
A fun
tional 
entral limit theorem for the

partial sums of sorted i.i.d. random variables

Jean-François Mar
kert David Renault

CNRS, LaBRI, Université de Bordeaux

351 
ours de la Libération

33405 Talen
e 
edex, Fran
e

email: name�labri.fr

Abstra
t

Let (Xi, i ≥ 1) be a sequen
e of i.i.d. random variables with values in [0, 1], and f be

a fun
tion su
h that E(f(X1)
2) < +∞. We show a fun
tional 
entral limit theorem for the

pro
ess t 7→∑n

i=1
f(Xi)1Xi≤t.
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1 Introdu
tion

Let (X1,X2, . . .) be a sequen
e of i.i.d. random variables (r.v.) with values in [0, 1], having

distribution µ, distribution fun
tion F , and de�ned on a 
ommon probability spa
e (Ω,A,P)

on whi
h the expe
tation operator is denoted E. In this paper we are interested in proving a

fun
tional limit theorem for the sequen
e of pro
esses (Zn, n ≥ 1) de�ned by

Zn(t) :=
1

n

n∑

i=1

f(Xi)1Xi≤t, t ∈ [0, 1] (1)

where f : [0, 1] → R is a measurable fun
tion. Let (X̂i, 1 ≤ i ≤ n) be the sequen
e (Xi, 1 ≤ i ≤ n)

sorted in in
reasing order, and for any t ∈ [0, 1], denote by

Nn(t) = #{i : 1 ≤ i ≤ n,Xi ≤ t}

the number of Xi's smaller than t. Clearly, for t ∈ [0, 1],

Zn(t) =
1

n

Nn(t)∑

k=1

f(X̂i).

Hen
e, Zn en
odes the partial sums of fun
tions of sorted i.i.d. r.v., as mentioned in the title of

this paper. In order to state a 
entral limit theorem for Zn the existen
e of Var(f(X1)) < +∞ is


learly needed, but it is not su�
ient to 
ontrol the �u
tuations of Zn on all intervals. Standard
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onsiderations about the binomial distribution implies that Nn(t2)−Nn(t1) is quite 
on
entrated

around n(F (t2)− F (t1)) (for t1 < t2). Conditionally on (Nn(t1), Nn(t2)) = (n1, n2),

Zn(t2)− Zn(t1)
(d)
=

1

n

n2−n1∑

k=1

f(X(t1,t2](k)) (2)

where

(d)
= means �equals in distribution�, and where (X(t1,t2](k), 1 ≤ k ≤ n2 − n1) is a family of

i.i.d. r.v., whose 
ommon distribution is that of X 
onditional on X ∈ (t1, t2]. Hen
e, to get a

fun
tional 
entral limit theorem for Zn, the varian
es of these distributions need to be 
ontrolled.

The following hypothesis Hyp is designed for that purpose:

Hyp: there exists an in
reasing fun
tion T : [0, 1] → R
+
su
h that:





x/T (x) is bounded,

T (x) ln(x) −→
x→0

0,

∀I interval ⊂ [0; 1], Var (f(X) |X ∈ I) ≤ T (µ(I))

µ(I)

where Var(g(X) |X ∈ I) denotes the varian
e of g(X) 
onditional on X ∈ I (by


onvention, we set E(g(X) |X ∈ I) = 0 when P(X ∈ I) = 0).

When f is bounded by γ on [0; 1], the fun
tion T (x) = γ2x satis�es Hyp (see also the dis
ussion

below Theorem 1).

Consider the mean of Zn

Z(t) := E(Zn(t)) = E (f(X)1X≤t) , (3)

(this 
an be shown to be a 
àdlàg pro
ess when E(|f(X)|) < +∞) and

Yn(t) =
√
n [Zn(t)− Z(t)] . (4)

The aim of this paper is to show the following result :

Theorem 1. Let (Xi, i ≥ 0) be a sequen
e of i.i.d. r.v. taking their values in [0, 1] and f :

[0, 1] → R a measurable fun
tion satisfying Hyp, then

Yn
(d)−−→
n

Y

in D[0, 1], the spa
e of 
àdlàg fun
tions on [0,1℄ equipped with the Skorokhod topology, where

(Yt, t ∈ [0, 1]) is a 
entered Gaussian pro
ess with varian
e fun
tion

Var(Ys) = F (s)Var(f(X) |X ≤ s) + F (s)(1− F (s))E(f(X) |X ≤ s)2 (5)

and with 
ovarian
e fun
tion, for 0 ≤ s < t ≤ 1

Cov(Ys, Yt − Ys) = −F (s)(F (t) − F (s))E(f(X) |X ≤ s)E(f(X) | s < X ≤ t). (6)
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We dis
uss a bit the 
onditions in the theorem. Assume that the Xi's are i.i.d. uniform

on [0, 1], and that f(x) = 1/xα for some α > 0. The r.v. f(X) = 1/Xα
possesses a varian
e

i� α < 1/2, and then it is in the domain of attra
tion of the normal distribution only in this


ase (Theorem 1 needs this hypothesis for the 
onvergen
e of Yn(1)). The largest Var(f(X)|X ∈
(a, a+ ε)) is obtained for a = 0, in whi
h 
ase we get

Var (f(X) |X ∈ (0, ε]) =
ε−2αα2

(1− 2α)(1 − α)2
,

and one 
an 
he
k that α < 1/2 is also the 
ondition for the existen
e of a fun
tion T satisfying

Hyp. Hyp appears to be a minimal assumption in that sense.

The �rst result 
on
erning the 
onvergen
e of empiri
al pro
esses is due to Donsker's Theo-

rem [2℄. It says that when f is 
onstant equal to 1, then Yn 
onverges in D[0, 1] to the standard

Brownian bridge b up to a time 
hange. A kind of mira
le arises then, sin
e the same analysis

works for all distributions µ by a simple time 
hange. This is not the 
ase here.

Apart from strong 
onvergen
e theorems à la Komlós-Major-Tusnády [4℄, modern results

about the 
onvergen
e of empiri
al pro
esses � see Shora
k & Wellner [7℄ and van der Vaart &

Wellner [8℄ � mu
h rely on the 
on
ept of Donsker 
lasses, whi
h we dis
uss below.

Denote by Pn = 1
n

∑n
k=1 δXi

the empiri
al measure asso
iated with the sample (Xi, 1 ≤ i ≤
n). As a measure, Pn operates on any set F of measurable fun
tions φ : [0, 1] → R,

Pnφ =

∫

x
φ(x)dPn(x) =

n∑

k=1

φ(Xi)/n.

The empiri
al pro
ess is the signed measure Gn :=
√
n(Pn − µ). By the standard 
entral limit

theorem, for a given fun
tion φ (su
h that µφ2 < +∞), Gnφ
(d)−−→
n

N (0, µ(φ − µφ)2), where

N (m,σ2) designates the normal distribution with mean m and varian
e σ2
.

A P-Donsker 
lass is a set of measurable fun
tions F su
h that (Gnφ, φ ∈ F) 
onverges in

distribution to (Gφ, φ ∈ F), in the L∞ topology (it is a 
entral limit theorem for a pro
ess index

by a set of fun
tions). This means that :

� the 
onvergen
e of the �nite dimensional distributions holds : (meaning that for any k, any

φ1, . . . , φk ∈ F , (Gnφ1, . . . ,Gnφk)
(d)−−→
n

N := (N1, . . . , Nk) and N is a 
entered Gaussian

ve
tor with 
ovarian
e matrix Cov(Ni, Nj) = µ [(φi − µφi)(φj − µφj)].

� the sequen
e (Gnφ, φ ∈ F) is tight in L∞.

The proof that a set forms a Donsker 
lass is usually not that simple, and numerous 
riteria 
an

be found in the literature. In our 
ase, the set of fun
tions F is the following one :

Ff = {(x 7→ φt(x) = f(x)1x≤t), t ∈ [0, 1]}.
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We were unable to �nd su
h a 
riterion for this 
lass, but noti
e that if su
h a result existed,

it would imply Theorem 1 only for the topology L∞, a topology whi
h is weaker than ours. Of


ourse, Theorem 1 implies that Ff forms a Donsker 
lass.

Note. In fa
t 
lasses Ff for non de
reasing f , or for fun
tions f whose level sets are given by

two intervals at most (su
h that x 7→ x2, x 7→ cos(2πx), x 7→ sin(2πx)) are Donsker, sin
e they

are VC subgraph 
lass (see Vapnik & Chervonenkis [9℄).

1

If we 
onsider the variables Xi's in the formula (1), as random times, then Zn(t) 
orresponds

(up to the normalisation) to the sum of f(Xi) for all events Xi appearing before time t, where f

is some 
ost fun
tion. The pro
ess Yn appears to be the suitable tool to measure the �u
tuations

of Zn.

We would like to mention [5℄, a work at the origin of the present paper, written by the same

authors. In [5℄, the 
onvergen
e of res
aled traje
tories made with sorted in
rements (in C) to a

deterministi
 
onvex is shown. For this purpose a weaker version of Theorem 1 is established.

We provide a proof of our theorem in an old fashioned style. We prove the 
onvergen
e of

the �nite dimensional distributions, and then establish the tightness in D[0, 1]; even if the proof

is a bit te
hni
al, we think that several tri
ks make it interesting in its own right.

2 Proof of Theorem 1

The proof starts with that of the 
onvergen
e of the �nite dimensional distributions (FDD)


onvergen
e of Yn: this is 
lassi
al as we will see. Let θ0 := 0 < θ1 < θ2 < · · · < θK = 1 for some

K ≥ 1 be �xed. In the sequel, for any fun
tion (random or not) L indexed by θ, ∆L(θj) will

stand for L(θj)− L(θj−1). For any ℓ ≤ K

∆Yn(θℓ) =
√
n [∆Zn(Nn(θj))−∆Z(θj)] , (7)

where by 
onvention Zn(Nn(θ−1)) = Z(θ−1) = 0. The 
onvergen
e of the FDD of Yn follows the


onvergen
e in distribution of the in
rements (∆Yn(θℓ), 0 ≤ ℓ ≤ K). Noti
e that

∆Z(θj) = E
(
f(X)1θj−1<X≤θj

)
. (8)

If for some j, θj−1 and θj are 
hosen in su
h a way that ∆F (θj) = 0 then the jth in
rement in

(7) is 0 almost surely (this is the 
ase for the 0th in
rement if µ({0}) = 0). We now dis
uss the

asymptoti
 behaviour of the other in
rements : let J = {j ∈ {0, . . . ,K} : ∆F (θj) 6= 0}.
Let (nj, j ∈ J) be some �xed integers summing to n. Denote by µθj−1,θj the law of X 
ondi-

tioned by {θj−1 < X ≤ θj}. Conditional on (Nn(θj) = nj, j ∈ J), the variables ∆Zn(Nn(θj)),

j ∈ J are independent, and ∆Zn(Nn(θj)) is a sum of nj − nj−1 i.i.d. 
opies of variables under

µθj−1,θj , denoted from now on (Xθj−1,θj (k), k ≥ 1).

1

We thank Emmanuel Rio for this information
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Sin
e (∆Nn(θj), j ∈ J) ∼ Multinomial (n, (∆F (θj), j ∈ J)),

(
∆Nn(θj)− n∆F (θj)√

n
, j ∈ J

)
(d)−−→
n

(Gj , j ∈ J) (9)

where (Gj , j ∈ J) is a 
entered Gaussian ve
tor with 
ovarian
e fun
tion,

cov(Gk, Gℓ) = −∆F (θk) .∆F (θℓ) + 1k=ℓ∆F (θk),

formula valid for any 0 ≤ k, ℓ ≤ K. Putting together the previous 
onsiderations, we have

∆Yn(θj) =

∆Nn(θj)∑

m=1

f(Xθj−1,θj(m))− E(f(Xθj−1,θj))√
n

(10)

+

(
∆Nn(θj)− n∆F (θj)√

n

)
E(f(Xθj−1,θj)) (11)

Using (9) and the 
entral limit theorem, we then get that

(∆Yn(θj), 0 ≤ j ≤ K)
(d)−−→
n

(√
∆F (θj)G̃j +GjE(f(Xθj−1,θj)), 0 ≤ j ≤ K

)
(12)

where the family of r.v. (Gj , j ≤ K) and (G̃j , j ≤ K) are independent, and the r.v. G̃j are

independent 
entered Gaussian r.v. with varian
e Var(f(Xθj−1,θj )) (this allows one to determine

the varian
e and 
ovarian
e (5) and (6)). Noti
e that here only the �niteness of Var(f(Xθj−1,θj))

and E(f(Xθj−1,θj)) are used.

It remains to show the tightness of the sequen
e (Yn, n ≥ 0) in D[0, 1]. A 
riterion for the

tightness in D[0, 1] 
an be found in Billingsley [1, Thm. 13.2℄: a sequen
e of pro
esses (Yn, n ≥ 1)

with values in D[0, 1] is tight if, for any ε ∈ (0, 1),

lim
δ→0

lim sup
n

P(ω′(Yn, δ) ≥ ε) = 0

where ω′(f, δ) = inf(ti)maxi sups,t∈[ti−1,ti) |f(s) − f(t)|, and the partitions (ti) range over all

partitions of the form 0 = t0 < t1 < · · · < tn ≤ 1 with min{ti − ti−1, 1 ≤ i ≤ n} ≥ δ.

We now 
ompare our 
urrent model formed by a set {X1, . . . ,Xn} of n i.i.d. 
opies of X

denoted from now on by Pn, with a Poisson point pro
ess Pn on [0, 1] with intensity nµ, denoted

by PPn . Conditionally on #Pn = k, the k points Pn := {X ′
1, . . . ,X

′
k} are i.i.d. and have

distribution µ, and then PPn( · |#P = n) = Pn. The Poisson point pro
ess is naturally equipped

with a �ltration σ := {σt = σ({P ∩ [0, t]}), t ∈ [0, 1]}.
We are here working under PPn , and we let N(θ) = #(Pn ∩ [0, θ]); noti
e that under Pn, N

and Nn 
oin
ide.

Before starting, re
all that if N ∼ Poisson(b), for any positive λ,

P(N ≥ x) = P(eλN ≥ eλx) ≤ E(eλN−λx) = e−b+beλ−λx
(13)

P(N ≤ x) = P(e−λN ≥ e−λx) ≤ E(e−λN+λx) = e−b+be−λ+λx. (14)
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We explain now why the tightness of (Yn, n ≥ 1) under PPn implies the same result under Pn.

Let m = inf{x ∈ [0, 1], F (x) ≥ 1/2} be the median of µ.

Lemma 2.1. There exists a 
onstant γ (whi
h depends on µ), su
h that for any σm-measurable

event A,

Pn(A) = PPn(A |#P = n) ≤ γ PPn(A). (15)

Proof of the Lemma We have

PPn(A |#P = n) =
∑

k

PPn(A,#(P ∩ [0,m]) = k)P(#P ∩ [m, 1] = n− k)

P(#P = n)

≤
∑

k

PPn(A,#(P ∩ [0,m]) = k) sup
k′

P(#P ∩ [m, 1] = n− k′)

P(#P = n)

≤ γ PPn(A)

where γ = supn≥1 supk′
P(#P∩[m,1]=n−k′)

P(#P=n) , whi
h is indeed �nite sin
e P(#P = n) ∼ (2πn)−1/2
,

and sin
e #P ∩ [m, 1] ∼ Poisson(n/2), and then the probability that its value is k is bounded

above by some d/
√
n a

ording to Petrov [6, Thm. 7 p. 48℄. �

Thanks to Lemma 2.1, if the sequen
e of restri
tions (Yn|[0,m], n ≥ 1) of Yn on [0,m] is tight

on D[0,m] under PPn then so it is under Pn (the same proof works on D[m, 1] by a time reversal

argument). To end the proof, we show that (Yn|[0,m], n ≥ 1) is indeed tight under PPn .

Take then some (small) η ∈ (0, 1), ε > 0; we will show that one 
an �nd a �nite partition

(ti, i ∈ I) of [0,m] and a δ ∈ (0,m) su
h that

lim sup
n

Pn(ω
′(Yn, δ) ≥ ε) ≤ η, (16)

whi
h is su�
ient for our purpose.

We de
ompose the pro
ess Yn as suggested by (10) and (11),

Yn(θ) = Y ′
n(θ) + Y ′′

n (θ) (17)

where

Y ′
n(θ) =

Nn(θ)∑

m=1

f(X[0,θ](m))− E(f(X[0,θ]))√
n

(18)

Y ′′
n (θ) =

(
Nn(θ)− nF (θ)√

n

)
Zθ

F (θ)
. (19)

(If F (θ) then set Y ′′
n (θ) = 0 instead of (19)).

The tightness of ea
h of the sequen
es (Y ′
n, n ≥ 1) and (Y ′′

n , n ≥ 1) in D[0, 1] su�
es to

dedu
e that of (Yn, n ≥ 1). We then pro
eed separately.
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Tightness of (Y ′
n, n ≥ 1)

To 
ontrol the jumps of Y ′
n, we will need to lo
alise the large atoms of µ. Let A = {x ∈

[0,m], µ({x}) > 0} be the set of positions of the atoms of µ in [0,m], and let A≥a := {x ∈
A : µ({x}) ≥ a}. Clearly #A≥a ≤ 1/a and [0,m] \ A≥a

forms a �nite union of open 
onne
ted

intervals (Ox, x ∈ G), with extremities (t′i, i ∈ I). The intervals (Ox, x ∈ G) 
an be further 
ut

as follows:

� do nothing to those su
h that µ(Ox) < 2a,

� those su
h that µ(Ox) > 2a are further split. Sin
e they 
ontain no atom with mass > a, they


an be split into smaller intervals having all their weights in [a, 2a] ex
ept for at most one (in

ea
h interval Ox whi
h may have a weight smaller than a).

On
e all these splittings have been done, a list of at most 3/a intervals are obtained (in fa
t less

than that), all of them having a weight smaller than 2a. Name Ga = (Ox, x ∈ Ia) the 
olle
tion

of obtained open intervals, indexed by some set Ia, and by (tai , i ≥ 0) the partitions obtained.

Take O one of these intervals. One has #(Pn ∩ O) is Poisson with parameter nµ(O) ≤ na.

Consider again (10), (11) and Hyp. Set, for any L ≥ 1,

S
(n)
L :=

L∑

ℓ=1

f(XO(ℓ))− E(f(XO))√
n

.

Let

ω(Y ′
n, O) = sup{|Y ′

n(s)− Y ′
n(t)|, s, t ∈ O}

be the modulus of 
ontinuity of Y ′
n on O. We have, for any α ∈ (0, 1/2),

P(ω(Y ′
n, O) ≥ x) ≤ P

(
|#(Pn ∩O)− nµ(O)| ≥ n1/2+α

)

+ sup
L∈Γn

P

(
sup

{∣∣∣S(n)
i − S

(n)
j

∣∣∣ , i, j ≤ L
}
≥ x

)
(20)

where

Γn =
[
nµ(O)− n1/2+α, nµ(O) + n1/2+α

]
.

Using (13) and (14), one sees that

P

(
|P (nµ(O))− nµ(O)| ≥ nα+1/2

)
≤ ce−c′nα

for some c > 0, c′ > 0 and n large enough (for this take x = nµ(O) + n1/2+α
, λ = 1/

√
n in

(13) and, x = nµ(O)− n1/2+α
, λ = 1/

√
n in (14)). Let us take 
are of the se
ond term in (20).

Clearly,

sup
{∣∣∣S(n)

i − S
(n)
j

∣∣∣ , i, j ≤ L
}

= max
i≤L

S
(n)
i −min

j≤L
S
(n)
j .

A

ording to Petrov [6, Thm.12 p50℄,

P

(
max
i≤L

S
(n)
i ≥ x

)
≤ 2P

(
S
(n)
L ≥ x−

√
2LVar(f(XO))

n

)
,
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and then

P

(
max
i≤L

S
(n)
i ≥ x

)
≤ 2P

(
S
(n)
L ≥ x− Cn(O)

)
,

for Cn(O) =
√

2LT (µ(O))
nµ(O) , and a similar inequality holds for mini≤L S

(n)
i . Sin
e

P

(
max
i≤L

S
(n)
i −min

j≤L
S
(n)
j ≥ x

)
≤ P

(
max
i≤L

S
(n)
i ≥ x/2

)
+ P

(
−min

j≤L
S
(n)
j ≥ x/2

)

≤ 2P
(
S
(n)
L ≥ x

2
− Cn(O)

)
+ 2P

(
S
(n)
L ≤ −x

2
+ Cn(O)

)
.

To get some bounds, we use the 
entral limit theorem for S
(n)
L , and take x = ε, a > 0 su
h that

T (a) = ε2δ2 for some small δ > 0 (re
all that T is in
reasing and therefore invertible), and any

sequen
e Ln su
h that Ln/n → µ(O) (any sequen
e L = Ln su
h that Ln ∈ Γn satis�es this, and

then we 
an 
ontrol the supremum with this method). We have

P

(
S
(n)
L ≥ ε

2
− Cn(O)

)
= P

(
S
(n)
L√

µ(O)Var(f(XO))
≥ ε/2− Cn(O)√

µ(O)Var(f(XO))

)
.

For n large enough,

Cn(O) ≤
√

4T (µ(O)) ≤ 2εδ

and therefore

lim sup
n

P

(
S
(n)
L ≥ ε

2
− Cn(O)

)
≤ Φ

(
ε/2 − 2εδ√

µ(O)Var(f(XO))

)

where Φ is the tail fun
tion of the standard Gaussian distribution.

Finally, if δ is 
hosen su�
iently small (2δ < 1/2), sin
e µ(O)Var(f(XO)) ≤ T (µ(O)) ≤
T (a) = ε2δ2, then on ea
h interval O ∈ Ga,

P

(
sup

{∣∣∣S(n)
i − S

(n)
j

∣∣∣ , i, j ≤ L
}
≥ ε
)
≤ 4Φ

(
1/2 − 2δ

δ

)

and this independently of the 
hoi
e of the interval O in Ga, for n large enough.

The 
ontrol of the intervals all together 
an be a
hieved using the union bound : sin
e they

are at most 3/T−1(ε2δ2) su
h intervals, by the union bound

PPn

(
sup
O∈Ga

ω(Y ′
n, O) ≥ ε

)
≤ 3

T−1(ε2δ2)

(
4Φ

(
1/2− 2δ

δ

)
+ ce−c′nα

)
.

Sin
e Φ(x) ∼
x→+∞

exp(−x2/2)/(
√
2πx), and T (x) ln(x) −→

x→0
0, whi
h implies that for any ε > 0,

and γ > 0 there exists a δ su�
iently small su
h that

T (e−γ/δ2) < ε2δ2 or equivalently

1

T−1(ε2δ2)
< eγ/δ

2

and as a result the probability 
an be taken as small as wanted. �
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Tightness of (Y ′′
n , n ≥ 1)

Re
all (19). We work here under Pn and we only 
onsider the interval I = {θ : F (θ) > 0}
sin
e Y ′′

n (θ) equals 0 on its 
omplement. Sin
e on I, θ 7→ Zθ

F (θ) is 
àdlàg (and does not depend

on n), it su�
es to see why

(
Nn(θ)−nF (θ)√

n
, n ≥ 0

)
is tight in D[0, 1], but this is 
lear sin
e this is

a 
onsequen
e of the 
onvergen
e of the standard empiri
al pro
ess (Donsker [2℄). �
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