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Introduction

The statistical mechanics of a system at thermal equilibrium is encoded
in the Boltzmann-Gibbs canonical law:

Peq(C) =
e−E(C)/kT

Z

the Partition Function Z being related to the Thermodynamic Free
Energy F:

F = −kTLog Z

This provides us with a well-defined prescription to analyze systems at
equilibrium:
(i) Observables are mean values w.r.t. the canonical measure.
(ii) Statistical Mechanics predicts fluctuations (typically Gaussian) that
are out of reach of Classical Thermodynamics.
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Systems far from equilibrium

No fundamental theory is yet available.

• What are the relevant macroscopic parameters?

• Which functions describe the state of a system?

• Do Universal Laws exist? Can one define Universality Classes?

• Can one postulate a general form for the microscopic measure?

• What do the fluctuations look like (‘non-gaussianity’)?

Example: Stationary driven systems in contact with reservoirs.

R1

J

R2

K. Mallick Exact Solutions in Nonequilibrium Statistical Mechanics



Rare Events and Large Deviations

Let ε1, . . . , εN be N independent binary variables, εk = ±1, with
probability p (resp. q = 1− p). Their sum is denoted by SN =

∑N
1 εk .

• The Law of Large Numbers implies that SN/N → p − q a.s.

• The Central Limit Theorem implies that [SN − N(p − q)]/
√

N
converges towards a Gaussian Law.

One can show that for −1 < r < 1, in the large N limit,

Pr

(
SN

N
= r

)
∼ e−N Φ(r)

where the positive function Φ(r) vanishes for r = (p − q).

The function Φ(r) is a Large Deviation Function: it encodes the
probability of rare events.

Φ(r) =
1 + r

2
ln

(
1 + r

2p

)
+

1− r

2
ln

(
1− r

2q

)
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Density fluctuations in a gas

V, T

N

v
n

Mean Density ρ0 = N
V

In a volume v s. t. 1� v � V
〈 nv 〉 = ρ0

The local density varies around ρ0 . Typical fluctuations scale as
√

v/V .

The probability of observing large fluctuations is given by

Pr
(n

v
= ρ
)
∼ e−v Φ(ρ) with Φ(ρ0) = 0

This Large Deviation Function for density fluctuations is related to the
free energy per unit volume.
Large deviation functions may play the role of potentials in
non-equilibrium statistical mechanics.
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Classical Transport in 1d: ASEP

q p p pq

Asymmetric Exclusion Process: A minimal model to represent many
phenomena.
A paradigm for non-equilibrium Statistical Mechanics.

• EXCLUSION: Hard core-interaction; at most 1 particle per site.

• ASYMMETRIC: External driving; breaks detailed-balance

• PROCESS: Stochastic Markovian dynamics; no Hamiltonian.

The probability Pt(C) to find the system in the microscopic configuration
C at time t satisfies

dPt(C)

dt
= MPt(C)

The Markov Matrix M: transitions rates amongst configurations.
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Total Current transported through an Open System

A paradigm of a non-equilibrium system

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

Our aim is to study the statistics of the current and its large
deviations starting from the microscopic model.
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Outline

1. The Exclusion Process: an Integrable model

2. Fluctuations of the current in an open system

3. Growth and Shapes in 2 and 3 dimensions
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1. ASEP on a ring and

Bethe Ansatz
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Markov Equation for the ASEP on a ring

L

N )(Ω =

N  PARTICLES

L SITES

x  asymmetry parameter

1

x

CONFIGURATIONS

Master Equation for the Probability Pt(x1, . . . , xN) of being in
configuration 1 ≤ x1 < . . . < xN ≤ L at time t.

dPt

dt
=

∑
i

′ [Pt(x1, . . . , xi − 1, . . . , xN)− Pt(x1, . . . , xi , . . . xN)]

+ x
∑
i

′ [Pt(x1, . . . , xi + 1, . . . , xN)− Pt(x1, . . . , xi , . . . xN)]

= MP .

The sum being restricted to admissible configurations.
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The Bethe Ansatz

Eigenvector ψ of M written as a linear combination of plane waves, with
pseudo-momenta given by z1, . . . zN :

ψ(x1, . . . , xN) =
∑
σ∈ΣN

Aσ
N∏
i=1

zxi
σ(i)

The Bethe Equations provide us with the quantification of the zi ’s:

zL
i = (−1)N−1

N∏
j=1

xzizj − (1 + x)zi + 1

xzizj − (1 + x)zj + 1

The corresponding eigenvalue is given by

E (z1, z2 . . . zN) =
N∑
i=1

1

zi
+ x

N∑
i=1

zi − N(1 + x) .
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Large Deviations of the Current

Total current Yt , total distance covered by all the N particles, hopping
on a ring of size L, between time 0 and time t.

WHAT IS THE STATISTICS of Yt?

One can prove that when t →∞ :〈
eµYt

〉
' eE(µ)t

The cumulant generating function E (µ) is the eigenvalue with maximal
real part of the deformed operator M(µ)

M(µ) = M0 + eµM+ + e−µM−

the Markov operator being splitted M = M0 + M+ + M− into positive,
negative, null jumps.
Besides, the large deviation function Φ(j) of the current

P

(
Yt

t
= j

)
∼e−tΦ(j)

is related to E (µ) by a Legendre transform: E (µ) = maxj (µj − Φ(j))
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Bethe Ansatz for current statistics

The current statistics is reduced to an eigenvalue problem, solvable by
Bethe Ansatz.

The Bethe Equations are given by

zL
i = (−1)N−1

N∏
j=1

xe−µzizj − (1 + x)zi + eµ

xe−µzizj − (1 + x)zj + eµ

The eigenvalues of M(µ) are

E (µ; z1, z2 . . . zN) = eµ
N∑
i=1

1

zi
+ xe−µ

N∑
i=1

zi − N(1 + x) .

The Bethe equations do not decouple unless x = 0 (This is the TASEP
case, solved by B. Derrida and J. L. Lebowitz, 1998).
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General solution (S. Prolhac, 2010)

The generating function E (µ) is obtained in a parametric form:

µ = −
∑
k≥1

Ck
Bk

k
and E = −(1− x)

∑
k≥1

Dk
Bk

k

Ck and Dk are combinatorial factors enumerating some tree structures.
There exists an auxiliary function

WB(z) =
∑
k≥1

φk(z)
Bk

k

such that Ck and Dk are given by complex integrals along a small
contour that encircles 0 :

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

The function WB(z) contains the full information about the statistics of
the current.
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The function WB(z) is the solution of a functional Bethe equation:

WB(z) = − ln
(
1− BF (z)eX [WB ](z)

)
where

F (z) = (1+z)L

zN

The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K (z1, z2)

with the kernel

K (z1, z2) = 2
∑∞

k=1
xk

1−xk

{(
z1

z2

)k
+
(

z2

z1

)k}
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Solving this Functional Bethe Ansatz equation to all orders enables us to
calculate cumulant generating function. For x = 0, the TASEP result is
readily retrieved.

The function WB(z) also contains information on the 6-vertex model
associated with the ASEP.

From the Physics point of view, the solution allows one to

Classify the different universality classes (KPZ, EW).

Study the various scaling regimes.

Investigate the hydrodynamic behaviour.
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Cumulants of the Current

• Mean Current: J = (1− x)N(L−N)
L−1 ∼ (1− x)Lρ(1− ρ) for L→∞

• Diffusion Constant: D = (1− x) 2L
L−1

∑
k>0 k2 CN+k

L

CN
L

CN−k
L

CN
L

(
1+xk

1−xk

)
• Third cumulant (Skewness): → Non Gaussian fluctuations.

E3 '
(

3

2
− 8

3
√

3

)
π(ρ(1− ρ))2L3

E3

6L2 = 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN−i

L CN+j
L CN−j

L

(CN
L )4 (i2 + j2) 1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN+i
L CN+j

L CN−i−j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

∑
j>0

CN−i
L CN−j

L CN+i+j
L

(CN
L )3

i2+ij+j2

2
1+x i

1−x i
1+x j

1−x j

− 1−x
L−1

∑
i>0

CN+i
L CN−i

L

(CN
L )2

i2

2

(
1+x i

1−x i

)2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2

+ (1−x)N(L−N)
4(L−1)(2L−1)

C 2N
2L

(CN
L )2−

(1−x)N(L−N)
6(L−1)(3L−1)

C 3N
3L

(CN
L )3
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√
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∑
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L CN−i
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i2
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Phase transition (weak asymmetry)

E
(µ

L

)
' ρ(1− ρ)(µ2 + µν)

L
− ρ(1− ρ)µ2ν

2L2
+

1

L2
ψ[ρ(1− ρ)(µ2 + µν)]

with ψ(z) =
∞∑
k=1

B2k−2

k!(k − 1)!
zk
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2. Current Fluctuations

in the open ASEP
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The Current in the Open System

The fundamental paradigm

R1

J

R2

The asymmetric exclusion model with open boundaries

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

NB: the asymmetry parameter in now denoted by q.
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Matrix Ansatz for ASEP (DEHP, 1993)

q 1

γ δ

1 L

RESERVOIRRESERVOIR

α β

The stationary probability of a configuration C is given by

P(C) =
1

ZL
〈W |

L∏
i=1

(τiD + (1− τi )E ) |V 〉

where τi = 1 (or 0) if the site i is occupied (or empty) and the

normalization constant is ZL = 〈W | (D + E )L |V 〉

The operators D and E , the vectors 〈W | and |V 〉 satisfy

D E − qE D = (1− q)(D + E )

(β D − δ E ) |V 〉 = |V 〉
〈W |(αE − γ D) = 〈W |
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The Phase Diagram

LOW  DENSITY

HIGH   DENSITY

MAXIMAL 

CURRENT

ρ

1 − ρ

a

b

1/2

1/2

ρa = 1
a++1 : effective left reservoir density.

ρb = b+

b++1 : effective right reservoir density.

a± =
(1− q − α + γ)±

√
(1− q − α + γ)2 + 4αγ

2α

b± =
(1− q − β + δ)±

√
(1− q − β + δ)2 + 4βδ

2β

K. Mallick Exact Solutions in Nonequilibrium Statistical Mechanics



Representations of the quadratic algebra

The algebra encodes combinatorial recursion relations between systems of
different sizes.

Infinite dimensional Representation:

D = 1 + d where d is a q-destruction operator.

E = 1 + e where e is a q-creation operator.

d =


0
√

1− q 0 0 . . .

0 0
√

1− q2 0 . . .

0 0 0
√

1− q3 . . .
. . .

. . .

 and e = d†

The matrix Ansatz allows one to calculate Stationary State Properties
(currents, correlations, fluctuations) and to derive the Phase Diagram in
the infinite size limit.
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TASEP CASE (q =0)

In the TASEP case, the matrices d and e are shift-operators. (The
algebra becomes simpler).

= β (1 −β)

ρ = 1 − β

J

ρ = α

 = α(1−α)J

ρ = 1/2

J = 1/4

HIGH   DENSITY

LOW DENSITY

α

β
MAXIMAL  CURRENT
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Total Current

The observable Yt counts the total number of particles exchanged
between the system and the left reservoir between times 0 and t.

Hence, Yt+dt = Yt + y with

y = +1 if a particle enters at site 1 (at rate α),

y = −1 if a particle exits from 1 (at rate γ)

y = 0 if no particle exchange with the left reservoir has occurred
during dt.

Statistical properties of Yt :

Average current: J(q, α, β, γ, δ, L) = limt→∞
〈Yt〉
t

It can be calculated by the steady-state matrix Ansatz J = ZL−1

ZL
.

Current fluctuations: ∆(q, α, β, γ, δ, L) = limt→∞
〈Y 2

t 〉−〈Yt〉2
t

The fluctuations of the total current. It does not depend on the
stationary measure only.

Cumulant Generating Function:
〈
eµYt

〉
' eE(µ)t for t →∞ E (µ)

encodes the statistical properties of the total current.
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Structure of the solution I

For arbitrary values of q and (α, β, γ, δ), and for any system size L the
parametric representation of E (µ) is given by

µ = −
∞∑
k=1

Ck(q;α, β, γ, δ, L)
Bk

2k

E = −
∞∑
k=1

Dk(q;α, β, γ, δ, L)
Bk

2k

The coefficients Ck and Dk are given by contour integrals in the complex
plane:

Ck =

∮
C

dz

2 i π

φk(z)

z
and Dk =

∮
C

dz

2 i π

φk(z)

(z + 1)2

There exists an auxiliary function

WB(z) =
∑
k≥1

φk(z)
Bk

k

that contains the full information about the statistics of the current.
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Structure of the solution II

This auxiliary function WB(z) solves a functional Bethe equation:

WB(z) = − ln
(

1− BF (z)eX [WB ](z)
)

• The operator X is a integral operator

X [WB ](z1) =

∮
C

dz2

ı2π z2
WB(z2)K

(
z1

z2

)

with kernel K (z) = 2
∑∞

k=1
qk

1−qk

{
zk + z−k

}
• The function F (z) is given by

F (z) = (1+z)L(1+z−1)L(z2)∞(z−2)∞
(a+z)∞(a+z−1)∞(a−z)∞(a−z−1)∞(b+z)∞(b+z−1)∞(b−z)∞(b−z−1)∞

where (x)∞ =
∏∞

k=0(1− qkx) and a±, b± depend on the boundary rates.

• The complex contour C encircles 0, qka+, q
ka−, q

kb+, qkb− for k ≥ 0.
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Discussion

These results are of combinatorial nature: valid for arbitrary values
of the parameters and for any system sizes with no restrictions.

Average-Current:

J = lim
t→∞

〈Yt〉
t

= (1− q)
D1

C1
= (1− q)

∮
Γ

dz
2 i π

F (z)
z∮

Γ
dz

2 i π
F (z)

(z+1)2

(cf. T. Sasamoto, 1999.)

Diffusion Constant:

∆ = lim
t→∞

〈Y 2
t 〉 − 〈Yt〉2

t
= (1− q)

D1C2 − D2C1

2C 3
1

where C2 and D2 are obtained using

φ1(z) =
F (z)

2
and φ2(z) =

F (z)

2

(
F (z)+

∮
Γ

dz2F (z2)K (z/z2)

2ıπz2

)
(cf. the TASEP case: B. Derrida, M. R. Evans, K. M., 1995)
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Asymptotic behaviour

Maximal Current Phase:

µ = −L−1/2

2
√
π

∞∑
k=1

(2k)!

k!k(k+3/2)
Bk

E − 1− q

4
µ = − (1− q)L−3/2

16
√
π

∞∑
k=1

(2k)!

k!k(k+5/2)
Bk

Low Density (and High Density) Phases:
Dominant singularity at a+: φk(z) ∼ F k(z). By Lagrange Inversion:

E (µ) = (1− q)(1− ρa)
eµ − 1

eµ + (1− ρa)/ρa

(cf de Gier and Essler, 2011).
Current Large Deviation Function:

Φ(j) = (1− q)
{
ρa − r + r(1− r) ln

(
1−ρa
ρa

r
1−r

)}
where the current j is parametrized as j = (1− q)r(1− r).
Matches the predictions of Macroscopic Fluctuation Theory, as
observed by T. Bodineau and B. Derrida.
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The TASEP case

Here q = γ = δ = 0 and (α, β) are arbitrary.
The parametric representation of E (µ) is

µ = −
∞∑
k=1

Ck(α, β)
Bk

2k

E = −
∞∑
k=1

Dk(α, β)
Bk

2k

with

Ck(α, β) =

∮
{0,a,b}

dz

2iπ

F (z)k

z
and Dk(α, β) =

∮
{0,a,b}

dz

2iπ

F (z)k

(1 + z)2

where

F (z) =
−(1 + z)2L(1− z2)2

zL(1− az)(z − a)(1− bz)(z − b)
, a =

1− α
α

, b =
1− β
β
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Special case of TASEP

In the case α = β = 1, a parametric representation of the cumulant
generating function E (µ):

µ = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)]!

[k(L + 1)]! [k(L + 2)]!

Bk

2k
,

E = −
∞∑
k=1

(2k)!

k!

[2k(L + 1)− 2]!

[k(L + 1)− 1]! [k(L + 2)− 1]!

Bk

2k
.

First cumulants of the current

Mean Value : J = L+2
2(2L+1)

Variance : ∆ = 3
2

(4L+1)![L!(L+2)!]2

[(2L+1)!]3(2L+3)!

Skewness :
E3 = 12 [(L+1)!]2[(L+2)!]4

(2L+1)[(2L+2)!]3

{
9 (L+1)!(L+2)!(4L+2)!(4L+4)!

(2L+1)![(2L+2)!]2[(2L+4)!]2 − 20 (6L+4)!
(3L+2)!(3L+6)!

}
For large systems: E3 → 2187−1280

√
3

10368 π ∼ −0.0090978...
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Numerical results (DMRG)

20 30 40 50 60 70 80
L

- 0.004

- 0.002

0.002

0.004

0.006

E3 , E4

20 40 60 80 100
L

- 0.03

- 0.02

- 0.01

0.01

0.02

0.03

0.04

E2 , E3

Left: Max. Current (q = 0.5, a+ = b+ = 0.65, a− = b− = 0.6), Third
and Fourth cumulant.

Right: High Density (q = 0.5, a+ = 0.28, b+ = 1.15, a− = −0.48 and
b− = −0.27), Second and Third cumulant.

A. Lazarescu and K. Mallick, J. Phys. A 44, 315001 (2011).
M. Gorissen, A. Lazarescu, K. M. and C. Vanderzande, PRL 109 170601
(2012)
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Current Statistics: Mathematical Framework

These three mutually exclusive types of transitions lead to a splitting the
Markov operator:

M = M0 + M+ + M−

M0 corresponds to transitions that do not modify the value of Y .

M+ are transitions that increment Y by 1: a particle enters the
system from the left reservoir.

M− encodes rates in which Y decreases by 1, if a particle exits the
system from the left reservoir (does not happen in the simplest
TASEP case).

The cumulant-generating function E (µ) when t →∞,
〈
eµYt

〉
' eE(µ)t ,

is the dominant eigenvalue of the deformed matrix

M(µ) = M0 + eµM+ + e−µM−

The current statistics is reduced to an eigenvalue problem, solvable by
Bethe Ansatz, or by Matrix Ansatz.
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Generalized Matrix Ansatz

One can prove that the dominant eigenvector of the deformed matrix
M(µ) is given by the following matrix product representation:

Fµ(C) =
1

Z
(k)
L

〈Wk |
L∏

i=1

(τiDk + (1− τi )Ek) |Vk〉+O
(
µk+1

)
The matrices Dk and Ek are constructed recursively (knowing D1 and E1)

Dk+1 = (1⊗ 1 + d ⊗ e)⊗ Dk + (1⊗ d + d ⊗ 1)⊗ Ek

Ek+1 = (1⊗ 1 + e ⊗ d)⊗ Ek + (e ⊗ 1 + 1⊗ e)⊗ Dk

The boundary vectors 〈Wk | and |Vk〉 are also obtained recursively:

|Vk〉 = |β〉|Ṽ 〉|Vk−1〉 and 〈Wk | = 〈W µ|〈W̃ µ|〈Wk−1|

[β(1− d)− δ(1− e)] |Ṽ 〉 = 0

〈W µ|[α(1 + eµ e)− γ(1 + e−µ d)] = (1− q)〈W µ|

〈W̃ µ|[α(1− eµ e)− γ(1− e−µ d)] = 0
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3. Shapes of Growth
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Corner Growth/Melting in three dimensions
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Corner Growth in three dimensions
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3d Plane Partitions with Uniform Measure

In a plane partition, the height satisfies

0 ≤ h(k + 1, l) ≤ h(k , l) and 0 ≤ h(k , l + 1) ≤ h(k, l)

Consider plane partitions of total volume N, chosen randomly with
uniform probability measure. The limiting shape of the corner crystal was
found by R. Cerf and R. Kenyon, and also by A. Okounkov (ca 2000).

The limiting surface is
(
ζ(3)

4

)−1/3

S0 (after rescaling the coordinates by

N1/3), S0 being given by the parametric equations

S0 = {(f (A,B,C )− ln A, f (A,B,C )− ln B, f (A,B,C )− ln C )}

A,B,C are strictly positive and

f (A,B,C ) =
1

4π2

∫
[0,2π]

∫
[0,2π]

ln
∣∣A + Beiθ + Ceiφ

∣∣ dθdφ
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Growing Plane Partitions

What is the limit shape for a Growing Plane Partition (Glauber dynamics
with non-zero magnetic field)?
We have conjectured the following governing equation for the interface
profile:

zt = zx
zx−1

zy
zy−1

[
1− 1

zx+zy

]
• We seek an equation of the form zt = F (zx , zy ) involving only first

derivatives.
• The correct 3d equation has to reduce to the 2d equation of motion

on the boundaries x = 0 or y = 0. In 2 dimensions, the dynamics of
an interface ζ(η) obeys

ζt =
ζη

ζη − 1

• The equation zt = F (zx , zy ) must be invariant under exchange of
any pair of coordinates:

F

(
1

a
,

1

b

)
= −1

a
F
(

a,− a

b

)
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Solution of the PDE

Using the method of characteristics, the conjectured equation can
explicitly be solved:

x

t
= A(q, r)

y

t
= B(q, r)

z

t
= C (q, r)

with

A =
r 2

(r − 1)(q − 1)(q + r)

[
1

q − 1
+

1

q + r

]
B =

q2

(r − 1)(q − 1)(q + r)

[
1

r − 1
+

1

q + r

]
C =

q2r 2

(r − 1)(q − 1)(q + r)

[
1

q − 1
+

1

r − 1

]
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Some numerical tests

This surface cuts the ground plane z = 0 along the curve
√

x +
√

y =
√

t.
The intersection with the ray x = y = z is predicted to be t

8 . Numerical
simulations give the speed 0.1261...
The volume can be calculated exactly and it grows as

V /t3 = v =
3π2

211
= 0.014457 . . .

The numerical measurement gives v ≈ 0.01472(3), within 1.8% of the
prediction.
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The intersection with the plane x = y is given by

x

t
=

1

2

z

t
− 3

4

(z

t

)2/3

+
1

4

(Jason Olejarz, Sid Redner, P. K. and K. M: PRL 108 016102 (2012))
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Equivalence with particle systems

Equivalent to family of coupled exclusion processes:

0

y

x
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Conclusion

Exact solutions of the asymmetric exclusion process are paradigms for the
behaviour of systems far from equilibrium in low dimensions: Dynamical
phase transitions, Non-Gibbsean measures, Large deviations, Fluctuations
Theorems...

Large deviation functions (LDF) appear as the right generalization of the
thermodynamic potentials: convex, optimized at the stationary state, and
non-analytic features can be interpreted as phase transitions. The LDF’s
are very likely to play a key-role in the future of non-equilibrium
statistical mechanics.

Interacting Particle Processes also represent Growth Models and can used
to investigate properties of dimer tilings, Young tableaux and plane
partitions.
M. Evans, P. Ferrari, O. Golinelli, M. Gorissen, P. Krapivsky, A.
Lazarescu, J. Olejarz, S. Prolhac, S. Redner and C. Vanderzande
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