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Abstract

The Gauss-Minkowski correspondence in R2 states the existence of a homeomorphism be-

tween the probability measures µ on [0, 2π] such that
∫ 2π

0
eixdµ(x) = 0 and the compact convex

sets (CCS) of the plane with perimeter 1. In this article, we bring out explicit formulas relating

the border of a CCS to its probability measure. As a consequence, we show that some natural

operations on CCS � for example, the Minkowski sum � have natural translations in terms of

probability measure operations, and reciprocally, the convolution of measures translates into a

new notion of convolution of CCS. Additionally, we give a proof that a polygonal curve asso-

ciated with a sample of n random variables (satisfying
∫ 2π

0
eixdµ(x) = 0) converges to a CCS

associated with µ at speed
√
n, a result much similar to the convergence of the empirical process

in statistics. Finally, we employ this correspondence to present models of smooth random CCS

and simulations.

1 Introduction

Convex sets are central in mathematics: they appear everywhere ! Nice overviews of the topic have

been provided by Busemann [8], Pólya [21] and Pogorelov [20]. In probability theory, compact convex

sets (CCS) appear in 1865 with Sylvester's question [25]: for n = 4 points chosen independently

and at random in the unit square K, what is the probability that these n points are in convex

position ? The question can be generalised to various shapes K, di�erent values of n, and other

dimensions. It has been recently solved by Valtr [28, 27] when K is a triangle or a parallelogram and

by Marckert [17] when K is a circle (see also Bárány [1], Buchta [7] and Bárány [2]). Random CCS

also show up as the cells of the Voronoï diagram of a Poisson point process (see Calka [9]), and in

the problem of determining the distribution of convex polygonal lines subject to some constraints.

For example, when the vertices are constrained to belong to a lattice, the problem has been widely

investigated (Sinai [24], Bárány & Vershik [3], Vershik & Zeitouni [29], Bogachev & Zarbaliev [6]).

Another combinatorial model related to this question is based on the digitally convex polyominos

(DCPs). The DCP associated to a convex planar set C is the maximal convex polyomino with

vertices in Z2 included in C. Let Dn be the set of DCPs with perimeter 2n. In a recent paper,

Bodini, Duchon & Jacquot [5] investigate the limit shape of uniform DCPs taken in Dn under the

uniform distribution Un. Even if not convex, these polyominos can be seen as discretisation of CCS.
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All these models possess the same drawbacks: they are discrete models (polygonal, except

for DCP) and their limit when the size parameter goes to +∞ are deterministic shapes. To our

knowledge, no model of random non-polygonal CCS have been investigated yet. One of the goals

of this article is to develop tools that allow one to provide examples of such models, and this goal

is attained in the following manner :

� First, we state a connection between the CCS of the plane and probability measures. Theorem 2.2

asserts that the set of CCS of the plane having perimeter 1, considered up to translation, is in

one-to-one correspondence with the set M0
T of probability distributions µ on the circle R/(2πZ)

satisfying
∫ 2π

0 exp(ix)dµ(x) = 0. This famous theorem, revisited in Section 2.2, is sometimes called

in the literature the Gauss-Minkowski Theorem (cf. Vershik [29] and Busemann [8, Section 8]), and

the measure µ is called the surface area measure of the CCS [18]. Moreover, the bijection is an

homeomorphism when both sets are equipped with natural topologies. In this article, we provide an

explicit parametrisation of a CCS in terms of the distribution function of µ. This perspective brings

out a new and important relation between the CCS with perimeter 1 and probability measures,

di�ering in this from the more generic �arbitrary total mass� measures.

� This connection with probability theory appears therefore as a natural tool to de�ne new oper-

ations on CCS and revisit numerous known results that were proved using geometrical arguments.

For instance, the setM0
T is stable by convolution and mixture. This induces natural operations on

CCS that one may also qualify of convolution and mixture. As a matter of fact, the mixture of CCS

de�ned in this way coincides with the Minkowski addition (Section 3.1), and Minkowski symmetri-

sation simply maps a CCS associated to a measure µ onto the CCS associated with 1
2(µ+µ(2π− . )

(Proposition 3.4). The notions of convolution of CCS and symmetrisation by convolution (Sections

3.2 and 3.3) appear to be new and provide a new proof of the isoperimetric inequality (Theorem

3.6). Roughly, the CCS obtained by convolution of two CCS has a radius of curvature function

equal to the convolution of the curvature functions of these two CCS.

� The probabilistic approach also allows one to prove stochastic convergence theorems for models

that di�er radically from the ones mentioned earlier. Consider for instance µ ∈ M0
T , and take n

random variables {Xj , j = 0, . . . , n−1} i.i.d. according to µ. Let {X̂j , j = 0, . . . , n−1} be the Xk's

reordered in [0, 2π). Let Bn be the curve formed by the concatenation of the vectors eiX̂j . We show

that the curve Bn rescaled by n converges when n → ∞ to the boundary Bµ of a CCS associated

with µ (Theorem 2.8 and Corollary 2.9). This convergence holds at speed
√
n and has Gaussian

�uctuations (Theorem 2.8). As a generalisation, every distribution on C with mean 0 can be sent

on a CCS by a second correspondence (which is not bijective) (Section 4.2). Again, the appropriate

point of view consists in considering the boundary of the CCS as the limit of the curve associated

with a sample of n random variables (r.v.) sorted according to their argument.

� The last part of this paper (Section 5) is devoted to the investigation of models of random CCS

that stem from the aforesaid connection. Our �rst model is a model of random polygons de�ned as

follows: take {zj , j = 0, . . . , n− 1} i.i.d. according to a distribution ν in C. Let {yi = zi+1 mod n −
zi, i = 0, . . . , n − 1} and {ŷj , j = 0, . . . , n − 1} the yi's sorted according to their argument. The
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ŷ′is are the consecutive vector sides of the polygonal CCS with vertices {
∑d

j=0 ŷj , d = 0, . . . , n− 1}.
When n → ∞, a rescaled version of this CCS converges in distribution to a deterministic CCS

(Theorems 4.2 and 5.1). We discuss the �nite case in Section 5.1.

� Another model results from the role that Fourier series play in the representation of the boundaries

of CCS. For a r.v. X with values in [0, 2π] and distribution µ, the Fourier coe�cients of µ, namely

an(µ) = E(cos(nX)) and bn(µ) = E(sin(nX)), are well de�ned for any n ≥ 0. Our bijection between

CCS and measures in hand, the question of designing a model of random CCS is equivalent to

that of designing a model of random measure µ satisfying a.s.
∫ 2π

0 exp(ix)dµ(x) = 0 (equivalently

a1(µ) = b1(µ) = 0 a.s.). Nevertheless to design a model of random measures µ satisfying these

constraints is not equivalent to design random Fourier coe�cients (an, bn, n ≥ 0) since these latter

may not correspond to those of a probability measure. In Section 5, we explain how this can be

handled, and provide several models of random CCS that are not random polygons.

Notations. �CCS� will always be used for �compact convex set of the plane R2�. We assume

that all the mentioned r.v. are de�ned on a common probability space (Ω,A,P), and denote by E
the expectation. For any probability distribution µ, Xµ designates a r.v. with distribution µ. We

write X ∼ µ to say that X has distribution µ. The notations
(d)−−→
n
,

(proba.)−−−−−→
n

,
(weak)−−−−→
n

stand for the

convergence in distribution, in probability, and the weak convergence.

2 Correspondence between CCS and distributions

We start this section by recalling some simple facts concerning CCS and measures on the circle

R/(2πZ). Thereafter we state the Gauss-Minkowski theorem (Theorem 2.2) which establishes a

correspondence between measures and CCS, and we provide a new proof based on probabilistic

arguments. In Section 2.4 we express the area of a CCS thanks to the Fourier coe�cients of the as-

sociated measure. Finally in Section 2.5 we state one of the main results of the paper (Theorem 2.8):

under some mild hypotheses, it ensures the convergence of the trajectory made of n i.i.d. increments

sorted according to their arguments and rescaled by n to a limit CCS boundary at speed
√
n.

2.1 CCS of the plane

A subset S of R2 is a convex set if for any z1, z2 ∈ S, the segment [z1, z2] ⊂ S. In this paper, we are

interested only in CCS of the Euclidean plane R2. Let Seg be the set of bounded closed segments

with di�erent extremities, and Nei be the set of CCS with non empty interiors. The set of CCS of

R2 contains exactly Seg, Nei, the empty set, and the CCS reduced to a single point. In the sequel

we focus on Seg∪Nei only.

For S ∈ Nei, S◦ will designate the interior of S, and ∂S = S \ S◦ the boundary of S. We call

parametrisation of ∂S, a map γ : [a, b]→ ∂S for some interval [a, b] ⊂ R, such that γ(a) = γ(b) and

such that γ is injective from [a, b) to ∂S. The length of ∂S is well de�ned, �nite and positive, and is

called the perimeter of S and denoted Peri(S). It may be used to provide a natural parametrisation
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of ∂S, that is to say a function γ : [0, |∂S|] → ∂S, continuous and injective on [0, |∂S|], such that

γ(0) = γ(|∂S|) and such that the length of {γ(t), t ∈ [0, s]} is equal to s for any s ∈ [0, |∂S|].
For S ∈ Seg, the notion of natural parametrisation also exists, but it is di�erent. For technical

reasons, we choose the following one: The natural parametrisation of a segment [a, b] is de�ned to

be γ(t) = a(1− t
|b−a|) + b t

|b−a| on [0, |b−a|] and γ(t) = a( t
|b−a| −1) + b(2− t

|b−a|) on [|b−a|, 2|b−a|],
as if the segments were thick and two-sided. In this case, we de�ne Peri(S) = 2|b− a|.

De�nition 2.1. The boundary B of C ∈ Nei is de�ned as B = C \ C◦. The boundary of C =

[a, b] ∈ Seg is de�ned as C itself.

By de�nition, the boundary of a CCS is equal to the path induced by its natural parametrisation,

and its perimeter is the length of this path.

2.2 Measures on the circle

Let T be the circle R/(2πZ) equipped with the quotient topology, andMT be the set of probability

distributions on T . The weak convergence onMT is de�ned as usual: (µn, n ≥ 0)
(weak)−−−−→
n

µ inMT
if for any bounded continuous function f : T → R,

∫
T fdµn →

∫
T fdµ. Let µ ∈MT , and consider

Fµ : T −→ [0, 1]

x 7−→ µ([0, x])

be the cumulative distribution function (CDF) of µ. Let Iµ be the set of points of continuity of

Fµ, where by convention, 0 ∈ Iµ if Fµ(0) = µ({0}) = 0. If µn
(weak)−−−−→
n

µ inMT , then it can not be

deduced that Fµn → Fµ pointwise on Iµ since δ2π = δ0 inMT . What is still true, is that

Fµn(y)− Fµn(x)→ Fµ(y)− Fµ(x), for any (x, y) ∈ Iµ.

A function F : [0, 2π) → R is a CDF of some distribution µ ∈ MT if it is right continuous, non

decreasing on [0, 2π], satis�es 0 ≤ F (0) ≤ 1, F (2π−) = 1 (see Wilms [30, p.4-5] for additional

information and references).

Consider the continuous function

Zµ : [0, 1] −→ C

t 7−→ Zµ(t) =

∫ t

0
exp(iF−1

µ (u))du,
(1)

where F−1
µ is the standard generalised inverse of Fµ:

F−1
µ : [0, 1] −→ [0, 2π)

y 7−→ F−1
µ (y) := inf{x ≥ 0 : Fµ(x) ≥ y}.

The range Bµ of Zµ is the central object here:

Bµ := {Zµ(t), t ∈ [0, 1]} .
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Since F−1
µ is non decreasing, it admits at most a countable set of discontinuity points. Therefore Zµ

is di�erentiable on the complement of a countable subset of [0, 1] and when it is the case, Z ′µ(t) = eiθ

represents the direction of the unique tangent to the convex at point Zµ(t). Moreover, since the

modulus of Z ′µ is 1, Zµ is the natural parametrisation of Bµ and Bµ has length 1.

Let Conv be the set of CCS of the plane containing the origin, lying above the x-axis, and whose

intersection with the x-axis is included in R+. Denote by Conv(1) the subset of Conv of CCS having

perimeter 1, and by BConv the set of their corresponding boundaries. Set

M0
T =

{
µ ∈M[0, 2π] ,

∫ 2π−

0
exp(iθ)dFµ(θ) = 0

}
the subset ofMT of measures having Fourier transform equal to 0 at time 1.

2.3 Probability measures and CCS

Probability distributions on R are characterised by their Fourier transform, and convergence of

Fourier transforms characterises weak convergence by the famous Lévy's continuity Theorem. The

following Theorem gives a similar characterisation of measures in M0
T by their representation as

CCS of the plane.

Theorem 2.2. 1) The map

B : M0
T −→ BConv(1)

µ 7−→ Bµ
is a bijection.

2) B is an homeomorphism from M0
T (equipped with the weak convergence topology) to BConv(1)

(equipped with the Hausdor� topology on compact sets).

3) The function Γ from Conv(1) to BConv(1) which sends a CCS to its boundary is an homeomor-

phism for the Hausdor� topology, and then

C : M0
T −→ Conv(1)

µ 7−→ Cµ := Γ−1(Bµ)

is an homeomorphism.

This theorem sometimes called �Gauss-Minkowski� in the literature can be found in a slightly

di�erent form in Busemann [8, Section 8]. The integral formula (1) giving the parametrisation of

the CCS in terms of F−1
µ , which is central here, seems to be new. We provide a proof of Theorem

2.2 in probabilistic terms at the end of this section.

In Busemann, this theorem is stated more generally in Rn, where the measures range over the

unit sphere of Rn and verify a set of properties, which in R2 sum up to
∫ 2π

0 eixdµ(x) = 0. The

measure µ is called the surface area measure [18] of the CCS Cµ, and is de�ned for more general

convex sets in any dimension.
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Remark 2.3. The map B that one may see as a �curve� transform, may be extended toM[0, 2π],

the set of measures on [0, 2π]; in this case B(M[0, 2π]) is the set of continuous almost everywhere dif-

ferentiable curves of length 1, starting at the origin, having a positive argument in a neighbourhood

of 0, and where along an injective parametrisation, the argument of the tangent is non decreasing1.

There exists another formula for Zµ in terms of expectations of r.v., that we will use as a

guideline throughout the paper. Recall that if U ∼ uniform[0, 1] then F−1
µ (U) ∼ µ, and then

Zµ(t) = E
(
1U≤t exp(iF−1

µ (U))
)
. (2)

Since x ≤ Fµ(y) is equivalent to F−1
µ (x) ≤ y, we obtain that

Zµ(Fµ(t)) = E
(
1U≤Fµ(t) exp(iF−1

µ (U))
)

= E
(
1F−1

µ (U)≤t exp(iF−1
µ (U))

)
= E

(
1Xµ≤t exp(iXµ)

)
.

The function t 7→ Zµ(Fµ(t)) plays an important role since it encodes the extremal points of Bµ (see

below). The function Zµ is somehow less pleasant since it can not be written directly in term of Xµ

on [0, 1]. To see this, let

Iµ = {t ∈ [0; 2π) such that {u, u < t} = {F−1
µ (u) < F−1

µ (t)}}

This corresponds to the set of t where F−1
µ (t) > F−1

µ (t − h) for any h > 0 (or t = 0). It can be

shown that Iµ = {F (t), t ∈ [0, 2π]}. Noticing that one can replace 1U≤t by 1U<t in (2), we have

Zµ(t) = E
(
1Xµ<F−1

µ (t) exp(iXµ)
)

for t ∈ Iµ, (3)

Now we can characterise Ext(C) the set of extremal points of C.

Lemma 2.4. For any µ ∈M0
T , Ext(Cµ) = {Zµ(Fµ(t)), t ∈ [0, 2π]}.

Proof. From (2), we see that Zµ is linear on every interval inside the complement of Iµ in [0, 1]: if

(t1, t2) is such an interval, for any t ∈ [t1, t2],

Zµ(t) = Zµ(t1) + (t2 − t)
Zµ(t2)− Zµ(t1)

t2 − t1
.

Therefore, the points in the complement of Iµ are not extremal, and reciprocally, every non-extremal

point lies on a segment inside Bµ and necessarily belongs to the complement of Iµ. Therefore Ext(Cµ)

is equal to the closed set {Zµ(Fµ(t), t ∈ [0, 2π]}.
1The Fourier transform t 7→ Ψµ(t) also de�nes a curve {Ψµ(t) : t ∈ A} in the plane, for any interval A. This curve

is di�erent from Cµ, for any A.
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The curvature kµ(t) of Cµ at time t, is given by 1
F ′µ(F−1

µ (t))
when Fµ admits a derivative at F−1

µ (t);

in particular, this means that when µ admits a density fµ, then kµ(Fµ(θ)) = 1/fµ(F−1
µ (Fµ(θ))) =

1/fµ(θ), which corresponds to the curvature at the point whose tangent has direction θ.

The real and imaginary parts xµ(t) = <(Zµ(t)) and yµ(t) = =(Zµ(t)) of Zµ(t) satisfy{
xµ(t) =

∫ t
0 cos(F−1

µ (u))du =
∫ F−1

µ (t)
0 cos(v)dF (v)

yµ(t) =
∫ t

0 sin(F−1
µ (u))du =

∫ F−1
µ (t)

0 sin(v)dFµ(v).
(4)

the second equality in each line being valid only for t ∈ Iµ.

Figure 1: A CCS Cµ for some measure µ, t gives the length of the curve Bµ between 0 and Zµ(t)

(in the trigonometric order), F−1
µ (t) is then the direction of the tangent at time t.

Proof of Theorem 2.2 1). The proof of 3) is immediate. We establish 1).

a) First, we prove that for any µ ∈ M0
T , Bµ is the boundary of a CCS Cµ ∈ Conv(1). A

support half-plane of Bµ is a half-plane H intersecting Bµ on its border and such that Bµ ⊂ H. The

function Zµ is continuous, and a simple analysis shows that yµ is such that yµ(0) = yµ(1) = 0, and

is increasing then decreasing over [0, 1]. Therefore, Bµ lies on the half plane above the x-axis, which

is a support half-plane of Bµ. More generally, for any θ ∈ [0, 2π), µθ(.) = µ(. − θ mod 2π) is still

in M0
T , and Bµθ lies on the half plane above the x-axis. Therefore, for all t ∈ [0, 1), the line Dt

passing through Zµ(t) making an angle F−1
µ (t) with the origin, is the border of a support half-plane

of Bµ. Since F−1
µ is right-continuous, Bµ is even tangent to Dt.

We now show that Bµ is a simple curve or a segment: let z be such that z = Zµ(t1) = Zµ(t2),

for t1 < t2. Then, by de�nition (1),
∫

[t1,t2] exp(iF−1
µ (u))du =

∫
[0,t1]∪[t2,1] exp(iF−1

µ (u)) = 0. Each

of these integrals is the weighted barycentre of a portion of the circle, both portions being disjoint

except at their extremities t1 and t2. Since both barycentres are equal (to 0), the support of µ must

be included in {t1, t2}. This implies that F−1
µ (t2) = π + F−1

µ (t1) and µ({t2}) = µ({t1}) = 1/2.

In other words, the CCS is a segment of length 1/2. Therefore, when Bµ is not a segment, it is a

bounded Jordan curve that encloses a bounded connected subset Cµ. In this last case, Bµ is the
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border of Cµ and every point of the border possesses a support half-plane, therefore Cµ is convex

(see for example 3.3.6 in [18]).

b) The injectivity of B is clear since if F−1
µ (t) = F−1

ν (t) for all t ∈ [0, 1], then µ = ν. Now,

let B be a CCS boundary in BConv(1) and consider the unique natural parametrisation Z of B

in the counterclockwise direction such that Z(0) = Z(1) = 0. The map Z is 1-Lipschitz on [0, 1]

and therefore absolutely continuous. Therefore Z is di�erentiable almost everywhere and satis�es

Z(t) =
∫ t

0 g(s)ds, where g coincides with the derivative of Z on I, a subset of [0, 1) of measure 1 ([22,

Thm. 7.18]). Since Z is the natural parametrisation of B, |g(t)| is equal to 1 almost everywhere.

Since B is a CCS boundary, the argument of g(t) is the direction of the unique supporting half-plane

at Z(t) and then arg g is non-decreasing over I. Then g(s) = exp(iG(s)) for some non decreasing

function G : I → [0, 2π). Let G∗ : [0, 1) → [0, 2π) be de�ned by G∗(x) = inf{G(y), y ≥ x, y ∈ I}
(G∗ is the largest non-decreasing function smaller than G over I). For all t, Z(t) =

∫ t
0 e

iG∗(s)ds.

Since G∗ is non-decreasing, it possesses a right-continuous modi�cation G̃ which also satis�es Z(t) =∫ t
0 e

iG̃(s)ds. The function G̃ is the inverse of a CDF Fν for some ν inM0
T . �

Proof of Theorem 2.2 2). Consider �rst the continuity of B. For any t ∈ [0, 2π) and any pair of

distributions (µ, ν), since x→ exp(ix) is 1-Lipschitz,

|Zµ(t)− Zν(t)| =

∣∣∣∣∫ t

0
exp(iF−1

µ (u))− exp(iF−1
ν (u))du

∣∣∣∣
≤

∫ t

0
dT (F−1

µ (u), F−1
ν (u))du,

where dT is the distance in T , de�ned for 0 ≤ x ≤ y < 2π by dT (x, y) = min{y − x, 2π − y + x}.
This last quantity is then bounded above, uniformly in t ∈ [0, 1] by E(dT (Xµ, Xν)), for

Xµ := F−1
µ (U), Xν := F−1

ν (U),

where U ∼ uniform[0, 2π]. Now, E(dT (Xµ, Xν)) is a Wasserstein like distance W1(µ, ν) between the

distributions µ and ν in T (the standard Wasserstein distance is rather de�ned between measures

on an interval, not on the circle). Now, it is classical that the convergence in distribution implies

the convergence of the Wasserstein distance to 0 (see Dudley [10] Section 11.8). This property can

be easily extended to the present case, considering that Xn
(d)−−→
n

X inMT i� there exists θ ∈ [0, 2π]

(any point of continuity of X does the job) for which Xn − θ mod 2π
(d)−−→
n

X − θ mod 2π in the

standard sense.

Reciprocally, let (Bn, n ≥ 0) be a sequence of CCS boundaries Bn converging to Bµ for the Hausdor�
distance dH . By Theorem 2.2 1), there exists µn ∈ M0

T such that Bµn = Bn. We now establish

that (µn, n ≥ 0) possesses exactly one accumulation point, equal to µ. Consider a subsequence

Fµnk such that Fµnk
D1−→ G, where G is the CDF of a measure ν. Such a subsequence exists since

M0
T is compact (and then sequentially compact, since it is a metric space). Now, for D1 denoting

the Skorokhod distance (see e.g. Billingsley [4] Chap.3), Fµnk
D1−→ G ⇒ F−1

µnk

D1−→ G−1.

According to the �rst part of this proof, the limit CCS boundary Bν must be equal to Bµ. Since by
Theorem 2.2 1), the CCS characterise the measure, ν

(d)
= µ. �
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2.4 Fourier decomposition of the CCS curve

Fourier coe�cients provide powerful tools to analyse the geometrical properties of the CCS curves.

Let f be a function from [0, 2π] with values in R. The quantity 1
2a0 +

∑
k≥1 ak cos(ku) + bk sin(ku)

is the standard Fourier series of f , where

ak = π−1

∫ 2π

0
cos(ku)f(u)du, bk = π−1

∫ 2π

0
sin(ku)f(u)du.

For µ inMT (or inM[0, 2π]), the Fourier coe�cients of µ are de�ned, for any k ≥ 0 by

a0(µ) =
1

π
, ak(µ) =

1

π
E(cos(kXµ)), bk(µ) =

1

π
E(sin(kXµ)). (5)

In this setting, the condition
∫ 2π

0 eiudFµ(u) = 0 coincides with

a1(µ) = E(cos(Xµ)) = 0, b1(µ) = E(sin(Xµ)) = 0. (6)

The following proposition, whose proof can be found in Wilms [30, Theorem 1.6 and 1.7], states

that probability measures are characterised by their Fourier coe�cients, and establishes a continuity

theorem.

Proposition 2.5. 1) The function

Coe�s : MT −→ RN × RN

µ 7−→ ((ak(µ), k ≥ 0), (bk(µ), k ≥ 1))

is injective.

2) Let µ, µ1, µ2, . . . be a sequence of measures inMT . The two following statements are equivalent:

µn
(weak)−−−−→
n

µ and Coe�s(µn) converges pointwise to Coe�s(µ) (meaning that for any k, ak(µn) →
ak(µ) and bk(µn)→ bk(µ)).

Example 2.6. � If µ ∼ uniform[0, 2π] then ak(µ) = bk(µ) = 0 for any k ≥ 1.

� If µ =
∑m−1

k=0
1
mδ2πk/m is the uniform distribution on the vertices of a regular m-gon (with a vertex

at position (0, 0)), then all the bk are null, a0(µ) = 1/π, and ak(µ) = π−11k∈mN? .

Of course, deciding whether a given pair ((ak, k ≥ 0), (bk, k ≥ 1)) corresponds to a pair

((ak(ν), k ≥ 0), (bk(ν), k ≥ 1)) for some ν ∈ MT is a di�cult task: there does not exist in the

literature any characterisation of Fourier series of non negative measures. The case of measures

having a density with respect to the Lebesgue measure is discussed in Section 5.3.

The area of a CCS Cµ has an expression in terms of Coe�s(µ). In this section, we consider a

CCS with a smooth C1 boundary that is equal to its Fourier expansion. The following formula can

be deduced from Hurwitz [13, p.372-373], where it is given using a parametrisation of the boundary

of the CCS. In our settings, writing A(µ) for the area of Cµ, it translates into:

A(µ) =
1

4π
− π

2

∑
k≥2

a2
k(µ) + b2k(µ)

k2 − 1
. (7)
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As did Hurwitz, this equation can be proved from Green's theorem stating that:

A(µ) =

∫ 1

0
xµ(t)

dyµ(t)

dt
dt = −

∫ 1

0
yµ(t)

dxµ(t)

dt
dt. (8)

As a matter of fact, this formula remains valid for every CCS in Conv(1) (cf. Corollary 3.7).

Rewriting (8) and using (4) gives

A(µ) =

∫ 1

0

∫ t

0
cos(F−1

µ (u))du sin(F−1
µ (t))dt

= E
(
cos(X) sin(X ′)1X≤X′

)
. (9)

where X and X ′ are two independent copies of Xµ.

Remark 2.7. One can show that (7) implies (9) by noticing that E(cos(kX))2 + E(sin(kX))2 =

E(cos(k(X −X ′)) and using the general equality
∑

k≥2
cos(kx)
k2−1

= cos(x)
4 − (π−(x mod 2π))

2 sin(x) + 1
2 .

Notice that Hurwitz [12] deduced the isoperimetric inequality from (9) with a proof which only

requires an equivalent of Wirtinger's inequality.

2.5 Convergence of discrete CCS and an application to statistics

Consider X1, . . . , Xn i.i.d. having distribution µ with support in [0, 2π). The empirical CDF as-

sociated with this sample is de�ned by Fn(x) = n−1#{i : Xi ≤ x}. The law of large number

ensures that Fn → Fµ pointwise in probability, and (n1/2|Fn(x) − Fµ(x)|, x ∈ [0, 2π]) converges

in distribution in D[0, 2π], the set of càdlàg function equipped with the Skorokhod topology, to

(b(Fµ(x)), x ∈ [0, 2π]) where b is a standard Brownian bridge (see Billingsley [4, Theorem 14.3]).

Now assume that the Xi take their values in T , and let X̂1, . . . , X̂n be the sequence X1, . . . , Xn

sorted in increasing order (with the natural order on [0, 2π)). Consider the function Zn : [0, 1]→ C
de�ned by Zn(0) = 0,

Zn(k/n) =
1

n

k∑
j=1

exp(iX̂j), for k ∈ {1, . . . , n},

and extended by linear interpolation between the points (k/n, k ∈ {0, . . . , n}). Also de�ne the

empirical curve Bn associated with the distribution µ, as Bn := {Zn(t), t ∈ [0, 1]}. The curve Bn

belongs to BConv(1) if and only if
∑n

j=1 e
iXj = 0; otherwise, since the steps are sorted, Bn is

either simple or may contain at most 1 self-intersection point, that is a pair t1 < t2 such that

Zn(t1) = Zn(t2). For θ ∈ [0, 2π), let Nn(θ) = #{i,Xi ≤ θ} be the number of variables smaller

than θ. The set of extremal points of Bn is

Ext(Bn) = {Zn(Nn(θ)/n), θ ∈ [0, 2π]} . (10)

Set for any θ ∈ [0, 2π),

Wn(θ) :=
√
n [Zn(Nn(θ)/n)− Zµ(Fµ(θ))] .

This process measures the di�erence between Zn and its limit.

Denote by π1(z) = <(z), π2(z) = =(z) and π(z) = (π1(z), π2(z)).

10



Figure 2: Convergence towards the half-circle. The �rst row of �gures describes the discrete CCS

of size n (in black) compared to the limit CCS (in grey). The second row displays the distance

between the discrete CCS and its limit (θ → |Wn(θ)|).

Theorem 2.8. 1) The following convergence

π (Wn(θ), θ ∈ [0, 2π])
(d)−−→
n

(Gθ, θ ∈ [0, 2π]) (11)

holds in (D[0, 2π],R2), where G is a centred Gaussian process whose �nite dimensional distributions

are given in Section 6.1, in Formula (35).

2) For any n ≥ 1, dH(Bn,Bµ) = maxθ |Zn(Nn(θ)/n) − Zµ(Fµ(θ))|, and then
√
ndH(Bn,Bµ) con-

verges in distribution to maxθ |Gθ|.

See illustration in Figure 2. The following Corollary � which gives the asymptotic shape for our

random polygons � is a direct consequence of Theorem 2.8.

Corollary 2.9. If µ ∈M0
T then:

1) The following convergence holds in distribution in D[0, 2π]:

(Zn(Nn(θ)/n), θ ∈ [0, 2π])
(d)−−→
n

(Zµ(Fµ(θ)), θ ∈ [0, 2π]). (12)

2) dH(Bn,Bµ)→ 0 in probability.

Remark 2.10. A direct proof of Corollary 2.9 that ignores Theorem 2.8 is as follows: �rst, the

convergence of the �nite dimensional distributions (FDD) corresponding to 1) holds as a consequence

of the law of large numbers. Then, for an ε > 0, choose k and the points (θ1, . . . , θk) such that

the union of the segments Bε := ∪i=0..k−1[Zµ(Fµ(θi)), Zµ(Fµ(θi+1))] has a length larger than 1− ε.
From there, 2) follows since for n large enough, |Zn(Nn(θi)/n)−Zµ(Fµ(θi))| goes to 0 in probability

for any i ≤ k. This implies that the union of the segments B′n = ∪i[Zn(Nn(θi)/n), Zn(Nn(θi+1)/n)]

has total length larger than 1 − 2ε for n large enough, with probability going to 1. Since Bn has

length 1, for those same n, dH(Bn, B
′
n) ≤ 2ε.

11



The proof of Theorem 2.8 is postponed to the appendix.

3 Operations on measures and on CCS

Mixture and convolution are natural operations onM0
T :

1) Mixture: if µ, ν ∈M0
T then for any λ ∈ [0, 1], λµ+ (1− λ)ν ∈M0

T .

2) Convolution: if µ, ν ∈M0
T then µ?

T
ν ∈M0

T , where (?
T

) denotes the convolution inMT . This
conclusion holds even if only µ is inM0

T .

Then the maps B and C transport these operations on Conv(1):

De�nition 3.1. Let Cµ and Cν be two CCS in Conv(1) and λ ∈ [0, 1].

1) We call mixture of Cµ and of Cν with weights (λ, 1− λ), the CCS Cλµ+(1−λ)ν .

2) We call convolution of Cµ and Cν , the CCS Cµ ? Cν := Cµ?
T
ν .

In this section we provide some facts which seem to be unknown: a mixture is sent by C on

a Minkowski sum (Proposition 3.2) and the Minkowski symmetrisation can also be expressed in

terms of mixtures (Theorem 3.5). The convolution of CCS acts somehow on the radius of curvature

and seems to be a new operation, leading to a notion of symmetrisation by convolution that we

introduce in section 3.2.

(a) (b)

Figure 3: Construction of the (a) mixture and (b) convolution of two half-circles. Notice that every

point of the mixture is the barycentre of two points of the original half-circles, and that the CCS

obtained by convolution possesses a linear segment whose angle corresponds to the sum of the angles

of the segments in the original half-circles.
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3.1 Mixtures of CCS / Minkowski sum

Let A and B be two subsets of R2. The Minkowski sum of A and B is the set A + B = {a + b :

a ∈ A, b ∈ B}. Further, for any λ, write λA = {λa : a ∈ A}. We have:

Proposition 3.2. Let ν, µ ∈M0
T , λ ∈ [0, 1]. Then Cλµ+(1−λ)ν coincides with λCµ+ (1−λ)Cν . This

means that the mixture of CCS and the Minkowski sum are the same, and that the CCS of a mixture

corresponds to the mixture of the CCS (up to a translation).

This property is already known, see e.g. Schneider [23, (4.3.1)]. This proposition (see Figure 3)

implies that the boundaries Bλµ+(1−λ)ν and ∂(convex hull(λBµ + (1− λ)Bν)) coincide.

Proof. We �rst give a proof when µ and ν have densities. Recall the characterisation given in

Lemma 2.4. Write

Zλµ+(1−λ)ν(Fλµ+(1−λ)ν(t)) = λ

∫ t

0
exp(it)dµ(t) + (1− λ)

∫ t

0
exp(it)dν(t)

= λZµ(Fµ(t)) + (1− λ)Zν(Fν(t)). (13)

The extremal points of Cλµ+(1−λ)ν are then obtained as particular barycentres of extremal points

of Cµ and Cν . When both µ and ν have a density, this implies that the point in Bλµ+(1−λ)ν where

the tangent has direction θ is obtained as the barycentre of the corresponding points in Bµ and Bν .
This implies that Cλµ+(1−λ)ν ⊂ λCµ + (1− λ)Cν .

We establish the other inclusion by using the fact that CCS are characterised by their supporting

half-planes: for every t ∈ [0, 2π], let Dµ(t) be the line passing through Zµ(Fµ(t)) making an angle t

with the x-axis. The line Dµ(t) de�nes a supporting half-plane Hµ(t) for Cµ. Since Cµ is a CCS, this
half-plane is minimal for the inclusion with regard to the property of making an angle t with the

x-axis. Considering that the points in (13) all belong to their associated half-plane, these half-planes

verify:

Hλµ+(1−λ)ν(t) = λHµ(t) + (1− λ)Hν(t).

Now, the left-hand side represents a supporting half-plane for Cλµ+(1−λ)ν and the right-hand side

another supporting half-plane for λCµ + (1−λ)Cν . We deduce that the CCS they enclose are equal.

When µ or ν have no densities, take a sequence (µn, νn) of measures having densities and which

converges weakly to (µ, ν); we then obtain Cλµn+(1−λ)νn = λCµn + (1 − λ)Cνn and conclude by

Theorem 2.2.

Hence the CCS Cλµ+(1−λ)ν has a perimeter equal to 1, as all CCS of Conv(1). This implies that

the perimeter of the Minkowski sum λCµ + (1− λ)Cν is 1 (well known fact, obtained here without

geometric arguments).

Remark 3.3. For µ and ν inM0
T and λ ∈ [0, 1], we have

A(λµ+ (1− λ)ν)1/2 ≥ λA(µ)1/2 + (1− λ)A(ν)1/2. (14)
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This is the so-called Brunn-Minkowski inequality; it implies thatA(λµ+(1−λ)ν) ≥ min{A(µ),A(ν)}.
It can be proved using Hurwitz formula (7) and the Cauchy-Schwarz inequality.

3.1.1 Minkowski symmetrisation and measure symmetrisation

Let K be a CCS of R2 and u ∈ R2, |u| = 1. We denote by πu ∈ O(2) the re�ection with respect

to the straight line passing through the origin and orthogonal to u, i.e. πu(x) = x − 2〈x, u〉u.
The Minkowski (or Blaschke) symmetrisation of K is the CCS Su(K) = 1

2(πuK + K). The same

operation can be de�ned over C: for u = eiθ, the Minkowski symmetrisation of K with respect to

direction θ is the map (K, θ) 7→ eiθ

2 (e−iθK + e−iθK), where z̄ is the complex conjugate of z.

Now, let θ ∈ [0, 2π], µ ∈ M0
T , and set µ(θ) be the distribution of Xµ + θ mod 2π. Since

E(exp(i(Xµ + θ))) = eiθE(exp(iXµ)), µ(θ) is inM0
T . The CCS Cµ(θ) can be obtained from Cµ by a

rotation (of angle −θ) followed by a translation.

For any ν ∈M0
T , set

←−ν = ν(2π− .). The symmetrisation of ν with respect to direction θ is the

measure S(ν(θ)) de�ned by

S(ν(θ)) =
1

2
(ν(θ) +

←−−
ν(θ)). (15)

Further the symmetrisation by mixture of Cν with respect to direction θ is de�ned to be CS(ν(θ)).

A direct consequence of Proposition 3.2 is the following:

Proposition 3.4. The symmetrisation by mixture with respect to direction θ coincides with the

Minkowski symmetrisation with respect to u = eiθ, up to a translation.

Again Theorem 2.8 provides a new point of view on this symmetrisation. Starting from a set of

angles θ1, . . . , θk and an initial measure ν ∈M0
T , construct the sequence of measures νk de�ned by

ν0 = ν and νk+1 = S(νk(θk)). This sequence consists in alternating rotations and symmetrisations

of the initial measure ν.

Theorem 3.5. For any θ ∈ [0, 2π], any ν ∈M0
T , the following properties hold:

1) the CCS CS(ν(θ)) has the same perimeter as Cν (that is 1),

2) the area does not decrease: A(S(ν(θ))) ≥ A(ν),

3) for any k ≥ 0, there exists θ1, . . . , θk ∈ [0, 2π] such that

dH(Cνk ,Circle(i/(2π), 1/(2π))) ≤ 2−kπ,

where Circle(z, r) is the circle with centre z and radius r,

4) among all CCS with perimeter 1, the circle has the largest area.

Properties 1), 2), 4) are classical; we provide direct probabilistic proofs below. Statement 3)

which gives a bound on the speed of convergence to the ball for well chosen directions of symmetri-

sation, is known in Rn (see Klartag [14, Theorem 1.3]), but the proof we provide here in R2 is much

simpler.
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Proof. First, 4) is clearly a consequence of the three �rst points (to be honest, our proof uses (14),

which implies directly the isoperimetric inequality). The �rst item follows from the fact that if

S(ν(θ)) ∈M0
T , then BS(ν(θ)) ∈ BConv(1). And (14) implies 2) since A(ν) = A(ν(θ)) = A(

←−−
ν(θ)).

Let us prove 3). If L = [X1, . . . , Xl] for some l ≥ 1, a list of r.v. with distribution ν1, . . . , νl, we

say that ν is the equi-mixture of L if ν = 1
l (ν1 + · · ·+ νl).

Take X ∼ ν. ν1 := S(ν(θ1)) is the equi-mixture of [X + θ1 mod 2π,−X − θ1 mod 2π].

Therefore using that (a mod 2π) + b mod 2π = (a+ b) mod 2π, Sν2 is the equi-mixture of [X +

θ1±θ2 mod 2π,−X−θ1±θ2 mod 2π]. Iterating this, one observes that Sνk is the equi-mixture of

[X+ θ1± θ2±· · ·± θk mod 2π,−X− θ1± θ2±· · ·± θk mod 2π]. If θk = (2π)/2k−1 then Sνk is the

equi-mixture of µ1 and µ2, where µ1 and µ2 are the respective equi-mixture of [X+θ1±θ2±· · ·±θk
mod 2π] and of [−X − θ1 ± θ2 ± · · · ± θk mod 2π].

Now, both µ1 and µ2 converge to uniform[0, 2π]: to check this, consider the sequence of intervals

In = [2πn2−k−1, 2π(n + 1)2−k−1) , for 0 ≤ n ≤ 2k−1 − 1. For j ∈ {1, 2}, µj(In) = 1/2k−1 for

any n. Indeed, µ1 (resp. µ2) is the equi-mixture of all measures obtained from the distribution of

X (resp. −X) by dyadic translation of depth k, then since all intervals In have depth k, they have

the same weight. Hence Fµ1(2πn2−k+1) = n2−k+1 for any n. Therefore, since Fµ1 is increasing,

we have that ‖Fµj − F‖∞ ≤ 2−k+1, for Fυ(x) = x/(2π), the CDF of uniform[0, 2π], which gives

‖Fνk − Fυ‖∞ ≤ 2−k+1. Further, the right inverses F−1
νk

and F−1
υ are close:

‖F−1
νk
− F−1

υ ‖∞ ≤ 2−k+12π.

Thanks to (1),

|Zνk(t)− Zυ(t)| ≤
∫ t

0

∣∣exp(iF−1
νk

(u))− exp(iF−1
υ (u))

∣∣ du
≤

∫ t

0

∣∣F−1
νk

(u)− F−1
υ (u))

∣∣ du
and therefore ‖Zνk(t)− Zυ(t)‖∞ ≤ 2−kπ.

3.2 Convolution of measures / Convolution of CCS

In fact, Bµ?
T
ν is obtained as a kind of convolution of Bµ and Bν . As seen earlier if µ has a density fµ

then fµ(θ) represents the radius of curvature of Bµ at time Fµ(θ). Therefore the radius of curvature

Rθ of Bµ?
T
ν at time Fµ?

T
ν(θ) is the convolution of the radii of curvature of Bµ and Bν as follows:

Rθ =

∫ 2π

0
fµ(x)fν((θ − x) mod 2π)dx.

Theorem 3.6. Let µ and ν inM0
T . The convolution does not decrease the area

A
(
µ?
T
ν

)
≥ max{A(µ),A(ν)}.

Since uniform[0, 2π] is an absorbing point for ?
T
, and Cu is the circle of perimeter 1, this implies the

isoperimetric inequality: A(uniform[0, 2π]) ≥ A(ν), ∀ν ∈M0
T .
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Proof. Consider X and Y two independent r.v. such that X ∼ µ, Y ∼ ν. Let η = µ?
T
ν. By

expansion of cos(n(X + Y )) and sin(n(X + Y )) we get

an(η) = an(µ)an(ν)− bn(µ)bn(ν)

bn(η) = bn(µ)an(ν) + an(µ)bn(ν).

Since cos(kX) and sin(kX) have non-negative variances,

a2
n(µ) + b2n(µ) = E(cos(nX))2 + E(sin(nX))2 ≤ E(cos2(nX) + sin2(nX)) = 1.

Hence,

a2
n(η) + b2n(η) = (a2

n(µ) + b2n(µ))(a2
n(ν) + b2n(ν))

≤ min{a2
n(µ) + b2n(µ), a2

n(ν) + b2n(ν)},

The conclusion follows from (7).

Corollary 3.7. Let µ ∈M0
T . Then the formula (7) for A(µ) holds.

Proof. Formula (7) is valid when µ admits a C1 density. Just assume that E(eiXµ) = 0. Let N be

a Gaussian centred r.v. with variance 1, and let Nk = N/
√
k mod 2π for k ≥ 1, and µk = µ ∗Nk.

Clearly µk ∈M0
T , and µk

(weak)−−−−→
n

µ which implies A(µk)→ A(µ). Now,

∀n ∈ Z, E(einNk) = E(ein(N/
√
k mod 2π)) = E(einN/

√
k) = e−

n2

2k .

Then the Fourier coe�cients of Nk verify an = e−
n2

2k and bn = 0. Since µk admits a C∞ density

function, and as a corollary of the proof of Theorem 3.6:

A(µk) =
1

4π
− π

2

∑
n≥2

(a2
n

(
µ) + bn(µ)2

)
e−

1
2k
n2

n2 − 1
.

As a consequence of Lebesgue's dominated convergence theorem, A(µk) converges to the right hand

side of (7).

De�nition 3.8. A measure ν inMT is said to be c-stable (for some c > 0) if for Xν and X ′ν two

independent r.v. under ν,

Xν +X ′ν mod 2π
(d)
= cXν mod 2π. (16)

This quali�cation of �stable� comes from the standard notion of probability theory where the

same question is studied without the mod 2π operation (see Feller [11, Section VI]). The following

Proposition due to Lévy [16, p.11] identi�es the set of 1-stable distributions.

Proposition 3.9. The only 1-stable measures are uniform[0, 2π], the Dirac measure at 0, and the

family, indexed by m ≥ 1, of uniform measures on {k2π/m, k = 0, . . . ,m− 1}.
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We say that a distribution ν is in the 2π-domain of attraction of a distribution µ, and write

ν ∈ DA(µ), if for a family (Xi, i ≥ 1) of i.i.d. r.v. under ν, there exists θ ∈ [0, 2π] such that

n∑
i=1

(Xi − θ) mod 2π
(d)−−→
n

Xµ.

We let DA = {µ : DA(µ) 6= ∅} be the set of measures µ whose domains of attraction are not empty.

Proposition 3.10. 1) The set DA coincides with the set of 1-stable distributions.

2) For any ν ∈M0
T , there exists θ ∈ [0, 2π] and a unique 1-stable measure µ s.t. ν ∈ DA(µ).

Proof. 1) If ν is a 1-stable distribution, and if (Xi, i ≥ 1) are i.i.d. and taken under ν, then it is

easily seen that X1 + · · ·+Xn mod 2π
(d)
= X1. Therefore, every 1-stable distribution is in DA.

Conversely, assume that (Xi, i ≥ 1) are i.i.d., distributed according to ν, and that
∑n

i=1(Xi − θ)
mod 2π

(d)−−→
n

µ. Splitting the sum on the left-hand side into two parts, µ appears to be solution of

µ = µ?
T
µ, and then µ is 1-stable.

2) Take (Xi, i ≥ 1) i.i.d. r.v. under ν, θ ∈ [0, 2π], and compute the limit of the k-th Fourier

coe�cient, for k ≥ 1, of
∑n

j=1(Xj − θ),

E(eik
∑n
j=1(Xj−θ)) = E(eik(X1−θ))n.

This coe�cient either converges to 0 or is of modulus 1 (which implies X = θ/k[2π/k] a.s.). In either

case, the limit is a 1-stable distribution. More precisely, let k be the smallest Fourier coe�cient of

the limit of modulus 1. If k = +∞, the limit is the uniform distribution on [0, 2π], otherwise it is

the uniform distribution on {2jπ
k , j ∈ [0, k−1]}. (see also Wilms [30, Thm. 2.1 and Thm. 2.4]).

3.3 Symmetrisation of CCS by convolution

Let ν ∈M0
T and ←−ν = ν(2π − .). The distribution

SC(ν) := ν?
T
←−ν (17)

is clearly symmetric. We call it the symmetrisation by convolution of ν.2

Denote by ν1 = SC(ν), ν2 = SC(ν1), ... Let Xn be a r.v. under νn.

Proposition 3.11. Let ν ∈M0
T , and let µ be the unique measure such that SC(ν) belongs to DA(µ).

For θ = π or θ = 0 we have

Xn − nθ mod 2π
(d)−−→
n

µ.

Proof. First, νn is the distribution of
∑n

i=1(Xi−X ′i) mod 2π for some i.i.d. copies X ′is and X
′
i's of

Xν . The Fourier coe�cients of νn can then be computed, and they converge to those of a 1-stable

distribution as in Proposition 3.10, for θ ∈ {0, π} since Xi −X ′i is symmetric.

2Notice that replacing 2π by some other θ in the de�nition of ←−ν only a�ects SC(ν) by a simple rotation in T .
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4 Extensions

In this section are discussed two natural extensions of our model. In Section 4.1 we discuss CCS

with an unconstrained perimeter. In Section 4.2 is investigated the convergence of a trajectory

made by i.i.d. increments with values in C sorted according to their arguments. If ν is a centred

distribution on C, these trajectories converge to a CCS CK(ν) for an operator K de�ned below.

4.1 CCS with an unconstrained perimeter

The perimeter of the CCS in the construction we gave is 1 because the total mass of all measures in

M0
T is 1. Denote byMT

0
the set of positive measures ν with support T and such that ν(T ) < +∞.

Formula (1), which de�nes the CCS associated with a probability measure extends to these measures,

and the CCS perimeter Peri(ν) = ν(T ). A lot of statements given before extend naturally toMT
0
.

Most notably

Proposition 4.1. For any measures ν1, ν2 ∈MT
0
, any positive numbers λ1, λ2 we have:

Peri

(
n∑
i=1

λiνi

)
=

n∑
i=1

λi Peri(νi) (18)

Peri (ν1 ? ν2) = Peri(ν1)Peri(ν2). (19)

The area of C∑n
i=1 λiνi

and of Cν1?ν2 are still given by the Fourier coe�cients of the measures∑n
i=1 λiνi and ν1 ? ν2, as can be easily checked.

As said before, (18) is a well known result.

4.2 Reordering of random vectors in C

The Gauss-Minkowski correspondence can be seen thanks to Corollary 2.9 as a consequence of the

convergence of polygonal lines corresponding to some reordered random segments. This reordering

can be done even if the lengths are not all the same; nevertheless the condition E(eiXµ) = 0 is

needed to get a closed convex curve at the limit. In this section we investigate a generalisation of

this construction where the sides of the polygons are r.v. in C.
Let µ be a distribution with support included in C with mean 0, but di�erent from δ0. Take a

sequence W := (W1, . . . ,Wn) of i.i.d. r.v. with common distribution µ, and let Ŵ := (Ŵ1, . . . , Ŵn)

the listW sorted according to the arguments of theWi's (if several of them have the same argument

but di�erent modulus, then take a uniform random order among them). For θ ∈ [0, 2π), de�ne

Nn(θ) := #{i,Wi ≤ θ}. Let S := (S(k), k = 0, . . . , n) be the sequence of partial sums

S(k) :=
k∑
j=1

Ŵj , (20)

piecewise linearly interpolated between integer points, and let Bn = {S(t), t ∈ [0, n]} be the polyg-
onal line corresponding to the graph of S extended to [0, n].
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The distribution µ induces a law P|W |,arg(W ) for the pair (|W |, arg(W )), and a law Parg(W ) for

arg(W ); let P|W |,x be a version of the distribution of |W | conditioned on arg(W ) = x (this is de�ned

up to a null set under Parg(W ); for the sake of completeness, take P|W |,x = δ0 on the complementary

set). We denote by mx the mean of |W | under P|W |,x.
Let ν be the measure having density m/E(|W |) with respect to Parg(W ), that is

dν(x) =
mx

E(|W |)
dParg(W )(x). (21)

The map which sends µ onto ν will be denoted K:

K(µ) = ν. (22)

Denote by F arg the CDF of arg(W ), and by Fν that of the measure ν. From now on, let Wθ denote

a r.v. W under the condition {arg(W ) ≤ θ}.
We here present a theorem stating the aforementioned convergence; we think that it provides

an agreeable way to see the phenomenons into play.

Theorem 4.2. Consider the model described in the present section. Assume that µ is centred

( 6= δ0), and let ν = K(µ). We have

1) dH(Bn/(nE(|W |)),Bν)
(a.s.)−−−→
n

0.

2) For any θ,
S(Nn(θ))

nE(|W |)
(a.s.)−−−→
n

∫ θ

0
eitdν(t) = Zν(Fν(θ)). (23)

Remark 4.3. (a) Prosaically, the previous Theorem says that if µ is a centred distribution on C
the CCS associated with µ is CK(µ).

(b) According to (21) and Theorem 4.2, BK(ν) is the circle (with radius 1/(2π)) if and only if Parg

admits a density fν(·) with respect to the Lebesgue measure, and θ 7→ fν(θ)mν(θ) is constant.

(c) The ellipse of equation x2/c2 + y2 = R2 with perimeter 2πRc = 1, is obtained in the case where

mν(θ) =
1

2π

c

cos(θ)2 + c2 sin(θ)2
.

This can be shown using the following parametrisation: x(t) = sin(t), y(t) = c(1− cos(t)).

Proof of Theorem 4.2 2). The cardinality of Nn(θ) has the binomial (n, F arg(θ)) distribution. It

satis�es for any θ,

Nn(θ)/n
(a.s.)−−−→
n

Fν(θ). (24)

Conditionally on Nn(θ) = m the (multi)set {Ŵ1, . . . , Ŵm} is distributed as a set of m i.i.d. copies

19



of Wθ. Therefore by the law of large number,

S(Nn(θ))

nE(|W |)
(a.s.)−−−→
n

F arg(θ)E(Wθ)

E(|W |)
=

E(W1arg(W )≤θ)

E(|W |)
(25)

=
E(|W |ei arg(W )1arg(W )≤θ)

E(|W |)
(26)

=

∫ θ

0
eit

mt

E(|W |)
dParg(W )(t) = Zν(Fν(θ)). (27)

This ends the proof of 2) and shows the a.s. simple convergence of the extremal points of the random

curve to those of the deterministic limit. �

Proof of Theorem 4.2 1). Similarly, the length Ln(θ) of the curve composed by the segments

between the points (S(i), 0 ≤ i ≤ Nn(θ)) satis�es

Ln(θ)
(a.s.)−−−→
n

L(θ) :=
E(|W |1arg(W )≤θ)

E(|W |)
, (28)

where L(θ) is the length of the curve t 7→ Zµ(t) between times 0 and Fµ(θ). Fix a small ε > 0.

There exists θ1 < · · · < θk such that the convex hull of the points Zν(Fν(θi)) is at distance

at most ε of Bν . Notice that such a property implies that the successive segments lengths li =

|Zν(Fν(θi))− Zν(Fν(θi−1))| satis�es

L(θi)− L(θi−1)− 2ε ≤ li ≤ L(θi)− L(θi−1)

since Bν is convex and the graph of Zν must stay at distance at most ε of [Zν(Fν(θi)), Zν(Fν(θi−1))]

between times Fν(θi) and Fν(θi−1). But for n large enough, up to an additional ε, the discrete

curve has the same properties with high probability. By (25)

sup
1≤j≤n

∣∣∣∣S(Nn(θj))

nE(|W |)
− Zν(Fν(θj))

∣∣∣∣ (a.s.)−−−→
n

0.

The length Ln(θi)−Ln(θi−1) of the curve between θi−1 and θi converges a.s. to L(θi)−L(θi−1) by

(28). This implies that the Hausdor� distance between Bn/(nE(|W |)) and the convex hull of the

points
S(Nn(θj))
nE(|W |) 's goes to zero a.s. �

We now consider convolution and mixture of CCS.

Proposition 4.4. Let X and Y be independent r.v. in C with mean 0 (but not equal to 0 a.s.), and

λ ∈ [0, 1]. Let µX , µY and µX.Y be the laws of X, Y and X.Y . We have

CK(µX.Y ) = CK(µX) ? CK(µY ) and CK(λµX+(1−λ)µY ) = λCK(µX) + (1− λ)CK(µY ).

Proof. The statement concerning the mixture is quite easy and follows Theorem 4.2 for example.

For the other one, following (3.1), it su�ces to see that K(µX.Y ) = K(µX)?
T
K(µY ). Observe that for

any measure µ on C (such that 0 < |Xµ| < +∞),

E(eix arg(Xµ)|Xµ|)
E(|Xµ|)

=

∫ 2π

0
eixθ

mXµ(θ)

E(|Xµ|)
dParg(Xµ)(θ).
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Indeed, according to (21), the Fourier transform of K(µ) at position x is given by
E(eix arg(Xµ)|Xµ|)

E(|Xµ|) .

Hence, the Fourier transform of K(µX.Y ), for X and Y independent, is

E(eix arg(XY )|XY |)
E(|XY |)

=
E(eix arg(X)|X|)

E(|X|)
E(eix arg(Y )|Y |)

E(|Y |)
,

which implies that the Fourier transform of K(µX.Y ) and of K(µX)?
T
K(µY ) are the same. CK(µX.Y )

and CK(µX) ? CK(µY ) are equal by De�nition 3.1.

Remark 4.5. The CCS CK(µ) characterises K(µ) but not µ. For example the two following mea-

sures µ1 = 1
3

(
δ(1) + δ(e2iπ/3) + δ(e4iπ/3)

)
and µ2 = 1

3

(
1
2δ(

1
2) + 1

2δ(
3
2) + δ(e2iπ/3) + δ(e4iπ/3)

)
sat-

isfy K(µ1) = K(µ2) and CK(µi) is an equilateral triangle. Every CCS Cν can therefore be seen as an

equivalence class of measures over C.

However, K

(
µ1?
T
µ1

)
represents a polygon with 6 sides, whereas K

(
µ1?
T
µ2

)
a polygon with 7 sides,

even though K(µ1) = K(µ2). Hence K(µ1 ? µ2) is not a function of K(µ1) and K(µ2), and then the

convolution of measures in C can not be turned into a nice operation on CCS.

5 Some models of random CCS

In this part, we consider the problem of �nding natural distributions on the set of CCS. We �rst

recall some classical considerations on simple models of random convex polygons. In a second part

we take advantage of the representation of CCS by measures in M0
T to present models for the

generation of smooth CCS based on random Fourier coe�cients.

5.1 Reordering of closed polygons

Consider the problem of generating a convex polygon by specifying a �nite set of vectors representing

its edges. Let µ be a distribution on C whose support is not reduced to a point, and for some n ≥ 2,

let (Xi, i = 1, . . . , n) be n i.i.d. r.v. distributed according to µ, and set

Wi = X(i mod n)+1 −Xi, 1 ≤ i ≤ n.

Naturally,
∑n

i=1Wi = 0. Let (Ŵi, 1 ≤ i ≤ n) be the sequence (Wi, 1 ≤ i ≤ n) sorted according to

their arguments. Let now S be de�ned as in (20), and Bn de�ned as in Section 4.2. Further, let µ

be the distribution of W1 = X2 −X1, and ν = K(µ).

The following result analogous with Theorem 4.2 shows that Bn converges in distribution to Bν :

Theorem 5.1. Assume that µ is centred (di�erent from δ0). Then

dH (Bn/(nE(|W |)),Bν)
(a.s.)−−−→
n

0.

Moreover (23) holds.
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Proof. We have S(Nn(θ)) =
∑n

i=1(X(i mod n)+1 −Xi)1arg(X(i mod n)+1−Xi)≤θ; the di�erence with the

proof of Theorem 4.2 is the dependence between the r.v. in the sum. But these r.v. are only weakly

dependent (each r.v. depends on the previous and following one); then strong law of large number

applies to this case (since the sum can be split into two sums with i.i.d. r.v.), and the rest of the

proof follows that of Theorem 4.2.

5.2 Convex polygon by conditioning / Convex polygon by chance

Another natural way to sample a convex polygon is to take some i.i.d. points W0, . . . ,Wn−1 in

the plane according to a distribution µ with support not included in a line, and to condition

(W0, . . . ,Wn−1) to be a convex polygon. De�ne the set of all possible convex polygons as

Bn = {w := (w0, . . . , wn−1) : arg(wi+1 mod n − wi) forms an increasing sequence in [0, 2π)}.

Hence,w represents the list of vertices of a convex polygons encountered when following its boundary

in the counter-clockwise direction (with some conditions for w0).

The value of µ⊗n(Bn) is known only for µ equal to the uniform distribution in a triangle or in

a parallelogram [28, 27] and in a circle [17]; when µ is the uniform distribution in a CCS, the limit

behaviour for w under the condition w ∈ Bn is described in Bárány [1]. We open here a parenthesis

to explain the underlying di�culty. Consider Sn := (w0, . . . , wn) a n-tuple of points in R2, not

three of them being on the same line (this happens almost surely if µ admits a density on an open

set in R2). When wi = (xi, yi) for any i, the algebraic area of the triangle (wi, wj , wk) is

Ai,j,k =
1

2
(xiyj + xjyk + xkyi − yixj − yjxk − ykxi). (29)

The set (si,j,k := sign(Ai,j,k), 0 ≤ i < j < k ≤ n−1) is called the chirotope of Sn. An equivalence

class for the chirotope, is called an order type. The sequence Sn forms a convex polygon i� all si,j,k

have the same sign. It is known that some order types are empty, and also that deciding if an order

type is not empty, is a NP -complete problem (cf. Knuth [15, Section 6]).

When (Wj = (Xj , Yj), j = 0, . . . , n − 1) is a family of i.i.d. r.v., such that the Xi and Yi are

independent Gaussian centred r.v. with variance 1, it turns out that the Laplace transform of the

joint law of the Ai,j,k's (the areas of the triangles (Wi,Wj ,Wk)) that is

Φ(λi,j,k, 0 ≤ i < j < k ≤ n− 1) := E

exp

 ∑
0≤i<j<k≤n−1

λi,j,kAi,j,k


is equal to | det(Λ)|−1/2, where Λ = (`i,j) and `i,j =

∑
a λi,j,a + λa,i,j − λi,a,j (in a neighbourhood

of the origin of R(n3)). To get this result, the method is the same as the one for the computation of

the Fourier transform of a Gaussian vector in Rd.

Remark 5.2. As remarked by Andrea Sportiello in a private communication, | det(Λ)| is always a

square of a polynomial in the coe�cients λ̄i,j . Indeed, for Λ′ =

[
−Idn 0

0 Idn

]
Λ, Λ and Λ′ have the
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same determinant (up to factor (−1)n). But it can be shown that Λ′ is a skew matrix, and then its

determinant is the square of its Pfa�an, which is indeed a polynomial on its coe�cients.

The Gaussian distribution is probably the simplest non trivial measure for which this compu-

tation is possible. The question of the emptiness of an order type S = (si,j,k, i < j < k) can be

translated in term of the support of the measure, but Knuth's result implies that it is a di�cult

task. If n = 3, only one triangle is present; the Laplace transform is 1/(1−3λ2
0,1,2/4), the transform

of a Gamma r.v. with a random sign; when n = 4, the Laplace transform is much more complex.

5.3 Generation of smooth random CCS

This part is mainly prospective. By Theorem 2.2, to conceive a model of random CCS in Conv(1)

and to conceive a model of random measures with values in M0
T is the same problem. Since the

condition �to be inM0
T � has a simple expression in term of Fourier coe�cients, and since the Fourier

coe�cients determine the measure (Proposition 2.5), a simple idea consists in describing random

measures inM0
T using random Fourier coe�cients.

This leads us to Szegö's Theorem [26]: if a trigonometric polynomial P : T → R+ admits only

non-negative values, then there exists a polynomial D such that:

∀t ∈ T , P (t) = |D(eit)|2

Moreover D is unique up to multiplication by a complex of modulus 1. If we consider the Fourier ex-

pansion D(eit) =
∑

n≥0 ρne
iθneint, for some �nite sequences of real numbers (ρn), (θn), the modulus

of D is equal to:

|D(eit)|2 = A0 +
∑
n≥1

An cos(nt) +Bn sin(nt)

with


A0 =

∑
k≥0 ρ

2
k

An = 2
∑

k≥0 ρk+nρk cos(θk − θk+n) for n ≥ 1,

Bn = 2
∑

k≥0 ρk+nρk sin(θk − θk+n) for n ≥ 1.

(30)

Hence, the trigonometric polynomial P is the density of a measure µ ∈ M0
T i� the sequences (An)

and (Bn) satisfy (i) the perimeter condition (A0 = 1
2π , ensuring that µ is a probability measure)

and (ii) the closed path condition (A1 = B1 = 0, ensuring that
∫ 2π

0 eixdµ(x) = 0).

5.3.1 Generation of CCS via their Fourier coe�cients

In order to generate a random pair P := ((ρk, k ≥ 0), (θk, k ≥ 0)) satisfying both conditions, two

possibilities are open, depending on which condition should be satis�ed �rst (but the question of

�nding natural distributions for CCS will remain open).

To satisfy A1 = B1 = 0 �rst, it su�ces to generate ρj and θj for j ≥ 1 at random then take ρ0

and θ0 such that:

ρ0ρ1e
i(θ0−θ1) = −

∑
k≥1

ρk+1ρke
i(θk−θk+1).
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This is always possible if the sum converges and if ρ1 is not 0. To satisfy A0 = 1/2π from here, a

normalisation step can be applied: divide each ρn by
√∑

k≥0 ρ
2
k.

Szegö's theorem ensures that the set of measures induced by this method has full support

overM0
T : indeed, each measures inM0

T can be weakly approached by a sequence of distributions

with strictly positive density; these ones can be in turn approached by a sequence of positive

trigonometric polynomials, and Szegö's Theorem gives a representation of these polynomials. The

results of such a generation can be seen on �gure 4.

Figure 4: Examples of random CCS generated from trigonometric polynomials containing 25 non-

zero coe�cients (with ρj ∼ uniform[0; 1], and θj ∼ uniform[0; 2π], all these r.v. being taken indepen-

dently).

Another solution consists in ensuring �rstA0 = 1/2π, which comes down to producing (ρk, k ≥ 0)

such that
∑

k≥0 ρ
2
k = 1

2π . This can be done by choosing (generating) random reals rj in [0, 1], and

setting:

ρ2
k =

1

2π
rk

k−1∏
j=0

(1− rj).

This is well de�ned if
∏
k(1− rk) converges to 0 when k goes to in�nity (for example, taking i.i.d.

rj 's under uniform[0, 1] does the job). From here, satisfying A1 = 0 and B1 = 0 by a right choice

of θ's can become more di�cult, and even impossible, for example if ρ0 = ρ1 > 0 and all other ρi's

are 0. Nevertheless, it is possible to generate P satisfying all the constraints at once. Choose (at

random or not) a subset F of N such that if i ∈ F , then i + 1 /∈ F , and a sequence xk such that∑
k≥0 x

2
k = 1

2π as above. Now, let nj be the j + 1-th smallest element in F , with the convention

that the smallest is n0. De�ne the sequence (ρk) by:

ρnj = rj , ρk = 0 otherwise

Thanks to (30), A1 = B1 = 0 (since for all k, ρkρk+1 = 0), and this for any choice of (θk). Examples

of CCS generated this way appear on Figure 5.
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Figure 5: Examples of random CCS generated from polynomials containing 12 non-zero coe�cients

with sparse coe�cients (the indices of the non-null Fourier coe�cients of F are selected with proba-

bility 0 if the previous coe�cient was selected, and with probability 1
2 otherwise; ρj ∼ uniform[0; 1];

θj ∼ uniform[0; 2π], all these r.v. are taken independently).

Figure 6: Examples of random CCS of perimeter 1 generated such that their area is equal to 1
4π −

π
2×0.01 (the polynomials possess 20 non-null coe�cients, ρj ∼ uniform[0; 1], and θj ∼ uniform[0; 2π],

all these r.v. being taken independently).

5.3.2 Generation of CCS with a given area

Consider the problem of generating a CCS in Conv(1) with a given area α = 1
4π −

π
2β ∈ [0, 1

2π2 ].

Such a CCS corresponds to Fourier coe�cients that satis�es:

∑
k≥2

a2
k + b2k
k2 − 1

= β.

As in the previous section, we consider a sequence of numbers (rj) in [0, 1) for j ≥ 2, such that∏
j≥2(1− rj) = 0, and de�ne positive reals (ck) such that:

c2
k

k2 − 1
= β rk

k−1∏
j=2

(1− rj).
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Let (θk, k ≥ 2) be a sequence of real numbers in [0, 2π). Then the Fourier coe�cients of the

associated measure can be computed as follows:

ak = cos(θk)ck, bk = sin(θk)ck.

It is still possible to take a1 = b1 = 0 and a0 = 1/(2π), but since we didn't use Szegö's theorem,

the standard Fourier series associated to the ai's and bi's is unlikely to be a positive function. From

here, it su�ces to reject all series with a negative minimum. The results of such a generation appear

on Figure 6. Experiments show that the rejection rate is very high, and that it is very di�cult to

generate CCS with β > 0.01 (the theoretical maximum being 1
2π2 ≈ 0.05).

6 Appendix

6.1 Proof of Theorem 2.8

Convergence of the FDD of Wn

Let θ0 := 0 ≤ θ1 < θ2 < · · · < θκ = 2π for some κ ≥ 1 be �xed. In the sequel, for any function

(random or not) L indexed by θ, ∆L(θj) will stand for L(θj)− L(θj−1). For any ` ≤ κ

Wn(θ`) =
√
n
∑̀
j=0

∆ [Zn(Nn(θj))− Zµ(Fµ(θj))] (31)

where by convention Zn(Nn(θ−1)) = Zµ(Fµ(θ−1)) = 0. The convergence of the FDD of Wn follows

from those of (
√
n∆ [Zn(Nn(θj))− Zµ(Fµ(θj))] , 0 ≤ i ≤ κ). Notice that

∆Zµ(Fµ(θj)) = E(exp(iX)1θj−1<X≤θj ). (32)

If for some j, θj−1 and θj are chosen in such a way that ∆Fµ(θj) = 0 then the jth increment in

(31) is 0 almost surely (this is the case for the 0th increment if µ({0}) = 0). We now discuss the

asymptotic behaviour of the other increments : let J = {j ∈ {0, . . . , κ} : ∆Fµ(θj) 6= 0}.
Let (nj , j ∈ J) be some �xed integers such that n =

∑
nj . Denote by µθj−1,θj the law of Xµ

conditioned on {θj−1 < Xµ ≤ θj}, and by Xθj−1,θj a r.v. under this distribution. Conditionally on

(Nn(θj) = nj , j ∈ J), the r.v. ∆Zn(Nn(θj)), j ∈ J are independent. The law of ∆Zn(Nn(θj)) is that

of a sum of nj − nj−1 i.i.d. copies of r.v. under µθj−1,θj , denoted from now on (Xθj−1,θj (k), k ≥ 1)):

E
(
∆Zn(Nn(θj))

∣∣Nn(θl) = nl, l ∈ J
)

= n−1E

nj−nj−1∑
m=1

e
iXθj−1,θj

(m)


=

(nj − nj−1)

n

∆Zµ(Fµ(θj))

∆Fµ(θj)
.

Since (∆Nn(θj), j ∈ J) ∼ Multinomial (n, (∆Fµ(θj), j ∈ J)),(
∆Nn(θj)− n∆Fµ(θj)√

n
, j ∈ J

)
(d)−−→
n

(Nj , j ∈ J) (33)
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where (Nj , j ∈ J) is a centred Gaussian vector with covariance function

cov(Nk, Nl) = −∆Fµ(θk) .∆Fµ(θl),

formula valid for any 0 ≤ k, l ≤ κ. Putting together the previous considerations, we have, condi-

tioning �rst on the Nn(θj)'s, and then integrating on the distribution of these r.v.,

∆Wn(θj) =

∆Nn(θj)∑
l=1

e
iXθj−1,θj

(l) − E(e
iXθj−1,θj )√

n
+

(
∆Nn(θj)− n∆Fµ(θj)√

n

)
E(e

iXθj−1,θj ) (34)

Using (33) and the central limit theorem, we then get that

(π∆Wn(θj), 0 ≤ j ≤ κ)
(d)−−→
n

√
∆Fµ(θj)Ñj +Nj

[
E(cos(Xθj−1,θj ))

E(sin(Xθj−1,θj )

]
, (35)

where the r.v. Nj , Ñj , j ≤ κ are independent, and the r.v. Ñj are centred Gaussian r.v. with

covariance matrix, the covariance matrix of

[
cos(Xθj−1,θj )

sin(Xθj−1,θj )

]
.

Tightness of {Wn, n ≥ 0} in D[0, 2π]

A criterion for tightness in D[0, 2π] can be found in Billingsley [4, Thm. 13.2]: a sequence of

processes (Wn, n ≥ 1) with values in D[0, 2π] is tight if, for any ε ∈ (0, 1), there exists δ > 0, N > 0

such that

lim
δ→0

lim sup
n

P(ω′(Wn, δ) ≥ ε) = 0

where ω′(f, δ) = inf(ti) maxi sups,t∈[ti−1,ti) |f(s)− f(t)|, and the partitions (ti) range over all parti-

tions of the form 0 = t0 < t1 < · · · < tn ≤ 2π with min{ti − ti−1, 1 ≤ i ≤ n} ≥ δ.
Since only the tightness in D[0, 2π] interests us, we will focus on <(W ) (since the imaginary

part can be treated likewise, and since the tightnesses of both <(W ) and =(W ) implies that of W ).

For the sake of brevity, in the sequel, we will use W instead of <(W ).

The �rst step in our proof consists in comparing the distribution Pn of a set {X1, . . . , Xn} of
n i.i.d. copies of Xµ with a Poisson point process Pn on [0, 2π] with intensity nµ, denoted by PPn .
Conditionally on #Pn = k, the k points Pn := {Y1, . . . , Yk} are i.i.d. and have distribution µ, and

then PPn( · |#P = n) = Pn. The Poisson point process is naturally equipped with a �ltration

σ := {σt = σ({P ∩ [0, t]}), t ∈ [0, 2π]}.
We are here working under PPn , and we let N(θ) = #Pn ∩ [0, θ]; notice that under Pn, N and

Nn coincide.

We will show the tightness of W under PPn �rst. Before doing this, let us see why it implies

the same result under Pn: Let m be a point in [0, 2π] such that Fµ(x) > 1/4, 1− Fµ(x) > 1/4 (it is

a kind of median of µ). We need in the sequel 1 − Fµ(m) > 0; for measures inM0
T this is always

the case, since if not, an atom with weight > 1/2 would exist. We will see that the tightness under
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PPn implies that the sequence of processes W under Pn is tight in D[0,m] (the same proof works

on D[m, 2π] by a time reversing argument). We claim that for any event σm measurable,

Pn(A) = PPn(A |#P = n) ≤ cPPn(A) (36)

for a constant c independent on n and of A (but which depends on µ). This in hand, the tightness

under PPn of W on D[0,m] implies that under Pn. Let us prove (36). We have

PPn(A |#P = n) =
∑
k

PPn(A,#(P ∩ [0,m]) = k)P(#P ∩ [m, 2π] = n− k)

P(#P = n)

≤
∑
k

PPn(A,#(P ∩ [0,m]) = k) sup
k′

P(#P ∩ [m, 2π] = n− k′)
P(#P = n)

≤ cPPn(A)

where c = supn≥1 supk′
P(#P∩[m,2π]=n−k′)

P(#P=n) , which is indeed �nite since:

� �rst #P ∩ [m, 2π] ∼ Poisson(n(1 − Fµ(m))), and then supk′ P(#P ∩ [m, 2π] = n − k′) is the

mode of a Poisson distribution. When the parameter is λ, the mode is equivalent to 1/
√

2πλ

when λ→ +∞, so here it is equivalent to 1/
√

2πn(1− Fµ(m)),

� and by Stirling P(#P = n) ∼ (2πn)−1/2.

Working with a Poisson point process instead of working with n r.v. provides some independence

between the number of r.v. Xi in disjoint intervals, and then on the �uctuations of Wn in disjoint

intervals.

Before starting, recall that if N ∼ Poisson(a), for any positive λ,

P(N ≥ x) = P(eλN ≥ eλx) ≤ E(eλN−λx) = e−a+aeλ−λx (37)

P(N ≤ x) = P(e−λN ≥ e−λx) ≤ E(e−λN+λx) = e−a+ae−λ+λx. (38)

Let Aµ = {x ∈ [0, 2π], µ({x}) > 0} be the set of positions of the atoms of µ. We now decompose

µ = µ|Aµ + µ|{Aµ ; under Pn as well as under PPn , the process W can be also decomposed under

the form W |Aµ +W |{Aµ using N |Aµ(θ) = #P ∩ [0, θ]∩Aµ, Z|Aµ(N |Aµ(θ)) =
∑N

j=1 e
iX̂j1X̂j∈Aµ , etc.

The �uctuations of W = W |Aµ + W |{Aµ are then bounded by the sum of the �uctuations of both

processes W |Aµ and W |{Aµ . It is then su�cient to show the tightness for a purely atomic measure

µ, and for a measure having no atom µ.

Case where µ is purely atomic

Take some (small) η ∈ (0, 1), ε > 0; we will show that one can �nd a �nite partition (ti, i ∈ I) of

[0, 2π] and a δ ∈ (0, 1) such that

lim sup
n

Pn(ω′(Wn, δ) ≥ ε) ≤ η, (39)
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which is su�cient for our purpose. In fact we will establish (39) under PPn instead, on [0,m] and

then on [m, 2π], since we saw that this was su�cient (replacing η by cη in (39), su�ces too).

Now, let A≥aµ := {x ∈ Aµ : µ({x}) ≥ a}. Clearly #A≥aµ ≤ 1/a and [0, 2π] \ A≥aµ forms a �nite

union of open connected intervals (Ox, x ∈ G), with extremities (t′i, i ∈ I). The intervals (Ox, x ∈ G)

can be further cut as follows:

� do nothing to those such that µ(Ox) < 2a,

� those such that µ(Ox) > 2a are further split. Since they contain no atom with mass > a, they

can be split into smaller intervals having all their weights in [a, 2a] except for at most one (in

each interval Ox which may have a weight smaller than a).

Once all these splittings have been done, a list of at most 3/a intervals are obtained, all of them

having a weight smaller than 2a. Name Ga = (Ox, x ∈ Ia) the collection of obtained open intervals,

index by Ia, and by (tai , i ≥ 0) the partitions obtained. Clearly

Ma := max
i∈Ia

E(cos(Xµ)21Xµ∈Oi) ≤M ′a := 2a.

Control of the �uctuations of Wn on an interval Ox

In the sequel we take a = ε3 and consider a unique interval Ox = (θj−1, θj) ∈ Ga, in which

case we have Mε3 ≤ 2ε3. We control �rst the last position of the random walk Wn. Under PPn ,
P(nµ{θ}) := #Pn∩{θ} has distribution Poisson(nµ({θ})), the r.v. corresponding to di�erent points
being independent. Following (34), under PPn , we get

∆Wn(θj) =
√
n

∑
θ∈Aµ

θj−1≤θ<θj

(
P(nµ{θ})

n
− µ({θ})

)
cos(θ). (40)

These centred r.v. can be controlled as usual Poisson r.v. as recalled above. On the �rst hand,

P(∆Wn(θj) ≥ ε) = P

(∑
θ

P(nµ{θ}) cos(θ) ≥ y

)
(41)

where

y = ε
√
n+ nE(cos(X)1X∈Aµ,θj−1<X≤θj ) (42)

and where the set of summation is the same as before (from now on, it will be omitted).

Writing P (
∑

θ P(nµ{θ}) cos(θ) ≥ y) ≤ infλ>0 e
−λy∏

θ E(e(λ cos(θ))P(nµ{θ})) one has

P(∆Wn(θj) ≥ ε) ≤ inf
λ>0

exp

(
−
∑
θ

nµ{θ}+
∑
θ

nµ{θ}eλ cos(θ) − λy

)
.

To get a bound we will take λ = ε/(2
√
nM ′ε3). This allows one to bound eλ cos(θ) by 1 + λ cos(θ) +

λ2 cos(θ)2 which is valid uniformly for any θ provided that n is large enough. Hence for n large
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enough replacing y by its value,

P(∆Wn(θj) ≥ ε) ≤ inf
λ>0

exp
(
λ2nE(cos2(θ)1θ∈Ix)− λε

√
n
)

≤ inf
λ>0

exp
(
λ2nM ′ε3 − λε

√
n
)

≤ exp(−1/(4ε))

this last equality being obtained for λ = ε/(2M ′ε3
√
n).

The proof for the control of P(∆Wn(θj) ≤ −ε) ≤ infλ>0 E
(
e−λ∆Wn(θj)−λδ

)
for δ > 0 gives rise

to the same estimates, except that the bound eλ cos(θ) by 1 − λ cos(θ) + λ2 cos(θ)2/4 is taken to

replace the other one, giving a bound exp(−1/(2ε)) at the end.

Now we have to control the �uctuations, and not only the terminal value of the random walk.

Theorem 12 p.50 in Petrov [19] allows one to control the �rst ones using the second ones.

Control of the �uctuations of Wn on all intervals

The control of all intervals all together can be achieved using the union bound : since they are at

most 3/ε3 such intervals by the union bound

PPn(sup
j

∆Wn(θj) ≥ ε) ≤ 3ε−3e−1/(4ε).

This indeed goes to 0 when ε→ 0.

Case where µ has no atom

We now show the tightness ofW under PPn when µ has no atom and use the same method as before:

we work under PPn , cut [0, 2π] under sub-intervals [tj−1, tj ]
′s, control the di�erences between starting

and ending values on these intervals, since we saw that it was su�cient.

First we cut [0, 2π] into n (tiny) equal parts ([2π(j − 1)/n, 2πj/n], j = 1, . . . , n). From (34)

W (2πj/n)−W (2πj′/n) =

j∑
l=j′+1

Γl + Θl (43)

where, under PPn , denoting further θj = 2πj/n,

Γl =

P(n∆(Fµ(θl)))∑
m=1

cos(Xθj−1,θj (m))− E(cos(Xθj−1,θj ))√
n

Θl =
P(n∆(Fµ(θl)))− n∆Fµ(θl)√

n
E(cos(Xθl−1,θl))

and P(λ) ∼ Poisson(λ) and the di�erent Poisson r.v. appearing in the Γl and Θl are independent.

Let ε > 0 be given and Nε3 = d1/ε3e. Since µ has no atom there exists some times t0 = 0 < t1, · · · <
tNε = 2π such that µ([ti−1, ti]) ≤ ε3. We now control the �uctuations of W on these intervals.
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Write Dj := W (
b2πtjnc

n )−W (
b2πtj−1nc

n ) as a sum of r.v. Γl and Θl as in (43):

Dj = Sj + S′j

where

Sj =

b2πtjnc∑
l=b2πtj−1nc+1

Γl, S′j =

b2πtjnc∑
l=b2πtj−1nc+1

Θl.

Each Γl is itself a sum which involves a Poisson number of terms: the total number of terms

in Sj is Ntj − Ntj−1 , a Poisson r.v. with parameter smaller than ε3n under PPn . From (37),

PPn(N(tj)−N(tj−1) ≥ 3ε3n) ≤ e−cε3n for some positive c, this meaning that with high probability,

Sj is a sum of less than 3ε3n centred and bounded r.v. of the form
cos(Xθj−1,θj

(m))−E(cos(Xθj−1,θj
))

√
n

.

By Hoe�ding's inequality

P(|Sj | ≥ ε|N(tj)−N(tj−1) ≤ 3ε3n) ≤ c′ exp(−c/ε)

for some c, c′ > 0.

The sum S′j is controlled as above, in the atomic case (see (40) and below).

We now show 2); since f 7→ maxθ |f(θ)| is continuous on D[0, 2π], we only need to prove

dH(Bn,Bµ) = maxθ |Zn(Nn(θ)/n)− Zµ(Fµ(θ))|.
Since Bn and Bµ are compact, there exists (xn, x) in Bn×Bµ realising this distance: |xn− x| =

d(xn,Bµ) = d(Bn, x) = dH(Bn,Bµ). Consider now the set of directions Θn and Θ of the tangents

at xn on Bn and that at x on Bµ (we call here a tangent at a on A a line l that passes by a and

such that A is contained in one of the close half plane de�ned by l. The set of directions of these

tangents is an interval). We claim that there exists in Θn∩Θ the direction θ? orthogonal to (xn, x).

If not, this means that at xn (or at x) the line passing at xn (or x) and orthogonal to (xn, x) crosses

Bn (or Bµ). This would imply that in a neighbourhood of x (or xn) there exists a point x′ (or x′n)

closer to xn (resp. x) than x (resp. xn), a contradiction.

To end the proof, we need to show that (x, x′) corresponds to some (Sn(Nn(θ)/n), Zµ(Fµ(θ))).

In other words, they are extremal points on their respective curves, and owns some parallel tangents.

The second statement is clear. For the �rst one, we have to deal with the fact that Bn (and so

do Bµ for certain measures µ) have linear portions. But the distance between Bn and Bµ is not

reached inside the linear intervals since the Hausdor� distance between a segment [a, b] and a CCS

C is given by max{d(a,C), d(b, C)}. �
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