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Abstrat

Let (Xi, i ≥ 1) be a sequene of i.i.d. random variables with values in [0, 1], and f be

a funtion suh that E(f(X1)
2) < +∞. We show a funtional entral limit theorem for the

proess t 7→∑n

i=1
f(Xi)1Xi≤t.
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1 Introdution

Let (X1,X2, . . .) be a sequene of i.i.d. random variables (r.v.) with values in [0, 1], having

distribution µ, distribution funtion F , and de�ned on a ommon probability spae (Ω,A,P)

on whih the expetation operator is denoted E. In this paper we are interested in proving a

funtional limit theorem for the sequene of proesses (Zn, n ≥ 1) de�ned by

Zn(t) :=
1

n

n∑

i=1

f(Xi)1Xi≤t, t ∈ [0, 1] (1)

where f : [0, 1] → R is a measurable funtion. Let (X̂i, 1 ≤ i ≤ n) be the sequene (Xi, 1 ≤ i ≤ n)

sorted in inreasing order, and for any t ∈ [0, 1], denote by

Nn(t) = #{i : 1 ≤ i ≤ n,Xi ≤ t}

the number of Xi's smaller than t. Clearly, for t ∈ [0, 1],

Zn(t) =
1

n

Nn(t)∑

k=1

f(X̂i).

Hene, Zn enodes the partial sums of funtions of sorted i.i.d. r.v., as mentioned in the title of

this paper. In order to state a entral limit theorem for Zn the existene of Var(f(X1)) < +∞ is

learly needed, but it is not su�ient to ontrol the �utuations of Zn on all intervals. Standard
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onsiderations about the binomial distribution implies that Nn(t2)−Nn(t1) is quite onentrated

around n(F (t2)− F (t1)) (for t1 < t2). Conditionally on (Nn(t1), Nn(t2)) = (n1, n2),

Zn(t2)− Zn(t1)
(d)
=

1

n

n2−n1∑

k=1

f(X(t1,t2](k)) (2)

where

(d)
= means �equals in distribution�, and where (X(t1,t2](k), 1 ≤ k ≤ n2 − n1) is a family of

i.i.d. r.v., whose ommon distribution is that of X onditional on X ∈ (t1, t2]. Hene, to get a

funtional entral limit theorem for Zn, the varianes of these distributions need to be ontrolled.

The following hypothesis Hyp is designed for that purpose:

Hyp: there exists an inreasing funtion T : [0, 1] → R
+
suh that:





x/T (x) is bounded,

T (x) ln(x) −→
x→0

0,

∀I interval ⊂ [0; 1], Var (f(X) |X ∈ I) ≤ T (µ(I))

µ(I)

where Var(g(X) |X ∈ I) denotes the variane of g(X) onditional on X ∈ I (by

onvention, we set E(g(X) |X ∈ I) = 0 when P(X ∈ I) = 0).

When f is bounded by γ on [0; 1], the funtion T (x) = γ2x satis�es Hyp (see also the disussion

below Theorem 1).

Consider the mean of Zn

Z(t) := E(Zn(t)) = E (f(X)1X≤t) , (3)

(this an be shown to be a àdlàg proess when E(|f(X)|) < +∞) and

Yn(t) =
√
n [Zn(t)− Z(t)] . (4)

The aim of this paper is to show the following result :

Theorem 1. Let (Xi, i ≥ 0) be a sequene of i.i.d. r.v. taking their values in [0, 1] and f :

[0, 1] → R a measurable funtion satisfying Hyp, then

Yn
(d)−−→
n

Y

in D[0, 1], the spae of àdlàg funtions on [0,1℄ equipped with the Skorokhod topology, where

(Yt, t ∈ [0, 1]) is a entered Gaussian proess with variane funtion

Var(Ys) = F (s)Var(f(X) |X ≤ s) + F (s)(1− F (s))E(f(X) |X ≤ s)2 (5)

and with ovariane funtion, for 0 ≤ s < t ≤ 1

Cov(Ys, Yt − Ys) = −F (s)(F (t) − F (s))E(f(X) |X ≤ s)E(f(X) | s < X ≤ t). (6)
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We disuss a bit the onditions in the theorem. Assume that the Xi's are i.i.d. uniform

on [0, 1], and that f(x) = 1/xα for some α > 0. The r.v. f(X) = 1/Xα
possesses a variane

i� α < 1/2, and then it is in the domain of attration of the normal distribution only in this

ase (Theorem 1 needs this hypothesis for the onvergene of Yn(1)). The largest Var(f(X)|X ∈
(a, a+ ε)) is obtained for a = 0, in whih ase we get

Var (f(X) |X ∈ (0, ε]) =
ε−2αα2

(1− 2α)(1 − α)2
,

and one an hek that α < 1/2 is also the ondition for the existene of a funtion T satisfying

Hyp. Hyp appears to be a minimal assumption in that sense.

The �rst result onerning the onvergene of empirial proesses is due to Donsker's Theo-

rem [2℄. It says that when f is onstant equal to 1, then Yn onverges in D[0, 1] to the standard

Brownian bridge b up to a time hange. A kind of mirale arises then, sine the same analysis

works for all distributions µ by a simple time hange. This is not the ase here.

Apart from strong onvergene theorems à la Komlós-Major-Tusnády [4℄, modern results

about the onvergene of empirial proesses � see Shorak & Wellner [7℄ and van der Vaart &

Wellner [8℄ � muh rely on the onept of Donsker lasses, whih we disuss below.

Denote by Pn = 1
n

∑n
k=1 δXi

the empirial measure assoiated with the sample (Xi, 1 ≤ i ≤
n). As a measure, Pn operates on any set F of measurable funtions φ : [0, 1] → R,

Pnφ =

∫

x
φ(x)dPn(x) =

n∑

k=1

φ(Xi)/n.

The empirial proess is the signed measure Gn :=
√
n(Pn − µ). By the standard entral limit

theorem, for a given funtion φ (suh that µφ2 < +∞), Gnφ
(d)−−→
n

N (0, µ(φ − µφ)2), where

N (m,σ2) designates the normal distribution with mean m and variane σ2
.

A P-Donsker lass is a set of measurable funtions F suh that (Gnφ, φ ∈ F) onverges in

distribution to (Gφ, φ ∈ F), in the L∞ topology (it is a entral limit theorem for a proess index

by a set of funtions). This means that :

� the onvergene of the �nite dimensional distributions holds : (meaning that for any k, any

φ1, . . . , φk ∈ F , (Gnφ1, . . . ,Gnφk)
(d)−−→
n

N := (N1, . . . , Nk) and N is a entered Gaussian

vetor with ovariane matrix Cov(Ni, Nj) = µ [(φi − µφi)(φj − µφj)].

� the sequene (Gnφ, φ ∈ F) is tight in L∞.

The proof that a set forms a Donsker lass is usually not that simple, and numerous riteria an

be found in the literature. In our ase, the set of funtions F is the following one :

Ff = {(x 7→ φt(x) = f(x)1x≤t), t ∈ [0, 1]}.
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We were unable to �nd suh a riterion for this lass, but notie that if suh a result existed,

it would imply Theorem 1 only for the topology L∞, a topology whih is weaker than ours. Of

ourse, Theorem 1 implies that Ff forms a Donsker lass.

Note. In fat lasses Ff for non dereasing f , or for funtions f whose level sets are given by

two intervals at most (suh that x 7→ x2, x 7→ cos(2πx), x 7→ sin(2πx)) are Donsker, sine they

are VC subgraph lass (see Vapnik & Chervonenkis [9℄).

1

If we onsider the variables Xi's in the formula (1), as random times, then Zn(t) orresponds

(up to the normalisation) to the sum of f(Xi) for all events Xi appearing before time t, where f

is some ost funtion. The proess Yn appears to be the suitable tool to measure the �utuations

of Zn.

We would like to mention [5℄, a work at the origin of the present paper, written by the same

authors. In [5℄, the onvergene of resaled trajetories made with sorted inrements (in C) to a

deterministi onvex is shown. For this purpose a weaker version of Theorem 1 is established.

We provide a proof of our theorem in an old fashioned style. We prove the onvergene of

the �nite dimensional distributions, and then establish the tightness in D[0, 1]; even if the proof

is a bit tehnial, we think that several triks make it interesting in its own right.

2 Proof of Theorem 1

The proof starts with that of the onvergene of the �nite dimensional distributions (FDD)

onvergene of Yn: this is lassial as we will see. Let θ0 := 0 < θ1 < θ2 < · · · < θK = 1 for some

K ≥ 1 be �xed. In the sequel, for any funtion (random or not) L indexed by θ, ∆L(θj) will

stand for L(θj)− L(θj−1). For any ℓ ≤ K

∆Yn(θℓ) =
√
n [∆Zn(Nn(θj))−∆Z(θj)] , (7)

where by onvention Zn(Nn(θ−1)) = Z(θ−1) = 0. The onvergene of the FDD of Yn follows the

onvergene in distribution of the inrements (∆Yn(θℓ), 0 ≤ ℓ ≤ K). Notie that

∆Z(θj) = E
(
f(X)1θj−1<X≤θj

)
. (8)

If for some j, θj−1 and θj are hosen in suh a way that ∆F (θj) = 0 then the jth inrement in

(7) is 0 almost surely (this is the ase for the 0th inrement if µ({0}) = 0). We now disuss the

asymptoti behaviour of the other inrements : let J = {j ∈ {0, . . . ,K} : ∆F (θj) 6= 0}.
Let (nj, j ∈ J) be some �xed integers summing to n. Denote by µθj−1,θj the law of X ondi-

tioned by {θj−1 < X ≤ θj}. Conditional on (Nn(θj) = nj, j ∈ J), the variables ∆Zn(Nn(θj)),

j ∈ J are independent, and ∆Zn(Nn(θj)) is a sum of nj − nj−1 i.i.d. opies of variables under

µθj−1,θj , denoted from now on (Xθj−1,θj (k), k ≥ 1).

1
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Sine (∆Nn(θj), j ∈ J) ∼ Multinomial (n, (∆F (θj), j ∈ J)),

(
∆Nn(θj)− n∆F (θj)√

n
, j ∈ J

)
(d)−−→
n

(Gj , j ∈ J) (9)

where (Gj , j ∈ J) is a entered Gaussian vetor with ovariane funtion,

cov(Gk, Gℓ) = −∆F (θk) .∆F (θℓ) + 1k=ℓ∆F (θk),

formula valid for any 0 ≤ k, ℓ ≤ K. Putting together the previous onsiderations, we have

∆Yn(θj) =

∆Nn(θj)∑

m=1

f(Xθj−1,θj(m))− E(f(Xθj−1,θj))√
n

(10)

+

(
∆Nn(θj)− n∆F (θj)√

n

)
E(f(Xθj−1,θj)) (11)

Using (9) and the entral limit theorem, we then get that

(∆Yn(θj), 0 ≤ j ≤ K)
(d)−−→
n

(√
∆F (θj)G̃j +GjE(f(Xθj−1,θj)), 0 ≤ j ≤ K

)
(12)

where the family of r.v. (Gj , j ≤ K) and (G̃j , j ≤ K) are independent, and the r.v. G̃j are

independent entered Gaussian r.v. with variane Var(f(Xθj−1,θj )) (this allows one to determine

the variane and ovariane (5) and (6)). Notie that here only the �niteness of Var(f(Xθj−1,θj))

and E(f(Xθj−1,θj)) are used.

It remains to show the tightness of the sequene (Yn, n ≥ 0) in D[0, 1]. A riterion for the

tightness in D[0, 1] an be found in Billingsley [1, Thm. 13.2℄: a sequene of proesses (Yn, n ≥ 1)

with values in D[0, 1] is tight if, for any ε ∈ (0, 1),

lim
δ→0

lim sup
n

P(ω′(Yn, δ) ≥ ε) = 0

where ω′(f, δ) = inf(ti)maxi sups,t∈[ti−1,ti) |f(s) − f(t)|, and the partitions (ti) range over all

partitions of the form 0 = t0 < t1 < · · · < tn ≤ 1 with min{ti − ti−1, 1 ≤ i ≤ n} ≥ δ.

We now ompare our urrent model formed by a set {X1, . . . ,Xn} of n i.i.d. opies of X

denoted from now on by Pn, with a Poisson point proess Pn on [0, 1] with intensity nµ, denoted

by PPn . Conditionally on #Pn = k, the k points Pn := {X ′
1, . . . ,X

′
k} are i.i.d. and have

distribution µ, and then PPn( · |#P = n) = Pn. The Poisson point proess is naturally equipped

with a �ltration σ := {σt = σ({P ∩ [0, t]}), t ∈ [0, 1]}.
We are here working under PPn , and we let N(θ) = #(Pn ∩ [0, θ]); notie that under Pn, N

and Nn oinide.

Before starting, reall that if N ∼ Poisson(b), for any positive λ,

P(N ≥ x) = P(eλN ≥ eλx) ≤ E(eλN−λx) = e−b+beλ−λx
(13)

P(N ≤ x) = P(e−λN ≥ e−λx) ≤ E(e−λN+λx) = e−b+be−λ+λx. (14)
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We explain now why the tightness of (Yn, n ≥ 1) under PPn implies the same result under Pn.

Let m = inf{x ∈ [0, 1], F (x) ≥ 1/2} be the median of µ.

Lemma 2.1. There exists a onstant γ (whih depends on µ), suh that for any σm-measurable

event A,

Pn(A) = PPn(A |#P = n) ≤ γ PPn(A). (15)

Proof of the Lemma We have

PPn(A |#P = n) =
∑

k

PPn(A,#(P ∩ [0,m]) = k)P(#P ∩ [m, 1] = n− k)

P(#P = n)

≤
∑

k

PPn(A,#(P ∩ [0,m]) = k) sup
k′

P(#P ∩ [m, 1] = n− k′)

P(#P = n)

≤ γ PPn(A)

where γ = supn≥1 supk′
P(#P∩[m,1]=n−k′)

P(#P=n) , whih is indeed �nite sine P(#P = n) ∼ (2πn)−1/2
,

and sine #P ∩ [m, 1] ∼ Poisson(n/2), and then the probability that its value is k is bounded

above by some d/
√
n aording to Petrov [6, Thm. 7 p. 48℄. �

Thanks to Lemma 2.1, if the sequene of restritions (Yn|[0,m], n ≥ 1) of Yn on [0,m] is tight

on D[0,m] under PPn then so it is under Pn (the same proof works on D[m, 1] by a time reversal

argument). To end the proof, we show that (Yn|[0,m], n ≥ 1) is indeed tight under PPn .

Take then some (small) η ∈ (0, 1), ε > 0; we will show that one an �nd a �nite partition

(ti, i ∈ I) of [0,m] and a δ ∈ (0,m) suh that

lim sup
n

Pn(ω
′(Yn, δ) ≥ ε) ≤ η, (16)

whih is su�ient for our purpose.

We deompose the proess Yn as suggested by (10) and (11),

Yn(θ) = Y ′
n(θ) + Y ′′

n (θ) (17)

where

Y ′
n(θ) =

Nn(θ)∑

m=1

f(X[0,θ](m))− E(f(X[0,θ]))√
n

(18)

Y ′′
n (θ) =

(
Nn(θ)− nF (θ)√

n

)
Zθ

F (θ)
. (19)

(If F (θ) then set Y ′′
n (θ) = 0 instead of (19)).

The tightness of eah of the sequenes (Y ′
n, n ≥ 1) and (Y ′′

n , n ≥ 1) in D[0, 1] su�es to

dedue that of (Yn, n ≥ 1). We then proeed separately.
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Tightness of (Y ′
n, n ≥ 1)

To ontrol the jumps of Y ′
n, we will need to loalise the large atoms of µ. Let A = {x ∈

[0,m], µ({x}) > 0} be the set of positions of the atoms of µ in [0,m], and let A≥a := {x ∈
A : µ({x}) ≥ a}. Clearly #A≥a ≤ 1/a and [0,m] \ A≥a

forms a �nite union of open onneted

intervals (Ox, x ∈ G), with extremities (t′i, i ∈ I). The intervals (Ox, x ∈ G) an be further ut

as follows:

� do nothing to those suh that µ(Ox) < 2a,

� those suh that µ(Ox) > 2a are further split. Sine they ontain no atom with mass > a, they

an be split into smaller intervals having all their weights in [a, 2a] exept for at most one (in

eah interval Ox whih may have a weight smaller than a).

One all these splittings have been done, a list of at most 3/a intervals are obtained (in fat less

than that), all of them having a weight smaller than 2a. Name Ga = (Ox, x ∈ Ia) the olletion

of obtained open intervals, indexed by some set Ia, and by (tai , i ≥ 0) the partitions obtained.

Take O one of these intervals. One has #(Pn ∩ O) is Poisson with parameter nµ(O) ≤ na.

Consider again (10), (11) and Hyp. Set, for any L ≥ 1,

S
(n)
L :=

L∑

ℓ=1

f(XO(ℓ))− E(f(XO))√
n

.

Let

ω(Y ′
n, O) = sup{|Y ′

n(s)− Y ′
n(t)|, s, t ∈ O}

be the modulus of ontinuity of Y ′
n on O. We have, for any α ∈ (0, 1/2),

P(ω(Y ′
n, O) ≥ x) ≤ P

(
|#(Pn ∩O)− nµ(O)| ≥ n1/2+α

)

+ sup
L∈Γn

P

(
sup

{∣∣∣S(n)
i − S

(n)
j

∣∣∣ , i, j ≤ L
}
≥ x

)
(20)

where

Γn =
[
nµ(O)− n1/2+α, nµ(O) + n1/2+α

]
.

Using (13) and (14), one sees that

P

(
|P (nµ(O))− nµ(O)| ≥ nα+1/2

)
≤ ce−c′nα

for some c > 0, c′ > 0 and n large enough (for this take x = nµ(O) + n1/2+α
, λ = 1/

√
n in

(13) and, x = nµ(O)− n1/2+α
, λ = 1/

√
n in (14)). Let us take are of the seond term in (20).

Clearly,

sup
{∣∣∣S(n)

i − S
(n)
j

∣∣∣ , i, j ≤ L
}

= max
i≤L

S
(n)
i −min

j≤L
S
(n)
j .

Aording to Petrov [6, Thm.12 p50℄,

P

(
max
i≤L

S
(n)
i ≥ x

)
≤ 2P

(
S
(n)
L ≥ x−

√
2LVar(f(XO))

n

)
,
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and then

P

(
max
i≤L

S
(n)
i ≥ x

)
≤ 2P

(
S
(n)
L ≥ x− Cn(O)

)
,

for Cn(O) =
√

2LT (µ(O))
nµ(O) , and a similar inequality holds for mini≤L S

(n)
i . Sine

P

(
max
i≤L

S
(n)
i −min

j≤L
S
(n)
j ≥ x

)
≤ P

(
max
i≤L

S
(n)
i ≥ x/2

)
+ P

(
−min

j≤L
S
(n)
j ≥ x/2

)

≤ 2P
(
S
(n)
L ≥ x

2
− Cn(O)

)
+ 2P

(
S
(n)
L ≤ −x

2
+ Cn(O)

)
.

To get some bounds, we use the entral limit theorem for S
(n)
L , and take x = ε, a > 0 suh that

T (a) = ε2δ2 for some small δ > 0 (reall that T is inreasing and therefore invertible), and any

sequene Ln suh that Ln/n → µ(O) (any sequene L = Ln suh that Ln ∈ Γn satis�es this, and

then we an ontrol the supremum with this method). We have

P

(
S
(n)
L ≥ ε

2
− Cn(O)

)
= P

(
S
(n)
L√

µ(O)Var(f(XO))
≥ ε/2− Cn(O)√

µ(O)Var(f(XO))

)
.

For n large enough,

Cn(O) ≤
√

4T (µ(O)) ≤ 2εδ

and therefore

lim sup
n

P

(
S
(n)
L ≥ ε

2
− Cn(O)

)
≤ Φ

(
ε/2 − 2εδ√

µ(O)Var(f(XO))

)

where Φ is the tail funtion of the standard Gaussian distribution.

Finally, if δ is hosen su�iently small (2δ < 1/2), sine µ(O)Var(f(XO)) ≤ T (µ(O)) ≤
T (a) = ε2δ2, then on eah interval O ∈ Ga,

P

(
sup

{∣∣∣S(n)
i − S

(n)
j

∣∣∣ , i, j ≤ L
}
≥ ε
)
≤ 4Φ

(
1/2 − 2δ

δ

)

and this independently of the hoie of the interval O in Ga, for n large enough.

The ontrol of the intervals all together an be ahieved using the union bound : sine they

are at most 3/T−1(ε2δ2) suh intervals, by the union bound

PPn

(
sup
O∈Ga

ω(Y ′
n, O) ≥ ε

)
≤ 3

T−1(ε2δ2)

(
4Φ

(
1/2− 2δ

δ

)
+ ce−c′nα

)
.

Sine Φ(x) ∼
x→+∞

exp(−x2/2)/(
√
2πx), and T (x) ln(x) −→

x→0
0, whih implies that for any ε > 0,

and γ > 0 there exists a δ su�iently small suh that

T (e−γ/δ2) < ε2δ2 or equivalently

1

T−1(ε2δ2)
< eγ/δ

2

and as a result the probability an be taken as small as wanted. �
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Tightness of (Y ′′
n , n ≥ 1)

Reall (19). We work here under Pn and we only onsider the interval I = {θ : F (θ) > 0}
sine Y ′′

n (θ) equals 0 on its omplement. Sine on I, θ 7→ Zθ

F (θ) is àdlàg (and does not depend

on n), it su�es to see why

(
Nn(θ)−nF (θ)√

n
, n ≥ 0

)
is tight in D[0, 1], but this is lear sine this is

a onsequene of the onvergene of the standard empirial proess (Donsker [2℄). �
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