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Plan of the talk

Complexity landscapes
A constraint satisfaction problem (CSP):
Maximum independent set (MIS)
Its average complexity (asymptotics)
Ubiquity of nln n

Mathematics behind
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Complexity landscape of algorithms

Worst-case complexity: MaxxT (x)

Average-case complexity: Ex [T (x)]

Smoothed complexity: MaxxEε[T (x + ε)]
−→ what are the difficult regions?

Smoothed Analysis of Algorithms (∼20 articles so far):

Why The Simplex Algorithm Usually Takes Polynomial Time
[Spielman & Teng 01]

Smoothed analysis of three combinatorial problems
[Banderier & Beier & Mehlhorn 03]
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Complexity landscape of graph algorithms...
(with respect to the density)

For discrete combinatorial structures: no unique
notion of perturbation/vicinity/neighboorhoud”.
→ A natural measure of ”similarity” for graphs: the
density # edges

# vertices .
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Complexity landscapes and P 6= NP

If one could prove a superpolynomial average
complexity for a problem (and not only for an
algorithm), this would prove P 6= NP.

We prove such a superpolynomial average complexity
for a infinite class of algorithms.
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Introduction to
Constraint Satisfaction Problems
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Constraint Satisfaction Problems

The class of problems known as Max–CSP plays a
key rôle in Computer Science.

CSP
n variables x1, · · · , xn belonging to finite domains.
A set of constraints (clauses) over these
variables: a constraint is a relation between the
variables defining authorized combinations of
them.
Decision problem: does it exist an assignment of
the variables (aka, a solution) satisfying all the
constraints?
Optimization problem: maximize the number of
satisfied constraints.
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Constraint Satisfaction Problem: Einstein Problem
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Constraint Satisfaction Problem: Einstein Problem

The author of this problem is Albert Einstein who said
that 98% of the people in the world couldn’t solve it.
Facts:
1. There are 5 houses (along the street) in 5 different colors: blue, green, red, white and yellow.
2. In each house lives a person of a different nationality: Brit, Dane, German, Norwegian and Swede.
3. These 5 owners drink a certain beverage: beer, coffee, milk, tea and water, smoke a certain brand of cigar:
Blue Master, Dunhill, Pall Mall, Prince and blend, and keep a certain pet: cat, bird, dog, fish and horse.
4. No owners have the same pet, smoke the same brand of cigar, or drink the same beverage.

Hints:
1. The Brit lives in a red house.
2. The Swede keeps dogs as pets.
3. The Dane drinks tea.
4. The green house is on the left of the white house (next to it).
5. The green house owner drinks coffee.
6. The person who smokes Pall Mall rears birds.
7. The owner of the yellow house smokes Dunhill.
8. The man living in the house right in the center drinks milk.
9. The Norwegian lives in the first house.
10. The man who smokes blend lives next to the one who keeps cats.
11. The man who keeps horses lives next to the man who smokes Dunhill.
12. The owner who smokes Blue Master drinks beer.
13. The German smokes Prince.
14. The Norwegian lives next to the blue house.
15. The man who smokes blend has a neighbor who drinks water.

Who keeps the fish?
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Constraint Satisfaction Problem: a less sexy example

Domains: (x , y) ∈ {0,1}2, (z, t) ∈ {0,1,2,3}2

Constraints:
(x , y) ∈ {(1,0), (0,1)}
x 6= z
y + z = 0 mod 2
t ≥ y

Definition: Max-2-CSP
Each constraint concerns at most 2 variables.
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Examples of Max-2-CSP problems

Max-2-CSP is very general paradigm:

Maximum bipartite subgraph (or Max-2-COL)

Max-CUT

Max-2-SAT, Max-2-XORSAT

graph colorability...

Maximum Independent Set (MIS).
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IS (independent set) and MIS (maximum independent
set)

IS = set of nodes not linked together.
MIS = set of nodes not linked together and one
cannot get larger.

1

2 3

5

2

4

5

1

2 3

4

5

14

{2, 4} is an IS {1,3,5} is an IS

3

of MAXIMUM size

N.B.: MIS not always unique.
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Why the MIS problem?

Stable maximum (Maximum Independent Set or MIS).

Motivations
1 Numerous applications (coloration, finances, codes, distributed

systems, ...)

2 The typical NP-complete problem (cf. Karp’s original list [KARP
72] ).

3 NP-HARD to approximate Håstad 99.

4 Many works including those of [TARJAN 77, CHVÀTAL 77, PITTEL

82, BALAS, YU 86, KARMARKAR, RESENDE 89, ..., ] .
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Finding a MIS: some remarkable works

1 [TARJAN, TROJANOWSKI 77] A seminal paper for
worst-case analysis: introduce the idea of
reductions.

2 [CHVÀTAL 77] Complexity theory (Length of
recursive proofs) for finding a MIS. W. h. p.,
lengths are of order eΘ(log n2).

3 [PITTEL 82] W. h. p. when the graph is dense,
eΘ(log n2) iterations are required.

OUR WORK: More precise average-case analysis
using various analytical approaches: generating
functions, Laplace transforms, ..., for a full class of
algorithms, for any density.
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OVERVIEW OF OUR RESULTS
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Main ideas of the proof

1 WEST SIDE.
We analyze a very general algorithm working on
all MAX-2-CSP. We use reductions
(transformations of the underlying graph) mainly
on vertices of degree < 3. We “branch” only on
vertices of degree ≥ 3.

2 EAST SIDE.
We analyze an exhaustive algorithm.

Remark.
In both cases, the algorithms are exact and ALWAYS
RETURN a MIS. As input, the underlying graphs of the
constraints are random G(n,m) and G(n,p). Our
results quantify the average number of global
iterations of the algorithms.
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West Side Story
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WEST SIDE: algorithm for MAX-2-CSP, main ideas
and analysis

Reduce all vertices of degree 1 and 2. (as in
[TARJAN 77] ).
These reductions cost polynomial time.
Branch on vertices of degree ≥ 3.

On graphs of excess r , the cost is <
√

2
r

( [SCOTT,
SORKIN 03]
The average cost for graphs of G(n, m) is
therefore upper bounded by

m∑
r=0

2r/2 Proba [ graph n vertices ,m edges has excess r ]︸ ︷︷ ︸
pr(n,m)

.
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WEST SIDE: graph before the reductions

Set of trees Giant component Unicycles
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WEST SIDE: graph before the reductions
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WEST SIDE: graph after reductions
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WEST SIDE: computing pr (n,m)

Theorem. The proba. that a graph with n vertices and
m = n

2 + µn2/3 edges has a connected component of
excess r = 16

3 µ
3 + O(µ3/2) is

pr(n,m) ∼
(

3
160πµ3

)1/2

exp

(
− 3

160

(
r− 16

3 µ
3
)2

µ3

)

(with uniform error terms as r, µ, n →∞ et |r − 16
3 µ

3| ≤ O(µ3/2), r ≤ O(n1/4) and µ ≤ O(n1/12)).
Proof. Use GF (here T ≡ T (z) = zeT (z))

pr (n,m) ∼ n!((n
2)
m

) [zn] (T (z)− T (z)2/2)n−m

(n −m)!︸ ︷︷ ︸
trees

e−T (z)/2−T (z)2/4

(1− T (z))1/2︸ ︷︷ ︸
unicycles

Wr (z)︸ ︷︷ ︸
giant comp

,

where Wr is Wright’s GF for graphs of excess r
(+saddle-point method [KNUTH-JANSON-ŁUCZAK-PITTEL

93, FLAJOLET-SEDGEWICK 09] ).
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WEST SIDE: results

Recall that the desired average cost of the reduction
algorithm is

m∑
r=0

2r/2
Proba [ graph n vertices ,m edges has excess r ]︸ ︷︷ ︸

pr(n,m)

.

Theorem. Let m = n
2 + µn2/3 with µ = o(n1/3). The average

cost of ALGO on G(n,m) is at most

exp
(

2 log 2
3

(5 log 2 + 4) µ3
)(

1 + o(1)
)
.

If m = n
2 (1 + ε) with n−1/4 ≤ ε < δ, the average cost of

ALGO is at most

exp
(

5(log 2)2

12
ε3 n +

log 2(ε2 − σ2)

4(1 + ε)
n
)(

1 + o(1)
)

with σ defined by (1 + ε)e−ε = (1− σ)eσ.
Our theorem holds for all MAX-2-CSP problems and not
only for ALGO=MIS!23/82



East Side Story: Exhaustive
Algorithms
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EAST SIDE: an exhaustive algorithm

Procedure MAXIS(G = (V ,E) : labeled graph)
Pick the least vertex v in V ;

(? EITHER v is not in the MIS −→ remove it ?)
V1 := V \ {v};
E1 := E \ { incident edges of v} ;
maxis1 := Card(MAXIS(G1)) ;

(? OR v is in a MIS −→ remove v and all its neighbors
?)
V2 := V \ Γ(v); (? Γ(v) = {v}

⋃
its neighbors ?)

E2 := E \ { incident edges of the vertices in Γ(v)} ;
maxis2 := 1 + Card(MAXIS(G2)) ;

RETURN: max (maxis1,maxis2)
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EAST SIDE: analysis of the exhaustive algorithm (1/2)

Let Mn = be the mean number of iterations of the
algorithm whenever the input are graphs from G(n,p).
We have

Mn = Mn−1 +
n−1∑
i=0

(
n− 1

i

)
pi(1− p)n−1−iMn−1−i

Theorem. As p → 0,

Mn =
1− W(np−p)

np−p

1 + W(np− p)

(
1− W(np− p)

np− p

)−n

(1 + O(p)) ,

where W is the Lambert function.
Example 1: p = log n

n . Roughly exp
(

n log log n
log n

)
iterations.

Example 2: p = 1
n1/2 . Roughly exp

(
1
2n1/2 log n

)
iterations.
Sub-exponential!
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EAST SIDE: analysis of the exhaustive algorithm (2/2)

Theorem. If 0 < p < 1 (fixed),

Mn ∼
e(ρ/2)(log(1/r))2G(ρ log(1/r))

rρ+1/2
√

2πρ log(1/r)
,

where ρ = 1/ log(1/(1− p)), r = W (n/ρ)
n/ρ and G is

continuous and 1-periodic function:

G(u) = q({u}2+{u})/2
∑

−∞<j<∞

q j(j+1)/2

1 + q jq−{u}
q−(j+1){u}.

Roughly: nO(log n). Superpolynomial!
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Discussions

28/82



Robustness of our classifications

These very simple algorithms are amongst the
fastest ones.
Our classifications are robust:

1 Most of existing algorithms are “Tarjan-Chvàtal-like”:

T(n) ≤ T(n− 6) + T(n− 4) −→ O((1 + ε)n) .

2 Even if one day a genious finds a fast algorithm leading
to a recurrence of the type

T(n) = T(n− A) + T(dcne), A fixed and c < 1

or

T(n) = T(n− A) +
n−A−1∑

i=0

(
n− A− 1

i

)
pi(1− p)n−A−1T(i) ,

all of them are expected to lead to a superpolynomial
complexity!!!!
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Open problems

1 A WELL-KNOWN and LONGSTANDING PROBLEM
(cf. [KARP] and [FRIEZE] 70++):

Is there a POLYNOMIAL TIME algorithm
that finds a MIS in G(n,p = 1/2)?

2 OUR WORK suggests an intermediate
CHALLENGE:

Is there a no(log n) = nSMALL-OH(log n) algorithm
which finds a MIS in G(n,p = 1/2)?

Recall that the Metropolis algorithm [JERRUM]
“works” in nO(log n) = nBIG-OH(log n).
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nc log n = ec(log n)2

log n n e(log n)2 e
√

n en

Ubiquity of the scale nln(n) in several worlds

ANALYSIS ALGORITHMSnc log n
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POLYNOMIAL VS EXPONENTIAL

nα vs αn

NP-complete

NP
NP-Hard

P
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LOG-NORMAL DISTRIBUTION

f (x) =
1√

2π σx
exp

(
−

( log x − µ)2

2σ2

)

xc log x with c < 0
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∏
k>0

(
1 + xqk

)
(0 < q < 1)

q-Pochhammer or q-shifted factorial extending to infinity
(also #(parts) of partitions into distinct parts)

Asymptotics when x →∞?

q = 1
2 (often in digital search tree):

∏
k>0

(
1 + x

2k

)
≈?

∏
k>0

(
1 +

x
2k

)
≈

∏
06k<log2 x

(
1 +

x
2k

)
≈

∏
06k<log2 x

x
2k

≈ x log2 x2−
1
2 (log2 x)2+ 1

2 log2 x = e
(log x)2

2 log 2 e
1
2 log x

Mellin transform∑
k>0

log
(

1 +
z
2k

)
=

(log z)2

2 log 2
+

1
2

log z + P(log2 z)︸ ︷︷ ︸
Periodic function

+O
(

1
|z|

)
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[zn]elog2 1
1−z

Saddle-point method
(singularity analysis =⇒ polynomial growth)

[zn]elog2 1
1−z =

1
2πi

∮
|z|=r<1

z−n−1elog2 1
1−z dz

=
1

2πi

∮
|w|=r<1

(1− w)−n−1e(log w)2
dw

∼ 1
2πi

∮
|w|=r<1

enw+(log w)2
dw

w = reit , n
2 = 1

r log 1
r (Lambert W-function)

[zn]elog2 1
1−z ∼ enr+(log r)2

2π

∫
e−

1
2 (nr+2)t2

dt

∼ n
2
√
π log n

exp

((
log

n/2
log(n/2)

)2
)
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WHY AND HOW nc log n IS IMPORTANT?

EXHAUSTIVE SEARCH FOR
MAXIMUM INDEPENDENT SETS

IN RANDOM GRAPHS

& other examples
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MAXIMUM INDEPENDENT SET

Independent (stable) set of a graph
A set of vertices no two of which share the same
edge.

1

2

3

4

5
67

MIS = {1,3,5,7}

The MIS (maximum independent set) problem
Search for an independent set with the largest size.

NP hard!!
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MAXIMUM INDEPENDENT SET

Equivalent versions

– MIS ≡ MAXIMUM CLIQUE on the complementary
graph (clique = complete subgraph).

– MIS ≡ MINIMUM VERTEX COVERING (every edge
connects at least one vertex) since the
complement of a vertex cover in any graph is an
independent set.

Among Karp’s (1972) original list of 21 NP-complete problems

Many applications
Computer vision, Pattern recognition, Coding theory,
Map labeling, Molecular biology, Chess games, Stock
market, . . .
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ALTERNATIVE FORMULATIONS

Harant (2000), Abello et al. (2001)

|MIS(G)| = max
(x1,...,xn)∈[0,1]n

∑
16i6n

xi −
∑

(i,j)∈E

xixj

 .

Classical: Motzkin and Straus (1965, Canad. J. Math)

2 max
x1+···+xn=1
06x1,...,xn61

∑
(i,j)∈E

xixj = 1− 1
|max clique|

Widely addressed
Algorithmic, theoretical and practical connections of
many other formulations. (Ref: Butenko’s 2003 PhD
Thesis)

39/82



THEORETICAL RESULTS

Random model: Erdős–Rényi’s Gn,p

Vertex set = {1,2, . . . ,n} and all edges occur
independently with the same probability p.

The cardinality of an MIS in Gn,p

Matula (1970), Grimmett and McDiarmid (1975),
Bollobás and Erdős (1976), Frieze (1990): If pn→∞,
then

|MISn| ∼ 2 log1/q pn whp,

where q = 1− p; and ∃k = kn such that

|MISn| = k or k + 1 whp.

kn = 2 log1/q n − 2 log1/q log1/q n + O(1)
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A GREEDY ALGORITHM
Adding vertices one after another whenever possible

The size of the resulting IS (S0 ≡ 0)

Sn
d
= 1 + Sn−1−Binom(n−1;p) (n > 1).

Sn ≡ |right arm of a random digital search tree|

µn = 1 +
∑

06k<n

(
n − 1

k

)
pk qn−1−kµn−1−k

f̃ ′(z) + f̃ (z) = 1 + f̃ (qz), f̃ (z) := e−z
∑
j>0

µj

j!
zn

Greedy is 1
2 -optimal (analytic approach): Poisson

generating function, Rice’s integrals (finite differences)

E(Sn) ∼ log1/q n + Periodic(log1/q n).
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ANALYSIS OF THE GREEDY ALGORITHM

GREEDY IS is 1
2 -optimal (probabilistic approach)

Grimmett and McDiarmid (1975), Karp (1976),
Fernandez de la Vega (1984), Gazmuri (1984),
McDiarmid (1984), . . .

Same analytic approach
Variance: V(Sn) ∼ a bounded periodic function.

Limit distribution does not exist:
E
(

e(Xn−log1/q n)y
)
∼ F (log1/q n; y), where

F (u; y) :=
1− ey

log(1/q)

∏
`>1

1− ey q`

1− q`

∑
j∈Z

Γ

(
− y + 2jπi

log(1/q)

)
e2jπiu.

unpublished manuscript
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HISTOGRAMS OF Sn FOR n = 5, . . . ,100 (p = 1
2)
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HISTOGRAMS OF Sn FOR n = 5, . . . ,100 (p = 0.3)

Normalized to unit interval
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A BETTER ALGORITHM?

Jerrum’s Metropolis algorithm
He studied a class of algorithms and showed that
∀λ > 1,∃ an initial state from which the expected time
for the Metropolis process to reach a clique of size at
least (1 + ε) log1/q(pn) exceeds nΩ(log pn) .

Frieze and McDiarmid (1997, RSA) Research Problem 15
Construct a polynomial time algorithm that finds an
independent set of size at least (1

2 + ε)|MISn| whp or
show that such an algorithm does not exist . . .

Recent advances: Coja-Oghlan and Efthymiou (2011)

Anything beyond (1 + ε) log1/q n is very difficult.
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EXACT AND APPROXIMATE ALGORITHMS

Exact algorithms
A huge number of algorithms proposed in the
literature; see Bomze et al.’s survey (in Handbook of
Combinatorial Optimization, 1999).

A simple exhaustive search
algorithm

α(G) = max


α (G \ {v})︸ ︷︷ ︸

v 6∈MIS(G)

,

1 + α (G \ N∗(v))︸ ︷︷ ︸
v∈MIS(G)


where N∗(v) denotes the union of v
and all its neighbors.

G

(n−1
k
)
pkqn−1−k
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AIM: A MORE PRECISE ANALYSIS OF THE
EXHAUSTIVE ALGORITHM

MIS contains either v or not

Xn
d
= Xn−1 + X ∗n−1−Binom(n−1;p) (n > 2),

(X0 = 0 and X1 = 1)

Special cases
– If p ∼ 1, then the second term is small, so we

expect a polynomial time bound.
– If p ∼ 0, then the second term is large, and we

expect an exponential time bound.
– What happens for p in between?

Xn and X ∗n are strongly dependent
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MEAN VALUE
The expected value µn := E(Xn) satisfies

µn = µn−1 +
∑

06j<n

(
n − 1

j

)
pjqn−1−jµn−1−j (n > 2).

(µ0 = 0 and µ1 = 1)

Poisson generating function: f̃ (z) := e−z ∑
n>0 µnzn/n!

f̃ ′(z) = f̃ (qz) + e−z

will prove

logµn =

(
log n

logκ n

)2

2 logκ
+
(

1
2 + 1

logκ

)
log n − log log n

+ Periodic
(

logκ
n

log n

)
+ o(1) (κ := 1/q)
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EXHAUSTIVE MIS: LITERATURE

Exhaustive search algorithms
– Tarjan and Trojanowski (1977): an improved

exhaustive algorithm of complexity O(2n/3).

– Chvátal (1977) proposes exhaustive algorithms
where almost all Gn,1/2 creates at most n2(1+log2 n)

subproblems.

– Pittel (1982): (κ := 1/q)

P
(

n
1−ε

4 logκ n 6 Timeused by
Chvátal’s algo 6 n

1+ε
2 logκ n

)
> 1− n−c log n

– Wilf’s (1986) Algorithms and Complexity
a backtracking algorithm enumerating all
independent sets with time complexity nO(log n) .
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WHY nc log n ?

MIS-finding
algorithms

& nc log n

(xc log x)

Randomized

algorithms(
n

bc log nc

)

Exhaustive

algorithms

an = an−1 +∑
06k<n

πn−1,k ak

Mahler’s partitions

an = an−1 + abqnc

Pantograph

equations

f ′(x) = f (qx)

q-difference

equations

f (x) = xf (qx)

Backtracking

algorithms∑
16k6n

(
n
k

)
q

(k
2

)

MIS-finding
algorithms

& nc log n

(xc log x)
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nc log n-ASYMPTOTICS: ALGORITHMS

A simple randomized algorithm
Since P(|MIS| = kn or |MIS| = kn + 1)→ 1, check all(

n
kn

)
+

(
n

kn + 1

)
6

2
k !

nkn+1 = O
(
n2 logκ n) subsets.

If none is independent (P very small), use exhaustive.
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nc log n-ASYMPTOTICS: MAHLER’S PARTITIONS

Approximate µn = µn−1 +
∑

06j<n

(n−1
j

)
pjqn−1−jµn−1−j by

an = an−1 + abqnc.

(most mass centers around pn)

Mahler’s (1940) partitions (when κ = 1/q ∈ Z)
Number of partitions of κn into positive powers of κ.

de Bruijn (1948)

log an =

(
log n

logκ n

)2

2 logκ
+
(

1
2 + 1

logκ

)
log n − log log n

+ Periodic
(

logκ
n

log n

)
+ o(1)

| logµn − log an| = Periodic(·) + o(1) , AIMD
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MAHLER’S PARTITIONS

Mahler (1940), de Bruijn (1948)

an = an−1 + an/r
∑

k>0 q(k
2) zn

n!

[zn]e(log 1
1−z )2

f (z+ω)−f (z)
ω = f (qz)

P(z) = (1 − z)P(z r )

[zn]
∏

j>1
1

1−z r j

Jacobi’s theta function
∑

k>0 qk2zk

53/82



nc log n-ASYMPTOTICS: PANTOGRAPH EQUATIONS
Continuous version A(x)− A(x − 1) = A(qx)

Since A(x)− A(x − 1) ≈ A′(x) for large x , consider

A′(x) = A(qx)

which is a special case of the so-called “pantograph
equations”

A′(x) = αA(qx) + βA(x)
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nc log n-ASYMPTOTICS: PANTOGRAPH EQUATIONS
Original paper

Ockendon & Tayler (1971, Proc. Royal Soc. A) “The
dynamics of a current collection system for an
electric locomotive”

Important papers
– de Bruijn (1953, Indagationes Math.)
– Kato & McLeod (1971, Bull. AMS)
– Iserles (1993, European J. Appl. Math)

A′(x) = αA(qx), α > 0 (κ := 1/q)
de Bruijn (1953) and Kato & McLeod (1971):

log A(x) =

(
log x

logκ x

)2

2 logκ
+

(
1
2 + 1

logκ + logα
logκ

)
log x

−
(

1 + logα
logκ

)
log log x + Periodic

(
logκ

x
log x

)
+ o(1)
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nc log n-ASYMPTOTICS: FORMAL ASPECTS

A′(x) = A(qx)

Try A(x) = xc log x (xα & cx fail). Then c satisfies

x1−2c logκ = 2cec(logκ)2
log x

Thus c = 1
2 logκ + O

(
log x

x

)
and

log A(x) ∼ (log x)2

2 logκ
.

A formal solution∑
j>0

q( j
2)

j!
x j

q-difference equation f (x) = xf (qx)

A formal solution exp
(

(log(x/
√

q))2

2 logκ

)
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nc log n-ASYMPTOTICS: E(# INDEPENDENT SETS)

Expected cost of Wilf’s backtracking algorithms:
an :=

∑
16k6n

(n
k

)
q(k

2)

an = 1 + an−1 +
∑

06k<n

(
n − 1

k

)
pkqn−1−kan−1−k

Same pattern of asymptotic behaviors

an ∼
∑

k>1
q(k

2)
k!

nk

The series
∑

k>0
q(k

2)
k!

nk , first appeared in Mahler
(1940), also arises in many applications.
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ANALYTIC & ALGORITHMIC SOURCES OF nc log n

MIS-finding
algorithms

& nc log n

(xc log x)

Randomized

algorithms(
n

bc log nc

)

Exhaustive

algorithms

an = an−1 +∑
06k<n

πn−1,k ak

Mahler’s partitions

an = an−1 + abqnc

Pantograph

equations

f ′(x) = f (qx)

q-difference

equations

f (x) = xf (qx)

Backtracking

algorithms∑
16k6n

(
n
k

)
q

(k
2

)

MIS-finding
algorithms

& nc log n

(xc log x)
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nc log n-ASYMPTOTICS: OTHER OCCURRENCES

– Algorithmics : isomorphism testing, random digital
trees, autocorrelations of strings, information theory, and
asymptotics of recurrences;

– Combinatorics : partitions into powers, palindromic
compositions, combinatorial number theory, and universal
tree of minimum complexity;

– Probability : log-normal distribution, renewal theory, and
total positivity;

– Algebra : commutative ring theory, and semigroups;

– Analysis : pantograph equations, eigenfunctions of
operators, geometric partial differential equations, and
q-difference equations.
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nc log n: KNUTH (1966)

φn = φn−1 + φbn/2c (φ0 = 1)
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nc log n-ASYMPTOTICS: ALGORITHMS

Miller (1978, STOC): Group isomorphisms
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RECENT ADVANCES
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nc log n: WIGDERSON & YEHUDAYOFF (2012)

Population recovery and partial identification

PRP - Results 
Facts: µ=0 obliterates all information. 
- No polytime algorithm for µ = o(1) 
 
Thm 3 [DRWY] A poly(k, n, ') algorithm,  
from lossy samples, for every  µ > .365… 
 
Thm 4 [WY]: A poly(klog k, n, ') algorithm, 
from lossy and/or noisy samples,   
for every µ > 0 
 
 
 
 

Kearns, Mansour, Ron, Rubinfeld, Schapire, Sellie  
exp(k) algorithm for this discrete version 
Moitra, Valiant 
exp(k) algorithm for Gaussian version  
           (even when noise is unknown) 
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nc log n: GUIBAS & Odlyzko (1981, JCT-A)
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nc log n: CHUNG & GRAHAM (1981)
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nc log n: Cameron & Erdős (1990)
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nc log n: REZNYKOV & SUSHCHANSKY (2006)
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nc log n: DE MARCHIS (2010)
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nc log n: KARLIN & ZIEGLER (1996)
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WHY PRECISE ASYMPTOTIC EXPANSION?

logµn =

(
log n

logκ n

)2

2 logκ
+
(

1
2 + 1

logκ

)
log n − log log n

+ Periodic
(

logκ
n

log n

)
+ o(1) (κ := 1/q)

Some reasons
– Asymptotics: nc log n is less precise

µn

n
1
2 logκ n

� (log n)
1
2 logκ log n−1− log logκ

logκ

nlogκ log n− 1
2−

1
logκ−

log logκ
logκ

� n−K → 0,

– Numerical “opacity”
– Methodology: new tools developed
– Generality: discovered
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OUR ANALYTIC APPROACH

Recurrence relation

µn = µn−1 +
∑

k

πn,kµn−1−k

πn,k :=
(n−1

k

)
pk qn−1−k

Poisson GF:
f̃ (z) = e−z ∑

n
µn
n!

zn

f̃ ′(z) = f̃ (qz) + e−z

Poisson heuristic

µn ∼ f̃ (n) − n
2

f̃ ′′(n)

Modified La-
place transform

f̃ ∗(s) = sf̃ ∗(qs) +
s

1 + s

de-Poissonization

µn =
n!

2πi

∮
z−n−1ez f̃ (z)dz

Inverse transform

f̃ (x) =
1

2πi

∫
exs

s
f̃ ∗(s)ds
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RESOLUTION OF THE RECURRENCE

f̃ ′(z) = f̃ (qz) + e−z

The Laplace transform of f̃

L (s) =

∫ ∞
0

e−xs f̃ (x) dx

satisfies
sL (s) =

1
q

L

(
s
q

)
+

1
s + 1

.

Exact solutions

L (s) =
∑
j>0

q(j+1
2 )

sj+1(s + q j)
.

Hard part: asymptotics of L (s) as s → 0 in C
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RESOLUTION OF THE RECURRENCE

Exact solutions

L (s) =
∑
j>0

q(j+1
2 )

sj+1(s + q j )
.

Inverting gives f̃ (z) =
∑
j>0

q(j+1
2 )

j!
z j+1

∫ 1

0
e−qj uz(1− u)j du.

Thus µn =
∑

16j6n

(
n
j

)
(−1)j

∑
16`6j

(−1)`q j(`−1)−(`2), or

µn = n
∑

06j<n

(
n − 1

j

)
q(j+1

2 )
∑

06`<n−j

(
n − 1− j

`

)
q j`(1− q j )n−1−j−`

j + `+ 1
.

Neither is useful for numerical purposes for large n.
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A MORE PRECISE EXPANSION FOR f̃ (x)

Method of proof: functional eq. + saddle-point

f̃ (x) =
1

2πi

∫ 1+i∞

1−i∞
exsL (s) ds

Asymptotics of f̃ (x)

Let kappa = 1/q and R log R = x logκ . Then

f̃ (x) ∼ R1/ logκ+1/2e(log R)2/(2 logκ)G(logκ R)√
2π logκ R

1 +
∑
j>1

φj (logκ R)

(logκ R)j

 ,

as x →∞, where G(u) := q({u}2+{u})/2F (q−{u}),

F (s) =
∑

−∞<j<∞

q j(j+1)/2

1 + q js
sj+1,

and the φj (u)’s are bounded, 1-periodic functions of u.
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A MORE EXPLICIT ASYMPTOTIC APPROXIMATION
R = x logκW (x logκ), Lambert’s W -function: W (x)eW (x) = x

W (x) = log x − log log x +
log log x

log x
+

(log log x)2 − 2 log log x
2(log x)2 + · · · .

So that

f̃ (x) ∼
G
(

logκ
x

logκ x

)
√

2π
· x1/ logκ+1/2

logκ x
exp

((
log x

logκ x

)2

2 logκ

)
.
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JUSTIFICATION OF THE POISSON HEURISTIC

µn =
n!

2πi

∮
|z|=n

z−n−1ez f̃ (z) dz

µn ∼
G
(

logκ
n

logκ n

)
√

2π
· n1/ logκ+1/2

logκ n
exp


(

log n
logκ n

)2

2 logκ


Four properties are sufficient: µn ∼ f̃ (n)

– f̃ ′(z) = f̃ (qz) + e−z;

– F (s) = sF (qs) (F (s) =
∑

j∈Z
qj(j+1)/2sj+1

1+qj s );

–
f̃ (j)(x)

f̃ (x)
∼
(

logκ x
x

)j

;

– |f (z)| 6 f (|z|) where f (z) := ez f̃ (z).
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EXHAUSTIVE ALGORITHM: BEYOND THE MEAN
Intractable due to strong dependence

Xn
d
= Xn−1 + X ∗n−1−Binom(n−1;p)︸ ︷︷ ︸

dependent

Idealized: Yn
d
= Yn−1 + Y ∗n−1−Binom(n−1;p)︸ ︷︷ ︸

independent

Mn(t) = Mn−1(t)
∑

06j<n

(
n − 1

j

)
pjqn−1−j︸ ︷︷ ︸

πn,j

Mn−1−j(t)

M̄n(t) := E(e(Yn−µn)t) (∆n,j := µj + µn−1 − µn)

M̄n(t) = M̄n−1(t)
∑

06j<n

πn,jM̄n−1−j(y)e∆n,j t
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ASYMPTOTIC NORMALITY OF Yn

Convergence in distribution
The distribution of Yn is asymptotically normal

Yn − µn

σn

d→ N (0,1),

with convergence of all moments.

Proof by the method of moments
– Derive recurrence for E(Yn − µn)m.
– Prove by induction (using the asymptotic

transfer) that

E(Yn − µn)m

∼
(m)!

(m/2)!2m/2 σ
m
n , if 2 | m,

= o(σm
n ), if 2 - m,
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HISTOGRAMS OF Xn (DEPENDENT) FOR n = 100
(p = 1

2)
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A NATURAL VARIANT: BINOMIAL −→ UNIFORM

What happens if Zn
d
= Zn−1 + Z ∗uniform[0,n-1]?

µn = µn−1 + 1
n

∑
06j<n

µj ,

satisfies µn ∼ cn−1/4e2
√

n. Note: µn ≈ µn−1 + µn/2 fails.

c :=
1
2

√
e
π

(
e−1 −

∫ ∞
1

v−1e−v dv
)
≈ 0.06906 46192 . . .

Limit law not Gaussian (by method of moments)

Zn

µn

d→ Z ,

where g(z) :=
∑

m>1 E(Z m)zm/(m ·m!) satisfies

z2g′′ + zg′ − g = zgg′.
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AN INTERESTING PROPERTY

By the psi-series method for nonlinear DEs

E(Z m) = m ·m!ρ−m

(
2 +

2

3 m2
+ O

(
m−3)) ,

(Chern, Fernández-Camacho, Hwang, Martı́nez, RSA)

Original motivation: pn = n−2∑
06j<n pjpn−1−j (p0 = 1)

Equality of two random binary search trees
zP ′′ + P ′ = P2

pn = ρ−n−1

(
6n +

18
5

+
336

3125 n5
+ O

(
n−6))

Applied to > 10 structures
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CONCLUSION

nlog n est ainsi une échelle
au carrefour de nombreux problèmes
signature intrinsèque de récurrences ”mixtes”
(additif/multiplicatif) et des mathématiques
associées
connecte des structures à priori diverses
oblige à développer de nouvelles mathématiques
riche domaine pour la combinatoire (graphes,
analytique)
améliore notre compréhension des paysages de
complexité de problèmes (NP-complets ou pas)
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