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Abstract

Consider a connected graph G = (E, V ) with N = |V | vertices. The main purpose of this

paper is to explore the question of uniform sampling of a subtree of G with n nodes, for some

n ≤ N (the spanning tree case correspond to n = N , and is already deeply studied in the

literature). We provide new asymptotically exact simulation methods using Markov chains for

general connected graphs G, and any n ≤ N . We highlight the case of the uniform subtree of

Z2 with n nodes, containing the origin (0, 0) for which Schramm asked several questions. We

produce pictures, statistics, and some conjectures.

A second aim of the paper is devoted to surveying other models of random subtrees of a

graph, among them, DLA models, the first passage percolation, the uniform spanning tree and

the minimum spanning tree. We also provide new models, some statistics, and some conjectures.
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1 Introduction

1.1 Random subtrees of a graph, the motivation

The very origin of this work is the reading of Oded Schramm conference paper [121] of the Inter-
national Congress of Mathematicians, Madrid, 2006, where he was one of the plenary speakers. In
his Section 2.5, devoted to lattice trees, he raised two questions that motivated us to work in this
domain. We take the liberty to copy it, here, verbatim:

————————
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Section 2.5. Lattice trees. We now present an example of a discrete model where
we suspect that perhaps conformal invariance might hold. However, we do not presently
have a candidate for the scaling limit.

Fix n ∈ N+, and consider the collection of all trees contained in the grid G that
contain the origin and have n vertices. Select a tree T from this measure, uniformly at
random.
Problem 2.8. What is the growth rate of the expected diameter of such a tree? If we
rescale the tree so that the expected (or median) diameter is 1, is there a limit for the
law of the tree as n → +∞? What are its geometric and topological properties? Can
the limit be determined?

It would be good to be able to produce some pictures. However, we presently do not
know how to sample from this measure.

Problem 2.9. Produce an efficient algorithm which samples lattice trees approximately
uniformly, or prove that such an algorithm does not exist.

————————
Excellent questions for which no real advances have been published during the last 17 years.

Nevertheless, some images and statistics concerning lattice trees with a fixed size were already
present in the literature in 2006: notably, Rensburg & Madras [64] (1992) provided two ergodic
Markov chains with uniform invariant measures (see also references therein), as well as Monte Carlo
estimation of some parameters. Many more results, often coming from the mathematical physics
literature (using sometimes heuristics) were available (Rensburg & Rechnitzer [65], Hsu et al. [60]
and Jensen [70] and numerous references therein); see Section 5 for additional details. The question
concerning the scaling limits of these objects is stuck up to now.

Motivated by the understanding of the apparent obstruction to the construction of exact sim-
ulations for these lattice trees, we started to examine this question as a particular case of a more
general question: is it possible to sample a uniform subtree of a given size of a connected graph?
This leads us to provide general Markov chains working on any finite connected graphs, and to
produce new models of random trees embedded in a graph, as well as to survey already studied
models of random subtrees of a graph.

Before discussing the content of the present paper, let us fix some notation.

Convention and notation A graph G is a pair (V,E), where V is the finite or countable set
of vertices, and E the multiset of edges. Each edge is a set of the form {a, b} where a and b are
different vertices. The word multiset means that each edge {a, b} has a multiplicity, which is a
positive integer.

As usual, a subgraph G′ = (V ′, E′) of G = (V,E) is a graph satisfying V ′ ⊂ V and E′ ⊂ E.
We use the standard definition of paths, cycles, connectivity and connected components, induced
subgraphs (see e.g.[15]). A tree is a connected graph T = (VT , ET ) with no cycle: it satisfies
|ET | = |VT | − 1 (where |S| stands for the cardinality of S). A subtree of G is a tree which is also a
subgraph of G. A subtree T is said to be spanning if VT = V .

We will call E(G) and V (G) the edges and vertices of the undirected graph G, respectively and,

we write
−→
E (G) for the set of oriented edges associated with E(G), which is the set containing for each

edge {a, b} ∈ E(G) two oriented copies: (a, b) and (b, a). For an oriented edge −→e = (e1, e2) ∈
−→
E (G),

we denote simply by e the unoriented version {e1, e2} ∈ E(G).
A rooted tree is a pair (T, r), where T is a tree and r ∈ VT is a distinguished vertex, called the

root. It is often convenient to consider that the edges of a rooted tree (t, r) are oriented toward
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the root r. A rooted tree can be thought as the genealogical tree of a population, with ancestor r.
The leaves are the nodes of T having no incoming edges, that is, that have no children. The set of
leaves is denoted ∂T .

For a finite connected graph G and some positive integer n ≤ |V |, the notation Subtrees(G,n)
stands for the set of subtrees of G with n vertices. For a vertex r ∈ V , let Subtrees•r(G,n) be the
subset of Subtrees(G,n) of trees which contains r (they can be seen as being rooted at r). We also
define the set

Subtrees(G) = ∪nSubtrees(G,n)

of all subtrees of G, and Subtrees•r(G) = ∪nSubtrees•r(G,n) the set of those rooted at r.
For any finite set S, the uniform distribution on S is denoted Uniform(S).
If G has several connected components, Subtrees(G,n) is the union of the sets of subtrees with

size n of each component. Hence, it can be assumed, and this is what we will do, that all the graphs
G considered in the paper are connected.

Remark 1. Most of the models presented in the paper can be defined on multigraphs (in which

multiple edges are allowed) as well as loops, up to small extra-cost. For the sake of clarity, we focus

only on the case of simple graphs.

Content of the paper Schramm’s question is a particular case of the following more general
question: Let G = (V,E) be a finite connected graph.

Question [?]: Is there an efficient way to sample Uniform(Subtrees(G,n)) or
Uniform(Subtrees•r(G,n))?

Indeed, consider the discrete torus

Torus(N) := (Z/NZ)2

seen as a graph, with edges between any pair of nodes of the type (x, y) and (x, y+ 1 mod N), and
between (x, y) and (x + 1 mod N, y). Schramm’s question about a way to sample

Uniform
(

Subtrees•(0,0)(Z2, n)
)

is equivalent to finding a way to sample

Uniform(Subtrees•(0,0)(Torus(n), n)), since the graphs Z2 and the finite graph Torus(n) coincide locally
in an n− 1 neighbourhood of their origin.

Trying to solve Question [?] on a general graph leads to investigate a lot of methods allowing one
to sample random trees embedded in a graph, for example, Markov chain simulations, combinatorial
methods, acceptance/rejection methods relying on simple to sample models, to design new models,
to proceed to partial “evaporation” of uniform spanning-trees, etc.

The paper is organized as follows:

• In Section 1.2 we give a small list of simple graphs on which the simulation of uniform subtrees
of a given size is easy, or well-known.

• In Section 2, we recall some facts concerning the spanning-tree case n = |V |, for which efficient al-
gorithms are known, with many recent developments. The problem to sample
Uniform(Subtrees(G,n)) for n ≤ |V | can be seen as a generalization of the uniform spanning-
tree case so that, it can be useful to expose further this particular case. Moreover, a natural
strategy discussed in this paper to sample according to Uniform(Subtrees(G,n)) consists in trying
to extract a subtree of a uniform spanning-tree (instead of extracting this tree directly from the
graph).
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• Section 3 presents the combinatorics of the set of subtrees of a graph (mainly, Tutte polynomial
like approaches), and then, applies these considerations to the uniform sampling in Subtrees(G,n).
In practice, these approaches can be applied to small graphs only, due to the complexity cost of
the methods involved.

• Section 4 explores Markov chains taking their values in Subtrees(G,n). We propose three new
different models of ergodic Markov chains whose invariant distribution is the uniform distribution
(two of them, are new). We insist on the fact that these chains can be defined on any connected
graph (not only on lattices).

• In Section 5 we focus on the grid case and on Oded Schramm questions: using one of the Markov

chains of Section 4, we made approximate simulations of uniform subtrees of the grid with n

vertices (for n up to some thousands). We provide pictures, statistics and conjectures. Since the

trees are drawn in the plane, there are two main topologies to define scaling limits:

– firstly, the Hausdorff metric topology, in which case, trees are seen as rescaled compact subsets

of the plane, and

– secondly, the Gromov-Hausdorff topology (in which case, the graph distance is rescaled).

The empirical results we have, support the idea that a limiting distribution exists for rescaled

trees in both cases, under suitable normalization. However, if the limit for the Gromov-Hausdorff

topology is likely to be a random continuous tree, it seems that it is not the case for the Hausdorff

distance: the limiting objects seem to have empty interior (no space filling phenomena), but

portions of the drawn simulated objects form patterns close to macroscopic loops, so that it is

tempting to conjecture that the limiting object is not a tree. Intuitive and partial justifications

about the fact that the stationary regime has been reached in our simulations are given in Section

5.4, Fig. 3 and 4 and videos at [48].

• In Section 6, we provide several Markov chains with state space Subtrees(G), the set of subtrees of

a graph (without fixing the size of the subtrees). The stationary distribution is uniform conditional

to the size of the sampled tree, and the random size has an explicit “tunable” distribution.

• In Section 7, we survey many models – different from the uniform distribution – of random

subtrees with n nodes of a graph; for most of them we provide simulation pictures, description of

the distribution and sometimes open questions.

� in Section 7.1, we introduce a new model of random subtree with n nodes: the pioneer tree,

which coincides with the tree formed by the first steps of Aldous–Broder algorithm,

� in Section 7.2 we present a principle showing that it is impossible to construct a uniform element

of Subtrees(G,n) using “the last steps” of a simple Markov chain (and similar constructions),

� in Section 7.3, we present models on Subtrees(G,n) inspired by Wilson’s cycle popping algo-

rithm,

� in Section 7.4, we give a model of distinguished connected component in a size biased forest,

� in Section 7.5, we discuss two ways to extract a random subtree with n nodes of a UST,

� in Section 7.6, we provide a model motivated by directed limited aggregation (DLA) and which
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is defined on any graph (and coincides with the original model on Z2);

� in Section 7.7, a model motivated by the internal DLA,

� in Section 7.8, we propose several models of random trees defined on weighted graphs: among

them, a model uses Prim’s algorithm, one Kruskal’s and another uses first passage percolation.

• Finally, in Section 8, we investigate the case of random subtrees of a tree.

� In Section 8.2, we give an exact sampling method of a uniform subtree of a tree (a coupling

from the past method),

� in Section 8.3 we propose several models of extractions of a subtree of size n relying on some

models of leaf-evaporation.

1.2 Simple cases and other questions

Sampling uniformly in Subtrees(G,n) is easy for some families of graphs G. Among others :
? If G = KN the complete graph on N vertices, then a uniform element T in Subtrees•1(KN , n) is
a uniform labelled tree on n vertices {x1, · · · , xn} where this set is itself a uniform subset with n
elements of {1, · · · , N} containing 1. Hence, up to a relabelling of the vertices, T is a uniform Cay-
ley tree of size n, also called a uniform labelled tree. These trees are among the simplest and most
studied model of random trees in the literature (with a very long history going back to Cayley [29] in
1889, see also Moon [103]): they are moreover easy to sample, for example, using Prüfer sequences
[116], Neville code [106] (see additional elements and codes in Caminati et al. [28]), a bijection
with parking sequences (see Chassaing & Marckert [32], Chassaing & Louchard [31]), a relation
with additive coalescence (see Aldous & Pitman [7], [31], Marckert & Wang [100]), or as a uniform
spanning tree of the complete graph, see Section 2, and Aldous [4]. Their asymptotic behaviour
when n → +∞ is well known; they converge in distribution, after rescaling of the graph distance
by
√
n to the so called continuum random tree (also called Brownian tree or Aldous’ continuum

random tree): see Aldous [6], Pitman [110] (and additional combinatorial properties), Marckert &
Mokkadem [98] and Duquesne & Le Gall [44] for additional information.
? If G is the cycle Z/NZ, a path (the graph with vertices 1 to N , with edges between i and i+ 1),
the set of subtrees of size n coincide with the set of length n − 1 intervals, and their simulations
are trivial. To some extent, the same can be said for regular graph such as {0, 1} × {1, · · · , N}
or {0, 1, . . . , k} × {1, · · · , N}, for k fixed (with complexity growing in k: transfer matrices allow
counting the number of subtrees with a given first column, see for example da Silva et al. [39] and
references therein, and this allows one to successively sample the uniform random subtree column
by column) or any family of graphs on which some simple combinatorial decompositions can be
performed easily, then one may find some ad hoc methods to sample Uniform(Subtrees(G,n)).
? If (T (m), r) is the infinite regular m-ary tree with root r (the only node with degree m), then sam-
pling uniformly in Subtrees•r(T (m), n) is also a simple task, since each element of Subtrees•r(T (m), n),
can be seen as the set of internal nodes of a (non-embedded planar) uniform m-ary tree with n in-
ternal nodes (that is 1 + nm nodes): sampling such a uniform tree is an easy task with several
known methods, linear in the tree size (or with cost n log n depending on the cost model 1), since
it is a model of “simple trees”, which can also be seen as a Galton-Watson tree conditioned on the
size (see e.g. Devroye [41] for an overview of random generation of Galton-Watson trees conditioned
by the size and Marckert [97], for a new ad hoc method for m ary trees; in the binary tree case,

1The cost in terms of elementary operations performed on the data basis; it depends on the representation of the

data, and need to be defined before talking of the cost of an algorithm
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additional methods are available, among other Rémy algorithm [117] which is an efficient method,
with many properties, see e.g. Marchal [96] and Evans et al. [47]).

In [91], Luczak & Winkler provide a way to grow a sequence of trees (tn), such that (tn) is
increasing for the inclusion partial order, and such that moreover, for each n, tn is uniform in
Subtrees•r(T (m), n).
? Another line of research is the study of the uniform random subtree of some families of random
graphs. It turns out that in some cases, the random generation is simple:

– as shown by Fredes and Sepulveda [51]: the random generation of a uniform subtree t of size
m in a random rooted quadrangulation with n faces can be done for any (n,m) with m < n + 1
in a reasonable time. This comes from the existence of a one-to-one correspondence between, on
the one hand, quadrangulations marked by a distinguished subtree, and on the other hand, a pair
formed by a quadrangulations with a simple boundary together with a planar tree (this bijection
also can be extended to other models of planar maps, for example, with different restrictions on
faces or vertices degrees).

– In the case Erdös-Rényi graphs G(n, p), it is known that the giant connected components
have a phase transition for p being approximatively 1/n. Aldous [6] established that for p =
pλ(n) = 1/n+ λ/n4/3 (with λ fixed), the size of the largest connected component, divided by n2/3

converges in distribution; this is true also for the sizes of the k largest components, and true also as
a process indexed by λ (see in [21]). In fact, as proved by Addario-Berry et al. [1], these connected
components, seen as random graphs, have a scaling limit (when the graph distance is normalised by
n1/3). Moreover, the excesses2 of these components are well understood: with a positive probability
(bounded from below, when n→ +∞, for a fixed λ), these connected components are trees. These
results are somehow the starting point to Addario-Berry et al. [2], in which is established that the
minimum spanning tree of the complete graph Kn (with any reasonable models of random weights),
possesses a scaling limit, after normalisation by n1/3: the limit, called the “Brownian parabolic
tree”, is described in Broutin & Marckert [22]; it is a new object constructed using the branching
structure of the convex minorants of the Brownian motion with parabolic drift (Wt − t2/2, t ≥ 0)
on [0, x], for all x ≥ 0.

2 The spanning-tree case

Given a finite connected graph G = (V,E), there are several kinds of approaches to sample a UST
of G, with many recent developments (a recent survey can be found in Schild [118]).

– Random walk approaches: Two famous algorithms, recalled in the two following sections
are Aldous–Broder algorithm (Broder [18], Aldous[4], see also Hu et al. [62] and Fredes & Marckert
[49] for a variant) and Wilson’s algorithm [132] (see also Lyons & Peres [93, Section 4], Járai [76]).
Their expected running time for undirected graphs are O(τc) and O(τ) respectively, where τc and
τ are the mean cover time3 and mean hitting time4 of the simple random walk in G, respectively.
Wilson’s algorithm is the fastest of the two since the mean hitting time is always smaller than the
cover time.

2the excess of a connected graph is the minimal number of edges needed to be removed to turn the graph into a

tree
3The mean cover time τc is here the maximum expected time to visit all the vertices of the graph, where the

maximum is taken over all starting points.
4The mean hitting time is defined as τ =

∑
i,j π(i)π(j)Ei,j , where π is the invariant distribution and Ei,j is the

mean time starting from i to reach j.
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Wilson and Aldous–Broder algorithms permit also the generation of trees with a probability
proportional to the product of the edge weights, as stated below, in Theorem 3 (in the positive
weighted edge models, where the edges of the initial graphs possess some positive weights, which
can be seen as conductances).

It is tempting to try to tune these algorithms to sample uniformly in
Subtrees(n,G), that is with a given size n for some n < |V |. Some of these modifications will
be discussed in the paper, but none of them allows one to sample uniformly in Subtrees(n,G) (when
n ≤ |V |); a kind of meta argument will be developed in Theorem 25 to explain why it is in general
not possible to obtain the uniform distribution using random walks when n� |V |.
– Laplacian methods. If the graph is small, Tutte’s formula (see e.g. Tutte [125], Bernardi [13],
Welsh [129] and Section 3 for additional details) or more efficiently, Kirchhoff matrix tree theorem
(Kirchhoff [82], Chaiken & Kleitman [30], Zeilberger [136]) can be used to design some generation
algorithms. The Laplacian matrix of a graph G = (V = {1, · · · , n}, E) is the matrix

Lap(G) :=
[
degG(i)1i=j −Ai,j

]
1≤i,j≤n (1)

where Ai,j is the number of edges between i and j (a variant using weighted edges can be used
instead, in which case Ai,j is the weight of the edge (i, j), and the diagonal term degG(i)1i,j has to
be replaced by

∑
j Ai,j). The famous matrix tree theorem asserts that the number of (unrooted)

spanning trees of G is

|{Spanning trees of(G)}| = |det(Lap(G)?)|, (2)

where Lap(G)? is obtained from Lap(G) by the suppression of a row and a column This formula also
gives the cardinality of the set of spanning trees rooted at some fixed vertex r.

In the weighted case, removing the row and column r in the Laplacian matrix gives the sum
over the weighted rooted trees at r, more formally,

| det(Lap(G)(r))| =
∑

(t,r):t spanning

W (t, r) (3)

where W (t, r) =
∏

(u,v)∈Edges(t,r)w(u,v) with w(a,b) the weight of the oriented edge (a, b) and where
in the rooted tree (t, r), each edge (u, v) is oriented toward the root r.

This theorem can be used to determine the probability of presence of a given edge of G in a UST,
which can be taken into account recursively for the complete random generation (see Section 3.2).
This fact is used and discussed in Colbourn et al. [35], who designed an algorithm with time cost
O(|V |3) to sample a uniform spanning tree of G (improving on Guénoche [55] and Kulkarni [84]).
In [36], Colbourn et al. provide a method running according to the cost of the best-known matrix
multiplication (which is O(|V |ω) for ω < 2.373).
–Hybrid methods. In the very last years, the previous results have been improved by mixing
random walk methods with computation methods relying on Laplacians, connections with electrical
networks, with the aim to be able to provide some shortcuts to the random walks. Kelner & Ma↪dry

[80] provide an algorithm with time cost Õ(|E|
√
|V | log(1/δ)) (the Õ, meaning “up to polylog

factors”) to sample a tree within a multiplicative (1+δ) of a uniform spanning tree, result improved
by Ma↪dry et al. [104] (time cost Õ(|E|4/3), by Durfee et al. [45] (time cost Õ(|V |4/3|E|1/2 + |V |2),
for the more general case of edge-weighted trees). Finally, very recently, Schild [119] (long version
in [118]) provides an algorithm with time cost |E|1+o(1)βo(1) (in the general weighted graph case,
with max-to-min ratio β).

We refer the reader to Schild [118], Durfee et al. [45] for the complete history on these lines of
research.
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Figure 1: Simulation of a UST of the graph (Z/40Z)2 using Wilson’s algorithm (on this picture,

identify the right and left sides, and of the top and bottom sides to get the actual spanning-tree).

2.1 Aldous–Broder algorithm

Reversible transition matrices A Markov chain with transition matrix M on E ×E is said to
be reversible with respect to a distribution ρ, if it satisfies the detailed balance equations:

ρiMi,j = ρjMj,i for any i, j ∈ E. (4)

In this case ρ is invariant for this Markov chain.
We say that a transition matrix M = (Ma,b, a, b ∈ V ) is positive on a connected graph G =

(V,E), if {a, b} ∈ E ⇔ Ma,b > 0. Denote by ρ = (ρv, v ∈ V ) the unique stationary distribution of
this transition matrix. Consider W = (Wk, k ≥ 0) a Markov chain with transition matrix M . Set

τk(W ) = inf{j, |{W0, · · · ,Wj}| = k}, 1 ≤ k ≤ |V |

the first time k different points have been visited: hence τ1(W ) = 0, and the cover time is τ|V |(W )
(we will write τk instead of τk(W ) when it is clear from the context).

Definition 2. Denote by FirstEntranceTree(W0, · · · ,Wτ|V |(W )) the rooted

spanning-tree5 with root W0 and whose |V | − 1 edges are given by the oriented edge (Wτk ,W−1+τk)

for 2 ≤ k ≤ τ|V |.

Theorem 3. [Aldous [4] and Broder [18]] If M is positive and reversible with invariant distribution

ρ, then

P
[
FirstEntranceTree

(
W0, · · · ,Wτ|V |

)
= (t, r) | W0 = r

]
=

Const.

ρ(r)

∏
e∈E(t,r)

Me. (5)

Here, and elsewhere, for any rooted spanning-tree (t, r), the edges E(t, r) of (t, r) are oriented
toward the root r (so that if e = (e1, e2), e2 is the parent of e1, and Me := Me1,e2).

5The first entrance tree is associated to a path, random or not.
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Proofs can be found in [18, 4, 93, 76]. The original proof relies on the so-called “tree Markov chain”:
this is a Markov chain whose state space is the set Spanning trees(G), and whose evolution is defined
using a step of a random walk with transition matrix M on V .
As a consequence, if M is the transition matrix corresponding to the simple random walk on G,
Ma,b = 1{a,b}∈E/deg(a), the invariant distribution ρv is proportional to degG(v), so that (5) is inde-
pendent of t and
FirstEntranceTree(W0, · · · ,Wτ|V |) is a UST, rooted at W0 (for the non-rooted case, any choice of
distribution of W0 is fine: just project on non-rooted trees).

In fact, the reversibility condition in Theorem 3 can be dropped, but the conclusion of the theorem
has to be adapted (see Hu et al. [62], and Fredes & Marckert [49]). For a positive transition matrix

M on G, there exists a unique invariant distribution ρ. Define
←−
M by

←−
Mx,y := ρyMy,x/ρx, for all (x, y) ∈ V 2, (6)

so that
←−
M is simply the transition matrix of the time-reversal of a Markov chain with transition

matrix M under its invariant distribution.

Theorem 4 ([62], [49]). If M is positive on G, and W is a Markov chain with transition matrix

M and invariant distribution ρ, then for any rooted spanning-tree (t, r)

P
[
FirstEntranceTree

(
W0, · · · ,Wτ|V |

)
= (t, r) | W0 = r

]
=

Const.

ρ(r)

∏
e∈E(t,r)

←−
Me. (7)

This theorem implies Aldous–Broder result since in the reversible case,
←−
M = M .

2.2 Wilson’s algorithm

We refer to Schramm [120], Lawler [86], Marchal [95] and Viennot [127, Prop.6.3] for more infor-
mation concerning loop erased random walks (and to Schramm [120], Lawler [87], Lawler et al.
[131] for conformal invariant scaling limit considerations, in the lattice case, in which deep links
between scaling limits of loop erased random walks and scaling limits of uniform spanning trees are
discussed). Let M be a positive transition matrix on a connected graph G = (V,E) and r ∈ V
a distinguished node. For any starting point v ∈ V and non-empty subset S of V , we denote by
LERWM [v, S] the distribution of a M -loop erased random walk starting at v and killed at its hitting
time of S (meaning that before erasure, the random walk is a Markov chain with transition matrix
M).

Wilson’s algorithm can be stated as follows: Consider an ordering of the vertices (v1 = r, v2, . . . , v|V |)
of V , and set T1 as the initial tree reduced to the point v1 = r. For any 2 ≤ i ≤ N , consider a
loop erased random walk Li with distribution LERWM [vi,Ti−1], starting at vi and stopped at the
vertex set of the current tree Ti−1. The tree Ti is the tree having as set of edges those of Ti−1

union the set of steps of Li (meaning that if Li = (a0, · · · , am), the new edges are the (aj , aj+1)).
If vi is already in Ti−1, there is no new edges. Denote by WilsonTreer the final tree T|V |. We have

Proposition 5 ([132]). For any positive transition matrix M , for any rooted spanning-tree (t, x) of

G,

P(WilsonTreer = (t, x)) = Const.1x=r

∏
e∈E(t,r)

Me. (8)
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For proofs, see Wilson [132], Propp & Wilson [115], Járai [76], or Lawler [86].
When Ma,b = 1

deg(a) , then P(WilsonTree = (t, x)) = Const.1x=r/
∏
v 6=r deg(v), which again, does

not depend on the tree t, so that again, WilsonTreer is a UST rooted at r.
This construction admits a companion description called cycle popping (detailed in [132], [115],

[76]) which is more suitable for generalizations (see Section 7.3).
Cycle popping algorithm. Consider for each vertex v, different from r, a random outgoing
edge −→e v, independent of the others, such that P(−→e v = (v, w)) = Mv,w, and call such orientation
O = (−→e v, v ∈ V \ {r}). It is simple to check that if the set of oriented edges in O forms a tree,
it will be a spanning-tree rooted at r, and the probability that this spanning-tree equals (t, r) is∏
e∈E(t,r)Me. When the edges in O does not form a spanning-tree, the connected component t(r) of

r is a tree and all other connected components contain a (unique) oriented cycle. The cycle popping
algorithm [115, Sec. 6] consists in choosing a cycle and re-sampling the outgoing edges of all the
vertices it contains; this operation is repeated until the resulting orientation does not contain any
cycle, so that it corresponds to a tree T?. Wilson [132] proved that T? has also the distribution
given in (8); better than that, he explains how the construction using the LERW is just a way to
view/order the cycle poppings.

As suggested by Theorem 4, if a coupling between Aldous–Broder and Wilson algorithms could

be found, then probably Wilson’s algorithm should be run using the transition matrix
←−
M instead

of M .

Open question 1. It is possible to couple Wilson and Aldous–Broder constructions so that they

depend on the same trajectories (and give the same results)?

Mixing the UST question with the configuration model? The following question is open
to our knowledge and seems particularly interesting: it is the question of the sampling of a UST
with prescribed degrees.

Open question 2. Given a connected graph G = (V,E) and some positive integers (du, u ∈ V )

associated with the vertices of V , find an algorithm that produces a UST t of G conditioned on the

event {degt(u) = du, u ∈ V } when there exists such a spanning-tree.

The existence of a spanning-tree satisfying {degt(u) = du, u ∈ V } can be decided by exhaustive
approach or using the matrix tree theorem (that is (1) and (3), taking A(i, j) = uiuj as the weight

of the edge (i, j), where the uj are formal monomials; then extract the coefficient of
∏
j u

dj
j in the

determinant of the Laplacian matrix of the graph, with the first row and column, removed: this
coefficient gives the number of such spanning-trees). The problem of the uniform generation of a
Hamiltonian path (a path that visits each node exactly once) is equivalent to that of a spanning-
tree whose nodes have all degree 2, except for the extremal nodes that have degree 1. There are
no efficient algorithm for this task, since even the decision problem of existence of a Hamiltonian
path is NP-complete (Karp [79]). The previous discussion implies that deciding the existence of
a spanning tree with some prescribed degree sequence is NP-complete, which implies, a priori,
that the answer to Question 2 is difficult without additional hypothesis. Indeed, take the example
of the complete graph Kn; a uniform spanning tree rooted at 1, in which one sets that exactly
nk nodes must have k children for a fixed sequence (ni, 0 ≤ i ≤ n − 1), can be simulated by
taking a uniform permutation of the sequence 0n01n1 ...nnn−1 (made of the concatenation of n0

zeroes, n1 ones, n2 twos, ...); this gives a sequence (X0, · · · , Xn−1); the rotation principle (Otter
[107]), then asserts that there is a single a ∈ Z/nZ (easy to compute, [97, Section 2.5]) such
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that X(a) := (Xa, Xa+1 mod n, · · · , Xn−1+a mod n) is the sequence of node degrees of a planar tree,
traversed in the lexicographical order. Now, put label 1 at the root, and for i going from 2 to n,
put label σi−1 to the i-th node sorted according to the lexicographical order, where σ is a uniform
random permutation {2, · · · , n}. It is a simple exercise to show that this method provides the
uniform distribution on the set of labelled trees with root 1, respecting the degree sequence given.
Even the scaling limit of this model is known, under some hypothesis on the limiting proportion pi
of nodes of degree i, see Broutin and Marckert [20].

Uniform spanning tree of infinite lattices Some results exist concerning the asymptotic
behaviour of UST of the grid, either locally, or after rescaling. Since the paper is rather devoted to
more general random subtrees, we just give here few pointers. Taking a UST on a graph as [−n, n]d

(with edges between points with integer coordinates at Euclidean distance 1), and letting n→ +∞,
Pemantle [108] showed that the limit is a tree on Zd for d ≤ 4 (and a forest for d > 5 with infinitely
many components). See Benjamini et al. [10] for extension to general graphs.

Another line of research concerns the asymptotics of uniform spanning tree after rescaling, and
the conformal invariance of the limit (see Schramm [120], Lawler et al. [89]).

The weak limit of the UST on the torus (Z/nZ)d is shown to be, after an appropriate rescaling,
the continuum random tree (which is the natural limit of the UST of the complete graph after a
scaling by

√
n). It has been proved by Peres & Revelle [109] (for d ≥ 5) and by Schweinsberg [122]

for d = 4.

3 The combinatorial approach to sample Uniform(Subtrees(G, n))

3.1 Counting the number of elements in Subtrees(G, n)

When G is finite, Uniform(Subtrees(G,n)) can be sampled if one knows a way to sample uniformly
in Subtrees•r(G,n) for all r ∈ V (that is when a root is fixed) and if |Subtrees•r(G,n)| is known
for each r (or if they are known to be equal for some reasons, for example, if a group acts tran-
sitively on the graph). Indeed, since the trees of Subtrees(G,n) have the same number of nodes,
it suffices to first pick a random node r according to the unique probability distribution propor-
tional to (|Subtrees•r(G,n)|, r ∈ V ), and then, conditionally on r = r, to pick a tree uniformly in
Subtrees•r(G,n).

It turns out that the sequence (|Subtrees(G,n)|, n ≥ 1) can be computed using a decomposition
similar to that used when deriving Tutte’s formula (Tutte [125], Bernardi [13]). The first part of
what follows and which concerns a Tutte polynomial for subtrees of a graph, is present mutatis
mutandis in [34, Prop. 4.4.], for unrooted subtrees.

Apart from their own interest, these algebraic considerations bring some additional insight,
and possibly, potential methods to sample Uniform(Subtrees(G,n)): in general, the cost of the
computation of (|Subtrees(G,n)|, n ≥ 1) is significant, and can be done only on small graphs (or
particular ones); more elements on the complexity of these costs are discussed below.

Tutte recursion produces loops, multiple edges, and may disconnect the graph (if we allow the
deletion of bridges, which is the case here). In this section, we then consider multigraphs G = (V,E),
possibly disconnected, having possibly some loops (edges of the form {a, b} = {a}). Of course, the
number of subtrees of a graph having some loops is unchanged by their removal. Since we deal with
rooted subtrees of G, any part of the graph disconnected from the root of the tree can be ignored.

Consider a multigraph G = (V,E), and e an edge (possibly not in E). Recall the two classical
operations, contraction and suppression of edges:
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• The graph G \ e obtained from the suppression of e, is the multigraph G′ = (V ′, E′) coinciding
with G = (V,E) except that a copy of the edge e is suppressed from E if any, and G′ = G otherwise,
• The graph G.e obtained from the contraction of e, is the multigraph G′ = (V ′, E′) defined as
follows: if e is a loop, then V ′ = V and E′ is obtained from E by removing 1 to the multiplicity
of the edge e; and if e is not a loop, say e = {a, b}, we define V ′ = V \ {b}, and E′ from E, by
replacing every occurrence of b in an edge e′′ of E by a.

Consider the following polynomial

Tr(G) =
∑

t∈Subtrees•r(G)

x|E(t)|

which is the generating function of the sequence (Subtrees•r(G,n), n ≥ 1), with size function, the
number of edges.

If the connected component of r in G has a single vertex (for example, if G = ({r}, {r, r}k) for
some k ≥ 0), then Tr(G) = 1. Notice that if an edge e = {a, b} is not included in the connected
component of r, or, if e is a loop, then

Tr(G) = Tr(G \ e) = Tr(G.e).

Proposition 6. Let G = (V,E) be a multigraph and r ∈ V . For any edge e ∈ E adjacent to r,

Tr(G) = xTr(G.e) + Tr(G \ e). (9)

Proof. Any tree counted in the left-hand side either contains e or not.

Remark 7. Removing or contracting edges adjacent to r reduces the number of edges, so that (9)

indeed defines Tr(G) (using eventually Tr(G
′) = 1 when V (G′) = {r}).

This formula is very similar to Tutte’s formula, which has been a key tool for the development
of algebraic graph theory. However, the computation of Tr(G) using (9) is at least linear in the
number of subtrees, since each expansion in (9) can be seen as describing a subtree edge per edge:
a contracted edge is in the subtree, while a deleted one, is not.

Formula (9) can be used to compute the first values of Tr(G) for G = Subtrees•r(Torus(N)) for
N from 1 to 4:

1

32x3 + 12x2 + 4x+ 1

11664x8 + 9408x7 + 4074x6 + 1308x5 + 345x4 + 80x3 + 18x2 + 4x+ 1

42467328x15 + 56597760x14 + 39892832x13 + 19618560x12 + 7588872x11

+ 2461360x10 + 698700x9 + 178848x8 + 42496x7 + 9534x6 + 2052x5

+ 425x4 + 88x3 + 18x2 + 4x+ 1.

After that, the computer costs become an obstacle.

Remark 8. Kirchhoff matrix tree theorem [82] can also be used to enumerate the number of subtrees

of size n of a given graph G, by considering one by one all the induced subgraphs with n vertices

of G, and by summing their number of spanning-trees. It gives
(|V |
n

)
different graphs, for which a

determinant of size (n−1)× (n−1) has to be computed. This cannot be used in practice when
(|V |
n

)
is large.
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Counting the number of subtrees of a graph is a #P-complete problem as proved by Jerrum [74]
(see also Jaeger et al. [63]), so that, in principle, these complete enumeration methods can be done
only on small graphs.

See Chin et al. [34, Prop. 3.1.] for some explicit polynomials in different classes of graphs.
This can be generalized to forests. A graph F = (VF , EF ) is said to be a forest if its con-

nected components are trees. Given, r1, · · · , rk distinct elements of V (for k ≥ 1), we denote by
Forests r1,··· ,rk(G) the set of forests composed of k non-intersecting trees, where for each i ∈ J1, kK,
ri ∈ ti.

Define the multivariate generating function of forests in Forestsu1,··· ,uk(G)

FuJ1,kK(G) =
∑

(t1,··· ,tk)∈Forests uJ1,kK(G)

k∏
j=1

x
|E(tj)|
j , (10)

counted according to the size of its connected components. Following the same idea in Proposition 6
we obtain the following proposition.

Proposition 9. For any edge e with only one endpoint uj in uJ1, kK, we have

FuJ1,kK(G) = FuJ1,kK(G \ e) + xjFuJ1,kK(G.e). (11)

Very related to these considerations, is the problem of counting of forests of a graph, a forest
being just a subset of the edge set, with no cycle (compared to what is said above, it corresponds
to the non-rooted case, somehow). The number of forests equals the specialization P (2, 1) of the
standard Tutte polynomial; the generating function of forests counted according to the number of
edges can also be expressed in terms of the standard Tutte polynomial (see Welsh & Merino [130,
Formula (18) p.1135]). However, note that the general complexity in the evaluation of the Tutte
polynomial is #P -hard, even its evaluation P (2, 1) (Jaeger et al. [63]); however, in the case of
dense graphs, Annan [8] provides a “fully polynomial randomized approximation scheme” allowing
to compute the number of forests, up to a factor 1 + ε, which in principle, permits approximate
uniform generation of these objects (Jerrum et al. [75]).

Again, the number of forests with some prescribed roots (or their total weights in the weighted
case) can be computed using variant of the matrix tree theorem (see e.g. Chaiken & Kleitman [30]).

3.2 Uniform sampling using counting formulae.

The expansion formula (9) (or (10)) provides a natural decomposition of the set of subtrees of G
containing a given edge e or not. To sample a random tree T under Uniform(Subtrees•r(G,n)):
– choose an edge e adjacent to r,
– compute |Subtrees•r(G \ e, n)| and |Subtrees•r(G.e, n− 1)| (using the Tutte recursion),
– with probability |Subtrees•r(G\e, n)|/|Subtrees•r(G,n)|, the tree T is chosen uniformly in Subtrees•r(G\
e, n), otherwise define T as the tree having as edge set {e} union the edge set of a uniform random
tree taken in Subtrees•r(G.e, n− 1).

This procedure can be modified to sample in the whole universe Subtrees•r(G) with probability
proportional to x|E(t)| for some fixed x > 0 (à la Boltzmann) i.e.

P(T = t) = x|E(T )|/Tr(G).

In this case, it suffices to retain e as an edge of the final returned subtree with probability
xTr(G.e)/Tr(G), and to go on the construction in G.e, or to decide that e is not in the returned
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subtree with the complementary probability, and to go on the construction in G \ e. Notice that
as we consider/discard edges in the construction of the tree, the consecutive products telescope
up to the point where one has x|E(t)|Tr(G

′)/Tr(G), where G′ satisfies Tr(G
′) = 1 as explained in

Remark 7.
In this case, when conditioning on the size being n, the sample is uniform in Subtrees•r(G,n).

For more on this method see [43, Section 3]. See Jerrum et al. [75] for more general facts, concerning
the links between the problem of counting and random generation of combinatorial structures.

The probability of presence of a bunch of edges e1, · · · , ek of E in the random spanning tree
can also be determined using the fact that the edge set is a determinantal process, see Burton &
Pemantle [26] and Lyons & Peres [93, Section 4]. The original proof by Kirchhoff uses considerations
coming from electrical networks; this method can also be used to prove the negative correlation of
presence of two given edge e and e′ in a random (weighted) spanning tree; see also Chap.4 in Lyons
& Peres book [93]. More generally then variables 1e ∈ T for e ∈ E(G) are negatively associated, as
a consequence of the fact that weighted spanning trees edges (1e ∈ T, e ∈ E) form a determinantal
process (Burton & Pemantle [26]).

4 Generation of uniform random trees using Markov chains

4.1 Algorithmic considerations

A graph G can be represented in various ways in a computer. For example, if E is not too large
we can use V = {1, · · · , n} and a triangular array (m{a,b}(E), 1 ≤ a < b ≤ n) where m{a,b} is the
multiplicity of the edge {a, b} in E. For regular graphs as Torus(N) or as the complete graph, the
edges do not need to be stored, since they can be recovered online.

Explicit programming of Markov chains (Xi, i ≥ 0) taking their values in Subtrees•r(G,n), will
often imply that, to construct Xi+1, some (set of) edges and (set of) vertices will be removed or
added to Xi. In many cases, a “sub-routine” devoted to checking if these modifications give a tree
is needed to finally accept or reject a modification of Xi, and then, to define Xi+1.

Checking the tree property is feasible, and has a cost. There are some classical algorithms
devoted to checking if a subgraph g of a given graph G is a tree: in practice, they have a non-
negligible cost (however, at most linear in the size of g if one neglects the access cost to the data).
• In all generality, if g is given “from scratch”, checking if this graph is a tree can be done by
performing the breadth-first or depth-first traversal [38, Sec. 22.2 and 22.3].
• If g has been obtained from a tree by the addition of a single edge and the removal of another one,
then checking the tree property can be done as follows: if the edge from a to b has been removed,
do the breadth first search from a and check if b is still accessible.
• When possible, it is preferable to work with rooted trees instead of unrooted ones. For the
canonical orientation in which edges are directed toward the root, all nodes but the root have
exactly one outgoing edge (and so, the identity of the edge endpoint can be stored in a 1D array).
Assume that we want to add an oriented edge (u, v) (taken in ~E) in the tree and remove say an
edge (a, b). Adding (u, v) in (t, r) may:
– either make of u a new leaf, in which case it is easy to see if removing (a, b) preserves the tree
property (in words, a or b must be a leaf, and v must be different from a);
– or, adding (u, v) produces a (non-oriented) cycle. In this case, u will have two outgoing edges
that can be followed to find the cycle efficiently. From here, it is easy to check if the edge (a, b) is
on this cycle, which is a necessary and sufficient condition for the preservation of the tree property
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upon removal of (a, b) (if the root r is involved in the modifications, the possible choice of a new
root may provide some additional details to deal with). The orientations of the edges lying on the
cycle have to be modified to get the right orientation of the resulting rooted tree.

4.2 Three ergodic Markov chains converging to Uniform(Subtrees(G, n))

In what follows we will make use of the following property: if a transition matrix K is symmetric,
i.e. Ki,j = Kj,i for all i, j ∈ E, then the Markov chain is reversible and the uniform measure on E
is invariant.

We present here some dynamics on trees, where each tree being implicitly defined by its edge
set. In the sequel t and t′ are two trees taken in Subtrees(G,n), for some n ≥ 2, and G = (V,E) is
a connected graph. The number of edges of both t and t′ is n− 1.

We introduce the edge-exchange map for G = (V,E), as the map defined as

Exchange : Subtrees(G,n)× E × E −→ Subtrees(G,n)
(t, e, e′) 7−→ t′ = Exchange(t, e, e′)

where:
• t′ is defined from E(t′) = (E(t) ∪ {e}) \ {e′} if this set of edges defines a tree,
• t′ = t otherwise.

Definition of the kernel K(A): Exchange the status of two edges of G.

Suppose X0 ∈ Subtrees(G,n) is given. To get X1 ∼ K(A)(X0, .), set X1
(d)
= Exchange(X0, e1, e2)

where e1 and e2 are two edges taken uniformly and independently in E.

Analysis: The chain is clearly aperiodic, irreducible and symmetric;
Uniform(Subtrees(G,n)) is its unique invariant distribution and ergodicity is ensured by the Perron-
Frobeniüs theorem.
Drawbacks: If |E| is big compared to n, most of the transitions will leave t unchanged, which
results in a very long mixing time. When t is changed, checking the tree property is expensive for
large n.

Definition of the kernel K(B): Exchange the status of two edges adjacent to the current tree.
Assume that X0 = t ∈ Subtrees(G,n). To get X1 ∼ K(B)(X0, .), construct two edges −→e1 =
(u,u′) and −→e2 = (v,v′) such that (u,v) are two i.i.d. uniform random nodes of t, u′ and v′ are
respectively, a uniform neighbour of u and of v (independent).
If (v′ is a leaf and u′ is outside t) then set X1 = Exchange(t, e1, e2).

Rensburg & Madras [64] gave this algorithm (Algorithm A in their paper) for lattice trees (and
here, we made a small modification to take into account the non-constancy of the node degrees).
Analysis: A simple check shows that this kernel is also aperiodic and irreducible. The probability of
a transition from t to t′ 6= t is 1/(n2 degG(u) degG(v)) if it can be attained from Exchange. Observe
that the tree obtained t′ has also n nodes, and still u and v are some of them. We then get the same
probability from t′ to choose (v,u) (instead of (u,v)) and then (v′,u′) as neighbours from what we
see that K(B)(t, t′) = K(B)(t′, t) and therefore its unique invariant is Uniform(Subtrees(G,n)).
Drawbacks: Checking the tree property is expensive for large n.

Remark 10. Variants are available for all these transition matrices. For example, in K(A) one can

consider (~e1, ~e2) drawn from many symmetric distributions with full support over ~E(G)2. In K(B)

one can take (u,v) chosen with any symmetric distribution with full support over V (G)2.
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The fastest Markov chain

Using K(A), when n is a bit large, it is unlikely that both edges belong to the same cycle, so that
K(A) is slow to mix, because, it mainly changes the “peripheral edges”. K(B) is somehow worst,
since modifications exchange leaves and perimeter edges.

The main idea of the next kernel is the following: when the first added edge creates a cycle,
then force the second edge to be in this cycle!

On a general graph, there is basically a single way to design such a reversible kernel, when, on
a regular graph (on which the degree vertices are constant), several methods can be proposed.

For any simple cycle (c0, · · · , cm−1) where ci and ci+1 mod m are neighbours for i ∈ {0, · · · ,m−1},
denote by pc the following distribution on the set of (non-oriented) edges of c:

pc({ci, ci+1 mod m}) = αc

(
1

degG(ci)
+

1

degG(ci+1 mod m)

)
(12)

where αc is the single constant making of pc a probability on the set of edges of c. The distribution
pc does not depend on the cyclic order chosen on c, nor on the orientation of c.

Definition of the kernel K(C): If the added edge forms a cycle, then break the cycle.
Assume that X0 = t, to get X1 ∼ K(C)(t, .) do the following. Take the random oriented edge
−→e = (u,u′), where u is a uniform vertex of t, and conditional on u, u′ is uniform among the
neighbours of u.
• If the addition of −→e = (u,u′) to t creates a new leaf, then pick a second independent edge
−→e ′ = (v,v′) (with the same law as −→e ). If −→e ′ is a leaf of t and the removal of −→e ′ in t ∪ −→e
produces a tree t′ then take X1 = t′ else take X1 = t.
• otherwise u′ already belongs to t so that adding −→e creates a cycle c = (c0, · · · , cm−1) (taken
in an arbitrary cyclic order, where m is the cycle length). Take e an unoriented edge of c
according to pc defined in (12); we then define X1 as the tree obtained by the addition of the
edge e followed by the removal of e.

Analysis: It is irreducible and aperiodic. The chain is reversible: the (not-so) delicate point to
check, is when the addition of −→e creates a cycle. In this case, the probability that the unoriented
edge e (to be added) is {u, v} is

qt({u, v}) :=
1

|t|

(
1

degG(u)
+

1

degG(v)

)
since this occurs if (u,u′) is (u, v) or (v, u). If adding this edge creates a cycle c, then an edge
{u′, v′} of the cycle, will be removed with probability pc({u′, v′}), so that globally, the probability
to insert {u, v} and then to remove {u′, v′} is qt({u, v})pc({u′, v′}). Now, the probability to instead,
insert {u′, v′} and then remove {u, v} is qt({u′, v′})pc({u, v}) = qt({u, v})pc({u′, v′}) (the main point
is that the same cycle is then created).
Drawbacks: Checking the tree property in the rooted case is fast. Again, we did not succeed in
providing a coupling from the past for this Markov chain, nor in getting some bounds on the mixing
time. Simulations show that it is much faster than the other transition matrices in practice.

Remark 11 (Possible modifications on regular graphs). On a regular graph, since qt({u, v}) is

constant, many distributions p′c(.) can be considered instead of pc(.). For example, one can take a

distribution pc′,e(.) on c depending on the position of e on this cycle (for example, p′c,e(.) can weight

the edges of c according to their distance to e).
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Figure 2: A rectangle-tree with width W , and height H.

5 Simulations of uniform subtree of the grid with a given size

The torus Torus(N) as well as Z2 are highly regular graphs for which some methods of generation
and of exact enumerations can be designed for this particular case (as well as for D-dimensional
analogue). We provide some references after Conjecture 1 (below).

5.1 Subtrees of the torus up to translation

We say that t and t′ in Subtrees(Torus(N), n) are N -equivalent if they are equal up to a translation in
Torus(N), and let Subtrees(Torus(N), n) be the set of equivalent classes. The push-forward measure
of Uniform(Subtrees(Torus(N), n)) by the canonical projection πN is Uniform(Subtrees(Torus(N), n))
since all classes have cardinality N2. Since the diameter of any tree with n nodes is smaller than
n− 1, the previous discussion shows that the uniform distribution on Subtrees(Torus(N), n) and on
Subtrees(Torus(N ′), n) can be identified up to random uniform translation, if N and N ′ are both
bigger or equal than n. When one wants to sample uniformly in Subtrees(Torus(N), n) it is then
reasonable to work in Subtrees(Torus(n), n) (the smallest valid torus), or to work up to translation.
Indeed, when one works under the kernel K(C), the mixing time of the chain depends on the size of
the torus since the larger is the torus, the longer it takes to forget “not only the shape of the initial
tree”, but also its position.

Observe also that sampling in Subtrees•(0,0)(Torus(n), n) and in
Subtrees(Torus(n), n) are basically equivalent, since it is easy to sample one, from the other.

5.2 Some pictures

We programmed and ran the chain K(C). We made some statistics and videos to show the power
and limits of this kernel; in few words, it can be used to sample a random tree with a distribution
close to Uniform(Subtrees•(0,0)(Torus(n), n), for n up to say 8000 nodes in few minutes, and n = 10000
in few hours using a program written in C on a standard computer, starting from any distribution.

Our program starts from a rectangle tree, see Fig. 2 which is a highly structured tree; we tried
many Markov transition matrices with this kind of starting point and only efficient Markov chains
“forget” the initial distribution in a reasonable time.

5.3 Statistics and conjectures

For any tree t in Subtrees(Torus(N(n)), n), define the Euclidean width and height w(t) and h(t)
as respectively the number of columns and rows of the torus containing at least one vertex of t. The
second variable of interest is the random graph distance D(t) = dt(u,v) between two i.i.d. uniform
nodes u and v of a (deterministic or random) tree t.
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Figure 3: Markov chain started from a rectangle tree 400× 4, with 1600 nodes, run on Torus(1000),

and observed at time k× 200 millions, for the k-th picture. The total execution time is around 1

minute. The last tree is the result after 1.6G iterations. A film with 800 images of the 1.6G steps

of the chain (2M steps between successive images) is available at [48].

The proportion of nodes in t with degree j is

qj(t) = |{u ∈ t : Degree(u) = j}| / |V (t)|.

We conjecture the following (recall the discussion at the beginning of Section 5.1).

Conjecture 1. For tn taken uniformly in Subtrees(Torus(n), n)

(i) there exists α ∈ [0.63, 0.67] such that, (w(tn), h(tn)) / nα
(d)−−→ (w,h), where w and h are

almost surely non zero.

(ii) there exists β ∈ [3/4− 0.01, 3/4 + 0.01] such that, D(tn) / nβ
(d)−−→ D where D is a real random

variable, almost surely non-zero.

(iii) (qj(tn), 1 ≤ j ≤ 4)
(proba.)−−−−−→

n
(q1, · · · , q4) a constant vector satisfying q1 ∈ [0.2585 ± 0.001],

q2 ∈ [0.506± 0.001], q3 ∈ [0.214± 0.001], q4 ∈ [0.02185± 0.001].

Rensburg & Madras [64] (1992) proposed mainly two Markov chains to produce lattice trees;
the first one is (Algorithm A) and coincides with kernel K(B).
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Figure 4: Simulation as in Fig. 3 starting from a rectangle tree 100× 100, ran on Torus(1000), and

with 1010 steps of the chain between successive pictures. The last tree is the value of the chain after

80G steps. The total execution time is around 1 hour. A film with 800 images of the 80G steps

of the chain (108 steps between successive images) is available at [48]. In this picture, macroscopic

portion of the pictures are really close to loops.

Their second algorithm (Algorithm B), which produces an irreducible and reversible Markov
chain, is valid on lattices (Zd, for d ≥ 2) consists in the following stages: choose uniformly an edge
e in the current tree X0 = t and try to do the following:
– remove e,
– apply a randomly chosen element of the octahedral group to the smallest connected component,
– choose one random node u and v uniformly on each of the connected components, (assuming that
u is on the smallest connected one)
– translate u to u′ (together with the smallest connect component) such that u′ is a uniform
neighbour of v. Add the edge u′v.
If the resulting graph is a tree t′, then set X1 = t′ else set X1 = t.

Using Monte Carlo methods, they estimated the order of the radius of gyration (which is the
mean Euclidean distance between two points taken uniformly in the tree) to na where a = 0.6374,
and the longest graph distance between two points at 0.7358. Below table 9 in their paper, Rensburg
& Madras [64] (1992) provide a survey of the results available at this time concerning simulation of
lattice trees, as well as “guesses” using methods of statistical physics of the value of a.
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Jensen [70, Section 3] (2000) using exact enumerations of “lattice trees” up to size 42, conjec-
tured that the order of the radius of gyration of tn is na with a = 0.64115(5). This conjecture
is built using some exact partial generating functions (relying on the exact enumerations up to
size 42) together with some regularity assumptions on the generating functions. It is reasonable to
conjecture that a and α (of our conjecture) are equal. Jensen [70, Section 3] produces also some
exact values of the number of elements in Subtrees•(0,0)(Z2, n) for n ≤ 42 and conjectured that

log(Subtrees•(0,0)(Z2, n))/ log(n)→ 3.795254....
Rensburg & Rechnitzer [65] (2003), using Monte Carlo method estimated the metric exponent to

ν = 0.6437±0.0035, and the longest path exponent (for the graph distance) to ρ = 0.74000±0.00062
(one can conjecture that ρ and β are equal).

Hsu et al. [60] (2005) (see also references therein) discuss a simulation of lattice trees (and
branching polymers) constructed on the pruned-enriched Rosenbluth method (PERM) (in dimension
2 ≤ d ≤ 9). They estimated ν at 0.6412(5) (many more statistics are studied; they provide an
important survey of the result available at this time).

Finally, we would like to mention, that Botet and Jullien [17] in 1985, discussed a model of
diffusion-limited aggregation with disaggregation; it was an attempt to define a Markov chain on
a DLA like cluster (see Section 7.6 for definitions and statistics), having the DLA distribution as
invariant distribution. To be precise, their Markov chain (Xt, t ≥ 0) is a tree valued Markov chain,
with state space Subtrees•(0,0)(Z2, n), and their hope was that the vertex set V (Xt) of Xt, would be
distributed as the DLA, when Xt was taken under its invariant distribution.

They noticed that the Markov chain they defined does not reach this aim, since the mean gyration
radius is around nc with c ' 0.65, which is not compatible with the DLA statistics, but, as explained
just above, this value is compatible with the statistics of a uniform element of Subtrees•(0,0)(Z2, n).

This has possibly been unnoticed, but a very small (time) modification of their Markov chain
admits indeed the uniform distribution on Subtrees•(0,0)(Z2, n) as invariant distribution.

The Markov kernel of their chain is defined as follows; assume that at time t, the current state
Xt is a tree T of Subtrees•(0,0)(Z2, n). In order to define Xt+1, proceed as follows: choose a leaf v of
T , uniformly at random (the root is never considered as a leaf). Then, erase v and its incident edge
from T , and starts a random walk (W (k), k ≥ 0), starting at v, and stopped at its hitting time τ of
V (T \ {v}) (the tree T deprived of v). To define Xt+1, remove v from T and its incident edge, and
add the edge corresponding to the last step of this walk, w = W (τ − 1)→ w′ = W (τ).

This chain is not reversible, because Xt and Xt+1 may have a different number of leaves. How-
ever, we may propose the following modification: if instead of selecting a leaf, one chooses a uniform
node v ∈ T , and decide to set Xt+1 = Xt if v is not a leaf, then the Markov chain is reversible (on
a regular graph), so that it preserves the uniform distribution on Subtrees•(0,0)(Z2, n).

The invariant distribution of Botet and Jullien [17] is then the probability distribution on the
set Subtrees•(0,0)(Z2, n) giving to each tree t a probability proportional to |∂t| (number of leaves,
different from the root), since it stays a time 1 on each configuration (before launching a random
walk), when the modification we propose, stays a mean time n/|∂t| on a tree with |∂t| leaves, before
starting the random walk.

However, Botet and Jullien [17] Markov chain is slow compared to the three ones presented at
the beginning of Section 4.2, since these three avoid to performing random walks to choose the new
destination of a moving edge.

Conjecture 2. Consider tn a uniform subtree of Z2 with n nodes, containing (0, 0). Denote by

Drawing(tn) the drawing to tn in the plane (the vertices are points, the edges are segments). There

exist α ∈ [0.63, 0.67] and β ∈ [3/4− 0.01, 3/4 + 0.01] such that
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(i) The sequence of compact sets Drawing(tn)/nα converges in distribution, for the Hausdorff

metric topology on compact sets of the plane, to a non-trivial path connected random compact

set K of R2, with empty interior. Moreover, K is almost surely not a tree: almost surely,

there exist some pairs of points (x, y) with two different injective paths from x to y (meaning

the set of points of these paths are different).

(ii) The sequence of trees (tn, dtn/n
β) seen as a sequence of compact spaces equipped with their

graph distance normalised by nβ converges in distribution, for the Gromov-Hausdorff distance

to a (non-trivial) continuum random tree.

Remark 12. The simulation of “approximately uniform” lattice trees with n nodes (and n large)

shows the “appearance” of macroscopic cycles. The word “appearance” is here to express the fact

that there is no cycle, since the drawing of a tree has no cycle, but the normalization needed to

draw the tree creates this appearance (see Fig. 4) (more precisely, it seems that, for ε > 0 small,

the drawing of a large tree, normalised by nα, is at Hausdorff distance ≤ ε to a compact set having

some cycles with a significant perimeter � 2ε. This is the reason for Conjecture 2(i). If it is indeed

the case, infinitely many cycles are likely to be present.

Remark 13. The conjectured limiting proportions of nodes of each degree (iii) are different from

those of the UST in Z2 (see [93, P. 112]).

Now, we add that in large dimension (notably in the case D > 8), the asymptotic behaviour of
lattice trees is well understood (see e.g Hara & Slade [56], Derbez & Slade [40], Slade [123], Holmes
[57, 58], Cabezas et al. [27] and references therein).

Another line of research could concern the research of a limiting tree for the local topology on
the lattice.

Conjecture 3. Consider tn a uniform subtree of Zd with n nodes, containing (0, 0), for some d ≥ 2

(the case d = 1 being trivial). The sequence (tn) converges in distribution, for the local topology, to

an infinite random subtree of Zd.

The convergence for the local topology corresponds to the convergence in distribution of B(tn, r)
for all r ≥ 0, where B(tn, r) is the graph induced by the vertices of Zd in the ball B((0, 0), r). By
a simple compactness argument, for all r, the sequence of distributions of B(tn, r) (as n varies)
is tight, so that, there exists converging subsequence for the local topology (local convergence of
Galton-Watson trees as been established by Kesten [81], see also Janson [69]).

5.4 Simulations

We made thousands of simulations of this chain (on a multicore PC), each of them running for
many steps;

Tree size 1000 2500 5000 8100

Number of simulations 5039 5486 6111 5232

Initial rectangle tree shape 40× 25 50× 50 50× 100 90× 90

Nb Steps of the chain 150M 1G 25G 200G

(13)
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hence, we made 5486 simulations of trees of size 2500 starting initially with a rectangle tree 50 ×
50, 1G steps of the Markov chain for each tree simulated. These numbers of steps were decided
“empirically”: starting from a rectangle tree, for example, with size 1000 × 1 or 40 × 25, and
performing hundreds of simulations with s steps, suffices to compare some statistics as the width
and the height, which are asymptotically the same (independently of the initial tree) : in case of
discordance of these statistics, s must be taken larger. The videos (available at [48]) give some clues
that the mixing time should have been reached (if one considers the trees up to translation), even
if these simulations do not constitute a formal proof, of course.

To make the estimates associated to the width, both the width and the height of each tree has
been used (two numbers by simulations), and for the graph distance, for each tree, 10 independent
pairs of vertices [(u2i−1, u2i), 1 ≤ i ≤ 10] were chosen to compute the graph distance dt(u2i−1, u2i),
where u2i−1, u2i are independent and uniform in the vertex set of the tree t; this provides 10 numbers
for each tree. These 10 values are dependent, as are the width and the height.
Now, for each of the sampled trees, the exact number of nodes of each degree has been computed,
which provides for each tree a proportion vector (qi(t), 1 ≤ i ≤ t).

Distance statistics

Number of nodes 1000 2500 5000 8100

Empirical mean of the width 96.41 173.58 273.63 372.25

Empirical median of the width 95.00 171.00 269.00 367.00

Empirical mean of d(u,v) 95.68 189.60 317.92 457.48

Empirical median of d(u,v) 88.00 176.00 293.00 421.00

(14)

Suppose that a sequence of real random variables (Yn) satisfies Yn/n
γ (d)−−→ Z for some γ > 0

and non-trivial Z, then it is expected that for n and m both large, median(Yn)/median(Ym) should

be close to (n/m)γ . Assuming that we have a sample from i.i.d. copies of Yn, (Y
(i)
n , 1 ≤ i ≤ N),

then we can define the empirical mean Ŷn = (Y
(1)
n + · · · + Y

(N)
n )/N , and the empirical median

(m̂edian(Yn) = inf{x : |{j : Y
(j)
n ≤ x}| ≥ N/2). This provides the following estimator for γ, where

samples for two different values of n and m are needed:

Estmedian(γ) = log
(

m̂edian(Xn)/m̂edian(Xm)
)
/ log(n/m). (15)

By the same method, a second estimator using the empirical mean is

Estmean(γ) = log
(
X̂n/X̂m

)
/ log(n/m). (16)

Finally, we introduce a last estimator of the exponent γ using the 9 empirical deciles (Deci(Yn), 1 ≤
i ≤ 9) where Deci(Yn) = min{x : |{j : Y

(j)
n ≤ x}| ≥ Ni/10}. We then take γ as the values that

minimises the L2 distance between the vectors mx(Deci(Yn), 1 ≤ i ≤ 9) and nx(Deci(Ym), 1 ≤ i ≤ 9):

Estbest fit decile(γ) = argmin

(
x 7→

9∑
i=1

|Deci(Yn)mx − Deci(Ym)nx|2
)
,

(for x ∈ [1/2, 1]) which we expect to be better than the median, since it takes into account the other
deciles.6

6the estimator argmin
(
x 7→

∑9
i=1 |Deci(Yn)/nx − Deci(Ym)/mx|2

)
is not good, since it is often reached for x = 1,

for which all the terms inside the absolute value are small.
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Using (n,m) gives the following estimate:

(n,m) (1000, 2500) (2500, 5000) (5000, 8100)

Estimation of α (mean) 0.642 0.657 0.638

Estimation of α (median) 0.641 0.654 0.644

Best fit decile α 0.640 0.656 0.635

Estimation of β (mean) 0.746 0.746 0.754

Estimation of β (median) 0.756 0.735 0.751

Best fit decile β 0.744 0.748 0.753

(17)
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Figure 5: On the first line, (interpolated) empirical cumulative function of w(tn)/nα for α being

respectively 0.64, 0.65 and 0.66. On the second, (interpolated) empirical cumulative distribution

function of dtn(u,v)/nβ for β being respectively 0.74, 0.75 and 0.76. The 4 curves are so close that

they are almost indistinguishable (they are of course far from each other for other exponents)

Remark 14. Given the results of the estimates and the similarity of empirical cumulative functions

of dtn(u,v)/nβ as presented in Fig. 5 it is tempting to conjecture that β = 3/4 (but notice that in

Rensburg & Rechnitzer [65] estimates β to be 0.74000. For α, we thought that it could be 2/3 and

we used a lot of computer work to produce large trees (of size 8100) to test this, but finally larger

sizes did not change much the outcome and it seems that α should be smaller than 2/3 (again in

[65], α is estimated to be 0.6437..
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Degree statistics For a sample from X = (X1, · · · , Xn) denote by m(X) the empirical mean
and sample variance: m(X) = (X1 + · · ·+Xn)/n, s2(X) = (

∑n
i=1(Xi −m(X))2)/(n− 1).

Nb of nodes 1000 2500 5000 8100

m(q1) 0.25918 0.25858 0.25819 0.25807

s(q1) 7.416E − 05 3.155E − 05 1.476E − 05 9.092E − 06

m(q2) 0.50543 0.50550 0.50585 0.50594

s(q2) 2.507E − 04 1.072E − 04 5.067E − 05 3.085E − 05

m(q3) 0.21361 0.21408 0.21412 0.21414

s(q3) 8.471E − 05 3.474E − 05 1.752E − 05 1.036E − 05

m(q4) 0.02179 0.02185 0.02184 0.02185

s(q4) 1.882E − 05 7.398E − 06 3.705E − 06 2.260E − 06

(18)

Observe that the standard deviation is small and seems to go fast to zero.

6 Relaxation of the subtree sizes: Transition matrices on Subtrees(G)

Here we will study some Markov chains having some explicit invariant distributions typically with
support Subtrees(G) = ∪nSubtrees(G,n) (recall Section 1.1). In Section 8 we will turn our attention
to the case where G is itself a tree, in which case a coupling from the past is possible.

6.1 Mechanisms

We define two versions of the functions Remove aiming at removing an edge e of a tree t depending
on whether we are dealing with rooted trees or not. For an oriented edge −→e , we denote by e its
unoriented version.
Unrooted version of the Remove function:

Remove : Subtrees(G)×
−→
E −→ Subtrees(G)

(t,−→e ) 7−→ t′ = Remove(t,−→e )

• if E(t) = {e} and −→e = (v1, v2) then t′ = {v1}, the tree reduced to the single node {v1},
• else (if |E(t)| > 1), if E(t) \ {e} is the edge set of a tree t?, set t′ = t?,
• otherwise, t′ = t.
We stress the fact that the direction of −→e is used only when t has a single edge.

Rooted version Remover: it aims at removing an edge in a rooted tree (t, r) ∈ Subtrees•r(G),
while preserving r. Here, since the tree is rooted at r, r is never considered as a leaf. If (t, r) ∈
Subtrees•r(G) and e = {e1, e2} ∈ E(t), then up to renaming the vertices, one may suppose that e1

is the parent of e2 in (t, r) (is closer to r):
– if e2 is not a leaf, then do nothing, and set t′ = t,
– if e2 is a leaf, then t′ is the tree with vertex set V (t′) = V (t)\{e2} and edge set E(t′) = E(t)\{e}
(so that the root r is preserved).
Define the function Add as

Add : Subtrees(G)× E −→ Subgraphs(G)
(t, e) 7−→ g = Add(t, e)

where the graph g has set of edges E(g) = E(t) ∪ {e} if e is adjacent to t, and g = t otherwise.
Hence g is connected and may have at most one cycle, and in this case, this cycle contains e.
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When the function Add has been used, a correction of the obtained graph is sometimes needed
if one needs to output a tree (the cycle has to be destroyed as done for the kernel K(C)).

6.2 Two ergodic Markov chains with computable invariant distribution on Subtrees(G)

We present here a model which is reminiscent of the discrete time birth and death process, which is
a general model of Markov chains (Yj , j ≥ 0) taking their values in N, and whose transition matrices
are parameterized by a sequence of triplets [(ak, bk, ck), k ≥ 0] as follows:

P(X1 = k + 1 |X0 = k) = ak,

P(X1 = k |X0 = k) = bk,

P(X1 = k − 1 |X0 = k) = ck,

with c0 = 0. It is known (see e.g. Karlin & McGregor [78, 77], or [50]), that such a chain is
positive recurrent if

∑
k

∏k
j=1

aj−1

cj
< +∞ in which case the invariant distribution is proportional

to πk =
∏k
j=1

aj−1

cj
.

Consider a sequence of triplets [(pi, qi, ri), 1 ≤ i ≤ |V |], indexed by the possible subtree sizes of
G = (V,E), which will be used to try to “add”, “do nothing” and “remove” one edge of the current
tree. As above, for all i, pi + qi + ri = 1. For the moment we assume that{

ri > 0, for all i ∈ J2, |V |K,
pi > 0, for all i ∈ J1, |V | − 1K.

We will need to consider a “cycle breaking strategy” as introduced in the definition of K(C) in
Section 4.2 (recall the definition of pc in (12)).

Definition of the kernel K(D): .
Assume X0 = t ∈ Subtrees(G) (with any size). To define X1 ∼ K(D)(t, .), proceed as follows.

Pick independently, a random oriented edge −→e ∼ Uniform(
−→
E (G)), and “a random choice c”

where
P(c = +1) = p|t|, P(c = 0) = q|t|, P(c = −1) = r|t|,

which will be the respective probability to “try” to add e, to do nothing, and to remove −→e .
Do
• if c = +1 then “try to add e”: consider g = Add(t, e). If g is a tree, set X1 = g. If g has a
cycle c, then pick an edge e with probability pc. Define X1 as the tree obtained by the addition
of e to t followed by the removal of the edge e.
• if c = 0, do nothing, and set X1 = t,
• if c = −1, then “try to remove −→e ”: set X1 = Remove(t,−→e ).

Analysis: K(D) is aperiodic and irreducible. If t′ and t have the same number of edges and t′ 6= t,
then, one can pass from t to t′ by picking first c = +1, followed by a transition which is, conditional
to this value, the same as for K(C). The proof of P(X1 = t′ | X0 = t) = P(X1 = t | X0 = t′) for two
trees t and t′ of the same size is then the same as that of the reversibility of the kernel K(C) (the
proof is given below the description of K(C)).

Consider t ∈ Subtrees(G) such that 3 ≤ |t| < |V | and suppose that e ∈ E(t) such that one
endpoint of e is a leaf in t. Therefore, the transition matrix satisfies

K
(D)
t,t\{e} = (1/|E|) r|t|, K

(D)
t\{e},t = (1/|E|) p|t|−1 (19)

26



and again the case |t| = 2 provides a slight complication, in which case,

K
(D)
t,t\{e} = (1/(2|E|)) r|t|, K

(D)
t\{e},t = (1/|E|) p|t|−1. (20)

Proposition 15. The Markov chain with kernel K(D) is reversible and its unique invariant measure

ρ on Subtrees(G) gives the same weight νn := νn(G) to each element of Subtrees(G,n), for all

1 ≤ n ≤ |V |, that is ρt = ν|t|, for all t ∈ Subtrees(G). The sequence (νk, 1 ≤ k ≤ |V |) satisfies

νm = 2ν1

m∏
i=2

(
pi−1

ri

)
, for all m ∈ J2, |V |K. (21)

and

|V |∑
n=1

νn|Subtrees(G,n)| = 1. (22)

Hence, if t ∼ ρ, L(t | |t| = n) is the uniform distribution on Subtrees(G,n).

Remark 16. In the Proposition, the sequence (νi) depends on G, and then, it should have been

written (νi(G)) to make this dependence clearer.

Proof. First, by Perron-Frobeniüs, there is a unique invariant measure. Therefore, it is enough to

show that the only measure ρ on Subtrees(G), described in the proposition, satisfies the detailed

balance equations (4). For t and t′ = t \ {e} and |t| ≥ 3,

ν|t|K
(D)(t, t \ {e}) = ν|t\{e}|K

(D)(t \ {e}, t). (23)

From (19) one sees that ν|t| = ν|t|−1p|t|−1/rt when |t| ≥ 3. Plugging (20) in (23), in the case where

|t| = 2, gives:

ν2(1/(2|E|)) r2 = ν1(1/|E|)p1 ⇔ ν2 = 2ν1
p1

r2
.

Remark 17. � Tuning the sequence (p, q, r) allows one to favour a tree size, or an approximate tree

size.

� If qi = 0, ri = pi = 1/2 for all i, then ν|t| = 1
1+1|t|=1

so that the distribution is uniform on

Subtrees(G) (except for the tree reduced to a single node that has a different weight).

A variant with a fixed root. One can turn K(D) into a kernel K
(D)
r of a Markov chain taking

its values in Subtrees•r(G) where r is a fixed vertex of V . This version will play an important role
for the exact sampling of a uniform subtree of a tree in Section 8.

We define K
(D)
r by emphasizing its differences with K(D): to preserve r, use Remover instead

of Remove, and instead of taking directed edges −→e in
−→
E (G), we consider the unoriented ones e in

E(G). In this case, one can prove the following proposition by adapting the proof of Proposition 15.
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Proposition 18. The Markov chain with kernel K
(D)
r is reversible and its unique invariant measure

ρ•r on Subtrees•r(G) gives the same weight νn to each element of Subtrees•r(G,n), for all 1 ≤ n ≤ |V |,
that is ρt = ν|t|, for all t ∈ Subtrees(G). The sequence (νk, 1 ≤ k ≤ |V |) satisfies

νm = ν1

m∏
i=2

(
pi−1

ri

)
, for all m ∈ J2, |V |K. (24)

and

|V |∑
n=1

νn|Subtrees•r(G,n)| = 1. (25)

Hence, if t ∼ ρ, L(t | |t| = n) is the uniform distribution on Subtrees•r(G,n).

Compared to (21), in (24) the factor 2 has been suppressed.

6.3 A fast kernel with computable invariant distribution for regular graphs

We propose in this part a kernel having a computable invariant distribution when all the vertices
of G = (V,E) have the same degree D. This kernel is almost the same as the previous one (K(D)),
its analysis is the same, but it mixes much faster: the idea is to pick edges adjacent to the current
tree, instead of uniform edges in E(G).

Definition of the kernel K(E): A fast kernel for regular graphs.
Keep the same definition as for the kernel K(D), except for the choice of the random edge −→e ,
do the following instead. Assume that X0 = t, pick uniformly at random node u in V (t), and
then a random edge −→e = (u, u′) uniformly in the set of adjacent edges of u (so that u is the
origin of this edge).

Analysis: Transition between trees with the same size is done as in K(D). And it is direct to check
that for any t such that |t| ≥ 3, and e an edge such that t \ {e} is a tree (with one node less)

K
(E)
t,t\{e} =

1

|t|

(
1

degG(u)
+

1

degG(u′)

)
r|t|

K
(E)
t\{e},t =

1

(|t| − 1)

1

degG(u)
p|t|−1

again if |t| = 2, in this case if t′ = Remove(t, (u, u′)) is the tree t′ reduced to u, so that

K
(E)
t,t′ =

1

|t| degG(u)
r|t| =

r|2|
2 degG(u)

K
(E)
t′,t =

1

|t′| degG(u)
p|t′| =

p1

degG(u)
,

since, in this transition the directed edge (u, u′) needs to have the right direction.

Proposition 19. If the degree of all nodes in G is the same, then the Markov chain with transition

matrix K(E) is reversible and its unique invariant measure ρ on Subtrees(G) gives the same weight
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νn to each element of Subtrees(G,n), for all 1 ≤ n ≤ |V |, that is ρt = ν|t|, for all t ∈ Subtrees(G).

The sequence (νk, 1 ≤ k ≤ |V |) satisfies

νm = 2ν1

m∏
i=2

(
pi−1/(i− 1)

2 ri/i

)
, for 2 ≤ m ≤ |V | (26)

and

|V |∑
n=1

νn|Subtrees(G,n)| = 1. (27)

Hence, if t ∼ π, L(t | |t| = n) is the uniform distribution on Subtrees(G,n).

Remark 20. Recall that the transition matrices K(D) and K(E) are defined using [(pi, qi, ri), 1 ≤
i ≤ |V |]. The conditions (pi > 0, 1 ≤ i < |V |) and (ri > 0, 2 ≤ i ≤ |V |) are imposed so that they

ensure the irreducibility of these chains on Subtrees(G). Now, assume that one takes X0 according

to some distribution ν with support in ∪n∈Jn1,n2KSubtrees(G,n) where 1 ≤ n1 < n2 ≤ |V |. Assume

that rn1 = 0 and pn2 = 0, and rk > 0 for k ∈ Jn1 + 1, n2K, pk > 0 for k ∈ Jn1, n2 − 1K. In this

case, the Markov chain under consideration is irreducible in ∪n∈Jn1,n2KSubtrees(G,n) (exercise left

to the reader). In this case we have the same result for the distribution of the invariant measure

as in Proposition 19 between 1 and n2 (instead of |V |) when n1 = 1, and if n1 > 1, the invariant

distribution is given by

νm = νn1

m∏
i=2

(
pi−1/(i− 1)

2 ri/i

)
for m ∈ Jn1 + 1, n2K. (28)

When n1 < n2, the irreducibility of the chain and (27) is easily adapted to the present case.

If n1 = n2, then one can see that the vertex set V (X0) of the initial tree X0 cannot change: for

each i, V (Xi) = V (X0), so that this model is a Markov chain taking its value in the spanning trees

of V (X0) (this setting is treated in Section 2).

7 Survey of models of random subtrees of a graph

In this section, we present many distributions (with simulations methods) far from the uniform dis-
tribution, but which are interesting on their own (and, marginally, can be used to design simulation
of the uniform distribution by reject for small graphs, or small values of n).

7.1 The pioneer tree

We introduce the pioneer tree which is a new random tree model. Recall the definition of
FirstEntranceTree(W0, · · · ,Wτ|V |) given in (2). The pioneer tree aims to generalize Aldous–Broder
construction: instead of taking all the first entrance edges to all nodes (for a M -Markov chain

under its stationary regime), which provides a tree with weight
∏
e

←−
M e as stated in Theorem 4, just
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keep the n first ones. We take the same setting as in Section 2.1: G is a connected graph, M a
positive Markov transition matrix on G, and W is a M -Markov chain (we drop the condition of
reversibility).

The aim of this section is to present this model, and to show that it shares, as the uniform
spanning-tree model does, a strong link with a tree valued Markov chain.

Definition of Model A: The pioneer random tree.
The n pioneer tree PRTn(Wi, 0 ≤ i ≤ τn) is the rooted edge-labelled tree (FirstEntranceTree(Wi, 0 ≤
i ≤ τn), Ln), where Ln gives the label k − 1 to the edge (Wτk ,W−1+τk), for all 2 ≤ k ≤ n.

Hence, the vertex set of PRTn(Wi, 0 ≤ i ≤ τn) is {W0, · · · ,Wτn}, the first n vertices visited by W .

Definition 21. Denote by Subtrees•,L,↓r (G,n) the set of rooted edge-labelled trees ((t, r), `) such that

(t, r) belongs to Subtrees•r(G,n), and such that the n − 1 labels associated with the edges form the

set {1, · · · , n− 1} and are decreasing on any injective path from a leaf to the root r.7

A simple consequence of the construction is the following fact:

Lemma 22. The pioneer tree PRTn(W0, · · · ,Wτn) belongs to Subtrees•,L,↓W0
(G,n) and

PRTn ⊂ PRTn+1, for any 1 ≤ n ≤ |V | − 1. (29)

Hence for all n, PRTn is an edge-labelled subtree of the global spanning-tree PRT|V | equipped with

its edge-labels.

In the same way as Aldous–Broder FirstEntranceTree(W0, · · · ,Wτ|V |) can be seen as the state,
at time 0, of a spanning-tree valued Markov chain started at time −∞ (this is the argument at
the core of Aldous and Broder proofs), for any n, the pioneer tree has a very similar property, for
the following Markov chain taking its values in ∪r∈V Subtrees•,L,↓r (G,n): again, n is any number in
J1, |V |K, so that the following construction includes the spanning-tree case, but not only.

A Markov chain on pioneer trees driven by a random walk: erase the oldest edge

Definition of the kernel K(F ): Add a random step and erase the oldest edge.
Assume that at time 0, ((T0, R0), L0) is an element of Subtrees•,L,↓R0

(G,n), whose tree T0 is

rooted at R0. Under the kernel K(F ), ((T1, R1), L1) is defined as follows:

• First, P(R1 = v | R0 = u) =
←−
Mu,v, which means that the roots (Rk, k ≥ 0) performs a

Markov chain with transition matrix
←−
M on G.

• Consider the oriented edge e = (R0, R1) of G; R1 will be the new root of the new tree T1.

(a) If R1 = R0 (possible if there is a loop): in this case set ((T1, R1), L1) = ((T0, R0), L0),

(b) If R1 is already in T0, then adding the edge e = (R0, R1) in T0 creates a cycle (possibly,
the small cycle R0 → R1 → R0). To get T1, add e to T0, label e temporarily 0, record
m the maximal label on the created cycle, and remove the edge with label m; finally,
orient the remaining edges of the cycle toward R0

(c) else, R1 was not in T0 so that if one adds the edge e = (R0, R1) to T0, then R1 is a new
node. To get T1, add the edge e to T0, label e temporarily 0 and remove the edge e′

7An injective path w = (w0, · · · , wm) is a path such that i, j ∈ J0,mK, i 6= j ⇒ wi 6= wj .
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adjacent to the leaf with maximal label (the label m of e′ is n− 1).

To define L1 in both cases, keep the labels of all edges of L0 that are > m, and add 1 to all
the other labels (those in J0,m− 1K, including the new one labelled temporarily 0).

This chain is a generalization of Aldous–Broder tree Markov chain, but here, in order to keep
track of the chronological order of the edges, additional labels are needed. Observe that the per-

formed random walk is done according to the time reversal transition matrix
←−
M .

Proposition 23. (i) The labels L1 are different and decreasing on each path toward the root, and

then so that K(F ) defines indeed a transition matrix on ∪r∈V Subtrees•,L,↓r (G,n).

(ii) If (X
(n)
j , j ≥ 0) is a Markov chain on ∪r∈V Subtrees•,L,↓r (G,n) with kernel K(F ), then for

X
(n−1)
j be the labelled tree obtained by removing the edge with largest label in X

(n)
j , the process

(X
(n−1)
j , j ≥ 0) is a Markov chain on ∪r∈V Subtrees•,L,↓r (G,n− 1) with kernel K(F ).

Sketch of proof. Giving all the details would be too long. We give the main ideas only.

(i) The proof is done by inspection of both cases (b) and (c) in the definition of K(F ).

(ii) Suppose that ((tn, `n), r) and ((tn+1, `n+1), r) are two edge labelled trees with n and n+1 nodes,

such that ((tn, `n), r) is obtained from ((tn+1, `n+1), r) by the suppression of the edge with the great-

est label n (we write

Proj((tn+1, `n+1), r) = (tn, `n), r)). When taking a step under the kernel K(F ), a new edge (r, r′) is

added, r′ becomes the new root: this addition gives different possible situations for tn and for tn+1:

– (A) r′ is not in tn+1 (nor in tn),

– (B) r′ is in tn+1 but not in tn.

In case (A), after applying (c) of definition of K(F ), both obtained trees

((t′n, `
′
n), r′) and ((t′n+1, `

′
n+1), r′) satisfy Proj((t′n+1, `

′
n+1), r) = (t′n, `

′
n), r)).

In the case (B), the cycle obtained by adding (r, r′) to tn+1 contains necessarily the edge with

greatest label of tn+1 (otherwise a cycle would have been created also by adding (r, r′) to tn). From

here the conclusion is simple.

As the Aldous–Broder tree Markov chain preserves the distribution specified in (4), the Markov
chain with kernel K(F ) has the property to leave the pioneer tree distribution invariant.

Proposition 24. The Markov chain with kernel K(F ) is ergodic on

∪r∈V Subtrees•,L,↓r (G,n), and its invariant distribution is the distribution of the pioneer PRTn(Wi, 0 ≤
i ≤ τn) for W0 following the invariant distribution ρ of M (with full support on ∪r∈V Subtrees•,L,↓r (G,n)).

Hence, several points can be noticed: the consistency of the trees (PRTn, 1 ≤ n ≤ |V |), the fact
that a labelling is needed to construct this coupling, the fact that Aldous and Broder scheme to
study the FirstEntranceTree can be applied here again using a time-reversal chain under its stationary
distribution, and also the fact that, forgetting their labels, all of them are subtrees of the original
Aldous–Broder spanning tree.
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Figure 6: Simulation of K(F ) on Torus(1000), of a tree with 1000 and then 10000 edges (in the

first case, 25M steps are done starting from a rectangle tree 40×25, in the second case 200M steps

starting from a rectangle tree 100×100.

Proof. The main idea consists in introducing a time-reversal (as in Aldous and Broder argument),

and a second family of trees that we call LastExitTree.

Any finite path (z0, · · · , zm) on G can be used to define a rooted tree

LastExitTree(z0, · · · , zm), rooted at zm as follows: first LastExitTree(z0) is the tree reduced to its

root z0; from k = 0 to m− 1, construct LastExitTree(z0, · · · , zk+1) from LastExitTree(z0, · · · , zk) by

the suppression of the outgoing edge from zk+1 (if any), by the addition of the edge (zk, zk+1) and

by setting the root at zk+1. The set of nodes of LastExitTree(z0, · · · , zm) is {z0, · · · , zm}; if one

denotes by

νk = max{j : |{zj , · · · , zm}| = k},

the last time k nodes remain to be visited “in the future”, then, for any k ∈ {1, · · · , |{z0, · · · , zm}|},
νk is the date of visit of a node for the last time; hence, the tree LastExitTree(z0, · · · , zm) has for

edges

(zνk , z1+νk), for k = |{z0, · · · , zm}| to 2. (30)

In Definition 2, FirstEntranceTree is associated with a covering path; this definition can be extended

to any path, covering or not. It is immediate to check, that, for any path (w0, . . . , wm) on G,

FirstEntranceTree(w0, · · · , wm) = LastExitTree(wm, · · · , w0). (31)

Assume now that (Xk, k ∈ Z) is a M Markov chain and (Yk, k ∈ Z) is a
←−
M Markov chain, both

of them taken under their invariant distribution.

We start with the spanning tree case. There are three main ideas:

� Construction of LastExitTree following the “erase the oldest” dynamic.

k 7→ LastExitTree(Yi, i ≤ k) is a Markov process such that from time k to k + 1 a new edge

(Yk, Yk+1) is added, and the outgoing edge e from Yk+1, if any, is suppressed; and in such a case

before suppression, the addition of (Yk, Yk+1) created a cycle C. By induction on k one can prove
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that the edge creation timestamps give an increasing labelling on any injective path to the root.

We claim that the edge e was the “oldest” edge of C. This statement is meaningful since the

date of creation of each edge is σ(Yi, i ≤ k) measurable: each edge is the last exit edge to a node.

Therefore, the further from the root is an edge on the LastExitTree, the smaller creation timestamp

it has and therefore the older it is. Hence, the edge (Yk, Yk+1) creates a cycle with a path going to

Yk, which is then a branch in the tree, so that the outgoing edge from Yk+1 is indeed the oldest in

the cycle. Hence, up to the labels, the tree in the “erase the oldest edge” dynamics is the same as

k 7→ LastExitTree(Yi, i ≤ k).

� Adding the “right” labels to the analysis.

Label the edges of LastExitTree(Yi, i ≤ k) by `k the relative order in

J1, |{Y0, . . . , Yk}| − 1K of their creation timestamps as in the preceding part, this is an increas-

ing labelling on any injective path towards the root. We produce a reverse labelling `↓k of `k as

follows

`↓k(e) = |{Y0, . . . , Yk}| − j, for j ∈ J1, |{Y0, . . . , Yk}| − 1K.

Under `↓k, the bigger the label, the smaller its timestamp is and therefore the older the edge.

Now, in the spanning tree case the chain “erase the oldest chain” and k 7→ (LastExitTree(Yi, i ≤
k), `↓k) (from k large enough) can be identified under their stationary regime (this can be seen more

easily by the time-reversal argument that follows).

� time-reversal application to obtain pioneer from LastExitTree + labels:

The combinatorial property (31) allows one to see that if X is a M Markov chain and Y a
←−
M

Markov chain under their common stationary distribution ρ

PRT(Xi, 0 ≤ i ≤ τV )
(d)
= (LastExitTree(Yi, i ≤ 0), `↓0).

To complete the proof for n < |V |, it suffices to use (29) and its counterpart for (LastExitTree(Yi, i ≤
0), `↓0): in words, keeping from the spanning tree process the n − 1 edges with the smallest labels,

provides on the left-hand PRT(Xi, 0 ≤ i ≤ τn), and in the right-hand the tree (LastExitTree(Yi, i ≤
0), `↓0)

e:`↓0(e)<n
restricted to the n − 1 edges with the smallest labels; the coupling argument given

also allows one to compare the process k 7→ (LastExitTree(Yi, i ≤ 0), `↓0)e:`k(e)<n with the “erase the

oldest edge” chain is still valid.

The distribution of the vertices of the tree {W0, · · · ,Wτn} is the trace of the Markov chain till
it visits n different points. It is possible to give some combinatorial formulas for the distribution
of this support, but they are not enlightening. For the asymptotics on some graphs (as on Z2

or Torus(N)), Brownian limit of (Wk, k ≥ 0) suitably normalised shows that from a probabilistic
perspective, the question is the following.

Open question 3. Describe the distribution of FirstEntranceTree(W0, · · · ,Wτn) conditionally on

vertex set {W0, · · · ,Wτn}.
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For more information on the combinatorics behind this model, we send the reader to [49].

Erase the youngest edge, a degenerate variant of the kernel K(F )

It seems natural to ask if erasing the youngest edge gives an exploitable model, to define this
mechanism just replace maximal by minimal in the description of the “erase the oldest edge
transition matrix” K(F ). This process tends to destroy almost all leaves and to provide a poor
model of random trees, even if, as a model of weakly branching “self avoiding random walk”, it
could be thrilling to study (see Fig. 7).
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Figure 7: Remove the youngest edge, simulation on Torus(1000), of a tree with 1000 and then

10000 edges (in the first case, 1M steps starting from a rectangle tree 40×25, in the second case

10M steps starting from a rectangle tree 100×100.

7.2 No “local construction” of a uniform element of Subtrees(G, n)

In this section, we present a generic argument allowing one to prove that it is not possible to sample
a uniform element of Subtrees(G,n) using few steps a random walk, when n is small compared to
|V |. This argument can be used to reject many constructions one may imagine.

Theorem 25. Consider a simple random walk W = (Wk, k ∈ Z) on a graph G = (V,E) under its

invariant distribution (meaning that knowing Wi, Wi+1 is uniform among the neighbours of Wi).

Denote by
−→τn := inf{k ≥ 0 : #{W0, · · · ,Wk} = n}

the first time the random walk visits n points, or, “the same thing”, backward, ←−τn := max{k ≤ 0 :

#{Wk, · · · ,W0} = n}. In general, there does not exist any map F taking its values on the set of trees

with n nodes, such that F (W0, · · · ,W−→τn) is uniform on Subtrees(n,G) or on Subtrees•r(n,G) (with

r random or not), and such that the vertex set of F (W0, · · · ,W−→τn) is included in {W0, · · · ,W−→τn}.
The same statement holds for F (W←−τn , · · · ,W0) instead.

Remark 26. (i) The “In general” in the statement is important. Aldous–Broder theorem asserts

that when n = |V | the map F exists: it is

FirstEntranceTree! The proof of Theorem 25 consists in exhibiting a family of graphs on which,
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for n small compared to |V |, it is not possible to extract from (W0, · · · ,Wan) a uniform ele-

ment of Subtrees(n,G), even for an large compared to τn, as long as an is negligible in front

of |V |

(ii) The hypothesis that the vertex set of the resulting tree is included in the trace of {W0, · · · ,W−→τn}
is needed since, without this condition, the randomness of the trajectory could be used in a

“non-natural way” to sample a uniform element of Subtrees(n,G).

For example, a path with size k on Torus(n) provides a uniform random word of {0, 1, 2, 3}k

(the possible directions of each step numbered from 0 to 3), and this word can be used to sample

in a set with a smaller size (using reject, if needed), for example in Subtrees(j,Torus(n)) for

any j such that |Subtrees(j,Torus(n))| ≤ 4k (an algorithm which would associate a tree to a

word would be needed). However, the produced tree would be far to be included in the trace of

the chain. This is what we want to avoid here.

Proof. The main idea is the following: a simple random walk has a simple stationary distribution

ρ which is ρu = deg(u)/
∑

v∈V deg(v). Hence, a simple random walk taken under its invariant

distribution, is localized in a graph “proportionally to the degree of the starting node”. The

probability that a uniform tree in Subtrees(G,n) has vertex set V ′ ⊂ V is proportional to the

number of spanning trees in InducedG(V ′), which roughly, can be thought to depend on the product

of the nodes degree in InducedG(V ′) rather than their sums. Hence, the distribution of the support

V ′ has somehow nothing to do with ρ.

For the non convinced reader, let us take an example of graph in which this phenomenon is

evident. Take the graph on the set of vertices {1, .., n3} whose edges are described by the fact, that

the graph induced by {1, · · · , n} is the complete graph Kn, and the vertices (n, n+ 1, ..., n3) forms

a path (going from vertex n to n+ 1 to · · · to n3).

The invariant distribution ρ of the simple random walk on this graph is ρi = (n − 1)cn for

each vertex i ∈ {1, · · · , n − 1}, ρn = ncn, for i ∈ {n + 1, · · · , n3 − 1}, ρi = 2cn and ρn3 = cn, for

cn = 1/(2n3 + n2 − 3n). Hence, the starting point of the random walk will be in {2n + 1, · · · , n3}
with probability close to 1, so that a random walk stopped when it touched n points, starting under

this invariant distribution will see only the vertices of the path with probability going to 1 when

n→∞.

But, the total number of spanning trees of the graph Kn is nn−1 (all of these trees have size n)

which is far greater than the number of size n subtrees of the path which is O(n3).

7.3 A model inspired by Wilson’s algorithm

Definition of Model B: The connected component of r in the model with one outgoing edge
per node in V \ r.
Let r ∈ V be a distinguished vertex; consider (eu, u ∈ V \{r}) a family of independent random
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directed edges, where eu = (u,u′) and u′ is a uniform neighbour of u. Denote by t(r) the
connected component of r: it is a tree rooted at r.

For a general graph G, the support of the distribution of t(r) is (included but) different of
Subtrees•r(G). For example, if G = Torus(n), each connected component of the complement of t(r)
contains oriented cycles, and then, these components cannot be reduced to a single vertex (see a
simulation in Fig. 8).

Given a tree t, recall Vp(t) = {w ∈ V : dt(w, V (t)) = 1} the set of perimeter sites of t. For each
w ∈ Vp(t), let pt(w) = |{(w, u) ∈ E, u 6∈ t}|/degG(w) the probability that the outgoing edge from w
does not touch t. For any t ∈ Subtrees•r(G)

P(t(r) = t) =
(∏

v∈t
v 6=r

1

degG(v)

)( ∏
w∈Vp(t)

pt(w)
)
. (32)
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Figure 8: Simulation of Model B on Torus(200), 3536949 simulations were needed to get a tree of

size at least 100. In fact, by chance, the tree had exactly size 100. It seems that a mean of around 5

millions simulations are needed to get this size at least. Simulating big trees by this method seems

out of reach.)

To get a model having full support in Subtrees•r(G), it suffices to modify a bit the model to allow
nodes to have zero outgoing edge:

Definition of Model C: At most one outgoing edge per node.
Take a parameter q ∈ (0, 1] and consider a collection [Bv(q), v ∈ V \ {r}] of i.i.d. Bernoulli(q)
random variables to label the vertices. Consider for each vertex u in V \ {r} with Bu(q) = 1
a uniform random outgoing edge eu = (u,u′), independent of the others (defined as in Model
B). Again take tq(r) the connected component of r.

It is simple to see that for t ∈ Subtrees•r(G),

P(tq(r) = t) =
(∏

v∈t
v 6=r

q

degG(v)

)( ∏
w∈Vp(t)

(1− q) + qpt(w)
)
.

When q = 1 we recover the model (32) above, but for q ∈ (0, 1), the support of the random variable
tq(r) is the complete set Subtrees•r(G). However, in practice, on Torus(n), this model produces very
small trees, even smaller than in the case q = 1 for which getting a large tree is rare (see Fig. 8).
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7.4 Subtree of a size biased forest

Recall the definition of forest given in Section 3. In the literature, the term “spanning forest” is
often used to denote a collection of trees (t1, · · · , tk), each of them spanning a connected component
(c1, · · · , ck) of a graph (having k connected components). Here, the underlying graph G = (V,E) is
connected, and we call spanning forest, a subgraph of G with no cycle, spanning V , or equivalently,
a collection of subtrees of G whose vertex sets form a partition of V . Any total order on V can
be used to order the trees t1, · · · , tk in any spanning forest, for example, by sorting the subtrees
according to their least vertex; denote by t < t′ the corresponding order between disjoint trees; in
the sequel the set of spanning forest

SpanningForests(G) := ∪k{(t1, · · · , tk) spanning forest , t1 < · · · < tk}.

A distribution on SpanningForests(G) is said to be size biased, if for f taken under this distribution
P(f = (f1, · · · , fk)) is proportional to

∏k
j=1 |fj | for any k, and (f1, · · · , fk) ∈ SpanningForest(G)

(and zero, otherwise): roughly, this distribution favours the multiplicity of components of small
sizes ≥ 2.

The size bias is equivalent to the rooted case model, in which each tree is rooted at one of its
vertex, since the number of possible roots of a given tree is given by its size. To build a size biased
spanning forest of the graphG, it suffices to add a point to the vertex set, that is to take V ′ = V ∪{z},
and to add an edge between z and all the elements of V , that is to define E′ = E ∪ {{z, v}, v ∈ V }.
Set G′ = (V ′, E′).

Definition of Model D: The tree containing r in a size biased forest.
Let T′ be a UST of G′ = (V ′, E′), and consider the spanning forest f = (f1, · · · , fk) (for some
k ≥ 1), with vertex set V and edge set E(f) = E(T′)∩E, that is, the edges of T′ not adjacent
to v.

The forest f is a size biased spanning forest since each fi can be connected by |fi| different edges to
z. Let t be the connected component of f containing r. For all t ∈ Subtrees•r(G),

P(t = t) = |t| × |SpanningTrees(G′ \ t)|
|SpanningTrees(G′)|

where |SpanningTrees(G′)| is the number of spanning trees of G′, and
|SpanningTrees(G′ \ t)| the number of spanning trees of G′ deprived of all the vertices of t.

Notice that here |SpanningTrees(G′ \ t)| can be computed using the matrix tree theorem and
then, if a bound on |SpanningTrees(G′ \ t)| is known for all subtrees t of size n, a rejection method
can be used to sample a uniform element of Subtrees•r(G,n).
Analysis: The computation of a uniform spanning tree of G′ is fast, and can be done on huge
graphs.
Drawbacks: This distribution can not be used in general to sample uniformly in Subtrees•r(G,n);
indeed, the rejection method here is unlikely to work if the desired size n is far from 0 and |V |:
in most graphs G, it produces some huge ratios between the weights |SpanningTrees(G′ \ t)| and
|SpanningTrees(G′ \ t′)| for t, t′ ∈ Subtrees•r(G,n). Besides, the evaluation of |SpanningTrees(G′ \ t)|
by the matrix tree theorem produces also some difficulties if the graph is large, since manipulation
of huge integers is an issue.

Variant A method to favour larger components is to use Wilson’s algorithm with some random
walks (W b

i , i ≥ 0) less likely to visit z. When W b
i = z, the node W b

i+1 is uniform on V ; otherwise,
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if W b
i = v ∈ V , then W b

i+1 = z with probability p, and with probability 1 − p, W b
i+1 is a uniform

neighbour of v in G. This construction induces a distribution on SpanningTrees(G′) proportional to

pIndegree(z)
∏

u6=r,f(u)6=z

1

degG(u)
,

where Indegree(z) counts the number of steps with destination z in the construction and f(u) denotes
the father of u in the final spanning tree of G′. This is valid when z is not chosen as the first point
in Wilson’s algorithm (otherwise some minor adaptations are needed). Hence, for a d-regular graph

G, this is proportional to (d p)Indegree(z).

Lemma 27. Assume that G is d-regular, let T′′ be the spanning tree of G′ constructed by the

variant presented above, and the spanning forest f = (f1, · · · , fk) of G (for some k ≥ 1), with

vertex set V and edge set E(f) = E(T′′) ∩ E. For any spanning forest f = (f1, · · · , fD+1) of G,

P(f = f | {Indegree(z) = D}) is proportional to
∏D+1
j=1 |fj |.

In practice, on the graph Torus(N), it is possible to adjust p so that the probability of the event
{Indegree(z) = 1} is far from 0; by acceptance/rejection, it then gives a procedure to simulate f with
Indegree(z) = 1, in words, a spanning forest containing two trees. It is also possible to condition by
{Indegree(z) = 1,|t(r)| = n} (see Fig. 9).

For a tree t rooted at r with diameter d < N on Torus(N), call canonical embedding of (t, r),
denoted Canonical(t), the tree in Z2, rooted at 0, obtained by taking the translated tree t− r, and
projected in Z2 (in the only reasonable way which preserves the orientation of the edges).

Conjecture 4. Conditionally on |t(r)| = n, the rescaled vertex sets,

Canonical(t<n(r))/
√
n, converges in distribution for the Hausdorff metric on compact subsets of

R2 to a limiting compact set K, with Lebesgue measure 1, simply connected.

One could further conjecture that the contour process possesses a limiting distribution, probably
having some common features with SLE8 (the contour has to be thought as a path that turns around
the tree at constant speed, at distance equals to the lattice mesh divided by 3, so that it is a close
curve that characterizes the tree). However, the fact that the imposed condition provides an object
with area 1, and since this property is not conformal invariant, the connections with SLE seems
not trivial, and the conjecture difficult to state. The interface of K seems to have also to be a SLE
type trajectory, which seems to be simple, and could be conjectured to, still at the limit, surrounds
a domain with area 1. Again, this area condition implies that even stating a conjecture is not a
simple task.

Another link, maybe a bit more speculative, would concern some possible relations with the
massive version of SLE2. The global construction of our tree has some similarities with the model
of Makarov & Smirnov [94] who studied loop-erased random walk with killing: at each time the
walk has a small probability proportional to m2 to be absorbed by a cemetery point; such a random

walk conditioned to start and finish at some given points of a domain, converges towards SLE
(m)
2 ,

a massive version of SLE2. This construction is similar to the construction of the current variant,
which uses loop erased random walks that can reach, at each step, the additional point z with a
small probability. It may then be expected that some asymptotic characteristics of our model could

be related to SLE
(m)
2 (for example, the limit path from a vertex conditioned to be in the tree, to

the root).
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Figure 9: Left: Simulation with p = 10−5 on the Torus(200), conditioned on D = 1, and by the

fact that the tree attached to r “the center of the torus” has size between [19000, 21000], that is

approximately half of the total size (240 simulations were needed, the output size of t(r) is 20852).

Right: p = 2 × 10−7, on the Torus(1000), conditioned on D = 1, and |t(r)| ∈ [45000, 55000] (2553

simulations were needed before satisfying these conditions, with output |t(r)| = 52106).

7.5 Subtree extraction of the uniform spanning tree

A method that seems promising to obtain an element of Subtrees(G,n) with a prescribed distribu-
tion, is a two-steps procedure: first, sample a UST t of G, and then, extract by a second (random)
procedure, a subtree t′ of t.
S. Wagner [128], gives a lower bound on the probability that a randomly chosen uniformly in
Subtrees(G), is spanning (depending on a linear lower bound on the minimum degree of the nodes).
Chin et al. [34] obtained that if t(G) is a uniform random unrooted tree in Subtrees(G), then

P(t(Kn) is spanning ) → e−1/e,

P(t(Kn,n) is spanning ) → e−1/e2 .

It turns out that getting a uniform element t′ of Subtrees(G,n) by such a two-steps procedure
seems really difficult except when n is very small (and maybe, an obstruction comes from the fact
that the edges of the uniform spanning trees form a determinantal process, as shown by Burton &
Pemantle [26]).

However, extraction of subtrees of UST allows us to obtain some interesting models; we review
some of them here, but additional ways to extract random subtrees from a tree are examined in
Section 8.

7.5.1 Uniform random subtree of the UST

In Section 8.2, we will provide an algorithm to sample a uniform subtree of a given tree (or uniform
conditionally on the size, with some adjustable parameter to favour a given mean size); it is tempting
to use these algorithms on a uniform spanning tree UST ofG. Here we make explicit the distribution
of t(n) ∼ Uniform(Subtrees(UST, n)), whose support is Subtrees(G,n). Since any tree of size n is a
subtree of at least one spanning tree (see Simulation in Fig. 10). For all t ∈ Subtrees(G,n)

P(t(n) = t) ∝
∑

T∈SpanningTrees(G)

1t∈Subtrees•v(T )

|Subtrees•v(T )|
.
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Figure 10: Simulation of a uniform subtree of a rooted UST of Torus(300). In each picture, the

UST is sampled using Wilson’s Algorithm. Left: pi = 0.35 = 1 − ri for all i ∈ J2, |T | − 1K, the

output is a tree of size 9589 . Right: pi = 0.36 = 1− ri for all i ∈ J2, |T | − 1K, the output is a tree

of size 18626.

7.5.2 Model of evaporation of the edges of a UST

Take a rooted UST (T, r) of G, with as usual its edges directed toward r. Consider a sequence
(ui, i ≥ 1) of i.i.d. uniform nodes on V \ {r}. Define the sequence of forests (Fi : i ≥ 0) by,
F0 = {T}, and for i ≥ 1, Fi is obtained from the removal of the outgoing edge of ui from Fi−1

(which increases the number of trees by 1 if this edge is removed).
Let ti(r) be the connected component of r in Fi, and set t<n(r) be the first element in the

sequence (ti(r) : i ∈ N) such that ti(r) < n, a target size (the component size ti(r) is non-increasing
in i).
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Figure 11: Simulation of a UST on Torus(5000) seen as directed toward its root; removal of edges

is done until t<n has a size smaller than 20000. In this example, 43707 removals were needed and

the size of t<n is 18159.
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Conjecture 5. Let (N(n)) be a sequence of integers such that lim supn/N(n) < 1. Suppose G =

GN(n) = Torus(N(n)). The rescaled vertex sets,

Canonical(t<n(r))/
√
n, converges in distribution for the Hausdorff metric on compact subsets of

R2 to a limiting compact set K, with Lebesgue measure 1, simply connected.

The condition lim supn/N(n) < 1 ensures that the diameter of t<n is smaller than “the torus
side”.

We conjecture that there is no loss of area at the limit, because, in the simulations it can be
seen that most of the edge removals discard very small parts of the connected component of r.

The spanning case corresponds to the case where no edge is removed, which is equivalent to
n

N(n)2
= 1. In this case, on the analogue configuration on a square J1, nK×J1, nK of the square lattice

the scaling limit of the interface is described by SLE8 (See [131]). Due to the area constraint, which
is not preserved by conformal transformations, if a scaling limit exists it would not be conformal
invariant.

Remark 28. The removal of a single random edge e of a tree T gives rise to two connected compo-

nents, and the connected component which does not contain the root is called a fringe subtree in the

literature; it has been studied for numerous models of random (non-embedded) trees (see e.g. Aldous

[5], Holmgren & Janson [59] and references therein).

In general, t1(r) is not uniform, nor uniform conditionally on its size (one notable exception,

is when G is the complete graph Kn). Indeed, for a fixed t ∈ ∪|V |−1
n=1 Subtrees•r(G,n)

P(t1(r) = t) =
|SpanningTrees(InducedG(V \ V (t))| × |{{u, v} ∈ E, u ∈ t, v /∈ t}|

|SpanningTrees(G)|
.

This comes from the fact that, before the edge removal, both connected components were connected

by one of the edges between them in G, and the connected component not containing the root is any

spanning tree of InducedG(V \ V (t)).

7.6 DLA type model

The DLA has been introduced by Witten & Sander [133], in 1983; very little is known about it, see
e.g. Eberz-Wagner [46].

The common definition of the DLA on the lattice Z2 is as follows: at time 0, the set of oc-
cupied vertices is S0 := {(0, 0)}. Then some particles are launched, successively, and perform a
simple random walk on Z2, meaning that each step is equally likely, (−1, 0), (1, 0), (0,−1), (0,+1),
independently of all steps of all random walks. When the i-th particle reaches a vertex xi which is
at distance 1 (for the L1 distance) to the set of occupied vertex Si−1, it is somehow frozen in that
position, and one sets Si := Si−1 ∪ {xi}. The cluster obtained Sn, depends on the launching points
of the random walks. The DLA is the cluster Sn obtained by letting the launching points go to
+∞.

In what follows, we propose a small variation of this construction (which is already present in
the literature, see e.g. [17]), which can be defined on any graph G = (V,E), and which allows one
to define a new model of random subtree of G.

We call this model TDLA, where the prefix T stands for tree.
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Figure 12: DLA tree with k = 250 and k = 5000 vertices, built on Torus(1000). The initial particle

is at (0, 0).

Remark 29. In the lattice case, the vertex set of our TDLA is not distributed as the DLA, because

the stopping rule of the random walk we adopt is not exactly the same.

To define it, consider a sequence of simple random walks (W k = (W k
i , i ≥ 0), k ∈ N) starting

from W k
0 = ∞ for all k ∈ N. The TDLA is a sequence of subtrees (tdlai, i ≥ 0), where tdlai =

(Di, E(Di)), which is defined recursively as follows. Set D0 = {r}, E(D0) = ∅. Assume tdlak−1 =
(Dk−1, E(Dk−1)) has been defined for k−1 ≥ 0. Instead of waiting for W k

0 to be at distance 1 from
the vertex set Dk−1 of the current tree dlak−1, wait till the hitting time of this vertex set

τk = inf
{
m : W k

m ∈ Dk−1

}
,

so that ek = (W k
τk−1,W

k
τk

) is the step allowing to reach dlak−1.
This construction can be performed on any graph at the price of two modifications: replace

(0, 0) by a marked vertex, and the starting point +∞ of the random walks, by another choice of
distribution, for the launching points.

Definition of Model E: The (finite graph) DLA tree.
On a finite connected graph G = (V,E) with r ∈ V , the TDLA sequence (TDLAr(j,G), 1 ≤ j ≤
|V |) is defined as explained above for (dlak, k ≥ 0) with two simple modifications: the random
walks are independent simple random walks on G which start at i.i.d. points (wk, k ∈ N)
chosen uniformly in V , and if a random walk W k has its starting point W k

0 in the current tree
TDLAr(k − 1, G), then (do nothing and) set TDLAr(k − 1, G) = TDLAr(k,G).

This way of defining the TDLA seems efficient to us in the sense that it allows us to define the TDLA
on all graphs: for example, on the complete graph, it allows us to construct uniform increasing trees
(the edges from any node to the root are increasing, and the node labels are exchangeable). The
standard TDLA would be defined on Z2 using random walks starting from ∞ as explained above.
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Conjecture 6. There exists C ∈ (1/2, 1) such that, for any c > C,

Dvar (TDLA0(n,Torus(nc)),dlan)→n→+∞ 0

where DV ar is the total variation distance.

The natural model of TDLA on Z2 (with particles coming from∞) appears to be a kind of limit
of TDLA0(n,Torus(N)) when N → +∞ (or of TDLA0(n, [−N,N ]2)), with the initial particle placed
at 0, since, for N → +∞, the n starting points of the n random walks goes to +∞ with N , and the
topology of the graph far from 0 should not play an important role.
If one works on the square [0, N ]2 with an initial point at r = (0, 0), performing a reflected simple
random walk on the square, then, one gets an object which has a (single) diagonal symmetry in
distribution (see Fig. 13): We call this DLA, the corner DLA. The initial vertex is at a corner,

 0

 150

 0  150

Figure 13: Corner DLA tree TDLA0(5000, [0, 999]2) with initial vertex at (0, 0) (that is defined on

the square [0, 999]2, with root at (0, 0) and 5000 vertices).

and there are two parameters: the square side, and the number of particles.
Of course, as everyone who has seen these kinds of pictures, it is tempting to conjecture that

for a sequence N(n)→∞, there exists a sequence a(n)→∞ such that

TDLA0(n,Torus(N(n))

a(n)

(d)−−→ TDLA∞

for the Hausdorff metric topology on compact subset of R2, where TDLA∞ is a.s. a (non-trivial)
continuum random tree embedded in R2 (that is a connected subset of R2, where between any two
points x, y ∈ TDLA∞, there is a single injective path γ (up to the time parametrization), such that
γ(0) = x, γ(1) = y, and γ ∈ [0, 1] ∈ TDLA∞). As can be guessed from Fig. 13, a convergence can
still be conjectured for TDLA0(n, [0, N(n)]2)/a(n) (probably for the same normalization) to another
continuum random tree TDLA∞0 .

Remark 30. One finds in the literature many random growth models of DLA type, aiming at mod-

elling various physical, electrical, biological or chemical real phenomenons. Many of them provide
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tree like structures embedded in R2 or R3. In a lot of cases, aggregations of new particles depend on

the complete current structure, and their study are most often complex, if not always. We refer to

Vicsek [126] for an overview of these questions, results and simulations.

7.6.1 A few statistics on square DLA

We made some simulations and statistics to try to guess the critical exponents in the case of square
DLA starting with a single vertex in a corner.

Tree size 5000 6000 7000 8000

Number of simulations 13671 13659 13645 13635
(33)

Again, we made two types of distance statistics, as in Section 5.3: the Euclidean width and
height w(t) and h(t) (number of vertical resp. horizontal row occupied), and random graph distance
D(t) = dt(c,v) between this time, the “root corner” and a random node in the tree. To make the
statistics, for each simulation, we used both values w(t) and h(t), and sample 10 random nodes v
for each DLA. We use the same methods as in Section 5.3 to evaluate the more plausible values
of α and β for which w(tn)/nα and dt(c,v)/nβ would converge in distribution, given our samples.
The square size is the same for all simulations (1000× 1000).

Number of nodes 5000 6000 7000 8000

Empirical mean of the width 170.93 190.31 208.36 225.31

Empirical median of the width 171.00 190.00 208.00 225.00

Empirical mean of d(c,v) 160.62 178.69 195.43 211.48

Empirical median of d(c,v) 166.00 185.00 202.00 218.00

(34)

(n,m) (5000, 6000) (6000, 7000) (7000, 8000)

Estimation of α (mean) 0.589 0.588 0.586

Estimation of α (median) 0.578 0.587 0.588

Best fit decile α 0.579 0.581 0.590

Estimation of β (mean) 0.585 0.581 0.591

Estimation of β (median) 0.594 0.570 0.571

Best fit decile β 0.581 0.586 0.586

(35)

Conjecture 7. In the case of TDLA0(n, [0,+∞)2), both w(tn)/nα and

dtn(c,v)/nβ converge in distribution for α = β, for a certain α ∈ [0.55, 0.61].

Since the points start inside the square, they are more likely to start “inside” the current cluster,
which implies, probably, that our simulations produce results a bit smaller than the expected limiting
values. In Lawler [85, Sec. 2.6] it is discussed that α is conjectured to be (d+1)/(d2+1) in dimension
d. A version of the DLA on the upper half plane is defined and studied in Procaccia & Zhang [112].

7.7 Internal DLA

This model has been introduced by Diaconis & Fulton [42] and it is defined as follows. Consider a
sequence of i.i.d. simple random walks (W k, k ∈ N), all of them starting at the same vertex W k

0 = r
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Figure 14: On the top, (interpolated) empirical cumulative function of w(tn)/nα for α being re-

spectively 0.57, 0.58 and 0.59. At the bottom, (interpolated) empirical cumulative function of

dtn(c,v)/nβ for β being respectively 0.57, 0.58 and 0.59.
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Figure 15: Tree Internal DLA with k = 200 and k = 2000 vertices, v = (0, 0).

for k ∈ N. The internal DLA is a sequence of clusters of vertices (Ii)
∞
i=0 defined as follows. Set

I0 = {r}. Assume Ik has been defined and define Ik+1 = Ik ∪ {uk+1}, where uk+1 is the first point
in the complement of Ik hit by the random walk W (k+1) (that is let τk+1 = inf{m : W k+1

m /∈ Ik},
then uk+1 = W k+1

τk+1
) .

Definition of Model F: The internal DLA tree.
Use the random walks defined above. Define the sequence of trees (Tk, k ∈ N) as follows: T0 is
the tree reduced to its root r. To define Tk+1 from Tk, add the edge ek+1 = (wk+1

τk+1−1,W
k+1
τk+1

)
corresponding to the step of the random walk Wk+1 reaching a node in the complement of the
vertex set of Tk. Again Tk is a tree with k + 1 vertices (simulations on Fig. 15).

Much information is known on the cluster (see Lawler et al. [88] for a limit shape theorem,
Levine and Sheffield [71] for the fluctuations in 2D (see also Lawler [90]), Jerison et al. [73], and
Jerison et al. [72] in larger dimension).
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7.8 Constructions on weighted graphs

In this part, we assume some i.i.d. weights C = (Ce : e ∈ E(G)) associated with edges picked
according to a non-atomic measure µ on (0,+∞). The induced random order σ of the edges is the
(a.s. well-defined) permutation satisfying

eσ(1) < · · · < eσ(|E|). (36)

The two first models given in this part are built using Prim’s [111] and Kruskal’s [83] algorithms
which extract the minimum spanning tree (MST) of a weighted graph (G,C). In fact, the MST
is a function of the induced random order σ (this is a consequence of Prim’s, Kruskal’s and also
Boru̇vka’s algorithm [16]; we refer to Nesĕtr̆ıl et al. [105], Graham and Hell [54] for historical notes
on this problem).

7.8.1 Prim’s component of the origin

Definition of Model G: The Prim component of a vertex.
Build a sequence of trees (Pj , j = 1, · · · , N) where Pj is a tree with j nodes, as follows: first,
take P1 = r a fixed node. Assume that Pj has been built and set Pj+1 as the tree Pj together
with the edge e of minimal weight between a node of Pj and a node out of Pj .

Since the weights are chosen according to an atomless measure, the sequence (Pj , j = 1, · · · , N) is
a.s. well-defined.
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Figure 16: Prim’s algorithm applied on Torus(2000) with i.i.d. weights Ce ∼ Uniform(0, 1), stopped

when the tree reached 5000 vertices.

Open question 4. Take a connected weighted graph (G,C) and r a fixed vertex of V . What is the

distribution of Pn? Of the process (Pn)?

When Kn is the complete graph on n vertices, the minimum spanning tree rescaled by n1/3

converges in the Gromov-Hausdorff sense to a binary continuous random tree (Addario-Berry et al.
[2]). For the moment, not much is known on the limiting tree. The analysis of this case relies on the
fact that the connected components of (Pn) are related to the multiplicative coalescent (see Aldous
[6], Broutin & Marckert [21]).
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Under some hypothesis, the total length of the edges in a minimal spanning tree admits a
deterministic limit: it is ζ(3) (notably, as shown by Frieze [52], when G is the complete graph, and
the edge weights are uniformly distributed on [0, 1]), and a similar result occurs for regular enough
weight distributions (Steele [124]). Additional related results are numerous (see eg. Cooper et al.
[37] and Janson [66, 67]).

Remark 31. The probability P(Pn = t) is proportional to the number of induced permutation orders

σ giving t. It is possible to find a description of these permutations σ, by fixing first the relative

order of the edges of t (their Prim order); this provides a way to describe the σe of the perimeter

edges e of t; however, the formula P(Pn = t) thus obtained, has a summation form which seems to

be intractable.

7.8.2 Kruskal’s algorithm:

Define a sequence of graphs (Kj , j ≥ 1). Take K1 = (V,∅) the graph with no edges and vertex
set V , and Ki = (V,Ei) the graph with edge set Ei = Ei−1 ∪ {eσ(i)} if this set of edges does not
contain any cycle, or Ei = Ei−1 otherwise. Stop the construction at the MST K, which is the first
graph Ki containing N − 1 edges.

At any fixed step m, Km is a forest; as time passes by, its connected components merge. In
particular the connected component containing a given fixed vertex r ∈ V has a non-decreasing
size.

Definition of Model H: The Kruskal’s component of a vertex.
Stop the construction in Kruskal’s algorithm when the cluster containing r has at least n edges.
Denote by Ksize≥n(r) the tree obtained (see Fig. 17).

For any t ∈ Subtrees•r(G) with |t| ≥ n, let It := InducedG({u : dG(u, t) ≤ 1}) be the induced
subgraph of G, formed by the nodes at distance ≤ 1 from t. Each edge e ∈ E(It) is either an edge of
the tree, a perimeter edge of t (meaning that {e} ∪E(t) is the edge set of a tree) or a “cyclic edge”
meaning that {e} ∪E(t) is the edge set of a graph with a (unique) cycle, denoted Ct(e). Denote by
Pt the set of perimeter edges and Int the set of cyclic edges.

Proposition 32. For any tree t ∈ ∪k≥nSubtrees•r(G, k)

P(Ksize≥n(r) = t) = |St| /|E(It)|!

where St is the subset of the symmetric group S(E(t)) composed of the permutations σ that satisfy

the following properties:

(a) σe ≥ σf , ∀f ∈ Ct(e), ∀e ∈ Int,

(b) min{σf , f ∈ Pt} ≥ max{σe, e ∈ E(t)}.
(c) if one removes the edge e of t with the largest label σ(e), the connected component of t containing

the root has size < n.

Proof. It is simple to see that the realisation of the event {Ksize≥n(r) = t} depends only on the

relative order of σ on E(It), which is uniform by symmetry. Now, by definition, removing the
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Figure 17: Kruskal’s algorithm on Torus(200) with a uniform random order of the edges, stopped

when the tree containing the vertex v = (100, 100) has size in [1000, 1000(1 + 0.03)] (the output

size is 1001). 20 simulations were needed before success (the size can jump over this interval during

the construction process). The second construction is done on the Torus(500), and the algorithm is

stopped when a tree with size in [5000, 5000(1 + 0.01)] containing v = (250, 250) is obtained by the

same method with uniform random order of the edges (four simulations were needed, with output

size equals 5007).

last edge added at t must leave the connected component attached to the origin with a size < n

(condition (c)). Now, condition (b) is needed: without it, some perimeter edges of t would have

been added before t is completed. Condition (a) translates the condition that an edge is not added

if it forms a cycle: the other edges need to have been added before.

A variant consists in rejecting Ksize≥n(r) as long as its size is not exactly n (meaning that we
reassign weights to all edges). Denote by Ksize=n(r) the result obtained.

7.8.3 A few statistics on the Kruskal’s trees

We made some statistics to try to guess critical exponents in the case of the Kruskal’s trees on the
Torus(N). To get an efficient way to test the creation of cycles, we turned the Kruskal’s forest into
a forest of rooted trees as follows: at the beginning, all nodes are roots of trees reduced to a single
vertex. Each time unit, a uniform vertex uk and a uniform direction dk (north, est, west, south)
are chosen independently of the other choices. Let vk be the vertex at distance 1 from uk on the
torus, such that (uk, vk) has direction dk. The oriented edge (uk, vk) is then added to the “forest”
if it does not create a cycle. In this case, in the rooted tree (t, r) that contained uk, the edges from
r to uk are oriented toward uk so that the new root of the new tree after this merging, is the root
of the tree that contained vk beforehand. Hence, the component we are interested in is the rooted
tree that contains a given node, chosen before the starting of the simulation. Since the diameter
of a tree is at most twice the largest distance to the root, we expect the critical exponent to be
independent of the choice of the root.

We fix a value n, and to not lose too much waiting time for a realisation of a tree with size
exactly n, we wait till |Ksize≥n| ≤ n(1 + 0.03), so that finally, this amounts to conditioning by
n ≤ |Ksize≥n| ≤ n(1 + 0.03). All the simulations are done on Torus(700) which is, in practice large
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enough so that none of the thousands simulations we did get a width or a height of this size.

Tree size 4000 6000 8000 10000

Number of simulations 10758 10679 10446 10365
(37)

Again, we made two types of distance statistics, as in Section 5.3: the Euclidean width and
height w(t) and h(t) (number of vertical resp. horizontal row occupied), and random graph distance
D(t) = dt(r,v) between the root of the tree and a random node in the tree. To make the statistics,
for each simulation, we used both values w(t) and h(t), and sample 10 random nodes v for each
such tree. We use the same methods as in Section 5.3 to evaluate the more plausible values of α
and β for which w(tn)/nα and dtn(r,v)/nβ would converge in distribution, in view of our samples.

Number of nodes 4000 6000 8000 10000

Empirical mean of the width 112.96 140.07 163.51 183.95

Empirical median of the width 111.00 138.00 161.00 180.00

Empirical mean of d(r,v) 174.77 225.08 269.44 311.91

Empirical median of d(r,v) 165.00 213.00 254.00 295.00

(38)

(n,m) (4000, 6000) (6000, 8000) (8000, 10000)

Estimation of α (mean) 0.530 0.538 0.528

Estimation of α (median) 0.537 0.536 0.500

Best fit decile α 0.528 0.538 0.516

Estimation of β (mean) 0.624 0.625 0.656

Estimation of β (median) 0.630 0.612 0.671

Best fit decile β 0.623 0.628 0.653

(39)
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Figure 18: On the top, (interpolated) empirical cumulative function of w(tn)/nα for α being re-

spectively 0.52, 0.53 and 0.54. On the bottom, (interpolated) empirical cumulative function of

dtn(r,v)/nβ for β being respectively 0.63, 0.64 and 0.65.

Conjecture 8. w(tn)/nα converges in distribution for some α ∈ [0.50, 0.55].
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The simulations suggest that either β exists but the sizes of the simulated trees are not large
enough to estimate it, or there does not exist any such β (a correction term like (log n)γ may be
needed). However, the curves (18) show that the empirical cumulative function of dtn(r,v)/nβ

are really close for the simulated n for some β, so that it can be guessed that dtn(r,v)/an should
converge for some (an) to a non-trivial limit.

7.8.4 Minimal spanning tree of an infinite graph

Given an infinite graph, as Zd, in which the edges are equipped with i.i.d. positive random weights
chosen according to an atomless probability measure µ, the reversed Kruskal algorithm allows giving
a sense of the MST, including in the case of an infinite graph: in each cycle, delete the edge with
maximum weight. In [53, Theo. 1.1], Garban & al. proved the convergence in distribution of the
minimum spanning tree on the planar triangular lattice with a mesh going to 0; we refer to this
paper for the description of the topology used. The interested reader will find in [53] more references
concerning this domain of research (which includes also, Euclidean minimum spanning trees, built
on a point process).

7.8.5 The minimal weighted subtree

A natural model of subtree of size n, on a weighted graph, is provided by the following simple
optimisation problem:

Definition of Model I: The minimal weighted subtree.
Consider the subtree tree tn(µ) of G with n edges and minimal weight among those with n
edges.

The problem consisting in finding the minimal weighted subtree of size n is called the k-
cardinality tree problem (see e.g. Chimani et al. [33] and reference therein): it is a NP-complete
problem, and we gave up on the idea of providing pictures for this model.

Remark 33. Here, the distribution of tn(µ) depends on µ not only on the relative order of edges.

Other optimisation problems like this one exist in the literature, for example, the Steiner tree
problem (which amounts to finding the tree with minimal weight connecting a subset of nodes U ⊂ V
in a graph) and its numerous variants, for which the nodes are also weighted, for example, the node-
weighted Steiner tree problem (Buchanan et al. [25]), the edge capacitated Steiner tree problem (see
Bentz et al. [11] in which additional constraints on the tree are added), the minimum routing cost
spanning-trees, which amounts to optimizing the mean distance between pairs of uniform random
nodes (Wu et al. [134]); a similar type of problem “Optimum Communication Spanning-Trees”,
introduced by Hu [61] (see recent developments in Zetina et al. [137], Luna-Mota [92]).

7.8.6 First passage percolation

Again consider the same model of weighted graph (G,C) and a distinguished vertex r. Now, with
each node w 6= r associate the (a.s. well-defined) path Lw from r to w with minimal weight C(w)
(sum of the weights of the edges belonging to the path). The union of the paths T(µ) := ∪w 6=rLw
forms a.s. a tree (it is connected and acyclic with probability 1, since a cycle implies that two
different paths have the same weight).
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Definition of Model J: The first passage percolation tree.
Denote by Tn(µ) the tree formed by the union of the paths from r to the n nodes (including
r) with the smallest weights.

It is quite simple to find graphs and distributions µ for which Tn(µ) is not uniform in Subtrees•r(G,n).
In Z2, there exists a limit shape theorem (Cox-Durrett shape theorem, see Auffinger et al. [9, Section
2] for this theorem, and an overview of last passage percolation problems).
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Figure 19: First passage percolation on the Torus(1000). On the first line, the Ce are i.i.d. uniform

on [0, 1]. Both trees are done in the same environment and have sizes 1000 and 10000. On the

second line, the weights are distributed as 1/E5 where E has the exponential distribution with

parameter 1.

8 Random subtrees of a tree T

The case where T is an infinite d-ary tree is discussed few lines above Section 2. Here we focus on
the case where T is a finite tree.

8.1 Combinatorial considerations

For a given finite tree T , the polynomial ΦT (x) =
∑

k≥1 x
k|Subtrees(T, k)| is called the subtree

polynomial of T . Due to the decomposition of trees at their root, the computation of ΦT is much
less expensive than in the case of graphs, even in the weighted case (see Yan & Yeh [135]). This
implies that uniform sampling of subtrees of a given size of a tree can be done exactly, in principle,
even on trees of big size, just by counting the number of subtrees with size k containing a given
vertex, and making some decomposition (see also Brown & Mol [24] and reference therein).
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8.2 Exact generation of uniform or conditionally uniform subtrees

The absence of cycles in G simplifies the implementation of the Markov chains we introduced in
Section 6.2. Moreover, it is easy to define monotone transition matrices for the inclusion order, so
that coupling from the past techniques will be possible. In this section, G = (T, r) is a rooted tree
(and we keep the notation T = (V,E)).

Recall the (rooted) kernel K
(D)
r in Subtrees•r(G) introduced in Section 4.2, defined using a se-

quence of parameters [(pi, qi, ri), 1 ≤ i ≤ |V |]. Here the graph G = (T, r) so that the attempt of
addition of a new edge e to the current tree X0 will never create any cycle.

Proposition 34. Consider a sequence [(pi, qi, ri), 1 ≤ i ≤ |V |] such that ri > 0 for all i. For a tree

T , consider t taken under the invariant distribution of K
(D)
r , for a fixed r ∈ T . We then have

P(t = t) = ν1(T )

|t|∏
i=2

(
pi−1

ri

)
1t∈Subtrees•r(T )

where ν1(T ) denotes ν1 in Proposition 18 (and Rem. 16) applied to T .

Recall that given T and n, L(t | |t| = n) is uniform in Subtrees•r(T, n). This is independent of
(pi) and (ri), which leaves a degree of freedom to bias the size of t. Figure 10 shows some simulations
obtained using this procedure on a uniform spanning tree of the torus.

Remark 35. A particular case is obtained when pi−1 = ri for all i ∈ J2, |V |K, since this reduces to

the sampling of a uniform subtree of T .

A coupling from the past for K
(D)
r . Consider the following condition:

Hypothesis M : p1 ≤ p2 ≤ · · · ≤ p|V (T )|−1,

r2 ≥ · · · ≥ r|V (T )|.

Since pi + ri + qi = 1, it is also required that rk + pk ≤ 1. In other words, the bigger the tree is, the
faster it grows, and the smaller the tree is, the faster it shrinks.

We will show that under the Hypothesis M, it is possible to couple the Markov chain under

the transition matrix K
(D)
r so that it is monotone for the inclusion partial order, where for t, t′ ∈

Subtrees•r(T ) we say that t � t′ if E(t) ⊂ E(t′). This partial order possesses as least element the
tree t = {r} (reduced to its root), and as greatest element, the complete tree t = T .

For more information on the coupling from the past when the space state possesses a partial
order with a unique minimal and a unique maximal element, we refer to [113, 114].
The realisation of the coupling is done according to the following lines. First, define a function

f : Subtrees•r(T )× E(T )× [0, 1] −→ Subtrees•r(T )

(t, e, v) 7−→


Add(t, e) if v ≤ p|t|,

Remover(t, e) if v ≥ 1− r|t|,

t if pt < v < 1− r|t|.

Consider a realization of a sequence of i.i.d. vectors ((ek,vk) : k ∈ Z) where ek ∼ Uniform(E(T )) is
independent of vk ∼ Uniform[0, 1]. Now, set

fk(·) = f(·, ek,vk)
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and for every pair of integers (k1, k2) such that k1 < k2 we consider

F k2k1 (t) = fk2 ◦ fk2−1 ◦ · · · ◦ fk1(t).

For a reader not familiar with this kind of considerations, there are two key points:
• firstly, for any t ∈ Subtrees•r(T ), the process (F k0 (t), k ≥ 0) has the distribution of a Markov chain

with kernel K
(D)
r with initial state, the tree t,

• and secondly a natural coupling is provided since the family [(F k0 (t), k ≥ 0), t ∈ Subtrees•r(T )] can
be constructed altogether simultaneously since it is built using the same source of randomness.
The Hypothesis M ensures the monotonicity of the chain: a direct consequence of this hypothesis
and of the definition of f , is that, for every (e, v) ∈ E(G)× [0, 1] and any t, t′ ∈ Subtrees•r(T )

t � t′ ⇒ f(t, e, v) � f(t′, e, v),

and therefore, for every k1 ≤ k2, F k2k1 (t) � F k2k1 (t′) too. In particular, for each tree t ∈ Subtrees•r(G),

F k2k1 (t) � F k2k1 (t) � F k2k1 (t).

Hence F t2t1 (t) = F t2t1 (t) iff F t2t1 (t) is the same for all t ∈ Subtrees(r, T ).
We recall the monotone coupling from the past algorithm.

——————————
Monotone coupling from the past:
• iter := 2 (or another free parameter > 1)
• s := 1
• While F 0

−s(t) 6= F 0
−s(t) do

s := s× iter
• End while
• Return F 0

−s(t)
——————————

The backward chain (F 0
−s(·) : s ∈ N) is indirectly related to the forward chain (F s0 (·) : s ∈ N);

set
−→τ = inf{s ≥ 0 : F s0 (t) = F s0 (t)} and ←−τ = max{s ≤ 0 : F 0

−s(t) = F 0
−s(t)}

the so-called forward and backward coupling time, respectively. As stated in [113, P. 21], −→τ and
←−τ have the same distribution.
We will give some bounds on the forward coupling time.

For each “time” s ≥ 0, define a colouring Cs = (Cs(w), w ∈ V (T )) of the vertex set of T as
follows:
– if w ∈ V (F s0 (t)), set Cs(w) = red,
– if w ∈ V (F s0 (t)) \ V (F s0 (t)), set Cs(w) = white,
– otherwise set Cs(w) = black.
At time 0, C0(w) = white for all nodes of T , except the root which is red. For any s, the set of red
vertices are those of the “minimal tree”, F s0 (t), while those of the “maximal tree” F s0 (t) are in the
union of the red and white nodes. The coupling time −→τ coincides with the time when there is no
white vertex left.
For t ∈ Subtrees•r(T ) define the set of perimeter sites of t as Vp(t) = {v ∈ V : dT (v, t) = 1}. The set
of leaves of t as V`(t) = {v ∈ V : v leaf of t}. Also, define the maximal sizes of the perimeter and
leaves sets for a tree with k nodes as

Vp(k) = max{|Vp(t)| : t ∈ Subtrees•r(T, k)} (40)

V`(k) = min{|V`(t)| : t ∈ Subtrees•r(T, k)} (41)
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(a) Intermediate phase (b) Merged state

Figure 20: A possible evolution of the coupled forward Markov chain, on a binary tree T .

Proposition 36. Suppose Hypothesis M holds. If for all i ∈ J2, |V (T )| − 1K, pi/ri ≤ cV`(i)/Vp(i)

then

E(−→τ ) = E(←−τ ) ≤ (N − 1)
N∑
j=2

(j − 1)

rjV`(j)

cj−1 − 1

c− 1
.

In particular if T is a complete d-ary tree with height h, then with N = (dh+1− 1)/(d− 1) vertices,

E(−→τ ) ≤ (N − 1)c

p2(1− c)(d− 1)

(
(N − 1)− c− cN

1− c

)
(42)

Proof. For every t ∈ Subtrees•r(T ) denote by τ(t) = inf{s ≥ 0 : F s0 (t) = t} the hitting time of the

tree t. From the coupled forward chain we have,

max{τ(t), t ∈ Subtrees•r(T )} =: τ(T ) ≥ −→τ , a.s.

Throughout the proof, we write N instead of |V (T )|. Using the Markov property we get

|V`(T )|
N − 1

rN E(τ(T )) = 1 +
rN

N − 1

∑
e∈V`(T )

E(τ(T \ {e})), (43)

and for t ∈ Subtrees•r(T, k) for k ∈ J2, N − 1K(
pk|Vp(t)|
N − 1

+
rk|V`(t)|
N − 1

)
E(τ(t)) = 1 +

pk
N − 1

∑
e∈Vp(t)

E(τ(t ∪ {e})) (44)

+
rk

N − 1

∑
e∈V`(t)

E(τ(t \ {e})). (45)

Call Ek = max{E(τ(t)) : t ∈ Subtrees•r(T, k)} and ∆k = Ek −Ek−1. Notice that E1 = 0. Bounding

each term E(τ(T \{e})) in the right-hand side of (43) by EN−1 and by noticing that EN = E(τ(T ))

we obtain

∆N ≤ (N − 1)/(rNV`(N)). (46)

For k ∈ J2, N − 1K fix tk one of the trees attaining Ek. Now, consider (44) applied to tk and bound

each E(τ(t ∪ {e})) and E(τ(t \ {e})) in the right-hand side respectively by Ek+1 and Ek−1.(
pk
|Vp(tk)|
N − 1

+ rk
|V`(tk)|
N − 1

)
Ek ≤ 1 +

pk|Vp(tk)|
N − 1

Ek+1 +
rk|V`(tk)|
N − 1

Ek−1 (47)

=⇒ rk|V`(tk)|
N − 1

∆k ≤
pk|Vp(tk)|
N − 1

∆k+1 + 1 (48)
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Therefore for k ∈ J2, N − 1K, using the definition of Vp(k), V`(k) and the hypothesis that pk/rk ≤
V`(k)/Vp(k) one obtains

∆k ≤ pk|Vp(tk)|
rk|V`(tk)|

∆k+1 +
N − 1

rk|V`(tk)|
≤ pkVp(k)

rkV`(k)
∆k+1 +

N − 1

rkV`(k)
(49)

≤ c∆k+1 +
N − 1

rkV`(k)
. (50)

By repeatedly applying (50) and finally (46) one obtains that for all k ∈ J2, NK one has

∆k ≤
N∑
j=k

cj−k
N − 1

rjV`(j)
.

To conclude notice that E(τ(T )) = EN =
∑N

k=2 ∆k and therefore this gives

E(−→τ ) ≤ EN =

N∑
k=2

N∑
j=k

cj−k
N − 1

rjV`(j)

=

N∑
j=2

(
j∑

k=2

cj−k

)
N − 1

rjV`(j)
≤ (N − 1)

N∑
j=2

1

rjV`(j)

cj−1 − 1

c− 1
.

To conclude the second part on the d-regular tree we use that by Hypothesis M, pj is non-decreasing,

that pi/ri ≤ cV`(i)/Vp(i) and that the infinite d-regular tree satisfies Vp(i) = (i+1)(d−1)−1 which

is bigger than i(d− 1) for d > 1.

8.3 Leaf evaporation

Subtree of tree. Model A: Uniform Leaf evaporation.
Take a tree T with N nodes, and define (LeafEvaporation(T, k), 0 ≤ k ≤ N − 1) as follows:
LeafEvaporation(T, 0) = T , and for k > 0, LeafEvaporation(T, k) is obtained by the removal of
a uniform leaf of LeafEvaporation(T, k− 1) (so that k counts the number of evaporated edges).

Remark 37 (rooted versus unrooted case). There are two natural variants of this algorithm de-

pending on whether we work with unrooted tree T , in which case, all nodes of degree 1 are leaves, or

if T = (T, r) is a rooted tree, in which the root r is never considered as a leaf (this is the standard

convention).

We consider the rooted case here: the root r is never considered as a leaf. Any history of leaf
evaporation can be encoded by labelling the edges of the initial tree by the date of evaporation of
the leaves from 1 to |T | − 1. For t ∈ Subtrees•r(G,n), consider the set H[T, t] of labelling of the
edges of T \ t by the integers between 1 and |T \ t|, such that, the labels of the edges on any injective
path from any leave of T to t are increasing. The following result describes the law of the remaining
tree after N − n leaf evaporations:

Proposition 38. For t ∈ Subtrees•r(G,n),

P [LeafEvaporation(T,N − n) = t] =
∑

h∈H[T,t]

|T\t|−1∏
x=0

1

|∂(T \ {e : h(e) ≤ x}|
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Figure 21: A tree extracted by the leaf evaporation algorithm with n = 10000 nodes, on a UST of

Torus(500) (left) and on Torus(4000) (right).

Proof. For each history, at each step, the probability to remove a given leaf is the inverse of the

current number of leaves.

Remark 39. The successive removal of leaves induces an order on the set of edges, and this gives a

total order if no two edges are removed simultaneously8. If one labels the edges by their chronological

rank in the evaporation process, the induced labelling of the edges is increasing on any injective path

starting at a leaf and ending at the root (or at the terminal node, in the non-rooted case): globally,

labelling the nodes by their rank provides a decreasing tree; decreasing trees (the classical terminology

is increasing trees) have been studied independently, but in general, “the labels are not added at the

end, when the tree is made, but rather, is produced along the construction of edges” (often, the tree

is constructed by successive addition of edges, and the rank of appearance of the new edge, is its

label in the tree): see eg. Bergeron et al. [12], Broutin et al. [19]); however, in Marckert & Wang

[100], some processes similar to leave evaporation appear on a uniform Cayley trees in link with the

additive coalescent).

Subtree of tree. Model B: Evaporation of the smallest leaf.
Consider a rooted tree T with N nodes in which the edges are equipped with i.i.d. weights taken
under µ ∼ Uniform[0, 1]. Successively, remove the leaf adjacent to the edge with the smallest
weight among those adjacent to leaves. The set of leaves evolves, as leaves are removed: this
forms a sequence of tree TN = T, · · · , T1 = r where Ti has i nodes. Return Tn if the target size
is n (see some simulation in Fig. 22).

Notice that instead of µ, since only the relative order of the matter of the weight, any atomless
measure µ gives the same model.

Denote by (T, σ) a labelling of the edges of T by a uniform permutation of {1, · · · , N} where
N = |E(T )|.

Open question 5. Give a nice description of the distribution of the tree remaining when all nodes

, except n, have evaporated.

8Neville code [106] uses “evaporation by layers”, and does not provide this “total order property”
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Figure 22: A tree extracted by the removal of the edges with the smallest label with n = 5000

nodes, on a UST of the Torus(500) (left) and on Torus(200) (right). As the time passes by, the

general tendency is that the edges with minimal weights become leaves, and stay leaves a lot of

time.

We have a description of the remaining tree distribution but we feel that something deeper is
hidden: the leaf evaporation depends only on the induced random order σ of the weighted edges, as
defined in (36). Let us put a second label ` on each edge, corresponding to the date of disappearance
of this edge (ranked from 1 to |T |); after elimination, the label are increasing on each simple path
leading from a leaf of T toward the single remaining node (or the subtree t obtained, if the leaf
evaporation is stopped when a certain size is reached): call such a labelling, a valid labelling. Now,
the evaporation leads to t, if the N − n smallest `-labels are on the edges of T \ t.

Consider the map π which sends (T, σ) onto (T, `), that is which gives the elimination order on
the edges of T . To describe the distribution of the remaining tree t, it suffices to be able to compute∣∣π−1(T, `)

∣∣ for any valid `. We will see that this is somehow explicit:

Lemma 40. For ` valid, the elements of π−1(T, `) are the σ that satisfies, `(e1) < `(e2) implies

σ(e1) < σ(e2), if e2 is a leaf at time `(e1)− 1.

Proof. Take two edges e1 and e2, such that `(e1) < `(e2) so that e1 is eliminated before e2. Consider

σ(e1) and σ(e2) the corresponding edge values. Now, consider T ? = T \ {e : `(e) < `(e1)} the state

of T just before the elimination of e1 (that is, when all the edges with smaller label than `(e1) are

removed). In T ? the edge e2 is still present, so there are two cases:

– If e2 is a leaf, then we must have σ(e1) < σ(e2),

– If e2 is not a leaf, then σ(e2) may be larger or smaller than σ(e1).

For a given (T, `), the cardinality of #π−1(T, `) can be explicitly computed, but it produces an
intricate formula, which needs to be summed over valid ` to compute P(Tn = t).

The next model looks similar, but it is different; it defines a tree value process with non-increasing
size : it can reach or not the target size n. Up to a change of time, it is independent of µ.
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Subtree of tree. Model C: Evaporation of the leaves with weight ≤ w.
Consider a rooted tree (T, r) with N nodes in which the edges are equipped with i.i.d. weights
taken under µ ∼ Uniform[0, 1]. At time w, consider the subtree T (w) of T obtained by removing
the leaves with weight ≤ w (removing these leaves may create new leaves, at which the same
procedure applies recursively). When r has degree 1, it is not considered as a leaf.

Of course, this model is a percolation model on the weighted graph. One has,

Proposition 41. For any tree t ∈ Subtrees•r(G),

Pµ(T (w) = t) = µ(w,+∞)|∂t|µ[0, w)|T\t|,

where |T \ t| is the number of nodes in T that are not in t (this is also the number of edges).

Reducing progressively the tree size one by one so that a target size is reached for sure is natural,
and Models A and B are of this type. In the literature, one finds some works [102] and [99], related
to distributed algorithms, aiming to “elect” a node in a tree, using leaf evaporation (this name does
not appear there, however). We present here the general evaporation scheme defined in [99] which
can be used to extract a subtree of a given size by stopping the process when this size is reached
(this is not discussed in [102, 99]).

In the sequel, we denote by (T,w) an unrooted tree in which nodes are weighted by w = (wu, u ∈
V ) by some non-negative (possibly random) real numbers, the weight of the leaves being positive;
some examples will be given afterwards. The algorithm uses a family of distribution µ(q, .) on
(0,+∞), for any q > 0 : this is the lifetime distribution of an active node u with parameter q.

Definition of Model K: Election type evaporation.
At time 0 the leaves of T are active and the internal nodes are not. A leaf u with weight wu
evaporates after a random time with distribution µ(qu, .), independently of the others, where
qu = wu.

� Upon evaporation, leaf u transmits its parameter qu to its single neighbour v in the tree.
� A node v with degree d, which becomes a leaf after complete evaporation of d − 1 of

the subtrees hanging from it, becomes active (say at time τ). The node v has received the
parameters (qv1 , · · · , qvd−1

) of its neighbours. It then computes its own parameter

qv = f(wv, qv1 , · · · , qvd−1
),

then generate a random variable τ(v) with distribution µ(qv, .); the node v will evaporate at
global time τ + τ(v) (hence, τ(v) is its remaining lifetime, when it becomes active).

The function f is a parameter of the algorithm, as well as the initial weights (wu, u ∈ V ), the
family of distributions µ(., .), and even some additional parameters can be used to store additional
information, as the complete geometry of the evaporated subtrees, as well as their lifetimes, for
example.

In [102], the model is as follows: the initial weight of all u ∈ V are wu = 1, for all u ∈ V . The
map f is given by

f(wv, qv1 , · · · , qvd−1
) = wv + qv1 + · · ·+ qvd−1

= 1 + qv1 + · · ·+ qvd−1

meaning that a node adds to its weight the weights transmitted from its eliminated neighbours
(hence, becoming active, its weight is the size of the tree formed by v, and the eliminated subtrees
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which were hanging from it); finally, the remaining lifetime of a node with parameter q is distributed
as mq ∼ Expo(q), the exponential distribution with parameter q.
The main result in [102] is the following: if one continues the elimination procedure till a single
node u remains, then u is a uniform node of V .

Denote by Evaporation(T, n) the random tree obtained from this particular election type evap-
oration process when only n nodes remain (for n ≤ |V (T )|). For a given t ∈ Subtrees(T, n), the
graph T − t induced by the removal of edges of t in T is a forest composed of n trees. For any v ∈ t,
denote by ∆v the tree of T − t attached to v. We have

Theorem 42. For any subtree t ∈ Subtrees(G,n),

P (Evaporation(T, n) = t) =
(|∂t| − 1)!(N − n)!

(|∂t|+N − n)!

∑
v∈∂t
|∆v|.

Remark 43. Notice that the last edge is then uniform, as well as the last node (this case is stated

in [102]); in the case where the minimum degree of the internal nodes of T is m, then the uniformity

holds also for all n ≤ m.

Proof. The evaporation process passes through t, if at a given moment all the trees ∆v have disap-

peared, but their root (since their roots belong to t). It may be shown, by recurrence that, for a

given tree t′ (whose root is never considered as a leaf) that the time At′ for the root to be active

is distributed as M|t′|−1, where for all k, Mk is the maximum of k independent exponential random

variables with parameter 1. Once the root of such tree becomes active, it has the additional lifetime

at′ ∼ Expo(|t′|), which it is independent of At′ . The complete evaporation time Et′ of t′, which

includes the erasure of the root, is distributed as M|t′| since Et′ := At′ + at′ . Hence (At′ , Et′) is

distributed as (M|t′|−1,M|t′|−1 + a|t′|) where the delay a|t′| is independent of M|t′|−1

P(At′ < y < Et′) = P(M|t′|−1 ≤ y ≤M|t′|) = e−y(1− ey)|t′|−1 (51)

P(At′ < y) = P(M|t′|−1 ≤ y) = (1− e−y)|t′|−1. (52)

Now, a certificate that the evaporation process passes through t is as follows: a root of one of the

∆v disappeared at some time x at which all the other ∆w have disappeared, but their root. This

gives

P(Evaporation(T, n) = t)

=
∑
v∈∂t

∫ ∞
0

 ∏
u∈∂t\{v}

P(M|∆u|−1 ≤ x ≤M|∆u|)

 ∏
u∈t\∂t

P(M|∆u|−1 ≤ x)


× P(M|∆v | ∈ dx)

=
∑
v∈∂t
|∆v|

∫ ∞
0

e−|∂t|x(1− e−x)N−ndx

which suffices to conclude (the third equality comes from (51) and (52)).
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Figure 23: Two trees, in blue, than can be obtained from the elimination of the same “green

subtrees”
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Figure 24: A tree extracted by election type evaporation halted when n = 10000 nodes remains

executed on an UST of Torus(500) (left) and on a UST of Torus(4000) (right)

Remark 44. In [99], much more general models of evaporation processes are designed, for which

the law of the remaining tree can be computed; they can be turned into evaporation procedure and

stopped when a given size is obtained. We don’t pursue the description of these results here since it

is not clear for the moment that they are useful to target any important distributions.

The configurations represented in Fig. 23 allow us to reject a lot of algorithms relying on

leaf evaporation on the UST to sample Uniform(Subtrees(G,n)); on this picture, both blue subtrees

induce the same subgraph on G: to get them after leaf evaporation, the leaf evaporation procedure

needs to destroy every green subtree before destroying any blue edge. But, blue edges do not appear

simultaneously in both cases: 2 blue edges adjacent to leaves are present in the right-hand side at

the beginning, and in the right-hand side, progressively, up to 5 blue leaves may be present at some

(random) time during the evaporation.

Subtree of tree. Model D: Removal of uniform edge.
This model is often called “tree cutting” in the literature; take a tree T rooted at some node
r, and remove successively a uniform edge chosen uniformly among the remaining edges of T .
Denote by T (k) the tree obtained from T by the removal of k edges, and Tr(k) the connected
component of the origin. The sequence (Tr(k), 0 ≤ k ≤ |T | − 1) coincides with the process
(T ?r (w), 0 ≤ w ≤ 1): the connected components of r by keeping the edges with weight ≥ w, at
its jump time.

Remark 45. Uniform edge evaporations of some classical families of trees (of non-embedded trees)
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have been thoroughly studied following an idea of Meir & Moon [101] in 1970. Many recent develop-

ments under the name of “cut-tree” have been published which aims at describing the tree structure

of the fragmentation history (see e.g. Aldous & Pitman [7], Janson [68], Addario-Berry et al. [3],

Bertoin & Miermont [14], Broutin & Wang [23] for recent developments).

Remark 46. This model is discussed also in Section 7.5.2 and applied there in the case of a uniform

spanning tree (which provides a second level of randomness).

Proposition 47. For any t subtree of T , any w ∈ [0, 1], denote by B(t) the edges of T \ t adjacent

to t (the boundary of t in T ).

P (T ?r (w) = t) = w|B(t)|(1− w)|E(t)|

and

P (Tr(k) = t) = 1k≥|B(t)|

(|E(T )|−|E(t)|−|B(t)|)
k−|B(t)|

)(|E(T )|
k

) .

The same formula are valid for a graph instead.

Proof. The first formula is easy: the edges in E(t) must be still here, and those of B(t) must have

disappeared. For the second formula: since k edges have been suppressed, and by symmetry, they

form a uniform subset of E(T ); the favourable cases are those for which this subset is B(t) union a

subset of size k −B(t) of E(T ) \ (B(t) ∪E(t); these number of subsets are given by the numerator

of the second formula.
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