Jean-Gabriel Luque

Vector valued Jack polynomials from scratch

C.F. Dunkl^{*}and J.-G. Luque[†]

The story begins in 1960's...

Inner product:

$$\langle f,g
angle_w = \int_I f(x)g(x)w(x)dx$$

Orthogonal polynomials $\langle p_i, p_j \rangle_w = 0$ if $i \neq j$

How to define multivariate orthogonal polynomials?

$$\int_{I^n} p_{\kappa}^{\alpha}(x_1,\ldots,x_n) p_{\mu}^{\alpha}(x_1,\ldots,x_n) \prod_{i< j} |x_i-x_j|^{\beta} \prod_{j=1}^n w(x_i) dx_1 \ldots dx_n = \delta_{\kappa\mu}$$

Interpretation of the power of the Vandermonde: Symmetric repulsion factor which depends on a "Boltzmann" constant $\beta=2/\alpha$.

First question: what replace the monomial x^k? Answer : The Jack polynomials

James discovered the zonal polynomials :

Alan T. James. The distribution of the latent roots of the covariance matrix. *Ann. Math. Stat.*, 31:151–158, 1960.

Also Hua:

L.K. Hua. Harmonic Analysis of functions of several complex variables in the classical domains. *Transl. Math. Monogr. Am. Math. Soc.*, 6, 1963.

(symmetric) Jack polynomials:

Henry Jack. A class of symmetric polynomials with a parameter. *Proc.* R. Soc. Edinburgh, 69:1–18, 1970.

One parameters class of polynomials : $\alpha=1$ Schur, $\alpha=2$ zonal, $\alpha=1/2$ quaternionic zonal

More ? See

MOPS: Multivariate Orthogonal Polynomials (symbolically)

Ioana Dumitriu, Alan Edelman, and Gene Shuman

Several generalizations:

- 1- Two parameters (q,t)- Macdonald polynomials
- 2- Jack and Macdonald polynomials of others root systems (classical = An)

3- Non-Symmetric and non-homogeneous (shifted) Jack polynomials

Several connections:

1- Multivariate orthogonal polynomials (Jacobi, Laguerre, Hermite). See Forrester, Lassalle...

2- Random matrix theory

3- (degenerated) double affine Hecke Algebra

A definition of the non-symmetric Jack polynomials:

Simultaneous eigenfunctions of Cherednik elements:

$$\xi_i := \alpha x_i \frac{\partial}{\partial x_i} + \sum_{j \neq i} x_i (1 - s_{ij}) \frac{1}{x_i - x_j} + i - 1$$

These elements generate a commutative algebras and verify

$$\begin{aligned} \xi_{i+1}s_i &= s_i\,\xi_i - 1 \quad \& \quad (\xi_i + \xi_{i+1})s_i = s_i(\xi_i + \xi_{i+1}) \ , 1 \le i \le n-1 \\ \xi_j s_i &= s_i\xi_j \ , j \ne i, i+1 \\ \xi_i\,\Phi &= \Phi\,\xi_{i-1} \ , \ i = 1, \dots, n, \ \xi_0 = \xi_n - \alpha \ . \end{aligned}$$

Motivations

Generalization of Jack polynomials: coefficients in an irreducible module of the symmetric group. "Classical" Jack = trivial representation.

Describe in term of Yang-Baxter graph the special case of the symmetric group of a general construction due to Griffeth for complex reflection groups G(r,p,N).

[8] S. Griffeth, Orthogonal functions generalizing Jack polynomials, Trans. Amer. Math. Soc. 362 (2010), 6131-6157.

This special case was studied by C. Dunkl.

[4] C. Dunkl, Symmetric and antisymmetric Vector valued Jack polynomials, Sém. Lothar. Combin. B64a (2010), 31 pp..

Adapt the construction of Lascoux (computation of the Jack polynomials using the Yang-Baxter Graph) to this more general case.

Young seminormal representation of the symmetric group

 V_{λ} spanned by reverse tableaux of shape λ

Young seminormal representation of the symmetric group

Tableaux to contents

Young seminormal representation of the symmetric group

The tableaux are simultaneous eigenvalues of Jucys-Murphy elements

Young seminormal representation of the symmetric group

 $b_{-}[i]$ cT = [-3, -1, 1, -2, 0, 2, 1, -1, 0] $Tb = [-\frac{1}{2}, \frac{1}{2}, \frac{1}{3}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

Young seminormal representation of the symmetric group

The space of vector valued polynomials

Definition

 $M_{\lambda} = \mathbb{C}[X_{1}, \dots, X_{N}] \otimes V_{\lambda}$

Maphy

Action of G. OG

act by of the voriable

XHN X, ..., XN

The space of vector valued polynomials

Definition

XEN X, ..., XN MX = C[X, ..., XN] @VA $\chi_1^3 \chi_2^{(3)} \otimes 31$. (23) \otimes (12)= $\chi_1^3 \chi_2^{(3)} \otimes 31$ (23) \otimes (12). $= \chi_1^3 \chi_3^* \otimes \frac{1}{2} \frac{2}{31} + \frac{1}{32}$ $= \frac{1}{2} \chi_{1}^{3} \chi_{3}^{2} \otimes \frac{2}{311} + \chi_{1}^{3} \chi_{3}^{2} \frac{1}{321}$

Dominance

5=[66543321] E = [2 3 3 15 4 6 6 1]

Dominance

Y: classical dominance order VZVYE> $\forall i, \sigma [i] + \dots + \sigma [i] \leq \sigma [i] + \dots \sigma [i]$ ひへひ' (=> デイデ· の デーデ and ひょび

Dominance

Dominance

2031,31	$4 2c^{310, 32}$	(031 7 310)
$\chi^{220, \frac{2}{3}1}$	J 2 301, 32	(220 310)
x 037, 31	031, 32 mot	r companable.

Definitions

Divided differences

Dunkl operators

Cherednik elements

 $D_{ij} = (1 - (ij)) \prod_{x_i - x_j} x_i - x_j$ $\tilde{S}_{i} = q \boldsymbol{x}_{i} D_{i} - \sum_{j=1}^{i-1} (i, j) \otimes (ij) - q$

Cherednik and Jucys-Murphy elements

 $1 \otimes Z \cdot \tilde{\xi} = 1 \otimes Z \cdot 1 \otimes \omega_i^\circ$ $= CT_{i}[i] 1 \otimes C$

Intertwinners

 $(i,i+1)\otimes(i,i+1)\sum_{i=1}^{N} = \sum_{i+1}^{N} (i,i+1)\otimes(i,i+1) + 1$ $(i, i+1) \otimes (i, i+1) \stackrel{\sim}{S_{i+1}} = \stackrel{\sim}{S_i} (i, i+1) \otimes (i, i+1) = \frac{1}{S_i} (i, i+1) \otimes (i, i+1) \otimes$ $(i, i+1) \otimes (i, i+1) = \sum_{j=1}^{\infty} (i, i+1) \otimes (i, j+1)$ j = 1, 1+1

Affine operation

 $\Theta = (12)(23)\cdots(N-1N)^{\circ}$ $\Psi := \Theta \otimes \Theta \cdot \mathbf{x}_{N}$

 $S_i = S_{i+1} \Psi, i \neq N$ $\psi \tilde{\mathcal{E}}_{N} = T \hat{\mathcal{E}}_{1} + \gamma I \psi$

Commutativity

Compatibility with dominance

Monomial to zeta

Zeta to monomial

. 5 [31-12-20-110] Suz-dv=[230-2-1110-1]

$$\sigma_{J}^{-1} = [269143578]$$
$$\sigma_{J}^{-1} = [102120440]$$

Suz=[a+2,3,2a,d-2,2d-1,1,4d+1,4d,1]

Zeta to monomial

Jack Polynomials

Definition and existance

Proposition: It exits a basis (Js, 2), 2 of My verifying: $- J_{\sigma, z} = x^{\sigma, z} + \sum_{x^{\sigma, z} \neq x^{\sigma, z}} q_{\sigma, z}^{\sigma, z}$ $-J_{\sigma,\tau} = S_{\sigma,\tau} = J_{\sigma,\tau} J_{\sigma,\tau}$

Jack Polynomials

Definition and existance

ProoR				*
From	commutativi	ty,		
	ompatibility	with	dominoen	6

Jack Polynomials

Definition and existance

 $\lambda = [n]$ (trivial representation) => "classical" Jack polynomials

$\Box_{i}^{\sigma, \overline{z}} := (i i i + 1) \otimes (i + 1) + 1$ $S_{\overline{z}, \sigma}^{\overline{z}, \overline{z}} = S_{\overline{z}, \overline{z}}^{\overline{z}, \overline{z}}$

Action of the symmetric group on pairs (v,τ)

Action of the symmetric group on pairs (v,τ)

Same

2 min

Action of the symmetric group on pairs (v,τ)

Action of the symmetric group on pairs (v,τ)

	$v[i] \neq v[i+1]$	$v[i] = v[i+1], b_{\tau}[\sigma_v[i]] < 1$	$v[i] = v[i+1], b_{\tau}[\sigma_v[i]] = 1$
$(v,\tau).(i,i+1)$	$(v.(i,i+1),\tau)$	$(v, \tau^{\sigma_v[i], \sigma_v[i]+1})$	(v, au)
$\zeta_{v,\tau}.(i,i+1)$	$\zeta_{v.(i,i+1),\tau}$	$\zeta_{v,\tau}(\sigma_v[i],\sigma_v[i]+1)$?
$J_{v,\tau}.\square_i^{v,\tau}$	$J_{v.(i,i+1),\tau}$	$J_{v,\tau^{(i,i+1)}}$	0

Joz D'é simultaneous cigenfunction of the Si's spectral vector: Juz (i, in)= Spizki, in)

Intertwiners and Jack polynomials

$J_{\sigma, z} \Box_{i}^{\sigma z} = (*) J_{(\sigma, z)(i, i)}$ when V[i] < U[i] (*) = 1 $or \left(\begin{array}{c} \sigma E i \end{array} \right) = \sigma E \left(\begin{array}{c} \sigma E i \end{array} \right) = \sigma \left(\begin{array}{c} \sigma E i \end{array} \right)$ $e \cdot 1 < b_{T} E i \end{array} \right)$ (*)=0 when U[i] = U[i] b- [1] = ± 1

Y = OBOXN $(\sigma, I) \Psi := (\sigma \Psi_1, Z)$

6

 $\begin{array}{c|c} (v,\tau).\Psi & \hline (v.\Psi,\tau) \\ \zeta_{v,\tau}.\Psi_{\alpha} & \hline \zeta_{v.\Psi,\tau} \end{array}$ $(v.\Psi,\tau)$ $J_{v,\tau}.\theta \otimes \theta x_N \qquad J_{v,\Psi,\tau}$

$$\begin{split} \Psi \widetilde{S}_{N} &= \left(\widetilde{S}_{1} + \lambda \right) \Psi \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} \tau_{1} J_{1} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ J_{\sigma z} \Psi J_{\sigma z} \widetilde{S}_{N} &= \left(J_{\sigma z} \tau_{1} J_{1} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ J_{\sigma z} \Psi J_{\sigma z} \widetilde{S}_{N} &= \left(J_{\sigma z} \tau_{1} J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} \tau_{1} J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} \tau_{1} J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} \tau_{1} J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} \tau_{1} J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} \tau_{1} J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} T_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} T_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} T_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right) \\ \left(J_{\sigma z} \Psi \right) \widetilde{S}_{N} &= \left(J_{\sigma z} + \lambda \right) \left(J_{\sigma z} \Psi \right)$$

 $(v.\Psi,\tau)$ $(v, au).\Psi$ $\zeta_{v,\tau}.\Psi_{\alpha}$ $\zeta_{v.\Psi, au}$ $J_{v,\tau}. heta\otimes heta x_N$ $J_{v.\Psi, au}$ (Juz4) sim. eigenfunction of the S; 's Spetnal vector: So, 24=5(5214

Jack polynomials

 $J_{\sigma Z} \Psi = (x) J_{(\sigma, Z)} \Psi^{-}(x)^{J_{\sigma}} \sigma \Psi_{1, Z}$ 2 min (4) = 1

Yang Baxter Graph

Yang Baxter Graph

Application 1: Norm

Application 2: Symmetrization

Application 2: Symmetrization

$$\begin{split} J_{11}_{00} &= J_{0011,\frac{21}{43}} + \frac{\alpha}{\alpha - 1} J_{0101,\frac{21}{43}} + \frac{\alpha}{\alpha - 2} J_{0110,\frac{21}{43}} + \frac{\alpha}{\alpha - 2} J_{1001,\frac{21}{43}} + \frac{\alpha(\alpha - 1)}{(\alpha - 2)^2} J_{1010,\frac{21}{43}} \\ &+ \frac{\alpha(\alpha - 1)}{(\alpha - 2)(\alpha - 3)} J_{1100,\frac{21}{43}} \end{split}$$

- A

To Do !

- Shifted version (done)
- What about the other reflection groups G(p,r,N)
- Reproducing Kernel
- Action of the Dunkl operators
- •Rational values of the parameter
- Macdonald?
- Applications :
 - Selberg Like integrals,
 - Applications to Physics