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|. Introduction: structure coefficients of an algebra

o Problem: Let A be an algebra over a field F with basis
b1, by, -, b,y. For two basis elements, say b; and b;, write:

bibj = > cfibx,
k

where c . € F. The elements c ;; are called the structure coefficients
of A and there is no explicit formula for them, even in the particular
algebras we will consider.
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|. Introduction: structure coefficients of an algebra

e Problem: Let A be an algebra over a field F with basis
b1, by, -+, by. For two basis elements, say b; and b;, write:

_ k
j =, clibr,
k

where c . € F. The elements c . are called the structure coefficients
of A and there is no explicit formula for them, even in the particular
algebras we will consider.
@ Our work:
1- A framework in which one can obtain the form of the structure

coefficients of the algebra of double-classes.!
2- A polynomiality property of these coefficients in some specific cases.

!These coefficients "contain" structure coefficients of group algebras.

O. Tout (LaBRI, Bordeaux) Bordeaux, 2014-02 4/ 29



Il. Partitions

Il. Partitions

out (LaBRI, Bordeaux) Bordeaux, 2014-02 5 /29



Il. Partitions

@ A partition X is a list of integers (A1, Az, ...) where
Al = A= ... =1 The )\; are called the parts of A. The size of a
partition A (noted |\|) is the sum of all its parts.
Example: A =(3,2,1), |]\|=3+2+1=6

O. Tout (LaBRI, Bordeaux) Bordeaux, 2014-02 6 /29



Il. Partitions

@ A partition X is a list of integers (A1, Az, ...) where
Al = A= ... =1 The )\; are called the parts of A. The size of a
partition A (noted |\|) is the sum of all its parts.
Example: A =(3,2,1), |]\|=3+2+1=6

@ A proper partition is a partition without parts equal to one.
Example: § = (3,2,2), is a proper partition of size 7.

O. Tout (LaBRI, Bordeaux) Bordeaux, 2014-02 6 /29



Il. Partitions

@ A partition X is a list of integers (A1, Az, ...) where
Al = A= ... =1 The )\; are called the parts of A. The size of a
partition A (noted |\|) is the sum of all its parts.
Example: A =(3,2,1), |]\|=3+2+1=6

@ A proper partition is a partition without parts equal to one.
Example: § = (3,2,2), is a proper partition of size 7.

o Let \ be a proper partition and n > |\|. The partition A U (1" 1) is
the partition of n obtained by adding n — |\| parts equal 1 to A.

O. Tout (LaBRI, Bordeaux) Bordeaux, 2014-02 6 /29



Il. Partitions

@ A partition X is a list of integers (A1, Az, ...) where
A1 = A = ... 2= 1. The \; are called the parts of \. The size of a
partition A (noted |\|) is the sum of all its parts.
Example: A =(3,2,1), |]\|=3+2+1=6

@ A proper partition is a partition without parts equal to one.
Example: § = (3,2,2), is a proper partition of size 7.

o Let \ be a proper partition and n > |\|. The partition A U (1" 1) is
the partition of n obtained by adding n — |\| parts equal 1 to A.

@ Partitions of n are in bijection with the proper partitions with size at
most n.

O. Tout (LaBRI, Bordeaux) Bordeaux, 2014-02 6 /29



Il. Partitions

@ A partition X is a list of integers (A1, Az, ...) where
A1 = A = ... 2= 1. The \; are called the parts of \. The size of a
partition A (noted |\|) is the sum of all its parts.
Example: A =(3,2,1), |]\|=3+2+1=6

@ A proper partition is a partition without parts equal to one.
Example: § = (3,2,2), is a proper partition of size 7.

o Let \ be a proper partition and n > |\|. The partition A U (1" 1) is
the partition of n obtained by adding n — |\| parts equal 1 to A.

@ Partitions of n are in bijection with the proper partitions with size at
most n.
The proper partitions will be used to index bases of the algebras
considered in this talk.
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@ The symmetric Group Algebra C[S,] is the algebra over C with basis
the elements of S, (the permutations of n).
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@ The symmetric Group Algebra C[S,] is the algebra over C with basis
the elements of S, (the permutations of n).

@ Every element of S, can be written (in a unique way) as a product of
disjoint cycles.

e For a permutation w € S,, we define the cycle-type of w, ct(w), to be
the partition of n with parts equal to the lengths of the cycles that
appear in its decomposition.

Example: w=2 6 5 4 3 1=(1 2 6)(5 3)(4).
ct(w) = (3,2,1).
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IIl. Three polynomiality results 1. Center of the symmetric group algebra

@ The symmetric Group Algebra C[S,] is the algebra over C with basis
the elements of S, (the permutations of n).

@ Every element of S, can be written (in a unique way) as a product of
disjoint cycles.

e For a permutation w € S,, we define the cycle-type of w, ct(w), to be
the partition of n with parts equal to the lengths of the cycles that
appear in its decomposition.

Example: w=2 6 5 4 3 1=(1 2 6)(5 3)(4).
ct(w) = (3,2,1).
@ The center of the symmetric group algebra, Z(C[S,]), is:

Z(C[Sh]) = {x € C[Si] | x-y = y - x ¥y € CSA]}.

© The family (Sx(n))|xj<n indexed by proper partitions of size at most n
forms a basis for Z(C[S,]), where,

Sx(n) = 2 w

w€Sn,
ct(w)=ru(11=I1Al
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IIl. Three polynomiality results 1. Center of the symmetric group algebra

@ For X\ and ¢ two proper partitions with size at most n,

Sxa(n) - Ss(n) = Z Cf,(s(”)sp(”)y

p proper partition
lp|<n

the numbers cf s(n) are the structure coefficients of the center of the
symmetric group algebra Z(C[S,]).
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IIl. Three polynomiality results 1. Center of the symmetric group algebra

@ For X\ and ¢ two proper partitions with size at most n,

Sxa(n) - Ss(n) = Z Cf,(s(”)sp(”)y

p proper partition
lp|<n

the numbers cf s(n) are the structure coefficients of the center of the
symmetric group algebra Z(C[S,]).

e Motivation (Cori [1975]:) The structure coefficients of the center of
the symmetric group algebra count the number of embeddings of
certain graphs into orientable surfaces.
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IIl. Three polynomiality results 1. Center of the symmetric group algebra

@ For X\ and ¢ two proper partitions with size at most n,

S-Sy = Y e smS,n).

p proper partition
lpl<n

the numbers cf <(n) are the structure coefficients of the center of the
symmetric group algebra Z(C[S,]).

@ Theorem (Farahat and Higman [1958]): Let A, 6 and p be three
proper partitions, the function:

n— cf 5(n)

defined for n > |A|, |d], |p| is a polynomial in n.
Example: One can compute explicitly:

—1
5(2)(n) . 5(2)(n) = n(n2 )Sg(n) + 35(3)(”) + 25(22)(11).
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IIl. Three polynomiality results 1. Center of the symmetric group algebra

@ For X\ and ¢ two proper partitions with size at most n,

S-Sy = Y e smS,n).

p proper partition
lpl<n

the numbers cf 5( n) are the structure coefficients of the center of the
symmetric group algebra Z(C|S,]).

@ Theorem (Farahat and Higman [1958]): Let A, 6 and p be three
proper partitions, the function:

n— cf 5(n)

defined for n > |A|, |d], |p| is a polynomial in n.
Example: One can compute explicitly:
5(2)(n) . 5(2)(n) = n(n;l) 5@(”) + 35(3)(”) + 25(22)(11).

@ The polynomiality property for the structure coefficients of the center
of the symmetric group algebra is interesting in the study of
Plancherel measure on young diagrams.
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([ T ST T ETH AT 2. Hecke algebra of (Sa,, Bn)

@ The Hyperoctahedral group B, is the subgoup of S, consisting of all
permutations of Sy, which takes every pair of the form {2k — 1,2k} of
[2n] to another pair with the same form.

Example: 3 =43875621 € By
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Example: 3 =43875621 € By

@ To each permutation w of 2n we associate a graph '(w).
Example: Take w =24931105867 € Sip.
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([ T ST T ETH AT 2. Hecke algebra of (Sa,, Bn)

@ The Hyperoctahedral group B, is the subgoup of S, consisting of all
permutations of Sy, which takes every pair of the form {2k — 1,2k} of
[2n] to another pair with the same form.

Example: 3 =43875621 € By

@ To each permutation w of 2n we associate a graph '(w).
Example: Take w =24931105867 € Sip.

@ The coset-type of a permutation x of Sy, is a partition of n with parts
equal to half of lengths of the cycles of I'(x).
Example: coset-type(w) = (3,2).
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([ T ST T ETH AT 2. Hecke algebra of (Sa,, Bn)

o The Hecke algebra of (S, B,) denoted by C[B,\Sz,/Bn] is the
sub-algebra of C[S2,] of elements invariant under the B,-double
action. That means that:

x € C[B,\S2/Bn] <> hxh’ = x for every h,h' € B,,.
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([ T ST T ETH AT 2. Hecke algebra of (Sa,, Bn)

@ The Hecke algebra of (Sa,, B,) denoted by C[B,\S2n/Bn] is the
sub-algebra of C[S2,] of elements invariant under the B,-double
action. That means that:

x € C[B,\S2/Bn] <> hxh’ = x for every h,h' € B,,.

o Proposition: The family (S} (n))|j<n indexed by proper partitions with
size at most n forms a basis for C|B,\S2n/Bn|, where

Si(n) = Z w.

w€eSy

cosetftype(w)=)\u(1“_‘>“ )
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([ T ST T ETH AT 2. Hecke algebra of (Sa,, Bn)

@ For X\ and ¢ two proper partitions with size at most n,

Si(n)-Simy = > Ls(mSyn),

p proper partition
lpl<n

the numbers ¢’f <(n) are the structure coefficients of the Hecke
algebra of (Sap, Bp).
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([ T ST T ETH AT 2. Hecke algebra of (Sa,, Bn)

@ For X\ and ¢ two proper partitions with size at most n,

Si(n) - Si(n) = 2 % 5(n)S)(n),

p proper partition
lpl<n

the numbers c’f\ﬁ(n) are the structure coefficients of the Hecke
algebra of (Sap, Bp).

e Motivation (Goulden and Jackson [1996]): These coefficients count
the number of embeddings of certain graphs into non-orientable
surfaces.
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([ T ST T ETH AT 2. Hecke algebra of (Sa,, Bn)

@ For X\ and ¢ two proper partitions with size at most n,

Si(n)-Simy = > Ls(mSyn),

p proper partition
lpl<n

the numbers ¢’f <(n) are the structure coefficients of the Hecke
algebra of (Sap, Bp).

@ Theorem (Dotega and Féray [2012], T. [2013]): Let A, 6 and p be
three proper partitions, we have:

2"nlf5(n) if n=|pl,
cRs(n) =
0 if n<|p|,

where f{5(n) is a polynomial in n.
Example: For every n > 4, we have:

S(2)(n):S((n) = 2"n! (n(n — 1)5'@(n)+15('2)(n)+3Sé3)(n)+25('22)(n)).
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I1l. Three polynomiality results [ECHEeUIIIa N0l e/ BFYGS)|

@ Let g be a power of prime and F4 be the finite field of size g. A
polypartition fi = (u(P1),- -+, u(Py)) over Fg is a family of partitions
indexed by monic irreducible polynomials of Fg, all different from X.
The size of i is:

1] = deg(P)|u(Py)-
i=1
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I1l. Three polynomiality results [ECHEeUIIIa N0l e/ BFYGS)|

@ Let g be a power of prime and F4 be the finite field of size g. A
polypartition fi = (u(P1),- -+, u(Py)) over Fg is a family of partitions
indexed by monic irreducible polynomials of Fg, all different from X.
The size of i is:

1] = deg(P)|u(Py)-
i=1

@ A polypartition is called proper if its partition associated to the
irreducible polynomial X — 1 is proper.
Example: o= (X —1:(2),X2—2:(1)) is a proper polypartition of
size 4 over F3.
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o GL,(Fy) is the group of invertible n x n matrices with elements in [Fg.
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I1l. Three polynomiality results [ECHEeUIIIa N0l e/ BFYGS)|

o GL,(Fy) is the group of invertible n x n matrices with elements in [Fg.
o The center of C[GL,(Fq)], is:

Z(C[GLy(Fg)]) = {x € C[GLy(Fg)] | x -y = y - x Vy € C[GLA(Fq)]}-

o Z(C[GLn(Fg)]) has a basis (S;\(n))|;|<n indexed by proper
polypartitions of size at most n.
@ For ) and & two proper polypartitions with size at most n,

Si(m-Ssm= > f5mSn),

p proper polypartition
|pl<n

the numbers & ;(n) are the structure coefficients of the center of
C[GLA(Fq)].

@ Theorem (Méliot [2013]):Fix g, the coefficients cf (n) are

S0

polynomials in ¢".
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IV. Structure coefficients of the algebra of double classes

o Let (Gp, Kn)n be a sequence where G, is a group and K, is a
sub-group of G, for each n.
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IV. Structure coefficients of the algebra of double classes

o Let (Gp, Kn)n be a sequence where G, is a group and K, is a
sub-group of G, for each n.

@ A double-class of K, in G, is a set g" := K,gK,, for a g € G,,

KngKn = {kgk'; k, k' € Kp}.

o Let %, = {x1",- -+ ,X(n)"} be the set of representative elements of the
set of double-classes K\ Gn/Kn.

@ Let X;" be the sum of the elements in X;". The algebra of double
classes, denoted C[K,\Gp/Kp], is the algebra with basis the elements
X"

Example: The Hecke algebra of (Szp, By), C[Bp\S2n/Bn], is an
algebra of double classes.
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IV. Structure coefficients of the algebra of double classes

@ The product X;" - X;" can be written as follows:

N N r val)
X" X" = Z ci j(mxe".
1<r<i(n)

The coefficients ¢/ ;(n) are the structure coefficients of the algebra of
double classes.
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IV. Structure coefficients of the algebra of double classes

@ The product X;" - X;" can be written as follows:

1<r<i(n)

The coefficients ¢/ ;(n) are the structure coefficients of the algebra of
double classes.

@ There is no explicit formula for these coefficients.

e Goals:

1. The form of these structure coefficients under some conditions.
2. Applications to the three specific cases: Z(C[S,]), the Hecke algebra
of (825, B,) and Z(C[GL,(Fy)])-
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IV. Structure coefficients of the algebra of double classes

Under the following conditions:

1. For each integer k < n there exists a subset K,',‘ of K, such that:

Hyp 1. KX is isomorphic to K, .
For K, = S,, S¥ is the sub-group of permutations acting on the set
(k+1,---,n).

Hyp 2. For any two elements x € K and y € KX, we have: x -y =y - x.
If x € Sy and y € Sk then x and y act on disjoint sets, hence the
commutativity.

Hyp 3. KX, n Ko =Kk if k <n.
Sk.1 NS, is the set of permutations which fix the elements 1,- -, k
and n+1, so it is S.
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IV. Structure coefficients of the algebra of double classes

Define
k(X) := mkin k

XnGp#J

and say that y € K, is (ki, ko)-minimal if y € K, where

m = mk1,k2(.y) = k(KrI;IyKll;z)

2. In addition to the hypotheses above, suppose that:
Hyp 4. for any element z € K,, we have, K,filzK,Ifﬁrl NnK,= K,’,“ZK,’,Q.
Hyp 5. mkhkz(x) < ki + ko.
Hyp 6. yKfiy=1 n Kke = K,:nk"kz(x), if y is (ki, ko)-minimal.
We ensure that these conditions are true in the case of S, but we do
not have the time to show them explicitly here.
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we have:
Theorem (T.): For ki = k(X;"), ko = k(X;") and ks = k(X;") there exists
rational numbers af ;(k) all independent of n such that:

(o) = IS Ko il 5 a0
’ [Knll%"| |Kn—k|

k3<k<min(k1+k2,n)
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we have:
Theorem (T.): For ki = k(X;"), ko = k(X;") and ks = k(X;") there exists
rational numbers af ;(k) all independent of n such that:

roy KKK g (1Kot 3t (k)

G = DR [

nliAr ks<k<min(ky+ka,n) | "k

Application (The Hecke algebra of (S»,,B,)): Let \ be a proper partition
of size at most n. The size of its associated double class S} (n) is:

(27n)?

/ —
|S)\(n)| - 22)\2’77‘)"(” _ |)\|)|7

where, z)y = [ [;>4 i) m (M)
Let § and p be two proper partitions with size at most n, we have:

— |
C”))\,(S(”) — 2"l 22 a§5(k)2k_p(n|z|)l'. Polynomial!
il = (m =)'

O. Tout (LaBRI, Bordeaux) Bordeaux, 2014-02 22 /29



IV. Structure coefficients of the algebra of double classes

Relation between structure coefficients of centers and double-classes
algebras:

o Let (G, ) be a finite group and (G°PP, x) its opposite group.

X%y =Vy-X.
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IV. Structure coefficients of the algebra of double classes

Relation between structure coefficients of centers and double-classes
algebras:

o Let (G, ) be a finite group and (G°PP, x) its opposite group.

X%y =Vy-X.

o diag(G) := {(x,x !)|x € G} is a subgroup of G x GPP.
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IV. Structure coefficients of the algebra of double classes

Relation between structure coefficients of centers and double-classes
algebras:

o Let (G, ) be a finite group and (G°PP, x) its opposite group.
X%y =y-X.

o diag(G) := {(x,x !)|x € G} is a subgroup of G x GPP.

e Consider the double-action of diag(G) on G x G°PP:

(,x 1) - (a,b) - (y,y 1) = (xay,y thx Y.

e Two pairs (a, b) and (c, d) are in the same double-class if and only if
ab is conjugated with cd.
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IV. Structure coefficients of the algebra of double classes

@ Let CL(G) be a subset of G which represents the set of all conjugacy
classes of G.

o Let Cr be the conjugacy class of f € G and Cy the sum of its
elements. We have:

CiCh= ), c£Cq.
geCL(G)

o Let Cf = {(a, b) | ab e C¢} be the double-class associated to f € G
and C’f the sum of its elements. We have:

I~ 18 ~1
C:C, = 2 Cth g
geCL(G)
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IV. Structure coefficients of the algebra of double classes

@ The structure coefficients of Z(C[G]) and the structure coefficients of
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IV. Structure coefficients of the algebra of double classes

@ The structure coefficients of Z(C[G]) and the structure coefficients of
the algebra of double classes of (G x G°PP diag(G)) are related by:

c}f = |G|c§7.

@ Theorem (T.): Let (Gp), be a sequence of finite groups such that its
associated sequence of pairs (G, x GiPP, diag(G,)), satisfying all
necessary conditions given above. Let f, h and g be three elements of
Gp and let ki = k(C¢(n)), ko = k(Ch(n)) and k3 = k(Cgz(n)). There
exists rational numbers a?h(k) independent of n such that:

& () = [GONGDIG k1G] 5 a7 (k)
" [Gall () Gokl’

kz3<k<<min(ki+kz,n) |
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Application to Z(C[Sp]): Let A\ be a proper partition of size at most n.
The size of its associated conjugacy class Sy(n) is:

n!
S -
]
Let § and p be two proper partitions with size at most n, we have:
i n—p|)! :
Cﬁ\),é(n) =2 Z ag\g(k)((n_|k|))|- Polynomial!

Z)\Z,
AL | ol <k<[A+]3]
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IV. Structure coefficients of the algebra of double classes

Application to Z(C[Sp]): Let A\ be a proper partition of size at most n.
The size of its associated conjugacy class Sy(n) is:

n!
S\(n)| = ————.
R ]
Let § and p be two proper partitions with size at most n, we have:
— oI
b s(n) = i Z af\(;(k)w. Polynomial!

z)z, n—k)!
A pl<k<lA o (1= 4)

Expected application to Z(C[GL,(FFq)]): Let X be a proper polypartition of
size at most n. The size of its associated conjugacy class S5 (n) is:

|GLA(Fq)|
|S5(n)] = |55 " '
A b\ |GL‘;\‘(Fq)|q("7|’\‘)(2I(A(X71)))|GLn—|5\\(]Fq)|

Let & and p be two proper polypartitions with size at most n, we have:

-1
2 _ 161 2n(k—1p|+1(p(X=1))—I(A(X—1))=I(5(X=1))) (4~ In—5|
& 5(m) = Y el (k=151 +1(p(X 1) —I(A(X—1)) =/ (5(X 1))

1 . Polynomial!
R [ (@ V) p_k
|pl<k<|A|+18]
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IV. Structure coefficients of the algebra of double classes

Proof’s elements:

1- A partial element of G, is a triplet (hKX, (x; k), KXH'), where
1<k<n xeGgand h,i e K,.
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Proof’s elements:

1- A partial element of G, is a triplet (hKX, (x; k), KXH'), where
1<k<n xeGgand h,i e K,.

2- product: (h1 KX, (x1; ki), KK hy) - (haKk2 (x2; ko), KK2hS) is a
normalized sum of partial elements of the form
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and, he KR hykke is (ky, ko) — minimal.
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2- product: (h1 KX, (x1; ki), KK hy) - (haKk2 (x2; ko), KK2hS) is a
normalized sum of partial elements of the form

(KLKIT, (xhxo; m), K"hY), where, m = max(ky, ko, k(Ky* B haKJ2)),

and, he KR hykke is (ky, ko) — minimal.

3- An action of K, x K, on the set of partial elements which is
compatible with the product of partial elements.
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IV. Structure coefficients of the algebra of double classes

Proof’s elements:

1-

2.

A partial element of G, is a triplet (hKX, (x; k), KKR'"), where
1<k<n xeGgand h,i e K,.

product: (hiKk (x1; ki), KIh)) - (K, (xo; ko), KX2hS) is a
normalized sum of partial elements of the form

(KLKIT, (xhxo; m), K"hY), where, m = max(ky, ko, k(Ky* B haKJ2)),

and, he KR hykke is (ky, ko) — minimal.

An action of K, x K, on the set of partial elements which is
compatible with the product of partial elements.

A projection from the algebra of partial elements to C[B,\S24/B,].
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V. Conclusions and further applications

Conclusions:
Under technical conditions,

1. Form of the structure coefficients of double-class algebras.
2. Form of the structure coefficients of centers of group algebras.

3. We re-obtain the polynomiality property for Z(C[S,]), the Hecke
algebra of (S2p, Bs) and Z(C[GL,(Fq)]).
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V. Conclusions and further applications

Conclusions:
Under technical conditions,

1. Form of the structure coefficients of double-class algebras.
2. Form of the structure coefficients of centers of group algebras.

3. We re-obtain the polynomiality property for Z(C[S,]), the Hecke
algebra of (S2p, Bs) and Z(C[GL,(Fq)]).

Further application:

@ Superclasses of unitriangular groups...
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