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Eulerian polynomials

The eulerian polynomials An(t) can be defined by

∞∑
n=0

An(t)
xn

n!
=

1− t
e(t−1)x − t

.

The first values of An(t) := an,0 + an,1t + · · ·+ an,n−tn−1:

A1(t) = 1,
A2(t) = 1 + t,

A3(t) = 1 + 4t + t2,

A4(t) = 1 + 11t + 11t2 + t3,

A5(t) = 1 + 26t + 66t2 + 26t3 + t4.



Unimodal and symmetric property

A polynomial p(x) = alx l + · · ·+ anxn is symmetric if al+i = an−i
for 0 ≤ i ≤ (n − l)/2, unimodal if there is a k such that

al ≤ al+1 ≤ · · · ak ≥ ak+1 ≥ · · · ≥ an.

Proposition

The polynomial An(t) has only real roots. Hence An(t) is both
unimodal and symmetric. Moreover

An(t) =
∑
σ∈Sn

tdesσ =
∑
σ∈Sn

texcσ,

where Sn is the set of permutations on {1, . . . , n} and

desσ = #{i ∈ [n − 1]|σ(i) > σ(i + 1)},
excσ = #{i ∈ [n]|σ(i) > i}.



Some well-known facts

Let p(x) =
∑n

k=0 aix be a polynomial with nonnegative coefficients
and with only real zeros. Then
(a) The sequence (a0, . . . , an) is log-concave: a2i ≥ ai−1ai+1.
(b) The sequence (a0, . . . , an) is unimodal.
(c) Furthermore, if p(x) =

∑n
k=0 aix is symmetric, then

p(x) =

n/2∑
i=0

bi x i (1 + x)n−2i with bi ≥ 0.

N.B. (a) =⇒ (b) and (c) =⇒ (b).



Foata-Schützenberger, Foata-Strehl in 1970’s

Let σ = σ1 . . . σn ∈ Sn with σ(0) = σ(n + 1) = 0. An integer
i ∈ [1, n] is

a peak in σ if σi−1 < σi > σi+1;
a double descent if σi−1 > σi > σi+1.

Proposition

Let an,k be the number of permutations of [n] with k peaks and
without double descent. Then

An(t) =

b(n−1)/2c∑
k=0

an,ktk(1 + t)n−1−2k . (1)

Example: If n = 4, k = 2, then an,k = 8:

2134, 3124, 4123, 1423, 2413, 3412, 1324, 2314



Background

Let (P,≺) be a partial order of the set [n] = {1, 2, . . . , n} and
L(P) denote the set of linear extensions of P , i.e. permutations
w = (w1, . . . ,wn) of [n] such that if i ≺ j then i precedes j in the
total order also. For each particular linear extension w , let
d(w) = |{i : wi > wi+1}| denote the number of so-called descents
in P .
Example: if P is an antichain, then W (P, t) is an Eulerian
polynomial, and has real zeros only.



Conjecture ( The Poset or Neggers-Stanley conjecture)

The polynomial WP(t) =
∑

w∈L(P) t
d(w)+1 has real zeros only.

This conjecture was disproved by Brändén for general posets in
2004, and by Stembridge for naturally labelled posets in 2007.

Conjecture (consequences of the POSET conjecture, still open)

(1) WP(t) =
∑

w∈L(P) t
d(w)+1 is log-concave.

(2) WP(t) =
∑

w∈L(P) t
d(w)+1 is unimodal.

(3) If WP(t) =
∑

w∈L(P) t
d(w)+1 is symmetric of center d/2, then

there are wn,k ≥ 0 such that

WP(t) =

d/2∑
k=0

wn,ktk(1 + t)d−2k .



The descent polynomial of involutions

Let In be the set of involutions on [n] and consider

Hn(t) :=
∑
σ∈In

tdesσ = hn,0 + hn,1t + · · ·+ hn,n−1tn−1.

Strehl (1981) proved Dumont’s conjecture: {hn,k} is
symmetric.
Brenti (2004) conjectured that {hn,k} is log-concave.
Guo-Z. (2006) proved that {hn,k} is unimodal.
Barnabei-Bonetti-Silimbani (2009) disproved Brenti’s
conjecture.

Conjecture (Guo-Z., 2006, still open)

Hn(t) =

b(n−1)/2c∑
k=0

an,ktk(1 + t)n−1−2k an,k ∈ N.



Problems related to continued fractions

Let σ = σ(1) . . . σ(n) ∈ Sn, define the statistics

(2-31)σ = #{(i , j)|1 ≤ i < j ≤ n − 1, σ(j + 1) < σ(i) < σ(j)},
(13-2)σ = #{(i , j)|2 ≤ i < j ≤ n, σ(i − 1) < σ(j) < σ(i)}.

In 2008, Brändén (after the works of Postnikov, Williams and
Corteel) considered the refined Eulerian polynomials:

An(p, q, t) :=
∑
σ∈Sn

p(13-2)σq(2-31)σtdesσ

and proved, modifying the Foata-Strehl action, the identity:

An(p, q, t) :=

b(n−1)/2c∑
k=0

an,k(p, q)tk(1 + t)n−1−2k ,

where 2n−1−2kan,k(p, q) ∈ N[p, q].



Conjecture (Brändén)

The polynomial an,k(p, q) has a factor (p + q)k for all
0 ≤ k ≤ b(n − 1)/2c.

The first values of an,k(p, q) are given by an,0(p, q) = 1 for
1 ≤ n ≤ 5 and

n \ k 0 1 2
1 1
2 1
3 1 p + q
4 1 (p + q)(p + q + 2)
5 1 (p + q)[(p + q)2 + 2(p + q) + 3] (p + q)2(p2 + pq + q2 + 1)



Derangement analogue

Let Dn be the set of derangements in Sn. Consider the
derangement analogue of the Eulerian polynomials:

Bn(t) =
∑
σ∈Dn

texcσ = Bn,1t + Bn,2t2 + · · ·+ Bn,n−1tn−1.

Then
∞∑

n=0

Bn(t)
xn

n!
=

1− t
etx − tex .

By analytical method, one can show

Bn(t) =

bn/2c∑
i=1

bn,ktk(1 + t)n−2k bn,k ∈ N. (2)

No combinatorial interpretation for bn,k seems to be known
hitherto.



(p, q)-analogue of the (-1)-evaluation of An(t) and Bn(t)

The Euler numbers En are defined by∑
n≥0

En
xn

n!
= tan x + sec x .

The Euler number En counts the alternating permutations in Sn. It
is well known that

A2n(−1) = 0, A2n+1(−1) = (−1)nE2n+1,
B2n(−1) = (−1)nE2n, B2n+1(−1) = 0,

(3)

It follows that a2n+1,n = E2n+1 and b2n,n = E2n. Some q-analogues
of (3) have been recently studied by Foata-Han, Josuat-Vergès.



Two continued fractions of Euler, Rogers

∞∑
n=0

(n + 1)!xn =
1

1− 2x −
1 · 2x2

1− 4x −
2 · 3x2

· · ·

,

∞∑
n=0

n!xn =
1

1− x −
12x2

1− 3x −
22x2

· · ·

.



Combinatorial version by Flajolet, Françon-Viennot,
Foata-Zeilberger, Biane

Consider the following Motzkin path γ :
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The weight is w(γ) = b20 b1 λ
2
1 λ2. Denote by Mn the set of

Motzkin paths of length n ≥ 1. Then

1 +
∑
n≥1

∑
γ∈Mn

w(γ)xn =
1

1− b0x −
λ1x2

1− b1x −
λ2x2

· · ·

. (4)



Laguerre history: h = (γ; p1, . . . , pn) with respect to the valuation

ak = k +1, bk = 2k +2 for k ≥ 0; ck = k +1 for k ≥ 1.

or λk := ak−1ck = k(k + 1) for k ≥ 1. The number of Laguerre
histories of length n is (n + 1)!.
Restricted Laguerre history: h = (γ; p1, . . . , pn) with respect to the
valuation

ak = k + 1, bk = 2k + 1 for k ≥ 0; ck = k for k ≥ 1.

or λk := ak−1ck = k2 for k ≥ 1. The number of Laguerre histories
of length n is n!.

Theorem

There are Bijections between Sn and the Laguerre histories of
length n.



Main results

Definition

For σ ∈ Sn, let σ(0) = σ(n + 1) = 0. Then any entry σ(i)
(i ∈ [n]) can be classified according to one of the four cases:

a peak if σ(i − 1) < σ(i) and σ(i) > σ(i + 1);
a valley if σ(i − 1) > σ(i) and σ(i) < σ(i + 1);
a double ascent if σ(i − 1) < σ(i) and σ(i) < σ(i + 1);
a double descent if σ(i − 1) > σ(i) and σ(i) > σ(i + 1).

Let peak∗ σ (resp. valley∗ σ, da∗ σ, dd∗ σ) denote the number of
peaks (resp. valleys, double ascents, double descents) in σ. Clearly
we have peak∗ σ = valley∗ σ + 1.



The generalized Eulerian polynomial defined by

An(p, q, t, u, v ,w) =
∑
σ∈Sn

p(2-13)σq(31-2)σtdesσuda
∗ σvdd

∗ σw valley∗ σ.

Define the polynomial

an,k(p, q) =
∑

σ∈Sn,k

p(2-13)σq(31-2)σ,

where Sn,k is the subset of permutations σ ∈ Sn with exactly
k valleys and without double descents.



Theorem (Shin-Z.)

We have the expansion formula

An(p, q, t, u, v ,w) =

b(n−1)/2c∑
k=0

an,k(p, q)(tw)k(u + vt)n−1−2k . (5)

Moreover, for all 0 ≤ k ≤ b(n − 1)/2c, the following divisibility
holds

(p + q)k | an,k(p, q). (6)

The above Theorem generalizes Brändén’s result and (6) solves his
conjecture.



Definition

For σ ∈ Sn, a value x = σ(i) (i ∈ [n]) is called
a cyclic peak if i = σ−1(x) < x and x > σ(x);
a cyclic valley if i = σ−1(x) > x and x < σ(x);
a double excedance if i = σ−1(x) < x and x < σ(x);
a double drop if i = σ−1(x) > x and x > σ(x);
a fixed point if x = σ(x).

Let cpeakσ (resp. cvalley σ, cdaσ, cddσ, fixσ) be the number of
cyclic peaks (resp. valleys, double excedances, double drops, fixed
points) in σ.



For σ ∈ Sn define the crossing and nesting numbers by

cros(σ) =
n∑

i=1

#{j ∈ [n]|j < i ≤ σ(j) < σ(i) or j > i > σ(j) > σ(i)},

nest(σ) =
n∑

i=1

#{j ∈ [n]|i < j ≤ σ(j) < σ(i) or i > j > σ(j) > σ(i)},

Diagram of σ = 9 3 7 4 6 10 5 8 1 2: crosσ = 4 and nestσ = 7.
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Definition

For σ ∈ Sn, let σ(0) = 0 and σ(n + 1) = n + 1. The
corresponding number of peaks, valleys, double ascents, and double
descents of permutation σ is denoted by

peakσ, valley σ, daσ, ddσ.

Moreover, a double ascent σ(i) of σ (i ∈ [n]) is said to be a
foremaximum if σ(i) is a left-to-right maximum of σ, i.e.,
σ(j) < σ(i) for all 1 ≤ i < j . Denote the number of foremaxima of
σ by fmaxσ.

For instance, fmax(42157368) = 2. Note that peakσ = valley σ for
any σ ∈ Sn.



Theorem (Shin-Z.)

There is a bijection Φ on Sn such that for all σ ∈ Sn we have

(nest, cros, drop, cda, cdd, cvalley, fix)σ

= (2-31, 31-2, des, da− fmax, dd, valley, fmax)Φ(σ).

In particular, Φ transforms (drop, nest, cros) to (des, 2-31, 31-2).
Corteel gave a similar bijection ΦC on Sn which transforms
(ndes, 31-2, 2-31) to (wex, nest, cros),
Steingrímsson-Williams gave another one which transforms
(ndes, 31-2, 2-31) to (n + 1− wex, nest, cros).



Note that wex = n − drop.

Corollary

We have

∑
σ∈Sn

pnestσqcrosσtwexσ =

b(n−1)/2c∑
k=0

an,k(p, q)tk+1(1 + t)n−1−2k .



Consider the common enumerator polynomial

Bn(p, q, t, u, v ,w , y)

: =
∑
σ∈Sn

pnestσqcrosσtdropσucdaσv cddσw cvalley σyfixσ (7)

=
∑
σ∈Sn

p(2-31)σq(31-2)σtdesσudaσ−fmaxσvddσw valley σy fmaxσ. (8)

When u = 0 and t = v = 1 we can write

Bn(p, q, 1, 0, 1,w , y) :=
∑
k,j≥0

bn,k,j(p, q)wkyd , (9)

where bn,k,j(p, q) is a polynomial in p and q with non negative
integral coefficients.



Let

Sn,k,j = {σ ∈ Sn : cvalley σ = k , fixσ = j , cdaσ = 0}
S∗n,k,j = {σ ∈ Sn : valley σ = k , fmaxσ = j , daσ = j}

We derive from the above Theorem the following result.

Corollary

We have

bn,k,d (p, q) =
∑

σ∈Sn,k,j

pnestσqcrosσ =
∑

σ∈S∗
n,k,j

p(2-31)σq(31-2)σ.

In particular, when j = 0, we obtain

bn,k,0(p, q) =
∑

σ∈Sn,k,0

pnestσqcrosσ =
∑

σ∈S∗
n,k,0

p(2-31)σq(31-2)σ.



Theorem

Bn(p, q, t, u, v ,w , y)

=
n∑

j=0

y j
b(n−d)/2c∑

k=0

bn,k,j(p, q)(tw)k(qu + tv)n−j−2k .

Setting y = 0 in the above Theorem we obtain the following
(p, q)-analogue of (-1)-evaluation of Eulerian polynomials.

Corollary

∑
σ∈Dn

pnestσqcrosσtexcσ =

bn/2c∑
k=0

bn,k,0(p, q)tk(1 + qt)n−2k .



Let An be the set of alternating permutations: σ1 > σ2 < . . .

Theorem (Shin-Z.)

For n ≥ 1, we have∑
σ∈Sn

(−1)wexσpnestσqcrosσ

=

{
0 if n is even,
(−1)

n+1
2

∑
σ∈An

p(2-13)σq(31-2)σ if n is odd;∑
σ∈Dn

(−1/q)excσpnestσqcrosσ

=

{
(−1/q)

n
2
∑

σ∈An
p(2-31)σq(31-2)σ if n is even,

0 if n is odd.

The p = 1 case is due to Josuat-Vergès.



Sketch of the proof

∑
n≥1

An(p, q, t, u, v ,w)xn−1

=
1

1− (u + tv)[1]p,qx −
[1]p,q[2]p,qtwx2

1− (u + tv)[2]p,qx −
[2]p,q[3]p,qtwx2

· · ·

.

For 0 ≤ k ≤ b(n − 1)/2c, let an,k(p, q, t, u, v) be the coefficient of
wk in An(p, q, t, u, v ,w), i.e.,

An(p, q, t, u, v ,w) =

b(n−1)/2c∑
k=0

an,k(p, q, t, u, v)wk . (10)



Substituting x ← x
(u+tv) and w ← w(u+tv)2

t in the above formula

∑
n≥1

b(n−1)/2c∑
k=0

an,k(p, q, t, u, v)

tk(u + tv)n−1−2k w
kxn−1

=
1

1− [1]p,qx −
[1]p,q[2]p,qwx2

1− [2]p,qx −
[2]p,q[3]p,qwx2

1− [3]p,qx −
[3]p,q[4]p,qwx2

· · ·

.



The coefficient of wkxn−1 in the left-hand side is a polynomial in p
and q with nonnegative integral coefficients. If we denote this
coefficient by

Pn,k(p, q) :=
an,k(p, q, t, u, v)

tk(u + tv)n−1−2k ,

then

Pn,k(p, q) = an,k(p, q, 1, 1, 0) = an,k(p, q, 0, 1) = an,k(p, q).

Finally, as

(p + q) | [n]p,q[n + 1]p,q for all n ≥ 1,

each w appears with a factor (p + q) in the expansion of the
continued fraction, so the polynomial Pn,k(p, q) is divisible by
(p + q)k .



Merci !


