Introduction	CTM Equations	CTMRG method	Series calculations	Extensions

Series expansions from the corner transfer matrix renormalization group method

Yao-ban Chan¹ Andrew Rechnitzer²

¹LaBRI/The University of Melbourne ²University of British Columbia

January 27, 2011

Introduction •00000	CTM Equations	CTMRG method 0000000000	Series calculations	Extensions 00000

What is the CTMRG method?

The corner transfer matrix renormalization group method is an efficient algorithm for calculating thermodynamical quantities in statistical mechanical models.

It can be used to either calculate numerically, or evaluate series expansions of these quantities, the latter purpose of which is the focus of this talk.

To understand the method fully, it is instructive to look at its history and predecessors.

Introduction 00000	CTM Equations	CTMRG method	Series calculations 000000	Extensions 00000
CTM equ	lations and me	thod		

The origin of the corner transfer matrix came from Baxter (1978) and Baxter and Enting (1979).

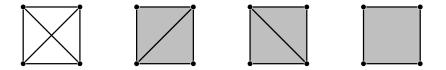
In these papers, which spawned a small series of other papers, they devised the CTM equations, which form the basis of all corner transfer matrix-related methods.

We will first examine these equations in detail.

Introduction 000000	CTM Equations	CTMRG method	Series calculations	Extensions 00000
Interactio	on round a face			

Firstly, we note that the CTM equations apply for a large class of statistical mechanical models which can be expressed in terms of *interaction round a face* (or IRF).

This means that the Boltzmann weight of a configuration can be expressed as the product (over all cells) of weights of a single cell.



Interaction round a face (examples)

A classic example is the (2-d square lattice, spin- $\frac{1}{2}$) Ising model.

$$Z = \sum_{\sigma} \exp\left(\beta J \sum_{\langle i,j \rangle} \sigma_i \sigma_j + \beta H \sum_i \sigma_i\right)$$
$$= \sum_{\sigma} \prod_{\langle i,j,k,l \rangle} \omega \begin{pmatrix} \sigma_i & \sigma_j \\ \sigma_k & \sigma_l \end{pmatrix}$$

where

$$\omega \begin{pmatrix} \sigma_i & \sigma_j \\ \sigma_k & \sigma_l \end{pmatrix} = \exp \left(\frac{\beta J}{2} \left(\sigma_i \sigma_j + \sigma_j \sigma_l + \sigma_k \sigma_l + \sigma_i \sigma_k \right) \right.$$

$$+ \frac{\beta H}{4} \left(\sigma_i + \sigma_j + \sigma_k + \sigma_l \right) \right).$$

Series expansions from the corner transfer matrix renormalization group method

 Introduction
 CTM Equations
 CTMRG method
 Series calculations
 Extensions

 000000
 0000000000
 000000000
 0000000
 000000
 000000

Interaction round a face (examples)

The test case that we used was the simpler hard squares model. We let the spin values be 0 and 1 and prohibit two neighbouring '1' spins. We use z as the fugacity of a '1' spin.

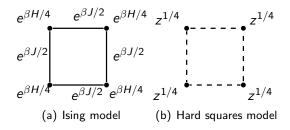
$$Z = \sum_{\sigma} \begin{cases} 0 & \text{if } \sigma_i \sigma_j = 1 \text{ for some } \langle i, j \rangle \\ z \sum_i \sigma_i & \text{otherwise} \end{cases}$$
$$= \sum_{\sigma} \prod_{\langle i, j, k, l \rangle} \omega \begin{pmatrix} \sigma_i & \sigma_j \\ \sigma_k & \sigma_l \end{pmatrix}$$

where

$$\omega \left(\begin{array}{cc} \sigma_i & \sigma_j \\ \sigma_k & \sigma_l \end{array}\right) = \left\{\begin{array}{cc} 0 & \text{if } \sigma_i \sigma_j, \ \sigma_j \sigma_l, \ \sigma_k \sigma_l \text{ or } \sigma_i \sigma_k = 1 \\ z^{(\sigma_i + \sigma_j + \sigma_k + \sigma_l)/4} & \text{otherwise.} \end{array}\right.$$

Introduction 00000●	TM Equations	CTMRG meth	Series calculation	Extensions 00000

Interaction round a face (examples)

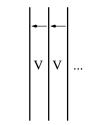


Series expansions from the corner transfer matrix renormalization group method

- + ∃ →

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	•0000000000000		0000000	00000
Transfer	matrices and t	ne partition f	iunction	

Consider a traditional (column) transfer matrix, V.



The elements of this matrix are the weight of a column of the lattice.

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	00000000000000		0000000	00000

Transfer matrices and the partition function

We can build the partition function of the entire lattice this way:

$$Z_{m imes n} = \operatorname{Tr} V^n pprox \Lambda^n$$

where Λ is the maximum eigenvalue of V.

In the infinite (thermodynamic) limit, this gives the partition function per site:

$$\kappa = \lim_{m \to \infty} \Lambda^{\frac{1}{m}}.$$

Introduction 000000	CTM Equations 00●00000000000	CTMRG method	Series calculations	Extensions 00000
Calculati	ng the partition	n function		

To find the maximum eigenvalue of V, we use the Courant-Fischer theorem:

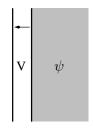
$$\Lambda = \max_{\psi} \frac{\psi^{\mathsf{T}} \mathsf{V} \psi}{\psi^{\mathsf{T}} \psi},$$

where ψ is a vector with the same dimension as V.

We also know that the maximising ψ is the corresponding eigenvector of V.

Introduction 000000	CTM Equations	CTMRG method	Series calculations	Extensions 00000
Calculati	ng the partition	n function		

The optimal ψ can be interpreted as the partition function of half a plane, given the spins on the border:



Introduction 000000	CTM Equations	CTMRG method 00000000000	Series calculations	Extensions 00000
A variati	onal approxima	tion		

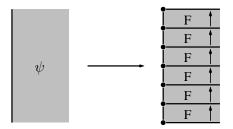
In the infinite limit, ψ is also infinite-dimensional, so maximising over all ψ is quite hard!

We instead choose to maximise over a subset of all possible ψ , which have a certain form:

 $\psi(\sigma_1, \sigma_2, \dots, \sigma_m) = \text{Tr } F(\sigma_1, \sigma_2)F(\sigma_2, \sigma_3) \dots F(\sigma_m, \sigma_1),$ where F(a, b) is a square matrix of arbitrary dimension.

Introduction 000000	CTM Equations 00000●00000000	CTMRG method	Series calculations	Extensions 00000
Calculatir	ng the partition	n function		

F has a graphical interpretation as a 'half-row' transfer matrix.



< ∃⇒

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	00000000000000		0000000	00000
Calculatir	ng the partition	n function		

Maximising over this subset gives us an approximation for A, and therefore $\kappa.$

The larger the *F*s are, the better the approximation.

It can be shown that in the infinite-dimensional limit (of F), the approximation is exact.

Introduction 000000	CTM Equations	CTMRG method 00000000000	Series calculations	Extensions 00000
The CTN	/ equations			

It is now possible to write $\psi^T \psi$ and $\psi^T V \psi$ as *m*th powers of the largest eigenvalues of 'full-row' transfer matrices consisting of two *F*s, or two *F*s and a ω .

The eigenvalue equations, re-cast in terms of F, are

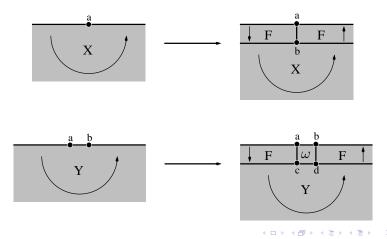
$$\sum_{b} F(a,b)X(b)F(b,a) = \xi X(a)$$
$$\sum_{c,d} \omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} F(a,c)Y(c,d)F(d,b) = \eta Y(a,b).$$

Series expansions from the corner transfer matrix renormalization group method

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	00000000000000	0000000000	0000000	00000

Interpreting the CTM equations

Both these equations have the graphical interpretation of adding a row to the 'half-plane' transfer matrices X and Y.



Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	0000000000000000		0000000	00000
Calculati	ng the partition	function		

We now calculate κ by

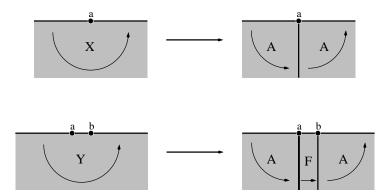
$$\kappa = \lim_{m \to \infty} \left(\frac{\psi^T V \psi}{\psi^T \psi} \right)^{\frac{1}{m}} = \frac{\eta}{\xi}.$$

It can be shown that this expression is maximised with respect to F if we also satisfy the equations

$$\begin{array}{rcl} X(a) &=& A^2(a) \\ Y(a,b) &=& A(a)F(a,b)A(b), \end{array}$$

Introduction 000000	CTM Equations 000000000000000000000000000000000000	CTMRG method	Series calculations	Extensions 00000
The CTN	/ equations			

These equations can be pictured as breaking down X and Y into 'corner' transfer matrices.



Introduction 000000	CTM Equations	CTMRG method	Series calculations	Extensions 00000
The CTN	/ equations			

Putting it all together gives us the CTM equations:

$$\sum_{b} F(a,b)X(b)F(b,a) = \xi X(a)$$
$$\sum_{c,d} \omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} F(a,c)Y(c,d)F(d,b) = \eta Y(a,b)$$
$$X(a) = A^{2}(a)$$
$$Y(a,b) = A(a)F(a,b)A(b).$$

Solving these equations for infinite-size matrices will solve the model; solving them for finite-size matrices will provide an approximation.

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	000000000000000000000000000000000000		0000000	00000
	/I method			

One of the properties that give corner transfer matrices their power is that even small size matrices tend to give very good approximations.

Moreover, increasing size gives us a non-decreasing number of correct series terms, making the equations an ideal springboard for calculating series expansions.

It is claimed (but as far as we know, not proven) that we need a matrix size of $O(\alpha^{\sqrt{n}})$ to generate *n* terms, making algorithms based on CTM sub-exponential.

Introduction 000000	CTM Equations ○○○○○○○○○○○○○	CTMRG method	Series calculations	Extensions 00000
The CTN	A method			

Baxter's original CTM method fixed matrix sizes and iterated through the CTM equations, fixing some matrices and re-calculating others.

One notable triumph of CTM was Baxter's exact solution of the hard hexagons model, which he derived by finding a pattern in the eigenvalues of the corner transfer matrices.

In practice, however, he transformed the equations using (non-obvious) model-specific transformations, which make it hard to extend or generalise his method. We would like to develop a more general method that does not require these transformations.

Introduction 000000	CTM Equations	CTMRG method ●0000000000	Series calculations	Extensions 00000
The CTI	MRG method			

Nishino and Okunishi (1996) combined the CTM equations with ideas from the density matrix renormalization group method to form the corner transfer matrix renormalization group method.

To understand this method, we look closer at the matrices in the CTM equations — in particular, A.

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	00000000000000	○●○○○○○○○○	0000000	00000
The CTN	/IRG method			

A is a transfer matrix that carries the weight of a quarter of the plane.

To get exact results, it should be of infinite size; at finite size, the solution to the CTM equations covers as much area as possible, in a sense.

Introduction 000000	CTM Equations	CTMRG method	Series calculations	Extensions 00000
	ARG method			

Now we have to figure out how we can calculate such a matrix.

The first step is to recognize that, given A and F, we can 'expand' A to include one more column and row.

$$A_{I}(a) = \begin{pmatrix} \sum_{b} \omega \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} F(0, b)A(b)F(b, 0) & \sum_{b} \omega \begin{pmatrix} a & 1 \\ 0 & b \end{pmatrix} F(0, b)A(b)F(b, 1) \\ \sum_{b} \omega \begin{pmatrix} a & 0 \\ 1 & b \end{pmatrix} F(1, b)A(b)F(b, 0) & \sum_{b} \omega \begin{pmatrix} a & 1 \\ 1 & b \end{pmatrix} F(1, b)A(b)F(b, 1) \end{pmatrix}$$

Series expansions from the corner transfer matrix renormalization group method

Introduction 000000	CTM Equations	CTMRG method	Series calculations 0000000	Extensions 00000
	/IRG method			

We can also expand F by a cell.

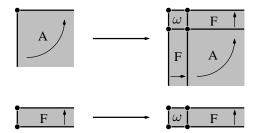
$$F_{l}(a,b) = \begin{pmatrix} \omega \begin{pmatrix} b & 0 \\ a & 0 \end{pmatrix} F(0,0) & \omega \begin{pmatrix} b & 1 \\ a & 0 \end{pmatrix} F(0,1) \\ \omega \begin{pmatrix} b & 0 \\ a & 1 \end{pmatrix} F(1,0) & \omega \begin{pmatrix} b & 1 \\ a & 1 \end{pmatrix} F(1,1) \end{pmatrix}$$

Series expansions from the corner transfer matrix renormalization group method

-∢ ≣⇒

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	000000000000000	○○○○●○○○○○○		00000
The CTM	RG method			

These equations have an obvious graphical interpretation.



Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000		00000●00000	0000000	00000
	/IRG method			

This still leaves us with the problem that A_I and F_I are twice as big as A and F! We have to find some way to shrink them, while keeping them covering as much area as possible.

In technical terms, this means maximising the eigenvalues of A. To do this, we diagonalise A_I by applying the transformations

 $A_{I}(a) \rightarrow P^{T}(a)A_{I}(a)P(a), F_{I}(a,b) \rightarrow P^{T}(a)F_{I}(a,b)P(b)$ where P(a) is an orthogonal matrix.

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000		000000€0000	0000000	00000
	/IRG method			

By then removing the smaller eigenvalues of A_I to reduce it to the same size as A, and applying the same transformation to F, we have 'expanded' the area that the corner transfer matrix covers, while keeping it at the same dimension.

This procedure can then be repeated as many times as required, producing more and more accurate approximations each time.

It is also very easy to permanently increase the size of the matrices — simply keep more eigenvalues of A_I .

Introduction 000000	CTM Equations	CTMRG method 0000000€000	Series calculations	Extensions 00000
	MRG method			

- Start with initial approximations for A(a) and F(a, b).
- **2** Calculate $A_I(a)$ and $F_I(a, b)$.
- Diagonalize $A_l(a)$, i.e. find orthogonal matrices $P_l(a)$ such that $P_l^T(a)A_l(a)P_l(a)$ is diagonal, with diagonal entries in order from largest to smallest.
- If we want to expand the matrices, set n = n + 1.
- Solution Let P(a) be the first *n* columns of $P_l(a)$.
- Set $A(a) = P^{T}(a)A_{l}(a)P(a)$ and $F(a, b) = P^{T}(a)F_{l}(a, b)P(b)$.
- Return to step 2.

Introduction 000000	CTM Equations	CTMRG method 000000000000	Series calculations	Extensions 00000
The CTN	IRG method			

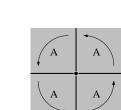
We now calculate κ by

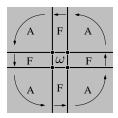
$$\kappa = \frac{Z_1 Z_3}{Z_2^2},$$

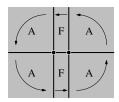
where the Zs are partition functions of the plane, but some with extra cells:

$$Z_1 = \operatorname{Tr} \sum_{a} A^4(a), \qquad Z_2 = \operatorname{Tr} \sum_{a,b} A^2(a)F(a,b)A^2(b)F(b,a)$$
$$Z_3 = \operatorname{Tr} \sum_{a,b,c,d} \omega \begin{pmatrix} a & b \\ c & d \end{pmatrix} A(a)F(a,c)A(c)F(c,d)A(d)F(d,b)A(b)F(b,a).$$

Introduction 000000	CTM Equations	CTMRG method 00000000000	Series calculations	Extensions 00000
	/IRG method			







Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000		0000000000●	0000000	00000
	MRG method			

Nishino and Okunishi were able to use the CTMRG method to obtain very accurate numerical calculations, which they applied to a variety of models.

In more recent years Foster and Pinettes (2003) and Mangazeev *et al.* (2009) also applied the method to great success.

However, (as far as we know) no one has used this method for series expansions... so far!

000000	00000000000000000	0000000000	•00000	00000		
Series calculations with CTMRG						

One of the reasons was quite obvious: how do you diagonalise a matrix of series (exactly in the first few terms)?

In this method, we need to diagonalise the matrices $A_I(a)$.

We experimented with a few methods and found that in easy cases, the tried and trusted power method works quite well.

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	0000000000000	0000000000	000000	00000

Series calculations with CTMRG

Theorem

Let A be a matrix of power series where λ_1 and λ_2 have leading powers l_1 and l_2 . Suppose we have a (unit-norm) estimate $\hat{\mathbf{x}}_1$ of \mathbf{x}_1 which is accurate to m terms, i.e.

$$\hat{\mathbf{x}}_1 - \mathbf{x}_1 = O(z^m).$$

Then

$$\|A\hat{\mathbf{x}}_1\| - \lambda_1 = O(z^{l_1+m})$$

and

$$\frac{A\hat{\mathbf{x}}_1}{\|A\hat{\mathbf{x}}_1\|} - \mathbf{x}_1 = O(z^{m+l_2-l_1}).$$

In other words, the power method gives us $l_2 - l_1$ extra correct terms for every iteration.

Series expansions from the corner transfer matrix renormalization group method

Introduction 000000	CTM Equations	CTMRG method 00000000000	Series calculations	Extensions 00000
Series ca	culations with	CTMRG		

Once we have the largest eigenvalue of $A_I(a)$, we can deflate it to

$$A_l(a) - \lambda_1 \mathbf{x}_1 \mathbf{x}_1^T$$

and apply the power method again, until we have all the eigenvalues/vectors.

This is good as long as the eigenvalues of A_1 are non-degenerate. (In this case, we define 'degenerate' as having the same leading order.)

For our test case (hard squares), this actually does happen for small sizes (up to 5×5). However, if we want to go farther, we need more sophisticated methods.

Introduction 000000	CTM Equations	CTMRG method	Series calculations 000●000	Extensions 00000
Series calo	culations with	CTMRG		

If we have the first few terms of an eigenvalue (even a degenerate one), we can use the shifted inverse power method.

More precisely, if λ_0 is equal to exactly one eigenvalue of $A_I(a)$ up to order z^m , then $(A_I(a) - \lambda_0 I)$ shifts the eigenvalues of $A_I(a)$ so that all but one have leading order at most m, and the remaining one has leading order more than m.

In that case, $(A_I(a) - \lambda_0 I)^{-1}$ has one eigenvalue with leading order less than -m, with the leading order of all other eigenvalues more than that.

The power method, applied to $(A_I(a) - \lambda_0 I)^{-1}$, will now identify this eigenvalue unambiguously.

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	00000000000000	00000000000	0000●00	00000
Series ca	lculations with	CTMRG		

This still leaves us the problem of finding the first few terms of an eigenvalue exactly. There are several possibilities.

Often the eigenvalues of $A_l(a)$ do not change much from iteration to iteration. In that case, we can use the eigenvalues of the previous $A_l(a)$ to shift the current matrix. This is very efficient if we know many initial terms.

If we do not have a previous value for the eigenvalue, we can often still calculate the first few terms of an eigenvalue by looking at the block structure of A_{l} .

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	00000000000000	0000000000	00000€0	00000
Block di	agonalization			

If all else fails, we use block diagonalization. This involves applying a change-of-basis transformation to $A_I(a)$ so that it takes a block-diagonal form, rather than strictly diagonal.

As long as we do not split up a block when we cut off rows and columns, this still works.

We have proved an equivalent to the earlier theorem for block diagonalization, which states that every iteration of a modified power method gives us $I_{k+1} - I_k$ terms for $k \times k$ blocks.

Introduction	CTM Equations	CTMRG method	Series calculations	Extensions
000000	00000000000000	0000000000	000000●	00000
Results f	or hard squares	5		

With these modifications, the CTMRG can be made to work for series expansions.

Using matrices of size 29×29 , we were able to generate 92 terms of the hard squares partition function. This took us 18 (×10) hours of computer time without any serious attempt at programmatical optimization.

For comparison, Baxter and Tsang (1980) generated 43 series terms, and we know of no-one else who has generated more. (We believe the reasons for lack of progress in this method are more due to eigenvalue degeneracy, which we have overcome.)

Introduction 000000	CTM Equations	CTMRG method	Series calculations 0000000	Extensions ●0000
Arnoldi n	nethod			

Recently we discovered that instead of diagonalizing A_I , we can use the Arnoldi method to transform it into a tridiagonal matrix and use that for A.

This is much faster than diagonalizing A_l and does not always have problems with degenerate eigenvalues (which are not truly degenerate in any case).

Though not as accurate numerically, it appears to yield the same number of series terms at each finite size as explicit diagonalization.

If we can eliminate all degeneracy problems, this is clearly the way to go.

Introduction 000000	CTM Equations 00000000000000	CTMRG method	Series calculations	Extensions 0●000
Potts mo	del			

We have modified the CTMRG to work for the Potts model in zero-field, theoretically for any specified q.

With matrices of size 18×18 , we can get 56 terms of the partition function per site for q = 3.

The current record for q = 3 is 72 terms by Jensen, using the finite lattice method.

Introduction 000000	CTM Equations	CTMRG method	Series calculations	Extensions 00€00
Self-avoi	ding polygons			

We are also trying to enumerate self-avoiding polygons using this method. The main challenges for this are:

- Walks lie on the bonds of the lattice, whereas the CTMRG is used for models with spins at the sites.
- The self-avoiding constraint is non-local, but the model must be expressible in IRF format.

We believe we can solve both these obstacles, but have not yet managed to make it work!

Introduction 000000	CTM Equations	CTMRG method	Series calculations	Extensions 000€0
Conclusion				

- The CTMRG is a very efficient method based on the CTM method by Baxter, and developed by Nishino and Okunishi.
- We have managed to get this method working for series expansions.
- Our method is quite general, and should be able to be applied efficiently to many spin models.
- A wider class of models, including vertex models and self-avoiding walks, may also be possible.
- We are on the lookout for more models to apply it to!

Introduction 000000	CTM Equations	CTMRG method	Series calculations	Extensions 0000●
References				

- R. J. Baxter. Variational approximations for square lattice models in statistical mechanics. J. Stat. Phys., 19(5):461–478, 1978.
- R. J. Baxter and I. G. Enting. Series expansions from corner transfer matrices — the square lattice Ising model. J. Stat. Phys., 21(1):103–123, 1979.
- R. J. Baxter and S. K. Tsang. Hard-square lattice gas. J. Stat. Phys., 22(4):465–489, 1980.
- T. Nishino and K. Okunishi. Corner transfer matrix renormalization group method. J. Phys. Soc. Jpn., 65(4):891–894, 1996.
- D. P. Foster and C. Pinettes. A corner transfer matrix renormalization group investigation of the vertex-interacting self-avoiding walk model. *J. Phys. A*, 36:10279–10298, 2003.
- Y. Chan. Selected problems in lattice statistical mechanics. PhD thesis, The University of Melbourne, 2005.
- V. V. Mangazeev, M. T. Batchelor, V. V. Bazhanov and M. Y. Dudalev. Variational approach to the scaling function of the 2D Ising model in a magnetic field. J. Phys. A, 42:042005, 2009.