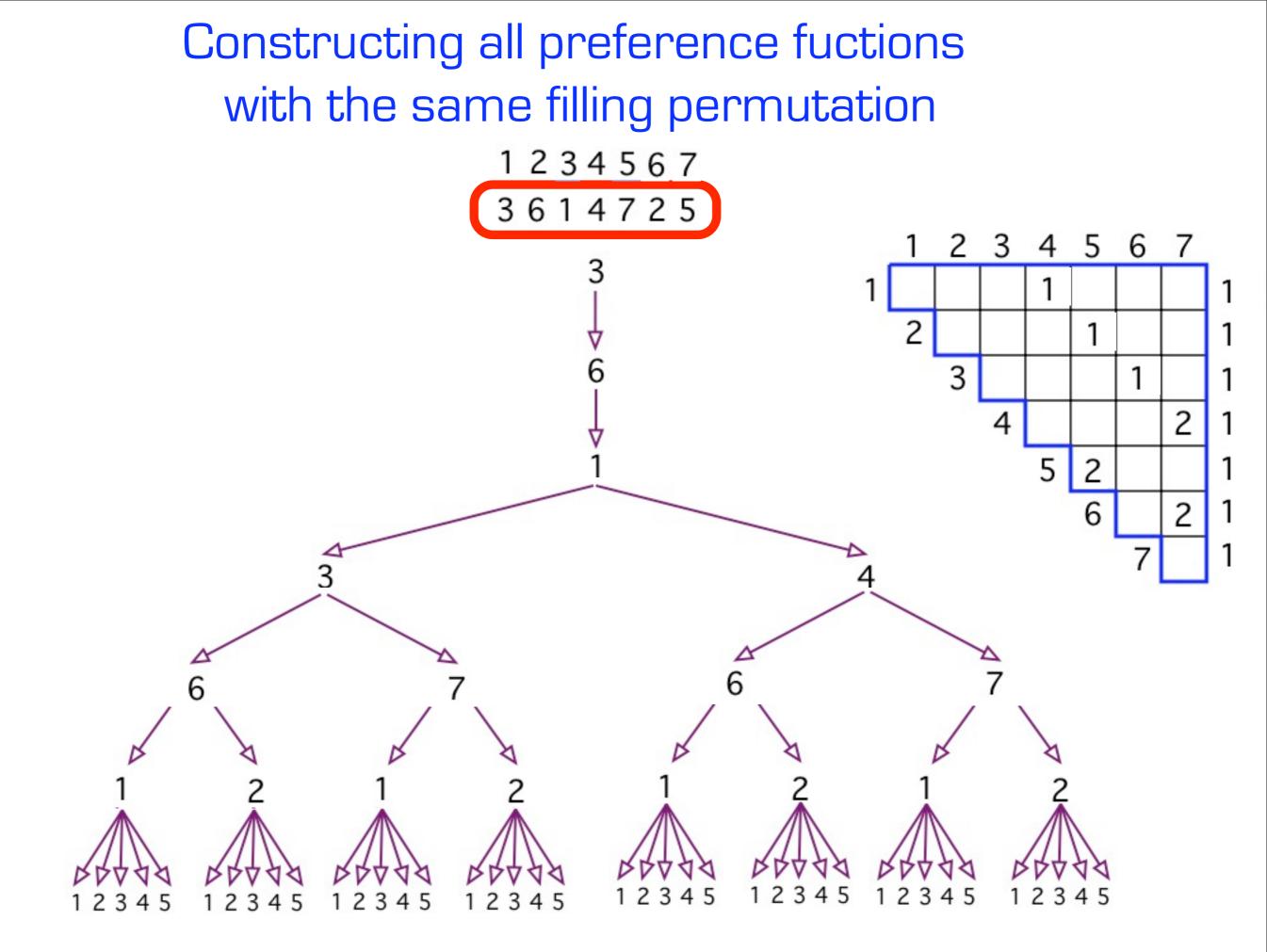


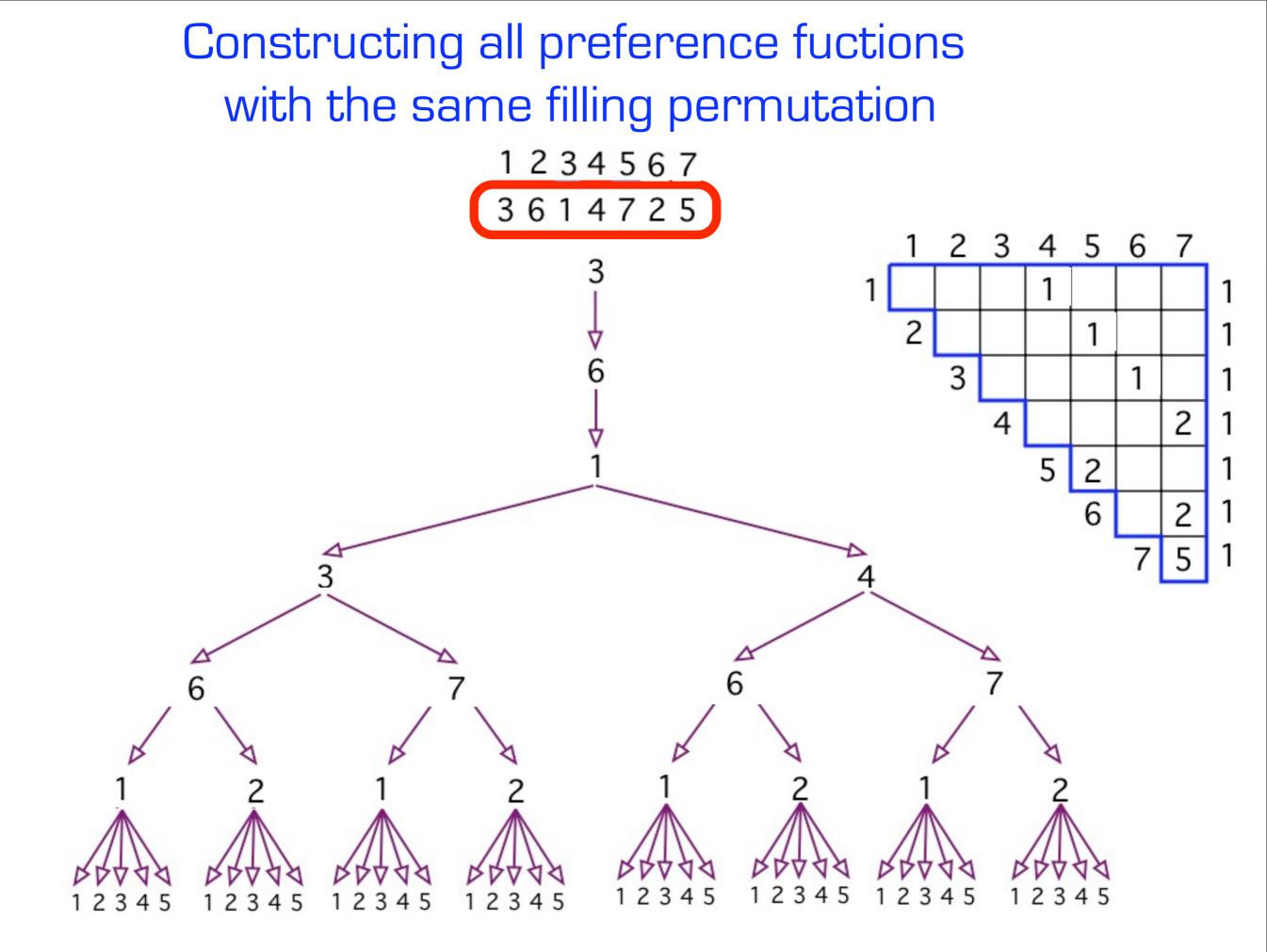


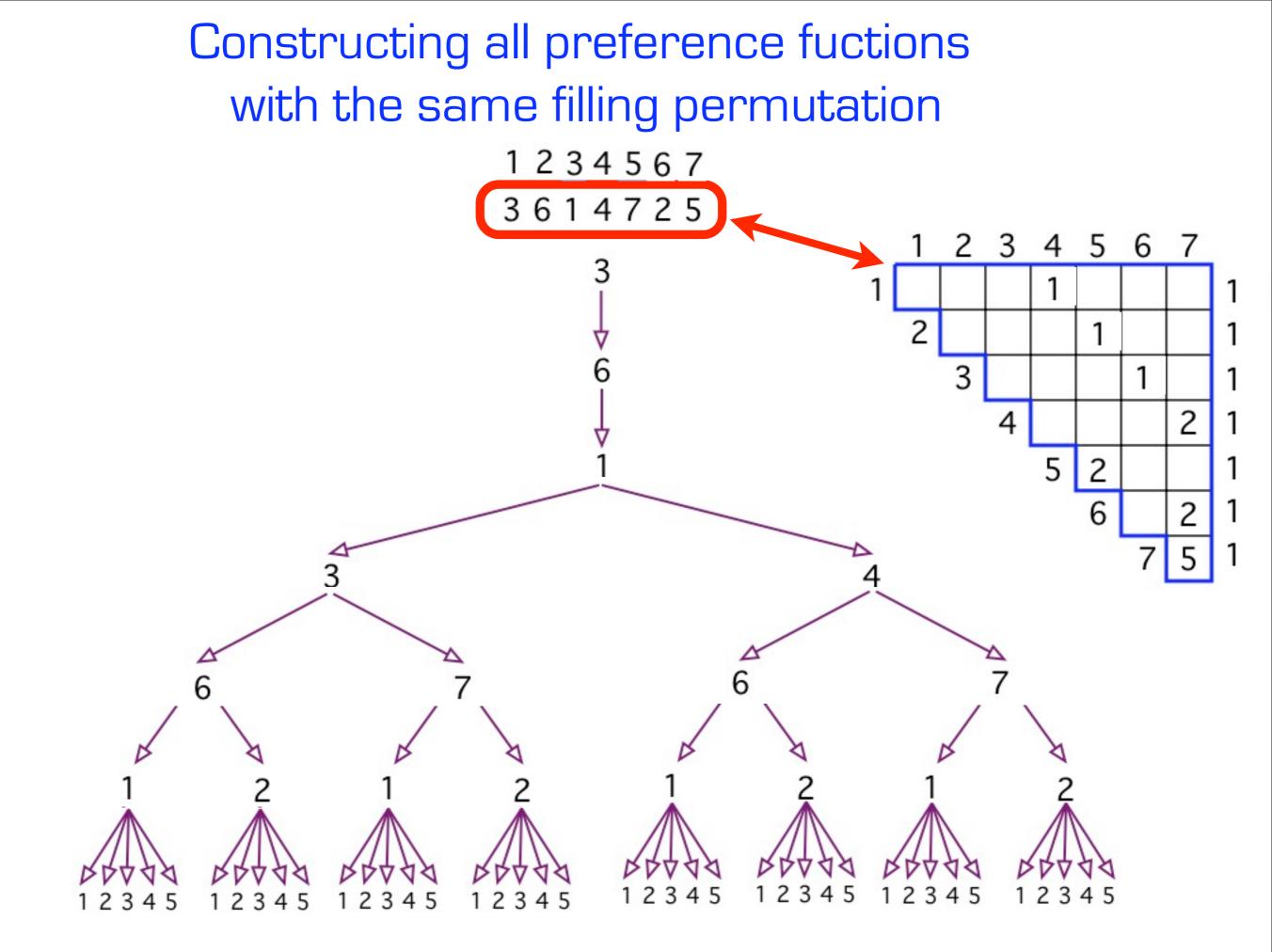


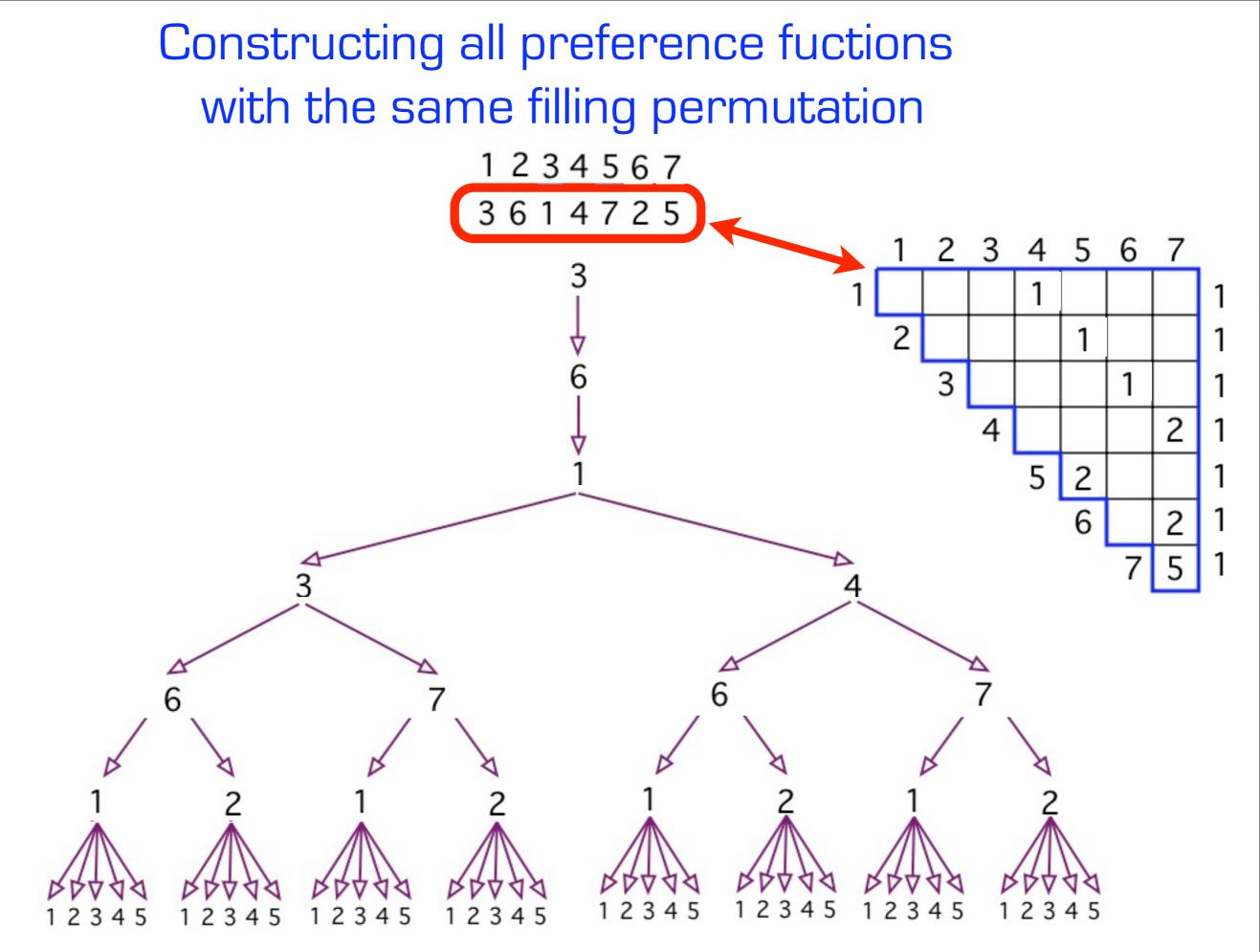












Lemma

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

the "+" denoting disjoint union

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

the "+" denoting disjoint union

In particular it follows that

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

the "+" denoting disjoint union

In particular it follows that

$$#tail(\alpha_k) = 1 + #tail(\alpha_{s_1}) + #tail(\alpha_{s_2}) + \dots + #tail(\alpha_{s_r}),$$

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

the "+" denoting disjoint union

In particular it follows that

$$\#tail(\alpha_k) = 1 + \#tail(\alpha_{s_1}) + \#tail(\alpha_{s_2}) + \dots + \#tail(\alpha_{s_r}),$$

that gives

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

the "+" denoting disjoint union

In particular it follows that

$$\#tail(\alpha_k) = 1 + \#tail(\alpha_{s_1}) + \#tail(\alpha_{s_2}) + \dots + \#tail(\alpha_{s_r}),$$

that gives

$$#tail(\alpha_k) = 1 + a_{s_1,k} + a_{s_2,k} + \dots + a_{s_r,k}$$

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

the "+" denoting disjoint union

In particular it follows that

$$\#tail(\alpha_k) = 1 + \#tail(\alpha_{s_1}) + \#tail(\alpha_{s_2}) + \dots + \#tail(\alpha_{s_r}),$$

that gives

$$#tail(\alpha_k) = 1 + a_{s_1,k} + a_{s_2,k} + \dots + a_{s_r,k}$$

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

the "+" denoting disjoint union

In particular it follows that

$$\#tail(\alpha_k) = 1 + \#tail(\alpha_{s_1}) + \#tail(\alpha_{s_2}) + \dots + \#tail(\alpha_{s_r}),$$

that gives

$$#tail(\alpha_k) = 1 + a_{s_1,k} + a_{s_2,k} + \dots + a_{s_r,k}$$

next

Lemma

Suppose that for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in S_n$ and some $1 < k \le n$ we have

 $\{\alpha_s < \alpha_k : target[\alpha_s, \alpha] = \alpha_k\} = \{\alpha_{s_1}, \alpha_{s_2}, \dots, \alpha_{s_r}\} \quad (\textit{with } s_1 < s_2 < \dots < s_r < k)$

Then

$$tail(\alpha_k) = \{\alpha_k\} + tail(\alpha_{s_1}) + tail(\alpha_{s_2}) + \cdots + tail(\alpha_{s_r})$$

the "+" denoting disjoint union

In particular it follows that

$$\#tail(\alpha_k) = 1 + \#tail(\alpha_{s_1}) + \#tail(\alpha_{s_2}) + \dots + \#tail(\alpha_{s_r}),$$

that gives

$$#tail(\alpha_k) = 1 + a_{s_1,k} + a_{s_2,k} + \dots + a_{s_r,k}$$

next

next next

Theorem

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1,y_2,\ldots,y_n)$ is

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $\mathbf{y_1}, \mathbf{y_2}, \ldots, \mathbf{y_n})$ is

 $\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + 2\mathbf{y_n})$

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1,y_2,\ldots,y_n)$ is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + 2\mathbf{y_n})$$

where here

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1, y_2, \ldots, y_n)$ is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + \mathbf{2y_n})$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1, y_2, \ldots, y_n)$ is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + \mathbf{2y_n})$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Proof

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1, y_2, \ldots, y_n)$ is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + \mathbf{2y_n})$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Proof

For each filling permutation α we construct a Tesler matrix $A(\alpha) = ||a_{i,j}(y)||$ so that

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1, y_2, \ldots, y_n)$ is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + \mathbf{2y_n})$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Proof

For each filling permutation α we construct a Tesler matrix $A(\alpha) = ||a_{i,j}(y)||$ so that

$$\prod_{a_{i,j}(y)\neq 0} a_{i,j}(y) = \sum_{filling(pf)=\alpha} \prod_{i=1}^n y_{\beta_{pf[i]}}$$

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1,y_2,\ldots,y_n)$ is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + \mathbf{2y_n})$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Proof

For each filling permutation α we construct a Tesler matrix $A(\alpha) = ||a_{i,j}(y)||$ so that

$$\prod_{a_{i,j}(y)\neq 0} a_{i,j}(y) = \sum_{filling(pf)=\alpha} \prod_{i=1}^n y_{\beta_{pf[i]}} \qquad \beta = parking(pf)$$

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1,y_2,\ldots,y_n)$ is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + \mathbf{2y_n})$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Proof

For each filling permutation α we construct a Tesler matrix $A(\alpha) = ||a_{i,j}(y)||$ so that

$$\prod_{a_{i,j}(y)\neq 0} a_{i,j}(y) = \sum_{filling(pf)=\alpha} \prod_{i=1}^n y_{\beta_{pf[i]}} \qquad \beta = parking(pf)$$

we do this by setting in row s and column j the non zero entry to be

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1,y_2,\ldots,y_n)$ is

$$\mathbf{y_1}(\mathbf{y_1} + \mathbf{ny_2})(\mathbf{y_1} + \mathbf{y_2} + (\mathbf{n-1})\mathbf{y_3}) \cdots (\mathbf{y_1} + \mathbf{y_2} + \cdots + \mathbf{y_{n-1}} + \mathbf{2y_n})$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Proof

For each filling permutation α we construct a Tesler matrix $A(\alpha) = ||a_{i,j}(y)||$ so that

$$\prod_{a_{i,j}(y)\neq 0} a_{i,j}(y) = \sum_{filling(pf)=\alpha} \prod_{i=1}^n y_{\beta_{pf[i]}} \qquad \beta = parking(pf)$$

we do this by setting in row s and column j the non zero entry to be

$$a_{s,j}(y) = \sum_{a \in tail(lpha_s)} y_{eta_a}$$

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1, y_2, \ldots, y_n)$ is

$$y_1(y_1 + ny_2)(y_1 + y_2 + (n - 1)y_3) \cdots (y_1 + y_2 + \cdots + y_{n-1} + 2y_n)$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Proof

For each filling permutation α we construct a Tesler matrix $A(\alpha) = ||a_{i,j}(y)||$ so that

$$\prod_{a_{i,j}(y)\neq 0} a_{i,j}(y) = \sum_{filling(pf)=\alpha} \prod_{i=1}^n y_{\beta_{pf[i]}} \qquad \beta = parking(pf)$$

we do this by setting in row s and column j the non zero entry to be

$$a_{s,j}(y) \;=\; \sum_{a\in tail(lpha_s)} y_{eta_a}$$

when α_j is the target of α_s

Theorem

The sum of the weights the permutational Tesler matrices with hook weights $y_1,y_2,\ldots,y_n)$ is

$$y_1(y_1 + ny_2)(y_1 + y_2 + (n - 1)y_3) \cdots (y_1 + y_2 + \cdots + y_{n-1} + 2y_n)$$

where here

$$\mathbf{w}(\mathbf{A}) = \prod_{\mathbf{a}_{\mathbf{i},\mathbf{j}} > \mathbf{0}} \mathbf{a}_{\mathbf{i},\mathbf{j}}(y)$$

Proof

For each filling permutation α we construct a Tesler matrix $A(\alpha) = ||a_{i,j}(y)||$ so that

$$\prod_{a_{i,j}(y)\neq 0} a_{i,j}(y) = \sum_{filling(pf)=\alpha} \prod_{i=1}^n y_{\beta_{pf[i]}} \qquad \beta = parking(pf).$$

we do this by setting in row s and column j the non zero entry to be

$$a_{s,j}(y) \;=\; \sum_{a\in tail(lpha_s)} y_{eta_a}$$

when α_j is the target of α_s