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The minimum spanning tree

Definition.
G = (V ,E ) a connected graph

MST = lightest connected subgraph of G

we ≥ 0, e ∈ E weights

Kruskal’s algorithm.

1. sort the edges by increasing weight, ei , 1 ≤ i ≤ |E |

2. Initially set T0 = (V ,∅)

3. Set Ti+1 = Ti ∪ {ei} iff it does not create a cycle
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Random Model

graph: complete graph Kn

weights: iid uniform

A little history.

Frieze (’85): total weight converges to ζ(3)

Aldous: degree of the node 1

”Mean-field” model

Janson (’95): CLT



Random Model

graph: complete graph Kn

weights: iid uniform

A little history.

Frieze (’85): total weight converges to ζ(3)

Aldous: degree of the node 1

But... all these informations are local

What is the global metric structure?

”Mean-field” model

Janson (’95): CLT



The continuum spanning tree

The rescaled minimum spanning tree

Tn
d−−−→

GHP
M

• Tn the minimum spanning tree of Kn

Theorem

There exists a random compact metric space M s.t.

• n−1/3dn, for dn the graph distance

(ABGM ’13)

• µn mass n−1 on each vertex



Comparing metric spaces

Gromov-Hausdorff topology.
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Comparing measured metric spaces

Gromov-Hausdorff-Prokhorov topology.

(X1, d1, µ1)
(X2, d2, µ2)

(Z , δ)

φ1
φ2



What does it look like?

M



A few properties of M

Proposition.
1. M is a tree-like metric space

2. M has maximum degree 3

3. for µ-almost every x , deg(x) = 1



A few properties of M

Proposition.
1. M is a tree-like metric space

2. M has maximum degree 3

3. for µ-almost every x , deg(x) = 1

Proposition.
M is not Aldous’ Continuum Random Tree (CRT)



Elements of proof

Random graphs

Structure of critical random graphs

Minimum spanning tree

Phase transition

Scaling limit of large trees / CRT



Erdős–Rényi random graphs

Definition. Random graph G (n, p)

graph on {1, 2, . . . , n}
independently, take edges with probability p

Phase transition: G (n, c/n)

c < 1:

c = 1:

c > 1:

|C n
1 | = O(log n)

|C n
1 |, |C n

2 |, . . . , |C n
k | ≈ n2/3

|C n
1 | = Ω(n), |C n

2 | = O(log n)

C n
i the connected components in decreasing order of size



The phase transition in pictures



The phase transition in pictures

G (10000, 1.0
10000 )



The phase transition in pictures



When is the metric structure built?

Evolution of distances:

• for all p < (1− ε)/n

T (n, p) portion of the MST that is in G (n, p)

dGH(T (n, p); “empty graph”) = O(log n)

• for all p > (1 + ε)/n

dGH(T1(n, p);MST ) = O(log10 n)

T (n, p) = (T1(n, p),T2(n, p), . . . )



When is the metric structure built?

Evolution of distances:

• for all p < (1− ε)/n

T (n, p) portion of the MST that is in G (n, p)

dGH(T (n, p); “empty graph”) = O(log n)

• for all p > (1 + ε)/n

dGH(T1(n, p);MST ) = O(log10 n)

Look around the critical phase

p? = 1/n + λn−4/3 λ ∈ R large

T (n, p) = (T1(n, p),T2(n, p), . . . )



The phase transition

Theorem. (Aldous ’97)

(n−2/3|C n
i |, s(C n

i ))i≥1 → (|γi |, s(γi ))i≥1

For np = 1 + λn−1/3 λ ∈ R
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The phase transition

Theorem. (Aldous ’97)

(n−2/3|C n
i |, s(C n

i ))i≥1 → (|γi |, s(γi ))i≥1

For np = 1 + λn−1/3 λ ∈ R

W Brownien

W λ
t = λt − t2/2 + Wt

Bλt = W λ
t − infs≤t W

λ
t

Poisson rate 1 on R2
+

|γ|

s(γ)



The tree encoded by an excursion

excursion f tree Tf

df (x , y) = f (x) + f (y)− 2 inf
x∧y≤t≤x∨y

f (t)

x ∼f y if df (x , y) = 0

([0, 1]/∼f , df ) is a tree-like metric space

0 1

Definition: For a continuous excursion f
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f (t)
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0 1

Definition: For a continuous excursion f



Aldous’ Continuum Random Tree (CRT)

Theorem. (Aldous ’91)
Tn a uniformly random tree on {1, 2, . . . , n}

n−1/2Tn
d→ T2e



Aldous’ Continuum Random Tree (CRT)

Theorem. (Aldous ’91)
Tn a uniformly random tree on {1, 2, . . . , n}

n−1/2Tn
d→ T2e

T2e : Continuum random tree
e standard Brownian excursion



What does it look like?

T2e



Scaling critical random graphs

Theorem.

(C n
i )i≥1

d→ (Ci )i≥1 for the GHP distance

G(n,p) critical window: for pn = 1 + λn−1/3, λ ∈ R

(ABG’12)

• C n
i the ith largest c.c.

• distances rescaled by n−1/3

• mass n−2/3 on each vertex

There exists a sequence of
random compact measured metric spaces s.t.



A (limit) random connected component



A limit connected component I

Identifying points in excursions

ẽ(t)

t

≈ “Random foldings of a random tree”



A limit connected component I

Identifying points in excursions

• Poisson process rate one under ẽ

{•, •, •}For each point identify two points of T2ẽ

ẽ(t)

t
uv

u

v

≈ “Random foldings of a random tree”



A limit connected component II

1. Sample a connected 3-regular multigraph

with 2(s − 1) vertices and 3(s − 1) edges

2. respective masses of the bits (“=edges”):

(X1, . . . ,X3(s−1)) ∼ Dirichlet( 1
2 , . . . ,

1
2 )

3. sample 3(s − 1) independent CRT with 2 distinguished points each

s = 3

Structural approach:
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A limit connected component II

1. Sample a connected 3-regular multigraph

with 2(s − 1) vertices and 3(s − 1) edges

2. respective masses of the bits (“=edges”):

(X1, . . . ,X3(s−1)) ∼ Dirichlet( 1
2 , . . . ,

1
2 )

3. sample 3(s − 1) independent CRT with 2 distinguished points each

s = 3

X1

X2X3
X4

X5

X6

Structural approach:

√
X2 · T2



A large connected graph



A large connected graph



Use the coupling with G (n, p)

G (n, p) process

Removing non-MST edges



Use the coupling with G (n, p)

G (n, p) process

Removing non-MST edges ??



Forward-Backward approach

1. Build G (n, p): Add all edges until some weight p?

2. Remove the edges that should not have been put

Strategy.
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Forward-Backward approach

1. Build G (n, p): Add all edges until some weight p?

2. Remove the edges that should not have been put

Strategy.

2’. Conditional on G (n, p) = G ,
construct a tree distributed as MST(G)

Cycle breaking: (ei )i≥1, i.i.d. uniformly random edges

While “not a tree”

Remove ei unless it disconnects the graph



Forward-Backward approach – the limit

1. Build G (n, p): Add all edges until some weight p?

2. Remove the edges that should not have been put

Strategy.

Cycle breaking for metric spaces:

While “not a tree”

Remove xi unless it disconnects the metric space

(xi )i≥1 i.i.d. random points on the cycle structure

G (n, p) −−−→
n→∞

(C1,C2, . . . )



Construction of the limit

G (n, p) (C λ
1 ,C

λ
2 , . . . )

T (n, p) (T λ
1 ,T

λ
2 , . . . )

(Tn, 0, 0, . . . ) (M , 0, 0, . . . )

λ→∞ λ→∞

n→∞

n→∞

n→∞

cycle breaking



Fractal dimension

box-counting dimension

(X , d) a compact metric space

N(X , r) = min number of balls of radius r to cover X

dim(X ) = lim inf
r→0

logN(X , r)

log(1/r)

Example:

N([0, 1]2, r) ≈ 1/r2

dim(X ) = lim sup
r→0

logN(X , r)

log(1/r)

dim(X ) is the common value, if they are equal

dim([0, 1]) = 1

dim([0, 1]2) = 2

N([0, 1], r) ≈ 1/r



Dimensions of continuum random trees

Theorem.

dim(M ) = 3 with probability one

while

Theorem.
dim(CRT ) = 2 with probability one

(ABGM 2013)



Thank you!



Estimating the box-counting dimension

For p = 1/n + λn−4/3, λ large

1. mass of the largest component ∼ 2λ

2. surplus of the largest component ∼ 2λ3/3

3. Each ”tree” has mas ∼ λ−2

4. Each tree has diameter ∼
√
λ−2 = λ−1

N(C λ
1 , λ

−1) � λ3
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