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The contour of a tree t is the polygonal function constructed from the heights of the
leaves of t. We prove that the contour of size n general planar trees, suitably normalized,

converges to the Brownian excursion.

Introduction

We denote by G the set of general planar trees, i.e. ordered planar trees with unrestricted node
degrees, and by G, the subset of G which contains the trees with n nodes. The cardinal of Gy, is given
by C,—1 = (2(::11)) /n, the n — 1** Catalan number.

A tree t from G, has a random number N (¢) of leaves which can be numbered from the most left one
to the most right one I(1),--- ,I(N(t)). The height H;(i(3)) of the i*" leaf of ¢ is defined to be the

distance from (i) to the root. The sequence (H;((3))) is called the contour process of ¢. By

i=1,,N(t)

convention, the height of a non-existing leaf is zero.

The aim of this paper is to prove the following theorem:

Theorem 1 The contour process converges to the Brownian excursion (for the Skohorod topology).

HU(L))) weakly
( NG >xe[0,1} = (el@)) aepo
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Figure 1 : A tree and its associated contour sequence.

Set H,, the function whose graph joints linearly the set of points (%, H(%Q)))ke[[o ]’ (ﬁn(w))ze[o,l]

converges weakly to the Brownian excursion in the set of continuous function on [0,1] endowed with

the uniform topology.

Bernoulli excursions and simple random walks

We denote by RW (2n) the set of simple random walks with 2n steps. An element w = (Sy(w), S1(w),

<+, Son(w)) of RWo, satisfies:

So(w) =0 and for 0 <k <2n—1,Sk11(w) = Sk(w) £ 1,

the 22" path being equiprobable. The set Es(2n) of Bernoulli excursions with 2n steps is the subset

of RW (2n) whose elements satisfy:

Son(w) = 0,Skg(w) > 0 for any k € {1,--- ,2n — 1}, (1)

each of the C),_1 elements of Es(2n) being equiprobable. A Bernoulli excursion is a simple random

walk conditioned to satisfy conditions (1).



The contour seen on the depth first walk

The depth first search (see Aldous [1] p.260), gives a rich one to one correspondence between

Es(2n) and Gy:

w:G, — FEs(2n) (2)

t — w(t).

To construct w(t), the depth first walk, consider a fly, walking with unit speed around ¢, clockwise,
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Figure 2 A tree and its associated Bernoulli excursion.

from the root to the root. The height (+1) of the fly in function of the time gives the depth first walk.
It follows for example, that the height h(t) of the tree is the maximum of the associated Bernoulli

excursion minus 1:

h(t) = max{w(t) — 1}.

Hence, the law of the height of the trees in G, suitably normalized, converges to the law of the

maximum of the Brownian excursion (when n goes to +00).

Difference with the contour of binary tree

the contour of general trees and the contour of binary trees studied by Gutjahr & Pflug [3]. The
first one is that, in the context of general trees, the contour does not characterize the tree.The second
one, which is in the core of the present paper is relation (2), that is DFW is a simple conditioned

random walk; this is not at all the case for the depth first walk associated to binary trees.



For a simple walk w of RW (2n), we define the sequence (7j(w))x>o of indices on which w reaches

a local maximum; more formally:
= inf{jlj >1,8; > Sj1}
7, = inf{j|j > 11,51 < S;,8; > Sjs1}-
We define the r.v. K by:
K = max{k, 7, < 2n}.

It is well known, and easy to check that, if we consider the depth first Bernoulli excursion w associated

to a tree ¢, the sequence (S, )x>1 satisfies:

Study of r.v. on ES(2n) via corresponding r.v. on RW (2n)

The key point of this paper is the following remark:
if there exists a moderate deviations principle (or large deviations principle) for a functional of the
simple random walk, there exists a bound for the analogous principle on the excursion. Indeed, assume

that A, is a subset of RW(2n) such that,
P(w € Ap) = o(n™®) then P(w € Ap|w € Es(n)) = o(n ?1+3/2). (3)

This is just a consequence of

n=3/2

NS

P(Es(2n)|RW (2n)) = 272" Cp_q ~

This remarks which may appear to be very weak, is fundamental in this paper. Indeed, almost all
r.v. variables are much more difficult to handle on ES(2n) than on RW (2n). But, concentration like
inequalities on RW (2n) remains “true” on ES(2n).
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Moderate deviations of the sequence (73)x>1
Set ©1(2n) the subset of Es(2n) defined by:
wEQl(Zn)é(u}EEs@n)st Vk, 1<k < K(w),|e(w) 4k|<n3/5).
Lemma 2 If n is large enough, we have:
P(Q1(2n)) > 1 — exp(—n/6)

Proof : We use here a principle of “moderate deviations” on the set of values 71,70,---. The law of
T is simple on RW (2n): Tx41 — 7x is the sum of two independent geometric distributed r.v. with

parameter 1/2 (we denote this law by G(1/2)). So, one has on RW (2n):
E(7g41 — ) = 4, Var(mp41 — 1) = 4.

71 is the sum of two G(1/2) distributed r.v. minus 1. If (g;);>1 denotes a sequence of G(1/2) indepen-

dent r.v., one has:

on RW (2n), 7 ' (Zg])
The law convergence of (1, — 4k)/v/4k to the normal law provides the following deviations:
Lemma 3 On RW (2n), there exists a constant c1 such that for n large enough:
P(3k s.t. 1<k < K(w),|m — 4k| > n/%) < em™'’",

Proof : K is random, but surely K < n. Hence,

n
P(Fk st. 1 <k < K(w),|n — 4k| > n3/%) <Y P(|r — 4k| > n®/®). (4)
k=1

According to Petrov [5] (p.52 and Lemma 5 p.55), since geometric random variable has exponential
moments, there exists a constant v > 0 such that, for any 1 < k < n,

n8/5

P(|7p — 4k| > n®/%) < 2™ . (5)




Equations (4) and (5) yields Lemma 3. O
Lemma 3 and equation (3) can be apply to end the proof of Lemma 2:

P(CQ:(2n) = P(3k s.t. |7 — 4k| > n®/°|Es(2n))

-1’8

IN

if n large enough. O

Moderate variation of excursions
Set Q2(2n) the subset of Es(2n) defined by:
w € N(2n) & (w € Es(2n) s.t. Vm,k € {0,--- ,2n},m +k <2n,|Spik(w) — Sm(w)| < 4@).
Lemma 4 If n is large enough, one has:
P(Q(2n)) > 1 —n2

First, we prove an analogous Lemma on RW (2n). Following Odlyzko [4], we consider the subset

Q3(2n) of RW (2n) defined by:
we Q3(2n) & (w € RW(2n) s.t. Vm, k € {0,--- , 20}, m + k < 21, |Smak (@) — Sm(w)| < 4\/klogn).
Odlyzko[4] shows:

Lemma 5

Proof : We have

P(aka Elm’ |Sm—|—k - Sm‘ > 4\/ klogn) < Z Z IP)(|S'm—|—k - Sm‘ > 4V klogn)

m=0 k=1
2
= O?) exp(~ B
= 0(™), (©



where the second inequality follows from Chernov bounds (Bollobds [2] p.12.): for any a > 0 and

keN,

P(1Sk > @) < 2exp(—-2). O ™)

2k
The end of the proof of Lemma 5 follows once again (3):
P(CQ2(2n)) = P(CQ3(2n)|Es(2n))
= O(n %% =0m%.0
End of the proof of Theorem 1
For each k, set Sy, = S7.- We have
P(3k s.t. [Sk — Sur| > n?/®) = O(n™*).
P(3k s.t. |S — Suk| > n?%) < P(CQ(2n)) + P(CQ(2n)) +
P(3k s.t. [S) — Sur| > n?/5,Q41(2n), Q(2n))

The last term in the right hand side is 0 if n is sufficiently large, since in ©;(2n) N Q2(2n), we have:

IS, — Sax| < 4y/|mp — 4k|logn < 44/n3/5logn.

Hence, with probability 1 — O(n~*), we have:

g[nt/Q] - S[Qnt] 1710
Cln2)  Pint] ] _ .
€] { NG } =0
Since
SQnt weakly
<m)te[0,1] — (e(t))te[o,q’
we have:
gnt/Q weakly
(\/2_n)te[0,1] — (e(t))te[o,l]



Conclusion

One refers to Aldous [1] for an overview on the depth first walk associated to Galton Watson trees.
In the setting of Galton Watson trees with progeny (p;);>o conditioned by their total population
(say n here), he shows that the DFS excursion X, - X9, (Aldous calls this walk the search depth)

associated to a tree, satisfies:

(X[Q"t],o <t<1) " (207 e(t),0 <t < 1), (8)

Vn
where o? is the variance of the critical Galton Watson process from the same exponentially family
as (p;)i>o (see [1] p.26). The set of general planar trees with n nodes (endowed with the uniform
law) can be view as a Galton Watson process with shifted geometric progeny (p; = 27"71);5¢ (for
which o2 = 2); the particularity of general planar tree, is that the depth first walk is exactly a simple
random walk conditioned to be an excursion. In any other cases, the discrete process (Xj)g=0,... 2n, is
not a conditioned random walk. The number of leaves N () of a Galton Watson process with progeny

(pi)i>o0 conditioned by the total population n, satisfies:

N(t) pr_ob;z
n

Dbo-

If the “npy” corresponding values 7, are “well distributed” in [0, 2n] one can prove a similar theorem
as Theorem 1. So, one have the following
Conjecture : The contour process Hy(y of a critical Galton Watson process with progeny distribution

(pi)i=o,... and variance o satisfies:

Hl([pgnt]) weakly ;2
( vn )te[o,l] - (;e(t))te[oal]'
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