The scaling limit of the MST of a complete graph

Nicolas Broutin, *Inria Paris-Rocquencourt*

joint work with L. Addario-Berry, *McGill*

C. Goldschmidt, Oxford

G. Miermont, ENS Lyon

The minimum spanning tree

Definition.

$$G = (V, E)$$
 a connected graph
 $w_e \ge 0, e \in E$ weights
MST = lightest connected subgraph of G

Kruskal's algorithm.

- 1. sort the edges by increasing weight, e_i , $1 \le i \le |E|$
- 2. Initially set $T_0 = (V, \emptyset)$
- 3. Set $T_{i+1} = T_i \cup \{e_i\}$ iff it does not create a cycle

Random Model

"Mean-field" model graph: complete graph K_n weights: iid uniform

A little history.

Frieze ('85): total weight converges to $\zeta(3)$ Janson ('95): CLT Aldous: degree of the node 1

Random Model

"Mean-field" model graph: complete graph K_n weights: iid uniform

A little history.

Frieze ('85): total weight converges to $\zeta(3)$ Janson ('95): CLT Aldous: degree of the node 1

But... all these informations are local

What is the global *metric* structure?

The continuum spanning tree

The rescaled minimum spanning tree

- T_n the minimum spanning tree of K_n
- $n^{-1/3}d_n$, for d_n the graph distance
- μ_n mass n^{-1} on each vertex

Theorem (ABGM '13) There exists a random compact metric space \mathscr{M} s.t. $T_n \xrightarrow[]{d}{GHP} \mathscr{M}$

Comparing metric spaces

Gromov-Hausdorff topology.

Comparing measured metric spaces

Gromov-Hausdorff-Prokhorov topology.

What does it look like?

A few properties of \mathcal{M}

Proposition.

- 1. \mathcal{M} is a tree-like metric space
- 2. \mathcal{M} has maximum degree 3
- 3. for μ -almost every x, deg(x) = 1

A few properties of \mathcal{M}

Proposition.

- 1. \mathcal{M} is a tree-like metric space
- 2. *M* has maximum degree 3
- 3. for μ -almost every x, deg(x) = 1

Proposition. *M* is not Aldous' Continuum Random Tree (CRT)

Elements of proof

Random graphs

Phase transition

Scaling limit of large trees / CRT

Structure of critical random graphs

Minimum spanning tree

Erdős–Rényi random graphs

Definition. Random graph G(n, p)graph on $\{1, 2, ..., n\}$ independently, take edges with probability p

 C_i^n the connected components in decreasing order of size

 Phase transition:
 G(n, c/n)

 c < 1:
 $|C_1^n| = O(\log n)$

 c = 1:
 $|C_1^n|, |C_2^n|, \dots, |C_k^n| \approx n^{2/3}$

 c > 1:
 $|C_1^n| = \Omega(n), |C_2^n| = O(\log n)$

The phase transition in pictures

The phase transition in pictures

The phase transition in pictures

When is the metric structure built?

T(n, p) portion of the MST that is in G(n, p) $T(n, p) = (T_1(n, p), T_2(n, p), ...)$

Evolution of distances:

• for all
$$p < (1 - \epsilon)/n$$

 $d_{GH}(T(n, p); \text{ "empty graph"}) = O(\log n)$

n)

• for all
$$p > (1 + \epsilon)/n$$

 $d_{GH}(T_1(n, p); MST) = O(\log^{10} \epsilon)$

When is the metric structure built?

T(n, p) portion of the MST that is in G(n, p) $T(n, p) = (T_1(n, p), T_2(n, p), ...)$

Evolution of distances:

• for all
$$p < (1 - \epsilon)/n$$

 $d_{GH}(T(n, p); \text{``empty graph''}) = O(\log n)$

• for all
$$p > (1 + \epsilon)/n$$

 $d_{GH}(T_1(n, p); MST) = O(\log^{10} n)$

Look around the *critical phase* $p^{\star} = 1/n + \lambda n^{-4/3}$ $\lambda \in \mathbb{R}$ large

Theorem. (Aldous '97) For
$$np = 1 + \lambda n^{-1/3}$$
 $\lambda \in \mathbb{R}$
 $(n^{-2/3}|C_i^n|, s(C_i^n))_{i \ge 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i \ge 1}$

Theorem. (Aldous '97) For
$$np = 1 + \lambda n^{-1/3}$$
 $\lambda \in \mathbb{R}$
 $(n^{-2/3}|C_i^n|, s(C_i^n))_{i \ge 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i \ge 1}$

W Brownien $W_t^{\lambda} = \lambda t - t^2/2 + W_t$ $B_t^{\lambda} = W_t^{\lambda} - \inf_{s \le t} W_t^{\lambda}$

Theorem. (Aldous '97) For
$$np = 1 + \lambda n^{-1/3}$$
 $\lambda \in \mathbb{R}$
 $(n^{-2/3}|C_i^n|, s(C_i^n))_{i \ge 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i \ge 1}$

W Brownien $W_t^{\lambda} = \lambda t - t^2/2 + W_t$ $B_t^{\lambda} = W_t^{\lambda} - \inf_{s \le t} W_t^{\lambda}$

Theorem. (Aldous '97) For
$$np = 1 + \lambda n^{-1/3}$$
 $\lambda \in \mathbb{R}$
 $(n^{-2/3}|C_i^n|, s(C_i^n))_{i \ge 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i \ge 1}$

W Brownien $W_t^{\lambda} = \lambda t - t^2/2 + W_t$ $B_t^{\lambda} = W_t^{\lambda} - \inf_{s \le t} W_t^{\lambda}$

Theorem. (Aldous '97) For
$$np = 1 + \lambda n^{-1/3}$$
 $\lambda \in \mathbb{R}$
 $(n^{-2/3}|C_i^n|, s(C_i^n))_{i\geq 1} \rightarrow (|\gamma_i|, s(\gamma_i))_{i\geq 1}$

W Brownien $W_t^{\lambda} = \lambda t - t^2/2 + W_t$ $B_t^{\lambda} = W_t^{\lambda} - \inf_{s \le t} W_t^{\lambda}$ D i i i 1 \mathbb{D}^2

Poisson rate 1 on \mathbb{R}^2_+

The tree encoded by an excursion

Definition: For a continuous excursion f $d_f(x, y) = f(x) + f(y) - 2 \inf_{x \land y \le t \le x \lor y} f(t)$ $x \sim_f y$ if $d_f(x, y) = 0$ $([0, 1]/\sim_f, d_f)$ is a tree-like metric space

The tree encoded by an excursion

Definition: For a continuous excursion f $d_f(x,y) = f(x) + f(y) - 2 \inf_{x \land y \le t \le x \lor y} f(t)$ $x \sim_f y$ if $d_f(x,y) = 0$ $([0,1]/\sim_f, d_f)$ is a tree-like metric space

Aldous' Continuum Random Tree (CRT)

Theorem. (Aldous '91) T_n a uniformly random tree on $\{1, 2, ..., n\}$ $n^{-1/2}T_n \xrightarrow{d} T_{2e}$ Aldous' Continuum Random Tree (CRT)

Theorem. (Aldous '91) T_n a uniformly random tree on $\{1, 2, ..., n\}$ $n^{-1/2}T_n \stackrel{d}{\to} \mathcal{T}_{2e}$

e standard Brownian excursion \mathcal{T}_{2e} : **Continuum random tree**

What does it look like?

Scaling critical random graphs

G(**n**, **p**) critical window: for $pn = 1 + \lambda n^{-1/3}$, $\lambda \in \mathbb{R}$

- C_i^n the *i*th largest c.c.
- distances rescaled by $n^{-1/3}$
- mass $n^{-2/3}$ on each vertex

Theorem. (ABG'12) There exists a sequence of random compact measured metric spaces s.t.

 $(C_i^n)_{i\geq 1} \xrightarrow{d} (\mathscr{C}_i)_{i\geq 1}$ for the GHP distance

A (limit) random connected component

A limit connected component I

Identifying points in excursions \approx "Random foldings of a random tree"

A limit connected component I

Identifying points in excursions \approx "Random foldings of a random tree"

• Poisson process rate one under \tilde{e}

For each point $\{\bullet, \bullet, \bullet\}$ *identify* two points of $\mathcal{T}_{2\tilde{e}}$

A limit connected component II

Structural approach:

1. Sample a connected 3-regular multigraph

with 2(s-1) vertices and 3(s-1) edges

2. respective masses of the bits ("=edges"):

$$(X_1,\ldots,X_{3(s-1)}) \sim \mathsf{Dirichlet}(\frac{1}{2},\ldots,\frac{1}{2})$$

3. sample 3(s-1) independent CRT with 2 distinguished points each

A limit connected component II

Structural approach:

1. Sample a connected 3-regular multigraph

with 2(s-1) vertices and 3(s-1) edges

2. respective masses of the bits ("=edges"):

$$(X_1,\ldots,X_{3(s-1)}) \sim \mathsf{Dirichlet}(\frac{1}{2},\ldots,\frac{1}{2})$$

3. sample 3(s-1) independent CRT with 2 distinguished points each

A limit connected component II

Structural approach:

1. Sample a connected 3-regular multigraph

with 2(s-1) vertices and 3(s-1) edges

2. respective masses of the bits ("=edges"):

$$(X_1,\ldots,X_{3(s-1)}) \sim \mathsf{Dirichlet}(\frac{1}{2},\ldots,\frac{1}{2})$$

3. sample 3(s-1) independent CRT with 2 distinguished points each

A large connected graph

A large connected graph

Removing non-MST edges

Forward-Backward approach

Strategy.

- 1. Build G(n, p): Add all edges until some weight p^*
- 2. Remove the edges that should not have been put

Forward-Backward approach

2'. Conditional on G(n, p) = G, construct a tree **distributed** as MST(G)

Forward-Backward approach

2'. Conditional on
$$G(n, p) = G$$
,
construct a tree **distributed** as MST(G)

Cycle breaking: $(e_i)_{i \ge 1}$, i.i.d. uniformly random edges While "not a tree" Remove e_i unless it disconnects the graph

Forward-Backward approach – the limit

Strategy.

- 1. Build G(n, p): Add all edges until some weight p^*
- 2. Remove the edges that should not have been put

$$G(n,p) \xrightarrow[n \to \infty]{} (\mathscr{C}_1, \mathscr{C}_2, \dots)$$

Cycle breaking for metric spaces: $(x_i)_{i\geq 1}$ i.i.d. random points on the cycle structure While "not a tree" Remove x_i unless it disconnects the metric space

Construction of the limit

Fractal dimension

(X, d) a compact metric space $N(X, r) = \min$ number of balls of radius r to cover X

$$\underline{\dim}(X) = \lim \inf_{r \to 0} \frac{\log N(X, r)}{\log(1/r)} \qquad \overline{\dim}(X) = \limsup \sup_{r \to 0} \frac{\log N(X, r)}{\log(1/r)}$$

box-counting dimension

dim(X) is the common value, if they are equal

Example:

dim
$$([0, 1]) = 1$$

dim $([0, 1]^2) = 2$

N([0,1],r) pprox 1/r $N([0,1]^2,r) pprox 1/r^2$

Dimensions of continuum random trees

Theorem. (ABGM 2013) $dim(\mathcal{M}) = 3$ with probability one

while

Theorem. dim(CRT) = 2 with probability one

Thank you!

Estimating the box-counting dimension

For
$$p = 1/n + \lambda n^{-4/3}$$
, λ large

- 1. mass of the largest component $\sim 2\lambda$
- 2. surplus of the largest component $\sim 2\lambda^3/3$
- 3. Each "tree" has mas $\sim \lambda^{-2}$
- 4. Each tree has diameter $\sim \sqrt{\lambda^{-2}} = \lambda^{-1}$

$$N(\mathscr{C}_1^{\lambda}, \lambda^{-1}) \asymp \lambda^3$$