Polynomiality of the structure coefficients of double-class algebras

Omar Tout

LaBRI, Bordeaux

Journées de Combinatoire de Bordeaux 2014 Université de Bordeaux, February 2014

- L Introduction: structure coefficients of an algebra
- II. Partitions
- III. Three polynomiality results
 - 1. $\mathcal{Z}(\mathbb{C}[\mathcal{S}_n])$
 - 2. Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$
 - 3. $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)])$
- IV. Structure coefficients of the algebra of double classes
- V. Conclusions and further applications

I. Introduction: structure coefficients of an algebra

• **Problem:** Let \mathcal{A} be an algebra over a field F with basis b_1, b_2, \dots, b_n . For two basis elements, say b_i and b_j , write:

$$b_i b_j = \sum_k c_{i,j}^k b_k,$$

where $c_{i,j}^k \in F$. The elements $c_{i,j}^k$ are called the structure coefficients of A and there is no explicit formula for them, even in the particular algebras we will consider.

• **Problem:** Let A be an algebra over a field F with basis b_1, b_2, \dots, b_n . For two basis elements, say b_i and b_j , write:

$$b_i b_j = \sum_k c_{i,j}^k b_k,$$

where $c_{i,j}^k \in F$. The elements $c_{i,j}^k$ are called the structure coefficients of \mathcal{A} and there is no explicit formula for them, even in the particular algebras we will consider.

• Our work:

- 1- A framework in which one can obtain the form of the structure coefficients of the algebra of double-classes.¹
- 2- A polynomiality property of these coefficients in some specific cases.

¹These coefficients "contain" structure coefficients of group algebras.

 A partition λ is a list of integers (λ₁, λ₂,...) where λ₁ ≥ λ₂ ≥ ... ≥ 1. The λ_i are called the parts of λ. The size of a partition λ (noted |λ|) is the sum of all its parts. Example: λ = (3,2,1), |λ| = 3 + 2 + 1 = 6

- A partition λ is a list of integers (λ₁, λ₂,...) where λ₁ ≥ λ₂ ≥ ... ≥ 1. The λ_i are called the parts of λ. The size of a partition λ (noted |λ|) is the sum of all its parts. Example: λ = (3,2,1), |λ| = 3 + 2 + 1 = 6
- A proper partition is a partition without parts equal to one. Example: $\delta = (3, 2, 2)$, is a proper partition of size 7.

- A partition λ is a list of integers (λ₁, λ₂,...) where λ₁ ≥ λ₂ ≥ ... ≥ 1. The λ_i are called the parts of λ. The size of a partition λ (noted |λ|) is the sum of all its parts. Example: λ = (3,2,1), |λ| = 3 + 2 + 1 = 6
- A proper partition is a partition without parts equal to one. Example: $\delta = (3, 2, 2)$, is a proper partition of size 7.
- Let λ be a proper partition and n ≥ |λ|. The partition λ ∪ (1^{n-|λ|}) is the partition of n obtained by adding n - |λ| parts equal 1 to λ.

- A partition λ is a list of integers (λ₁, λ₂,...) where λ₁ ≥ λ₂ ≥ ... ≥ 1. The λ_i are called the parts of λ. The size of a partition λ (noted |λ|) is the sum of all its parts. Example: λ = (3,2,1), |λ| = 3 + 2 + 1 = 6
- A proper partition is a partition without parts equal to one. Example: $\delta = (3, 2, 2)$, is a proper partition of size 7.
- Let λ be a proper partition and $n \ge |\lambda|$. The partition $\lambda \cup (1^{n-|\lambda|})$ is the partition of *n* obtained by adding $n |\lambda|$ parts equal 1 to λ .
- Partitions of *n* are in bijection with the proper partitions with size at most *n*.

- A partition λ is a list of integers (λ₁, λ₂,...) where λ₁ ≥ λ₂ ≥ ... ≥ 1. The λ_i are called the parts of λ. The size of a partition λ (noted |λ|) is the sum of all its parts. Example: λ = (3,2,1), |λ| = 3 + 2 + 1 = 6
- A proper partition is a partition without parts equal to one. Example: $\delta = (3, 2, 2)$, is a proper partition of size 7.
- Let λ be a proper partition and $n \ge |\lambda|$. The partition $\lambda \cup (1^{n-|\lambda|})$ is the partition of *n* obtained by adding $n |\lambda|$ parts equal 1 to λ .
- Partitions of *n* are in bijection with the proper partitions with size at most *n*.

The proper partitions will be used to index bases of the algebras considered in this talk.

$\begin{array}{l} \mbox{III. Three polynomiality results}\\ \mbox{1. Center of the symmetric group algebra } \mathcal{Z}(\mathbb{C}[\mathcal{S}_n]) \end{array}$

• The symmetric Group Algebra $\mathbb{C}[S_n]$ is the algebra over \mathbb{C} with basis the elements of S_n (the permutations of n).

- The symmetric Group Algebra $\mathbb{C}[S_n]$ is the algebra over \mathbb{C} with basis the elements of S_n (the permutations of n).
- Every element of S_n can be written (in a unique way) as a product of disjoint cycles.

- The symmetric Group Algebra $\mathbb{C}[S_n]$ is the algebra over \mathbb{C} with basis the elements of S_n (the permutations of n).
- Every element of S_n can be written (in a unique way) as a product of disjoint cycles.
- For a permutation $\omega \in S_n$, we define the cycle-type of ω , $ct(\omega)$, to be the partition of *n* with parts equal to the lengths of the cycles that appear in its decomposition.

Example: $\omega = 2$ 6 5 4 3 $1 = (1 \ 2 \ 6) (5 \ 3) (4)$. $ct(\omega) = (3, 2, 1)$.

- The symmetric Group Algebra $\mathbb{C}[S_n]$ is the algebra over \mathbb{C} with basis the elements of S_n (the permutations of n).
- Every element of S_n can be written (in a unique way) as a product of disjoint cycles.
- For a permutation $\omega \in S_n$, we define the cycle-type of ω , $ct(\omega)$, to be the partition of *n* with parts equal to the lengths of the cycles that appear in its decomposition.

Example: $\omega = 2$ 6 5 4 3 $1 = (1 \ 2 \ 6) (5 \ 3) (4)$. $ct(\omega) = (3, 2, 1)$.

• The center of the symmetric group algebra, $\mathcal{Z}(\mathbb{C}[\mathcal{S}_n])$, is:

$$\mathcal{Z}(\mathbb{C}[\mathcal{S}_n]) = \{ x \in \mathbb{C}[\mathcal{S}_n] \mid x \cdot y = y \cdot x \ \forall y \in \mathbb{C}[\mathcal{S}_n] \}.$$

- The symmetric Group Algebra $\mathbb{C}[S_n]$ is the algebra over \mathbb{C} with basis the elements of S_n (the permutations of n).
- Every element of S_n can be written (in a unique way) as a product of disjoint cycles.
- For a permutation $\omega \in S_n$, we define the cycle-type of ω , $ct(\omega)$, to be the partition of *n* with parts equal to the lengths of the cycles that appear in its decomposition.

Example: $\omega = 2$ 6 5 4 3 $1 = (1 \ 2 \ 6) (5 \ 3) (4)$. $ct(\omega) = (3, 2, 1)$.

• The center of the symmetric group algebra, $\mathcal{Z}(\mathbb{C}[\mathcal{S}_n])$, is:

$$\mathcal{Z}(\mathbb{C}[\mathcal{S}_n]) = \{ x \in \mathbb{C}[\mathcal{S}_n] \mid x \cdot y = y \cdot x \ \forall y \in \mathbb{C}[\mathcal{S}_n] \}.$$

• The family $(S_{\lambda}(n))_{|\lambda| \leq n}$ indexed by proper partitions of size at most n forms a basis for $\mathcal{Z}(\mathbb{C}[S_n])$, where,

$$S_{\lambda}(n) = \sum_{\substack{\omega \in S_n, \\ ct(\omega) = \lambda \cup (1^{n-|\lambda|})}} \omega$$

$$S_{\lambda}(n) \cdot S_{\delta}(n) = \sum_{\substack{\rho \text{ proper partition} \\ |\rho| \leq n}} c^{\rho}_{\lambda,\delta}(n) S_{\rho}(n),$$

the numbers $c_{\lambda,\delta}^{\rho}(n)$ are the structure coefficients of the center of the symmetric group algebra $\mathcal{Z}(\mathbb{C}[S_n])$.

$$S_{\lambda}(n) \cdot S_{\delta}(n) = \sum_{\substack{
ho \text{ proper partition} \ |
ho| \leqslant n}} c_{\lambda,\delta}^{
ho}(n) S_{
ho}(n),$$

the numbers $c_{\lambda,\delta}^{\rho}(n)$ are the structure coefficients of the center of the symmetric group algebra $\mathcal{Z}(\mathbb{C}[S_n])$.

• Motivation (Cori [1975]:) The structure coefficients of the center of the symmetric group algebra count the number of embeddings of certain graphs into orientable surfaces.

$$S_{\lambda}(n) \cdot S_{\delta}(n) = \sum_{\substack{
ho ext{ prop er partition} \ |
ho|\leqslant n}} c^{
ho}_{\lambda,\delta}(n) S_{
ho}(n),$$

the numbers $c_{\lambda,\delta}^{\rho}(n)$ are the structure coefficients of the center of the symmetric group algebra $\mathcal{Z}(\mathbb{C}[S_n])$.

• Theorem (Farahat and Higman [1958]): Let λ , δ and ρ be three proper partitions, the function:

$$n \longmapsto c^{\rho}_{\lambda,\delta}(n)$$

defined for $n \ge |\lambda|, |\delta|, |\rho|$ is a polynomial in n. Example: One can compute explicitly: $S_{(2)}(n) \cdot S_{(2)}(n) = \frac{n(n-1)}{2}S_{\emptyset}(n) + 3S_{(3)}(n) + 2S_{(2^2)}(n).$

$$S_{\lambda}(n) \cdot S_{\delta}(n) = \sum_{\substack{
ho ext{ prop er partition} \ |
ho| \leqslant n}} c^{
ho}_{\lambda,\delta}(n) S_{
ho}(n),$$

the numbers $c_{\lambda,\delta}^{\rho}(n)$ are the structure coefficients of the center of the symmetric group algebra $\mathcal{Z}(\mathbb{C}[S_n])$.

• Theorem (Farahat and Higman [1958]): Let λ , δ and ρ be three proper partitions, the function:

$$n \longmapsto c^{\rho}_{\lambda,\delta}(n)$$

defined for $n \ge |\lambda|, |\delta|, |\rho|$ is a polynomial in n. Example: One can compute explicitly: $S_{(2)}(n) \cdot S_{(2)}(n) = \frac{n(n-1)}{2}S_{\varnothing}(n) + 3S_{(3)}(n) + 2S_{(2^2)}(n).$

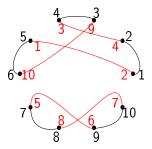
• The polynomiality property for the structure coefficients of the center of the symmetric group algebra is interesting in the study of Plancherel measure on young diagrams.

III. Three polynomiality results

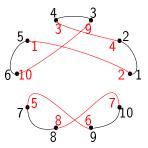
2. Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$

• The Hyperoctahedral group \mathcal{B}_n is the subgoup of \mathcal{S}_{2n} consisting of all permutations of \mathcal{S}_{2n} which takes every pair of the form $\{2k - 1, 2k\}$ of [2n] to another pair with the same form. Example: $\beta = 43875621 \in \mathcal{B}_4$

- The Hyperoctahedral group \mathcal{B}_n is the subgoup of \mathcal{S}_{2n} consisting of all permutations of \mathcal{S}_{2n} which takes every pair of the form $\{2k 1, 2k\}$ of [2n] to another pair with the same form. Example: $\beta = 43875621 \in \mathcal{B}_4$
- To each permutation ω of 2n we associate a graph $\Gamma(\omega)$. Example: Take $\omega = 24931105867 \in S_{10}$.



- The Hyperoctahedral group \mathcal{B}_n is the subgoup of \mathcal{S}_{2n} consisting of all permutations of \mathcal{S}_{2n} which takes every pair of the form $\{2k 1, 2k\}$ of [2n] to another pair with the same form. Example: $\beta = 43875621 \in \mathcal{B}_4$
- To each permutation ω of 2n we associate a graph $\Gamma(\omega)$. Example: Take $\omega = 24931105867 \in S_{10}$.



• The coset-type of a permutation x of S_{2n} is a partition of n with parts equal to half of lengths of the cycles of $\Gamma(x)$. Example: coset-type(ω) = (3,2). • The Hecke algebra of (S_{2n}, B_n) denoted by $\mathbb{C}[B_n \setminus S_{2n}/B_n]$ is the sub-algebra of $\mathbb{C}[S_{2n}]$ of elements invariant under the B_n -double action. That means that:

$$x \in \mathbb{C}[\mathcal{B}_n \setminus \mathcal{S}_{2n} / \mathcal{B}_n] \iff hxh' = x \text{ for every } h, h' \in \mathcal{B}_n.$$

• The Hecke algebra of (S_{2n}, B_n) denoted by $\mathbb{C}[B_n \setminus S_{2n}/B_n]$ is the sub-algebra of $\mathbb{C}[S_{2n}]$ of elements invariant under the B_n -double action. That means that:

$$x \in \mathbb{C}[\mathcal{B}_n \setminus \mathcal{S}_{2n} / \mathcal{B}_n] \iff hxh' = x \text{ for every } h, h' \in \mathcal{B}_n.$$

• Proposition: The family $(S'_{\lambda}(n))_{|\lambda| \leq n}$ indexed by proper partitions with size at most *n* forms a basis for $\mathbb{C}[\mathcal{B}_n \setminus \mathcal{S}_{2n}/\mathcal{B}_n]$, where

$$S'_{\lambda}(n) = \sum_{\substack{\omega \in S_{2n} \\ coset - type(\omega) = \lambda \cup (1^{n-|\lambda|})}} \omega.$$

$$S'_{\lambda}(n) \cdot S'_{\delta}(n) = \sum_{\substack{
ho \text{ proper partition} \ |
ho| \leqslant n}} c'^{
ho}_{\lambda,\delta}(n) S'_{
ho}(n),$$

the numbers $c'^{\rho}_{\lambda,\delta}(n)$ are the structure coefficients of the Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$.

$$S_{\lambda}'(n) \cdot S_{\delta}'(n) = \sum_{\substack{
ho ext{ proper partition} \ |
ho| \leqslant n}} c'^{
ho}_{\lambda,\delta}(n) S_{
ho}'(n),$$

the numbers $c'^{\rho}_{\lambda,\delta}(n)$ are the structure coefficients of the Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$.

• Motivation (Goulden and Jackson [1996]): These coefficients count the number of embeddings of certain graphs into non-orientable surfaces.

$$S_{\lambda}'(n) \cdot S_{\delta}'(n) = \sum_{\substack{
ho ext{ proper partition} \ |
ho| \leqslant n}} c'^{
ho}_{\lambda,\delta}(n) S_{
ho}'(n),$$

the numbers $c'^{\rho}_{\lambda,\delta}(n)$ are the structure coefficients of the Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$.

• Theorem (Dołęga and Féray [2012], T. [2013]): Let λ , δ and ρ be three proper partitions, we have:

$$c_{\lambda\delta}^{\prime\rho}(n) = \begin{cases} 2^{n} n! f_{\lambda\delta}^{\rho}(n) & \text{if } n \ge |\rho|, \\ 0 & \text{if } n < |\rho|, \end{cases}$$

where $f_{\lambda\delta}^{\rho}(n)$ is a polynomial in *n*. Example: For every $n \ge 4$, we have:

$$S'_{(2)}(n) \cdot S'_{(2)}(n) = 2^n n! \left(n(n-1)S'_{\emptyset}(n) + 1S'_{(2)}(n) + 3S'_{(3)}(n) + 2S'_{(2^2)}(n) \right).$$

III. Three polynomiality results 3. Center of $\mathbb{C}[GL_n(\mathbb{F}_q)]$

• Let q be a power of prime and F_q be the finite field of size q. A polypartition $\hat{\mu} = (\mu(P_1), \cdots, \mu(P_r))$ over \mathbb{F}_q is a family of partitions indexed by monic irreducible polynomials of \mathbb{F}_q , all different from X. The size of $\hat{\mu}$ is:

$$|\hat{\mu}| = \sum_{i=1}^{r} \deg(P_i) |\mu(P_i)|.$$

• Let q be a power of prime and F_q be the finite field of size q. A polypartition $\hat{\mu} = (\mu(P_1), \cdots, \mu(P_r))$ over \mathbb{F}_q is a family of partitions indexed by monic irreducible polynomials of \mathbb{F}_q , all different from X. The size of $\hat{\mu}$ is:

$$|\hat{\mu}| = \sum_{i=1}^{r} \deg(P_i) |\mu(P_i)|.$$

• $GL_n(\mathbb{F}_q)$ is the group of invertible $n \times n$ matrices with elements in \mathbb{F}_q .

- $GL_n(\mathbb{F}_q)$ is the group of invertible $n \times n$ matrices with elements in \mathbb{F}_q .
- The center of $\mathbb{C}[GL_n(\mathbb{F}_q)]$, is:

 $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)]) = \{ x \in \mathbb{C}[GL_n(\mathbb{F}_q)] \mid x \cdot y = y \cdot x \ \forall y \in \mathbb{C}[GL_n(\mathbb{F}_q)] \}.$

- $GL_n(\mathbb{F}_q)$ is the group of invertible $n \times n$ matrices with elements in \mathbb{F}_q .
- The center of $\mathbb{C}[GL_n(\mathbb{F}_q)]$, is:

 $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)]) = \{ x \in \mathbb{C}[GL_n(\mathbb{F}_q)] \mid x \cdot y = y \cdot x \ \forall y \in \mathbb{C}[GL_n(\mathbb{F}_q)] \}.$

• $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)])$ has a basis $(S_{\hat{\lambda}}(n))_{|\hat{\lambda}| \leq n}$ indexed by proper polypartitions of size at most n.

- $GL_n(\mathbb{F}_q)$ is the group of invertible $n \times n$ matrices with elements in \mathbb{F}_q .
- The center of $\mathbb{C}[GL_n(\mathbb{F}_q)]$, is:

 $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)]) = \{ x \in \mathbb{C}[GL_n(\mathbb{F}_q)] \mid x \cdot y = y \cdot x \ \forall y \in \mathbb{C}[GL_n(\mathbb{F}_q)] \}.$

- $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)])$ has a basis $(S_{\hat{\lambda}}(n))_{|\hat{\lambda}| \leq n}$ indexed by proper polypartitions of size at most n.
- For $\hat{\lambda}$ and $\hat{\delta}$ two proper polypartitions with size at most n,

$$S_{\hat{\lambda}}(n) \cdot S_{\hat{\delta}}(n) = \sum_{\substack{\hat{\rho} \text{ proper polypartition} \\ |\hat{\rho}| \leq n}} c_{\hat{\lambda},\hat{\delta}}^{\hat{\rho}}(n) S_{\hat{\rho}}(n),$$

the numbers $\hat{c}^{\rho}_{\lambda,\delta}(n)$ are the structure coefficients of the center of $\mathbb{C}[GL_n(\mathbb{F}_q)]$.

- $GL_n(\mathbb{F}_q)$ is the group of invertible $n \times n$ matrices with elements in \mathbb{F}_q .
- The center of $\mathbb{C}[GL_n(\mathbb{F}_q)]$, is:

 $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)]) = \{ x \in \mathbb{C}[GL_n(\mathbb{F}_q)] \mid x \cdot y = y \cdot x \ \forall y \in \mathbb{C}[GL_n(\mathbb{F}_q)] \}.$

- $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)])$ has a basis $(S_{\hat{\lambda}}(n))_{|\hat{\lambda}| \leq n}$ indexed by proper polypartitions of size at most n.
- For $\hat{\lambda}$ and $\hat{\delta}$ two proper polypartitions with size at most n,

$$S_{\hat{\lambda}}(n) \cdot S_{\hat{\delta}}(n) = \sum_{\substack{\hat{\rho} \text{ proper polypartition} \\ |\hat{\rho}| \leq n}} c_{\hat{\lambda},\hat{\delta}}^{\hat{\rho}}(n) S_{\hat{\rho}}(n),$$

the numbers $\hat{c}^{\rho}_{\lambda,\delta}(n)$ are the structure coefficients of the center of $\mathbb{C}[GL_n(\mathbb{F}_q)]$.

• Theorem (Méliot [2013]):Fix q, the coefficients $c^{\hat{
ho}}_{\hat{\lambda},\hat{\delta}}(n)$ are polynomials in q^n .

IV. Structure coefficients of the algebra of double classes

• Let $(G_n, K_n)_n$ be a sequence where G_n is a group and K_n is a sub-group of G_n for each n.

- Let $(G_n, K_n)_n$ be a sequence where G_n is a group and K_n is a sub-group of G_n for each n.
- A double-class of K_n in G_n is a set $\overline{g}^n := K_n g K_n$, for a $g \in G_n$,

$$K_ngK_n = \{kgk'; k, k' \in K_n\}.$$

- Let $(G_n, K_n)_n$ be a sequence where G_n is a group and K_n is a sub-group of G_n for each n.
- A double-class of K_n in G_n is a set $\overline{g}^n := K_n g K_n$, for a $g \in G_n$,

$$K_ngK_n = \{kgk'; k, k' \in K_n\}.$$

• Let $\Re_n = {\overline{x_1}^n, \cdots, \overline{x_{l(n)}}^n}$ be the set of representative elements of the set of double-classes $K_n \setminus G_n / K_n$.

- Let $(G_n, K_n)_n$ be a sequence where G_n is a group and K_n is a sub-group of G_n for each n.
- A double-class of K_n in G_n is a set $\overline{g}^n := K_n g K_n$, for a $g \in G_n$,

$$K_ngK_n = \{kgk'; k, k' \in K_n\}.$$

- Let $\Re_n = {\overline{x_1}^n, \cdots, \overline{x_{l(n)}}^n}$ be the set of representative elements of the set of double-classes $K_n \setminus G_n / K_n$.
- Let $\overline{\mathbf{x_i}}^n$ be the sum of the elements in $\overline{x_i}^n$. The algebra of double classes, denoted $\mathbb{C}[K_n \setminus G_n/K_n]$, is the algebra with basis the elements $\overline{\mathbf{x_i}}^n$.

Example: The Hecke algebra of (S_{2n}, \mathcal{B}_n) , $\mathbb{C}[\mathcal{B}_n \setminus S_{2n}/\mathcal{B}_n]$, is an algebra of double classes.

• The product $\overline{\mathbf{x_i}}^n \cdot \overline{\mathbf{x_i}}^n$ can be written as follows:

$$\overline{\mathbf{x}_{\mathbf{i}}}^{n} \cdot \overline{\mathbf{x}_{\mathbf{j}}}^{n} = \sum_{1 \leq r \leq l(n)} c_{l,j}^{r}(n) \overline{\mathbf{x}_{\mathbf{r}}}^{n}.$$

The coefficients $c_{i,j}^r(n)$ are the structure coefficients of the algebra of double classes.

• The product $\overline{\mathbf{x_i}}^n \cdot \overline{\mathbf{x_j}}^n$ can be written as follows:

$$\overline{\mathbf{x}_{\mathbf{i}}}^{n} \cdot \overline{\mathbf{x}_{\mathbf{j}}}^{n} = \sum_{1 \leq r \leq l(n)} c_{l,j}^{r}(n) \overline{\mathbf{x}_{\mathbf{r}}}^{n}.$$

The coefficients $c_{i,j}^r(n)$ are the structure coefficients of the algebra of double classes.

• There is no explicit formula for these coefficients.

• The product $\overline{\mathbf{x_i}}^n \cdot \overline{\mathbf{x_j}}^n$ can be written as follows:

$$\overline{\mathbf{x}_{\mathbf{i}}}^{n} \cdot \overline{\mathbf{x}_{\mathbf{j}}}^{n} = \sum_{1 \leq r \leq l(n)} c_{l,j}^{r}(n) \overline{\mathbf{x}_{\mathbf{r}}}^{n}.$$

The coefficients $c_{i,j}^r(n)$ are the structure coefficients of the algebra of double classes.

- There is no explicit formula for these coefficients.
- Goals:
 - 1. The form of these structure coefficients under some conditions.
 - 2. Applications to the three specific cases: $\mathcal{Z}(\mathbb{C}[S_n])$, the Hecke algebra of (S_{2n}, \mathcal{B}_n) and $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)])$.

Under the following conditions:

1. For each integer $k \leq n$ there exists a subset K_n^k of K_n such that:

- Hyp 1. K_n^k is isomorphic to K_{n-k} . For $K_n = S_n$, S_n^k is the sub-group of permutations acting on the set $\{k + 1, \dots, n\}$.
- Hyp 2. For any two elements $x \in K_k$ and $y \in K_n^k$, we have: $x \cdot y = y \cdot x$. If $x \in S_k$ and $y \in S_n^k$ then x and y act on disjoint sets, hence the commutativity.
- Hyp 3. $K_{n+1}^k \cap K_n = K_n^k$ if $k \leq n$. $S_{n+1}^k \cap S_n$ is the set of permutations which fix the elements $1, \dots, k$ and n+1, so it is S_n^k .

Define

$$k(X) := \min_{\substack{k \\ x \, \circ \, \mathcal{G}_k \neq \emptyset}} k$$

and say that $y \in K_n$ is (k_1, k_2) -minimal if $y \in K_m$ where

$$m = m_{k_1,k_2}(y) := k(K_n^{k_1}yK_n^{k_2}).$$

In addition to the hypotheses above, suppose that:
 Hyp 4. for any element z ∈ K_n, we have, K^{k1}_{n+1}zK^{k2}_{n+1} ∩ K_n = K^{k1}_nzK^{k2}_n.
 Hyp 5. m_{k1,k2}(x) ≤ k₁ + k₂.
 Hyp 6. yK^{k1}_ny⁻¹ ∩ K^{k2}_n = K^{mk1,k2}(x), if y is (k₁, k₂)-minimal.
 We ensure that these conditions are true in the case of S_n but we do not have the time to show them explicitly here.

we have:

Theorem (T.): For $k_1 = k(\bar{x}_i^n)$, $k_2 = k(\bar{x}_j^n)$ and $k_3 = k(\bar{x}_r^n)$ there exists rational numbers $a_{i,i}^r(k)$ all independent of n such that:

$$c_{ij}^{r}(n) = \frac{|\bar{x_{i}}^{n}||\bar{x_{j}}^{n}||K_{n-k_{1}}||K_{n-k_{2}}|}{|K_{n}||\bar{x_{r}}^{n}|} \sum_{k_{3} \leq k \leq \min(k_{1}+k_{2},n)} \frac{a_{i,j}^{r}(k)}{|K_{n-k}|}$$

we have:

Theorem (T.): For $k_1 = k(\bar{x}_i^n)$, $k_2 = k(\bar{x}_j^n)$ and $k_3 = k(\bar{x}_r^n)$ there exists rational numbers $a_{i,i}^r(k)$ all independent of n such that:

$$c_{ij}^{r}(n) = \frac{|\bar{x}_{i}^{n}||\bar{x}_{j}^{n}||K_{n-k_{1}}||K_{n-k_{2}}|}{|K_{n}||\bar{x}_{r}^{n}|} \sum_{k_{3} \leq k \leq \min(k_{1}+k_{2},n)} \frac{a_{i,j}^{r}(k)}{|K_{n-k}|}$$

Application (The Hecke algebra of (S_{2n}, B_n)): Let λ be a proper partition of size at most n. The size of its associated double class $S'_{\lambda}(n)$ is:

$$|S'_{\lambda}(n)| = rac{(2^n n!)^2}{z_{2\lambda} 2^{n-|\lambda|} (n-|\lambda|)!},$$

where, $z_{\lambda} = \prod_{i \ge 1} i^{m_i(\lambda)} m_i(\lambda)!.$

Let δ and ρ be two proper partitions with size at most n, we have:

$$c'^{\rho}_{\lambda,\delta}(n) = 2^{n} n! \frac{z_{2\rho}}{z_{2\lambda} z_{2\delta}} \sum_{|\rho| \leqslant k \leqslant |\lambda| + |\delta|} a^{\rho}_{\lambda\delta}(k) 2^{k-|\rho|} \frac{(n-|\rho|)!}{(n-k)!}.$$
 Polynomial!

• Let (G, \cdot) be a finite group and $(G^{opp}, *)$ its opposite group.

$$x * y = y \cdot x.$$

• Let (G, \cdot) be a finite group and $(G^{opp}, *)$ its opposite group.

$$x * y = y \cdot x.$$

• $diag(G) := \{(x, x^{-1}) | x \in G\}$ is a subgroup of $G \times G^{opp}$.

• Let (G, \cdot) be a finite group and $(G^{opp}, *)$ its opposite group.

$$x * y = y \cdot x.$$

- $diag(G) := \{(x, x^{-1}) | x \in G\}$ is a subgroup of $G \times G^{opp}$.
- Consider the double-action of diag(G) on $G \times G^{opp}$:

$$(x, x^{-1}) \cdot (a, b) \cdot (y, y^{-1}) = (xay, y^{-1}bx^{-1}).$$

• Let (G, \cdot) be a finite group and $(G^{opp}, *)$ its opposite group.

$$x * y = y \cdot x.$$

- $diag(G) := \{(x, x^{-1}) | x \in G\}$ is a subgroup of $G \times G^{opp}$.
- Consider the double-action of diag(G) on $G \times G^{opp}$:

$$(x, x^{-1}) \cdot (a, b) \cdot (y, y^{-1}) = (xay, y^{-1}bx^{-1}).$$

 Two pairs (a, b) and (c, d) are in the same double-class if and only if ab is conjugated with cd. • Let CL(G) be a subset of G which represents the set of all conjugacy classes of G.

- Let CL(G) be a subset of G which represents the set of all conjugacy classes of G.
- Let C_f be the conjugacy class of f ∈ G and C_f the sum of its elements. We have:

$$\mathsf{C}_{f}\mathsf{C}_{h}=\sum_{g\in CL(G)}c_{fh}^{g}\mathsf{C}_{g}.$$

- Let CL(G) be a subset of G which represents the set of all conjugacy classes of G.
- Let C_f be the conjugacy class of f ∈ G and C_f the sum of its elements. We have:

$$\mathsf{C}_{f}\mathsf{C}_{h}=\sum_{g\in CL(G)}c_{fh}^{g}\mathsf{C}_{g}.$$

Let C'_f = {(a, b) | ab ∈ C_f} be the double-class associated to f ∈ G and C'_f the sum of its elements. We have:

$$\mathsf{C}_{f}'\mathsf{C}_{h}'=\sum_{g\in CL(G)}c_{fh}'^{g}\mathsf{C}_{g}',$$

• The structure coefficients of $\mathcal{Z}(\mathbb{C}[G])$ and the structure coefficients of the algebra of double classes of $(G \times G^{opp}, diag(G))$ are related by:

$$c_{fh}^{\prime g} = |G|c_{fh}^g.$$

 The structure coefficients of Z(C[G]) and the structure coefficients of the algebra of double classes of (G × G^{opp}, diag(G)) are related by:

$$c_{fh}^{\prime g} = |G|c_{fh}^g.$$

• Theorem (T.): Let $(G_n)_n$ be a sequence of finite groups such that its associated sequence of pairs $(G_n \times G_n^{opp}, diag(G_n))_n$ satisfying all necessary conditions given above. Let f, h and g be three elements of G_n and let $k_1 = k(C_f(n)), k_2 = k(C_h(n))$ and $k_3 = k(C_g(n))$. There exists rational numbers $a_{f,h}^g(k)$ independent of n such that:

$$c_{fh}^{g}(n) = \frac{|C_{f}(n)||C_{h}(n)||G_{n-k_{1}}||G_{n-k_{2}}|}{|G_{n}||C_{g}(n)|} \sum_{k_{3} \leq k \leq \min(k_{1}+k_{2},n)} \frac{a_{f,h}^{g}(k)}{|G_{n-k}|}$$

IV. Structure coefficients of the algebra of double classes

Application to $\mathcal{Z}(\mathbb{C}[S_n])$: Let λ be a proper partition of size at most n. The size of its associated conjugacy class $S_{\lambda}(n)$ is:

$$|S_{\lambda}(n)| = \frac{n!}{z_{\lambda} \cdot (n-|\lambda|)!}$$

Let δ and ρ be two proper partitions with size at most *n*, we have:

$$c_{\lambda,\delta}^{\rho}(n) = \frac{z_{\rho}}{z_{\lambda}z_{\delta}} \sum_{|\rho| \leqslant k \leqslant |\lambda| + |\delta|} a_{\lambda\delta}^{\rho}(k) \frac{(n-|\rho|)!}{(n-k)!}.$$
 Polynomial!

IV. Structure coefficients of the algebra of double classes

Application to $\mathcal{Z}(\mathbb{C}[S_n])$: Let λ be a proper partition of size at most n. The size of its associated conjugacy class $S_{\lambda}(n)$ is:

$$|S_{\lambda}(n)| = \frac{n!}{z_{\lambda} \cdot (n-|\lambda|)!}$$

Let δ and ρ be two proper partitions with size at most *n*, we have:

$$c_{\lambda,\delta}^{\rho}(n) = \frac{z_{\rho}}{z_{\lambda}z_{\delta}} \sum_{|\rho| \leq k \leq |\lambda| + |\delta|} a_{\lambda\delta}^{\rho}(k) \frac{(n-|\rho|)!}{(n-k)!}.$$
 Polynomial!

Expected application to $\mathcal{Z}(\mathbb{C}[GL_n(\mathbb{F}_q)])$: Let $\hat{\lambda}$ be a proper polypartition of size at most n. The size of its associated conjugacy class $S_{\hat{\lambda}}(n)$ is:

$$S_{\hat{\lambda}}(n)| = |S_{\hat{\lambda}}| \frac{|GL_n(\mathbb{F}_q)|}{|GL_{|\hat{\lambda}|}(\mathbb{F}_q)|q^{(n-|\hat{\lambda}|)(2I(\lambda(X-1)))}|GL_{n-|\hat{\lambda}|}(\mathbb{F}_q)|}$$

Let $\hat{\delta}$ and $\hat{\rho}$ be two proper polypartitions with size at most *n*, we have:

$$\hat{c}^{\rho}_{\lambda,\delta}(n) = \sum_{|\hat{\rho}| \leq k \leq |\hat{\lambda}| + |\hat{\delta}|} a_{|\hat{\lambda}||\hat{\delta}|}^{|\hat{\beta}|}(k) q^{2n(k-|\hat{\rho}|+l(\rho(X-1))-l(\lambda(X-1))-l(\delta(X-1)))} \frac{(q^{-1})_{n-|\hat{\rho}|}}{(q^{-1})_{n-k}}.$$
 Polynomial!

O. Tout (LaBRI, Bordeaux)

1- A partial element of G_n is a triplet $(hK_n^k, (x; k), K_n^k h')$, where $1 \leq k \leq n, x \in G_k$ and $h, h' \in K_n$.

- 1- A partial element of G_n is a triplet $(hK_n^k, (x; k), K_n^k h')$, where $1 \leq k \leq n, x \in G_k$ and $h, h' \in K_n$.
- 2- product: $(h_1 K_n^{k_1}, (x_1; k_1), K_n^{k_1} h'_1) \cdot (h_2 K_n^{k_2}, (x_2; k_2), K_n^{k_2} h'_2)$ is a normalized sum of partial elements of the form

 $(h_1^i K_n^m, (x_1 h x_2; m), K_n^m h_1^{\prime j}), \text{ where, } m = \max(k_1, k_2, k(K_n^{k_1} h_1' h_2 K_n^{k_2})),$

and, $h \in K_n^{k_1} h'_1 h_2 K_n^{k_2}$ is $(k_1, k_2) - minimal$.

- 1- A partial element of G_n is a triplet $(hK_n^k, (x; k), K_n^k h')$, where $1 \leq k \leq n, x \in G_k$ and $h, h' \in K_n$.
- 2- product: $(h_1 K_n^{k_1}, (x_1; k_1), K_n^{k_1} h'_1) \cdot (h_2 K_n^{k_2}, (x_2; k_2), K_n^{k_2} h'_2)$ is a normalized sum of partial elements of the form

 $(h_1^i \mathcal{K}_n^m, (x_1 h x_2; m), \mathcal{K}_n^m h_1'^j), \text{ where, } m = \max(k_1, k_2, k(\mathcal{K}_n^{k_1} h_1' h_2 \mathcal{K}_n^{k_2})),$ and, $h \in \mathcal{K}_n^{k_1} h_1' h_2 \mathcal{K}_n^{k_2} \text{ is } (k_1, k_2) - minimal.$

3- An action of $K_n \times K_n$ on the set of partial elements which is compatible with the product of partial elements.

- 1- A partial element of G_n is a triplet $(hK_n^k, (x; k), K_n^k h')$, where $1 \leq k \leq n, x \in G_k$ and $h, h' \in K_n$.
- 2- product: $(h_1 K_n^{k_1}, (x_1; k_1), K_n^{k_1} h'_1) \cdot (h_2 K_n^{k_2}, (x_2; k_2), K_n^{k_2} h'_2)$ is a normalized sum of partial elements of the form

 $(h_1^i K_n^m, (x_1 h x_2; m), K_n^m h_1^{\prime j}), \text{ where, } m = \max(k_1, k_2, k(K_n^{k_1} h_1' h_2 K_n^{k_2})),$ and, $h \in K_n^{k_1} h_1' h_2 K_n^{k_2}$ is $(k_1, k_2) - minimal.$

- 3- An action of $K_n \times K_n$ on the set of partial elements which is compatible with the product of partial elements.
- 4- A projection from the algebra of partial elements to $\mathbb{C}[\mathcal{B}_n \setminus \mathcal{S}_{2n}/\mathcal{B}_n]$.

V. Conclusions and further applications

Conclusions: Under technical conditions,

- 1. Form of the structure coefficients of double-class algebras.
- 2. Form of the structure coefficients of centers of group algebras.
- 3. We re-obtain the polynomiality property for $\mathcal{Z}(\mathbb{C}[\mathcal{S}_n])$, the Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$ and $\mathcal{Z}(\mathbb{C}[\mathcal{G}L_n(\mathbb{F}_q)])$.

Conclusions: Under technical conditions,

- 1. Form of the structure coefficients of double-class algebras.
- 2. Form of the structure coefficients of centers of group algebras.
- 3. We re-obtain the polynomiality property for $\mathcal{Z}(\mathbb{C}[\mathcal{S}_n])$, the Hecke algebra of $(\mathcal{S}_{2n}, \mathcal{B}_n)$ and $\mathcal{Z}(\mathbb{C}[\mathcal{G}L_n(\mathbb{F}_q)])$.

Further application:

• Superclasses of unitriangular groups...