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Plan of the talk

o Complexity landscapes

o A constraint satisfaction problem (CSP):
Maximum independent set (MIS)

o Its average complexity (asymptotics)
o Ubiquity of n""
o Mathematics behind



Complexity landscape of algorithms

Worst-case complexity: Max, T(x)
Average-case complexity: E,[T(x)]

Smoothed complexity: Max,E [T(x + €)]
— what are the difficult regions?
Smoothed Analysis of Algorithms (~20 articles so far):

@ Why The Simplex Algorithm Usually Takes Polynomial Time
[Spielman & Teng 01]

@ Smoothed analysis of three combinatorial problems
[Banderier & Beier & Mehlhorn 03]



Complexity landscape of graph algorithms...

(with respect to the density)

For discrete combinatorial structures: no unique
notion of perturbation/vicinity/neighboorhoud”.
— A natural measure of ’similarity” for graphs: the

. # edges
denSIty # vertices "

Average
Complexity




Complexity landscapes and P # NP

If one could prove a superpolynomial average
complexity for a problem (and not only for an
algorithm), this would prove P # NP.

We prove such a superpolynomial average complexity
for a infinite class of algorithms.

Average
Complexity

iSuperpolynomial




Constraint Satisfaction Problems



Constraint Satisfaction Problems

The class of problems known as lax—-CSP plays a
key réle in Computer Science.

CSP
e nvariables x;,- - - , x, belonging to finite domains.

o A set of constraints (clauses) over these
variables: a constraint is a relation between the
variables defining authorized combinations of
them.

o Decision problem: does it exist an assignment of
the variables (aka, a solution) satisfying all the
constraints?

@ Optimization problem: maximize the number of
satisfied constraints.




Constraint Satisfaction Problem: Einstein Problem

“Do-not worry
- about your
difficulties in

mahematics; ‘¥
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Constraint Satisfaction Problem: Einstein Problem

The author of this problem is Albert Einstein who said
that 98% of the people in the world couldn’t solve it.

Facts:

1. There are 5 houses (along the street) in 5 different colors: blue, green, red, white and yellow.

2. In each house lives a person of a different nationality: Brit, Dane, German, Norwegian and Swede.

3. These 5 owners drink a certain beverage: beer, coffee, milk, tea and water, smoke a certain brand of cigar:
Blue Master, Dunhill, Pall Mall, Prince and blend, and keep a certain pet: cat, bird, dog, fish and horse.

4. No owners have the same pet, smoke the same brand of cigar, or drink the same beverage.

Hints:

The Brit lives in a red house.

The Swede keeps dogs as pets.

The Dane drinks tea.

The green house is on the left of the white house (next to it).

The green house owner drinks coffee.

The person who smokes Pall Mall rears birds.

The owner of the yellow house smokes Dunhill.

The man living in the house right in the center drinks milk.

The Norwegian lives in the first house.

10. The man who smokes blend lives next to the one who keeps cats.
11. The man who keeps horses lives next to the man who smokes Dunhill.
12. The owner who smokes Blue Master drinks beer.

13. The German smokes Prince.

14. The Norwegian lives next to the blue house.

15. The man who smokes blend has a neighbor who drinks water.

©ONS O AN

) Who keeps the fish?




Constraint Satisfaction Problem: a less sexy example

Domains: (x,y) < {0,1}2,(z,t) € {0,1,2,3}2

Constraints:

(x,¥) € {(1,0),(0,1)}
X #+ Z

y+z = 0 mod2

t >y

Definition: Max-2-CSP

Each constraint concerns at most 2 variables.




Examples of Max-2-CSP problems

Max-2-CSP is very general paradigm:
o Maximum bipartite subgraph (or Max-2-COL)

o Max-CUT
o Max-2-SAT, Max-2-XORSAT
o graph colorability...

o Maximum Independent Set (MIS).



IS (independent set) and MIS (maximum independent

set)

IS = set of nodes not linked together.
MIS = set of nodes not linked together and one
cannot get larger.

5 5 5

1 4 1 4 L 4

2 3 2 3 2 3
{2, 4} isan IS {1,3,5} isanIS

of MAXIMUM size

N.B.: MIS not always unique.



Why the MIS problem?

Stable maximum (Maximum Independent Set or IS).

Motivations

@ Numerous applications (coloration, finances, codes, distributed
systems, ...)

@ The typical NP-complete problem (cf. Karp’s original list [KARP
72]).

© NP-HARD to approximate Hastad 99.

© Many works including those of [TARJAN 77, CHVATAL 77, PITTEL
82, BALAS, YU 86, KARMARKAR, RESENDE 89, ..., ].




Finding a MIS: some remarkable works

Q [TARJAN, TROJANOWSKI 77] A seminal paper for
worst-case analysis: introduce the idea of
reductions.

Q [CHVATAL 77] Complexity theory (Length of
recursive proofs) for finding a MIS. W. h. p.,
lengths are of order (%0,

Q [PITTEL 82] W. h. p. when the graph is dense,
e©(007) jterations are required.

OUR WORK: More precise average-case analysis
using various analytical approaches: generating
functions, Laplace transforms, ..., for a full class of
algorithms, for any density.



OVERVIEW OF OUR RESULTS

Average
Complexity

Exponential

h—exponential__________

Sub—exponential

Superpolynomial

Polynomial

n/2(1+c) < m n<=m<<n’2 O@"2) m=#edg€s
m=n/2 + 0™ )

m=n/2 + w(n) log(n)” n”




Main ideas of the proof

Q WEST SIDE.
We analyze a very general algorithm working on
all MAX-2-CSP. We use reductions
(transformations of the underlying graph) mainly
on vertices of degree < 3. We “branch” only on
vertices of degree > 3.

Q EAST SIDE.
We analyze an exhaustive algorithm.

Remark.

In both cases, the algorithms are exact and ALWAYS
RETURN a MIS. As input, the underlying graphs of the
constraints are random G(n, m) and G(n, p). Our
results quantify the average number of global
iterations of the algorithms.







WEST SIDE: algorithm for MAX-2-CSP, main ideas

and analysis

o Reduce all vertices of degree 1 and 2. (as in
[TARJAN 77]).

o These reductions cost polynomial time.

o Branch on vertices of degree > 3.

o On graphs of excess r, the cost is < v2' ( [ScoTT,
SORKIN 03]

o The average cost for graphs of G(n, m) is
therefore upper bounded by

m
) "2"/2proba graph n vertices , m edges has excess /]

r=0 pr(n,m)




WEST SIDE: graph before the reductions

> ol
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Set of trees Giant component Unicycles



WEST SIDE: graph before the reductions

Set of trees Giant component Unicycles



WEST SIDE: graph after reductions

A.AS. 2rvertices and 3 r edges

3-core



WEST SIDE: computing p,(n, m)

Theorem. The proba. that a graph with n vertices and
m = J + un?/® edges has a connected component of
excess r = 12,3 + O(1*?) is

3 \" 3 (r— %)’
P(n, m) ~ (160w3) &P <_160 3

(with uniform error terms as r, 11, n — oo et |r — 1843 < O(13/2),r < O(n'/*)and . < O(n'/12)).

Proof. Use GF (here T = T(z) = ze'(®)

nl o (T(2) = T(Z)Z/Z)nfm e T(2)/2-T(2)?/4
e e e T (S ()
m giant col

trees unicycles

where W, is Wright’s GF for graphs of excess r
(+saddle-point method [KNUTH-JANSON-LUCZAK-PITTEL
93, FLAJOLET-SEDGEWICK 09] ).



WEST SIDE: results

Recall that the desired average cost of the reduction

algorithm is
m
Z 27/2 4 opa [ graph 1 vertices , m edges has excess ] .
r=0 pr(n,m)

Theorem. Let m = § + un?/3 with p = o(n'/3). The average
cost of ALGO on G(n, m) is at most

exp <2Ic:)392 (5log2 + 4) u3> (1 +o(1)> .

If m= 5(1 + <) with n=/4 < ¢ < 4, the average cost of
ALGO is at most

2 2,2
exp <5(k1922) S3n+ I°g42((1 5 ) n) (1 + 0(1))

with o defined by (1 +¢)e™® = (1 —o)e”.
Our theorem holds for all MAX-2-CSP problems and not
anhy far Al CO=MNIQI




gorithms



EAST SIDE: an exhaustive algorithm

Procedure MAXIS(G = (V,E) : 1abeled graph)
Pick the least vertex vin V ;

(x EITHER v is not in the MIS — remove it x)
Vi =V \{v};

E, := E\ { incident edges of v} ;

maxis; := Card(MAXIS(G;)) ;

(x OR visin a MIS — remove v and all its neighbors
*)

Vo= V\T(v); (x T (v) ={v}U its neighbors x)
E, .= E\ { incident edges of the vertices in ['(v)} ;
maxis; := 1 + Card(MAXIS(G.)) ;

RETURN: max (maxis, maxis;)



EAST SIDE: analysis of the exhaustive algorithm (1/2)

Let M, = be the mean number of iterations of the
algorithm whenever the input are graphs from G(n, p).

We have

n—1
n—-1\ . -
Mn — IVln—1 + § < i )pl(1 — p)n_1_an—1—i
i=0

Theorem. As p — 0,

1 _ W(np—p) W(np — p) -n
M, = AP (1 _ ﬁ) 1+0 ’
1+W(np —p) np—p ( ()

where WV is the Lambert function.

Example 1: p — °2". Roughly exp (n"’%’% iterations.
Example 2: p — . Roughly exp (3n'/?log n)
iterations.

Sub-exponential!



EAST SIDE: analysis of the exhaustive algorithm (2/2)

Theorem. If 0 < p < 1 (fixed),

e(r/2(09(1/MP2G(plog(1/r))
T w12 /27 plog(1)1)

where p = 1/log(1/(1 - p)), r = *7/) and G is

continuous and 1-periodic function:

G(u) = gUr+niz _QUE o
=4a 14+ gqg{u a :

—00<j<00

Roughly: n®°9", Superpolynomial!






Robustness of our classifications

o These very simple algorithms are amongst the
fastest ones.
o Our classifications are robust:
@ Most of existing algorithms are “Tarjan-Chvatal-like”:

Tn)<TNn-6)+T(n—4) — O((1+2)").

Q Even if one day a genious finds a fast algorithm leading
to a recurrence of the type

T(n)=T(n—A)+T([en]), Afixedandc <1

or
n—A-1 A

Tn) =Tn-A)+ 3 ("

i=0

. 1)p‘u AT,

all of them are expected to lead to a superpolynomial
complexity!!!!



Open problems

Q A WELL-KNOWN and LONGSTANDING PROBLEM
(cf. [KARP] and [FRIEZE] 70++):

Is there a POLYNOMIAL TIME algorithm
that finds a MIS in G(n,p=1/2)?

©Q OUR WORK suggests an intermediate
CHALLENGE:

Is there a no09n) — pewr-on(logn) z31gorithm
which finds a MIS in G(n,p=1/2)?

Recall that the Metropolis algorithm [JERRUM]
“works” in n©llogn) — pBiG-oH(logn)_



0gn  n glognr eV &"

Ubiquity of the scale n"(") in several worlds

ANALYSIS |«— nClogn <—| ALGORITHMS



POLYNOMIAL VS EXPONENTIAL
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WIKIPEDIA

L’encyclopédie libre

Accueil

Portails th & matiques
Index alphab & tique
Article au hasard
Contacter Wikip & dia

~ Contribuer
Premiers pas
Aide
Communaut &

Modifications
r & centes

Faire un don

Imprimer / exporter

v

Boite a outils

v

v Autres langues

exp

Loi log-normale

En th & orie des probabilit & s et
statistique, une variable al & atoire X
est dite suivre une loi log-normale de
param & tres /4 et 0-2 si la variable

Y = ]n(X) suit une loi normale
d’esp & rance L et de variance 0-2.

Cette loi est parfois & galement
appel & e loi de Galton.

Une variable peut &tre modélisée
par une loi log-normale si elle est le

r & sultat de la multiplication d’un grand
nombre de petits facteurs

ind & pendants.

Sommaire [masquer]

1 Caract & risation
1.1 Densit &

LOG-NORMAL DISTRIBUTION

(logx — p)?

202

Loi Log-normale

Densit & de probabilit & / Fonction de masse

XxC199X withc < 0



[Tiso (1 +x9°) (0 < g <1)

g-Pochhammer or g-shifted factorial extending to infinity
(also #(parts) of partitions into distinct parts)

Asymptotics when x — oo ?

(rz)~ I (+g)~ I %

k>0 0<k<log, x 0<k<log, x

2
~ x'092 X9 —34(10g, X)*+ log, X _ e“;%g)g g2 109X

Mellin transform

z\ _ (logz)®* 1 1
I;)Iog(H—zk)— 21092 +5logz+ P(log,2) +0 I

Periodic function




(2] eIog2 -

Saddle-point method
(singularity analysis = polynomial growth)

2 1 1 e 2 1
[27€°9 == = — z 116 =dz
27l Jiz1=r<1
1
27l Jywi=r<1

1

27l Jywi=r<1

(1 — w) " Telew’qy

g+ (log w)zd w

(Lambert W-function)

enr+(log P

[27]€°9 ™= ~ T / e~ 3 (AL gy
27

R (Q n/2 )2
2\/mlogn log(n/2)




WHY AND HOW nc'e9” |S IMPORTANT?

EXHAUSTIVE SEARCH FOR
MAXIMUM INDEPENDENT SETS
IN RANDOM GRAPHS

& other examples



MAXIMUM INDEPENDENT SET

Independent (stable) set of a graph

A set of vertices no two of which share the same
edge.

MIS = {1,3,5,7}

The MIS (maximum independent set) problem
Search for an independent set with the largest size.

NP hard!!



MAXIMUM INDEPENDENT SET

Equivalent versions
— MIS = 10N e R [e]V] 4 on the complementary

graph (clique = complete subgraph).

— MIS = NIV RS gele) S 5i1\e] (every edge

connects at least one vertex) since the
complement of a vertex cover in any graph is an
independent set.

Among Karp’s (1972) original list of 21 NP-complete problems

Many applications

Computer vision, Pattern recognition, Coding theory,
Map labeling, Molecular biology, Chess games, Stock
market, ...




ALTERNATIVE FORMULATIONS

Harant (2000), Abello et al. (2001)

Mi = max Xj — XX |.
wso) - n, (0 o)

Classical: Motzkin and Straus (1965, Canad. J. Math)

1
2 max E XiXj = _—
Xt Xn= ~ |max clique|
0<x1,. xn<1 (if)EE

Widely addressed

Algorithmic, theoretical and practical connections of
many other formulations. (Ref: Butenko’s 2003 PhD
Thesis)




THEORETICAL RESULTS

Vertex set = {1,2,..., n} and all edges occur
independently with the same probability p.

The cardinality of an MIS in G,

Matula (1970), Grimmett and McDiarmid (1975),
Bollobas and Erdos (1976), Frieze (1990): If pn — oo,

then
IMIS,;| ~ pAllsfy e whp,

where g = 1 — p; and Jk = k, such that

IMIS,,| = kor k+1 whp.

kn = 2l0g,,,n — 2log; 4109, 1+ O(1)



A GREEDY ALGORITHM

Adding vertices one after another whenever possible

The size of the resulting IS (S, = 0)
Sn g 1+ Sn—1—Binom(n—1;p) (n P 1)'

S, = |right arm of a random digital search tree)|

n—1
pn =1+ Z ( K )pkqn_1_k/tn1k

0<k<n

Greedy is 1-optimal (analytic approach): Poisson
generating function, Rice’s integrals (finite differences)

E(S,) ~ + Periodic(log; ,, n).




ANALYSIS OF THE GREEDY ALGORITHM

GREEDY IS is %—optimal (probabilistic approach)

Grimmett and McDiarmid (1975), Karp (1976),
Fernandez de la Vega (1984), Gazmuri (1984),
McDiarmid (1984), ...

Same analytic approach

o Variance: V(S,) ~ a bounded periodic function.

o Limit distribution does not exist:
E (e(xn*'°91/q”)y> ~ F(logy ,, n: y), where

1-¢ 1-¢q" Y+24mi\ o
F(u,y) = . ZF ( et
log(1/g) \ ;.5 1-a" | < \ log(1/q)

unpublished manuscript




HISTOGRAMS OF S, FOR n=5,...,100 (p = %)




HISTOGRAMS OF S, FOR n=5,...,100 (p = 0.3)
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A BETTER ALGORITHM?

Jerrum’s Metropolis algorithm

He studied a class of algorithms and showed that
VA > 1, 3 an initial state from which the expected time
for the Metropolis process to reach a clique of size at

least (1 + <) log, ,,(pn) exceeds [Tl

Frieze and McDiarmid (1997, RSA) Research Problem 15
Construct a polynomial time algorithm that finds an
independent set of size at least (} + ¢)|MIS,| whp or
show that such an algorithm does not exist ...

Recent advances: Coja-Oghlan and Efthymiou (2011)

Anything beyond (1 + ¢) log, ,, n is very difficult.




EXACT AND APPROXIMATE ALGORITHMS

Exact algorithms

A huge number of algorithms proposed in the
literature; see Bomze et al.’s survey (in Handbook of
Combinatorial Optimization, 1999).

A simple exhaustive search
algorithm

a(G\ {v}),

——
vZMIS(G)

1+a(G\N*(v))

vEMIS(G)

a(G) = max

where N*(v) denotes the union of v
and all its neighbors.




AIM: A MORE PRECISE ANALYSIS OF THE
EXHAUSTIVE ALGORITHM

MIS contains either v or not

d *
Xn = Xn1 + Xn—1—Binom(n—1;p) (n>2),
(XO =0and X1 = 1)

Special cases

— If p ~ 1, then the second term is small, so we
expect a polynomial time bound.

— If p ~ 0, then the second term is large, and we
expect an exponential time bound.

— What happens for p in between?

X, and X are strongly dependent



MEAN VALUE

The expected value u, := E(X,) satisfies

n—1\ . :
tn = fn—1 + Z < j )plqn_1_lﬂn—1—j (n>2)-

0<j<n
(o =0and py = 1)

Poisson generating function: f(z) := &2 > nso nZ" /1!

f(z)=f(qz)+e?

will prove

(Iog @)2

2logk
+ Periodic (Iogﬁ W) +o(1) (k:=1/q)

+<%+ ! )Iogn—loglogn

log <

log un =




EXHAUSTIVE MIS: LITERATURE

Exhaustive search algorithms

— Tarjan and Trojanowski (1977): an improved
exhaustive algorithm of complexity O(2"/3).

— Chvatal (1977) proposes exhaustive algorithms

where almost all G, > creates at most
subproblems.

— Pittel (1982): (x :=1/q)

P ( < TlmeChvataIsaIgo < n > > 1 n

— Wilf’s (1986) Algorithms and Complexity
a backtracking algorithm enumerating all

independent sets with time complexity .




Exhaustive

Mahler’s partitions algorithms

an = an—1 +

an = an—1+ 3| gn)

>°  Tn_1,ka
o<k<n

<
MIS-finding

Pantograph algorithms Randomized
equations e les ! algorithms
/ & n g n
e = 10 )

(Xclog X)

|

g-difference Backtracking

algorithms

(Z) q(g)

equations

f(x) = xf(qx) . g% e



ncl°9"-ASYMPTOTICS: ALGORITHMS

A simple randomized algorithm

Since P(|MIS| = k, or [MIS| = k, + 1) — 1, check all

)0 <ot e

If none is independent (P very small), use exhaustive.




ncle9n-ASYMPTOTICS: MAHLER’S PARTITIONS

Approximate jin = jin—1 + Y ocjcn (") P'Q" " a1 by

anp=ap-1+ a[an-

(most mass centers around pn)

Mahler’'s (1940) partitions (when x = 1/q € 7Z)

Number of partitions of «n into positive powers of «.

de Bruijn (1948)

(Iog ﬁ)z
~ 2logk

+ Periodic <Iogn @) +0(1)

log a, = +(%+¢> logn — loglog n

|log 1n — log a,| = Periodic(-) + o(1) , AIMD



MAHLER’S PARTITIONS

Mabhler (1940), de Bruijn (1948)

[an—an 1+ anyr |—| )Zn J
([Zn] 11 1_17>
Z*“’) 2) — f(qz
m a(log 1) l I
( [Z ]e " P(z) = ( 1zP(z’)J

Jacobi’s theta function Y, q*° z¥



ncl°9"-ASYMPTOTICS: PANTOGRAPH EQUATIONS

Continuous version A(x) — A(x — 1) = A(gx)

Since A(x) — A(x — 1) =~ A'(x) for large x, consider
A(x) = A(gx)

which is a special case of the so-called “pantograph
equations”
A(x) = aA(gx) + BA(x)




ncl°9"-ASYMPTOTICS: PANTOGRAPH EQUATIONS

Original paper

Ockendon & Tayler (1971, Proc. Royal Soc. A) “The
dynamics of a current collection system for an
electric locomotive”

Important papers
— de Bruijn (1953, Indagationes Math.)
— Kato & McLeod (1971, Bull. AMS)
— Iserles (1993, European J. Appl. Math)

A(x) = aA(gx), a >0 (k:=1/q)
de Bruijn (1953) and Kato & McLeod (1971):

2
log A(X) — w < +

og @
2log x I ) log x

Iog K Tog r

(1 I |Ogh ) log log x + Periodic (Iogn Iogx) +0(1)

N



ncle9"-ASYMPTOTICS: FORMAL ASPECTS

A'(x) = A(gx)
Try A(x) = x¢'°9% (x~ & c* fail). Then c satisfies

x1—2clogr _ 2Cec(log/<;)2 Iog X

Thus ¢ = ;i + O (Iogx) and | A formal solution
o0
(log x)? — X
log A(x) G =

g-difference equation f(x) = xf(gx)

2
A formal solution exp (M)
2logk




ncle9"-ASYMPTOTICS: E(# INDEPENDENT SETS)

Expected cost of Wilf’s backtracking algorithms:
- m q(2)
an =Y 1<k<n (1)9

n—1
a,=1+ap1+ Z ( K )qun1kan1k

0<k<n

Same pattern of asymptotic behaviors

k
The series } , # n, first appeared in Mahler

(1940), also arises in many applications.




ANALYTIC & ALGORITHMIC SOURCES OF nclegn

Exhaustive

Mahler’s partitions algorithms

an = an_1 +

an = an—1+ 3| gn)

>°  Tn_1,ka
0<k<n

MIS-finding
algorithms
& n° logn !

() = f(ax) (x99%) (1eons)

|

Backtracking

Pantograph Randomized

equations algorithms

g-difference
algorithms

equations (k)
1) = xi(ax) (oo, (@)



nc1°9"-ASYMPTOTICS: OTHER OCCURRENCES

— EACLIfiulnl]: isomorphism testing, random digital
trees, autocorrelations of strings, information theory, and
asymptotics of recurrences;

— KolelylodiE1GeIg[e]: partitions into powers, palindromic

compositions, combinatorial number theory, and universal
tree of minimum complexity;

— Ll ELIII14A: log-normal distribution, renewal theory, and
total positivity;

— PA[EJEY: commutative ring theory, and semigroups;

— BUEWEIEY: pantograph equations, eigenfunctions of
operators, geometric partial differential equations, and

g-difference equations.




nc'e9n: KNUTH (1966)

On = ¢p-1 + QbLn/ZJ (o = 1)

In the remainder of this paper we will determine the true rate of

growth of the sequence ¢n; it will be proved by elementary methods
that

L 2
In ¢n T (lnn)”
l.e,
1 2 2
_ m(ln n) to{(lnn) )
(6) o =e | .

n



nc'°9n-ASYMPTOTICS: ALGORITHMS

Miller (1978, STOC): Group isomorphisms
logn

Isomorphism Technique*t
A preliminary report

On the n

Gary L. Miller
Department of Mathematics
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Tarjan has given an algorithm for deciding isomorphism
of two groups of order n (given as multiplication tables) which

{logzni'O(l)} steps where n is the order of the

runs in O(n
groups. Tarjan uses the fact that a group of n is generated by

In this paper, we show that Tarjan's technique

log n elements.




RECENT ADVANCES

Breaking the n'6" Barrier for Solvable-Group Isomorphism

David Rosenbaum
University of Washington,
Department of Computer Science & Engineering
Email: djr@cs.washington.edu

July 7, 2012

Abstract

We consider the group isomorphism problem: given two finite groups (G and H specified
by their multiplication tables, decide if G = H. The n'*8" barrier for group isomorphism has
withstood all attacks — even for the special cases of p-groups and solvable groups — ever since
the nlosn+00) generator-enumeration algorithm. In this work, we present the first significant
improvement over nl°2" by showing that group isomorphism is p(1/2)log, n+0(1) Turing reducible
to composition-series isomorphism where p is the smallest prime dividing the order of the group.
Combining our reduction with an n2®/1982) algorithm for p-group composition-series isomor-
(1/2)log n+0(1) 4100rithm for p-group isomorphism. We then generalize our
techniques from p-groups using Sylow bases to derive an n!1/2/legntOogn/loglogn) glaorithm
for solvable-group isomorphism. Finally, we relate group isomorphism to the collision problem
which allows us replace the 1/2 in the exponents with 1/4 using randomized algorithms and 1/6
using quantum algorithms.

phism, we obtain an n



ncloan: WIGDERSON & YEHUDAYOFF (2012)

Population recovery and partial identification

PRP - Results

Facts: u=0 obliterates all information.
- No polytime algorithm for u = o(1)

Thm 3 [DRWY] A poly(k, n, £) algorithm,
from lossy samples, for every u > .365...

Thm 4 [WY]: A poly(klogk, n, ¢) algorithm,
from lossy and/or noisy samples,
for every u>0

Kearns, Mansour, Ron, Rubinfeld, Schapire, Sellie
exp(k) algorithm for this discrete version
Moitra, Valiant
exp(k) algorithm for Gaussian version
(even when noise is unknown)



nco9n: GUIBAS & Odlyzko (1981, JCT-A)

6. COUNTING THE CORRELATIONS

In this section we use the recursive predricate = to obtain bounds on the
number of distinct correlations of length n.

THEOREM 6.1 (the number of correlations). The number x(n) of dxszmct,v
correlations of length n satisfies '

( 3 111 3 +o(1)) In*n<In x(n)g( +0(1)) In? n,

1
21n(3/2)

as n— ao.



nc'°9": CHUNG & GRAHAM (1981)

INTS FROM THE THEORY OF APPLICATIONS OF GRAPHS
OFFFR EDITED BY Dr. Gary Chartrand
COPYRIGHT ® 1981 BY JOHN WILEY & SONS, INC.

On Trees Containing
All Small Trees

F.R.K. CHUNG R.L. GRAHAM®
D. COPPERSMITH

ABSTRACT

In this paper we investigate trees (i.e., connected, acyclic
graphs) which contain all trees on n vertices as subgraphs. Let
us denote by u(n) the minimum number of vertices such a "uni-

versal" tree can have. We prove that:

u(n) = n (log n-2 log log n+0(1))/2 log 2),

Jesolving an earlier conjecture of the authors.



nc'°9": Cameron & Erdds (1990)

1.3. All partial sums distinct

Let f(n) be the number of sequences

g, < .. <¢g <n

for which all sums 3 ¢;0; (¢; = 0,1) are distinct.

Proposition 1.6.
aro(1)log n/log3 ¢ sy ¢ p(i+o(l)log n/log2



ncle9n: REZNYKOV & SUSHCHANSKY (2006)

Available online at www.sciencedirect.com

e i = . JOURNAL OF
,* ScienceDirect Algebra

Journal of Algebra 304 (2006) 712-754 —
www.elsevier.com/locate/jalgebra

On the 3-state Mealy automata over an m-symbol
alphabet of growth order [n1087/2logm)

Illya I. Reznykov **, Vitaliy I. Sushchansky®

Theorem 2.6. The growth functions have the following sharp estimates:

logn
‘SSJm (n) ~ R 210gm ;

]. log(m(n+1))
Yin (n)y= Ysi,, (n) ~ ;(m(n + 1)) 2logm




nc'°s": DE MARCHIS (2010)

Available online at www.sciencedirect.com S
JOURNAL OF
ScienceDirect Functional

Analysis

ELSEVIER

Journal of Functional Analysis 259 (2010) 2165-2192

www.elsevier.com/locate/jfa

Generic multiplicity for a scalar field equation
on compact surfaces

Francesca De Marchis

p h(x)e* 1
—Agu f av, —pf h(x)en dV, xeX, ueHg(E), (*)
= x

Forany X, as k 2 ko, ko € N* (independent of X),

iy

k log(o A2 -]
#{solutions of (*)} > C( (3] ) o3 : [ﬁ] ’ , (1.4)
log[£] 2

where by [%] we mean the integer part of%, 15 :=1og?2 and ll; =:loglog2; so in particular




nc'°9": KARLIN & ZIEGLER (1996)

(1+z)™ (where (4.6) is satisfied

2m), 73 Q1 is

Remarks. (1) The special choice of P(z) =

for all v, thus generates a PF., sequence), leads to p; = :

chosen, and p; = (2”‘.“) if Q2 is chosen. In this case the inequality (4.2),

fora>1,is
Z 1? a+2-ii Z n a(nt1-iG+1) (4.9)
i=0 t i=0 L

For this example, the function

flaj = i( —ﬂ(n-i—l)f?) T (4.10)

n=0



WHY PRECISE ASYMPTOTIC EXPANSION?

(Iog $>2

2logk
+ Periodic <Iogﬁ W) +o(1) (k:=1/q)

Some reasons

— Asymptotics: n°'°9" is less precise

log un =

log x

+<%+ ! >Iogn—|og|ogn

1 log log
1log, logn—1—'0glog
fn (log n)2 "% 9 71~ Teg s s
1 - 1 1 log log & <n
nz 09, n N'°9x 109 =3~ 557~ Tog

— 0,

— Numerical “opacity”
— Methodology: new tools developed
— Generality: discovered




Recurrence relation

OUR ANALYTIC APPROACH

MUn = fn—1 + Zﬂ'n,kﬂnf1—k
k

Tk = (n;1)pkqn—1—k

Poisson heuristic

Poisson GF:
fz) = e 2y, koz"

z

f(z) = f(qz) + e~

I

pn ~ Hn) = 5 7(n)

Modified La-
place transform

S

(s) = sF'(g8) + 1

de-Poissonization

Inverse transform

! .
fin = % %z‘"“ezf(z) dz

(.

J

- -1 eXSN*




RESOLUTION OF THE RECURRENCE

f(z) =f(qz) + e 2
The Laplace transform of f

satisfies : .
sZ(s)==-% <§) + —.
q q s+ 1
Exact solutions
B
Z(s) =)

?.
= 9(s+a)

Hard part: asymptotics of £ (s) ass — 0inC



RESOLUTION OF THE RECURRENCE

Exact solutions
B q(z)
“O =2 FGEra)

(") .
Inverting gives 7(z) = » _ qjl z/“/ e 7% (1 — uY du.
0

j=0

Thus /i, = ) <7>(—1) 3 (—1)'q (), or

1<j<n 1<y

o=t Z <n j 1) - o<€z<:n—j <n _; _j> qu(1j;ZII11jé'

0<j<n

Neither is useful for numerical purposes for large n.



A MORE PRECISE EXPANSION FOR f(x)

Method of proof: functional eq. + saddle-point
N 1 1+ico
f — XS
(x) o /1 e“.Z(s)ds

—ioco

Asymptotics of f(x)
(=YY kappa = 1/q Ll Rlog R = xlog ~ MILER

) R'/1og+1/2g(log A)*/ (2109 %) G(log R 9 |09ﬂ
f(x) ~ (log, ) Z
2rlog, R (log, A

as x — oo, where G(u) := U +Huh/2F(g—{u}),

j=>1

—oo< /<0

and the ¢;(u)’s are bounded, 1-periodic functions of v.




A MORE EXPLICIT ASYMPTOTIC APPROXIMATION

R = xlog kW(xlog x), Lambert's W-function: W(x)e"®*) = x

loglogx  (loglog x)? — 2loglog x
log x 2(log x)?

W(x) =log x — loglog x +

So that G (Iogﬁ ﬁ) . x1/10g 5+1/2 (Iog ﬁ)z

Ver log,. x exp 2log k

f(x) ~

GO nge lambertw function

Scholar

Did you mean: lambert w function

On the LambertW function

RM Corless, GH Gonnet, DEG Hare, DJ Jeffrey... - Advances in ..., 1996 - Springer

The LambertW function is defined to be the multivalued inverse of the functionw— we w. It
has many applications in pure and applied mathematics, some of which are briefly

described here. We present a new discussion of the complex branches of W, an asymptotic ...
Cited by 2243 Related articles BL Direct All 69 versions Import into BibTeX



JUSTIFICATION OF THE POISSON HEURISTIC

2
G (log, is) pi/teantis2 (log )
Hn ™ Vor "~ log,.n exp 2logk

Four properties are sufficient: 1, ~ f(n)
- F(2)=f(g2) + &%
i(j+1)/2 of+1
— F(s) = sF(gs) (F(S) = ¥z Traer);

5.

— |f(2)| < f(|z]) where f(z) := e*f(2).




EXHAUSTIVE ALGORITHM: BEYOND THE MEAN

Intractable due to strong dependence

d *
Xn = Xn—1 + Xn—1—Binom(n—1;p)

i

dependent

Idealized: Y, < Yo 1 + Yi_i_ginom(n_1

iP)

independent




ASYMPTOTIC NORMALITY OF Y,

The distribution of Y, is asymptotically normal

Yo—tn 4 A(0,1),

On

with convergence of all moments.

Proof by the method of moments

— Derive recurrence for E(Y, — u,)™.

— Prove by induction (using the asymptotic
transfer) that

GO
E(Yn — un)™ NWUrH it 2| m,
=o(o]), if2¢m,




HISTOGRAMS OF X, (DEPENDENT) FOR n =100

(p=13)

100 points, prob. 0.5, 1000 samples
vs.
Normal Distribution

1.5e-05
|

probability densities
1.0e-05

|

]

5.0e-06
|

0.0e400

T T T T T T T
50000 100000 150000 200000 250000 300000 350000

times



A NATURAL VARIANT: BINOMIAL — UNIFORM

What happens if Z, < Z, 1 + ZitormionA?

po=pn1+3 >,

0<j<n

satisfies 11, ~ cn/4e?V". Note: ji, = [in_1 + pun)2 fails.

Cc:= 1 (e—‘ —/ v‘1e_"dv) ~ 0.0690646192.. ..
2 m 1

Limit law not Gaussian (by method of moments)

Zn 4, 7

Hn
where g(z) :=>_ . E(ZM)z"/(m- m!) satisfies

Y

z°9" +29' — 9 =299




AN INTERESTING PROPERTY

By the psi-series method for nonlinear DEs

E(Z™ =m-mlp~ <2+i+0 ))

(Chern, Fernandez-Camacho, Hwang, Martinez, RSA)

Original motivation: p, = n™2 3", PjPn-1-j (Po = 1)
Equality of two random binary search trees

ZP" + P = P?
1
pn=p " 60+ 18 + 336 +0(n®)
S 3125048

Applied to > 10 structures



CONCLUSION

n'°9" est ainsi une échelle

o au carrefour de nombreux problemes

o signature intrinseque de récurrences "mixtes”
(additif/multiplicatif) et des mathématiques
associées

o connecte des structures a priori diverses

o oblige a développer de nouvelles mathématiques

o riche domaine pour la combinatoire (graphes,
analytique)

o améliore notre compréhension des paysages de
complexité de problemes (NP-complets ou pas)

MiS-finding
algorithms l




