
Asymptotic of trees with a prescribed degree sequence and

applications

Nicolas Broutin∗ Jean-François Marckert†

October 24, 2011

The second author is partially supported by the ANR-08-BLAN-0190-04 A3.

Abstract

Let t be a rooted tree andni(t) the number of nodes int havingi children. The degree sequence

(ni(t), i ≥ 0) of t satisfies
∑

i≥0 ni(t) = 1+
∑

i≥0 ini(t) = |t|, where|t| denotes the number of nodes

in t. In this paper, we consider trees sampled uniformly among all trees having the same degree sequence

s; we writePs for the corresponding distribution. Lets(κ) = (ni(κ), i ≥ 0) be a list of degree sequences

indexed byκ corresponding to trees with sizenκ → +∞. We show that under some simple and natural

hypotheses on(s(κ), κ > 0) the trees sampled underP
s(κ) converge to the Brownian continuum random

tree after normalisation byn1/2κ . Some applications concerning Galton–Watson trees and coalescence

processes are provided.

1 Introduction

Let t be a rooted tree andni(t) the number of nodes int havingi children. The sequence(ni(t), i ≥ 0)
is called the degree sequence oft, and satisfies

∑
i≥0 ni(t) =

∑
i≥0 ini(t) = |t|, the number of nodes int.

The aim of this paper is to study trees chosen underPs, the uniform distribution on the set of trees
with specified degree sequences = (ni, i ≥ 0), and then size|s| := ∑i≥0 ni. More precisely, a sequence
of degree sequences(s(κ), κ ≥ 0) with s(κ) = (ni(κ), i ≥ 0), corresponding to trees with sizenκ :=
|s(κ)| → +∞ is given, and the investigations concern the limiting behavior of tree underPs(κ).

Figure 1: The 10 trees ofTs for the degree sequences = (3, 1, 2, 0, 0, . . . ).

We now introduce some notation valid all along the paper. We denote byp(κ) = (pi(κ), i ≥ 0) the
degree distribution underPs(κ):

pi(κ) =
ni(κ)

nκ
, (1)
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and by

σ2
κ :=

∑

i≥1

ni(κ)

nκ
i2 −

(
1− 1

nκ

)2

(2)

the associated variance. The maximum degree of any tree withdegree sequences(κ) is

∆κ = max{i : ni(κ) > 0}.

All along the paperp = (pi, i ≥ 0) is a distribution with mean 1, and varianceσ2
p ∈ (0,+∞) =∑

i≥0 i
2pi − 1 ∈ (0,∞). In the following theorem, the main result of the present paper, the convergence

p(κ) ⇒ p is the standard pointwise convergence,pi(κ) → pi, asκ → ∞, which is equivalent to the
convergence in distribution ofp(κ) to p.

Theorem 1. Let (s(κ), κ ≥ 0) be a sequence of degree sequences such thatnκ → +∞, ∆κ = o(n
1/2
κ ),

p(κ) ⇒ p with σ2
κ → σ2

p, that is convergence of second moment. Lett be a plane tree chosen under

Ps(κ) and letdt be the graph distance int. UnderPs(κ), whenκ → +∞, (t, σκn
−1/2
κ dt) converges in

distribution to Aldous’s continuum random tree (encoded bytwice a Brownian excursion), in the Gromov–

Hausdorff sense.

First observe that the very strong result of Haas and Miermont [26] about the asymptotics of Markov
branching trees that has been used to give asymptotics for random trees in a wide variety of settings does not
apply in the present case of trees with a prescribed degree sequence. Indeed, the subtrees of a given node
are not independent given their sizes when one fixes the degree sequence.Our approach uses the observation
by Marckert and Mokkadem [36] that all natural encodings of the trees are asymptoticallyproportional. In
particular, theheight processor thecontour processboth encoding the metric structure of the tree resemble
the depth-first queue processencoding the sequence of degrees observed when performing adepth-first
traversal. This fact was used by Marckert and Mokkadem [36] to give an alternative proof of Aldous’ result
in the case of Galton–Watson trees conditioned on the total progeny under some moment condition (Bennies
and Kersting [13] also observed this phenomenon).

One of the crucial questions underlying our work is that of the universality of the convergence of ran-
dom trees to the continuum random tree (CRT). We are motivated by the metric structure of graphs with a
prescribed degree sequence. Introduced by Bender and Canfield [12] and by Bollobás [20] in the form of
the configuration model, these graphs have received a lot of attention since the first tight analysis of the size
of connected components by Molloy and Reed [38, 39]. This is mainly because the model allows for a lot
of flexibility in the degree sequence. In particular, the model provides a construction of random graphs with
degree sequences that may match the observations in large real-world networks.

Of course, random graphs with a prescribed degree sequence are much more complex than trees with
a prescribed degree sequence, but there is no doubt that the analysis of trees is a first step towards the
identification of the metric structure of the correspondinggraphs. Indeed, recent results of Joseph [31]
show that under some moment condition, the sizes of the connected components of random graphs with a
prescribedcritical degree sequence are similar to those of Erdős–RényiG(n, p) random graphs [21, 24, 30]:
they may be asymptotically described in terms of the lengthsof the excursions of a Brownian motion with
parabolic drift above its current minimum, as demonstratedby Aldous [9]. On the other hand, the metric
structure ofG(n, p) inside the critical window has recently been identified in terms of modifications of
Brownian CRT by Addario-Berry et al. [2, 3]. In other words, the present analysis is one more building
block towards an invariance principle for scaling limits ofrandom graphs, i.e., that critical random graphs
with a prescribed degree sequence have (under a suitable moment condition on the degree distribution) the

2



same scaling limit (as sequence of compact metric spaces) asclassical random graphs [3]. This is at least
what is suggested by the results of Bhamidi et al. [18], van der Hofstad [44] and Joseph [31].

Moreover, in the same way that uniform random trees or forests may be seen as the results of coagu-
lation/fragmentation processes involving particles [41, 42], trees with a prescribed degree sequence appear
naturally in similar aggregation processes. The model where particles have constrained valence may ap-
pear more “physically” grounded. The relevant underlying coalescing procedure is the additive coalescent
[10, 15], a Markov process whose dynamics are such that particles merge at a rate proportional to the sum of
their masses/sizes. The additive coalescent is the aggregation process appearing in Knuth’s modification of
Rényi’s parking problem [28, 43] or the hashing with linear probing [17, 22]. The reader may find more in-
formation about coagulation/fragmentation processes in the monograph by Bertoin [16] or the recent survey
by Berestycki [14].

The modelPs is related to Galton–Watson trees [11, 27], also called simply generated trees in the
combinatorial literature, by a simple conditioning: the distributionPs coincides with the distribution of the
family treet of a Galton–Watson process with offspring distribution(νi, i ≥ 0) (which must satisfiesνi > 0
if ni > 0) conditioned on{ni(t) = ni, i ≥ 0}. In this sense, the distributionν plays a role of secondary
importance, andPs appears to be a model of combinatorial nature, fairly stranger to the world of Galton–
Watson processes. Nevertheless, we will see that Theorem1 implies the following result of Aldous (stated
in a slightly different form in [6]) (see also [6–8, 33, 36]).

Proposition 2 (Aldous [6]). Let µ = (µi, i ≥ 0) be a distribution with meanmµ = 1 and variance

σ2
µ ∈ (0,+∞), and letPµ be the distribution of a Galton–Watson tree with offspring distribution µ. Along

the subsequence{n : Pµ(|t| = n) > 0}, underPµ( . | |t| = n)

(
Ht(nx)√

n

)

x∈[0,1]

(law)−−−→
n→∞

2

σµ
e

wheree denotes a standard Brownian excursion, the convergence holding in the spaceC[0, 1] equipped with

the topology of uniform convergence.

We will see that this theorem may be seen indeed as a consequence of Theorem1; the argument morally
relies on the fact that underPµ( . | |t| = n), the empirical degree sequence satisfies with probability going
to 1, the hypothesis of Theorem1 (this is stated in Lemma11). The proof of this theorem is postponed until
Section6.

Note also a result of Kortchemski [32] that has a flavor similar to our Theorem1 (although neither
implies the other): he proves that Galton–Watson trees conditioned to have all their node degrees in a subset
A of the support of the measureµ has a limiting behavior depending onA.

PLAN OF THE PAPER. In Section2 we introduce precisely the model of trees we consider. Section 3 is
devoted a useful backbone decomposition for these trees. Wethen prove our main result, the convergence of
rescaled trees to the continuum random trees, in Section4. Finally, the application to coagulation processes
with particles with constrained valence is developed in Section 7.

2 Trees with prescribed degree sequence

We here define formally the combinatorial object discussed in this paper. For convenience we write
N = {1, 2, . . . } for the set of positive natural numbers. First recall some definitions related to standard
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rooted plane trees. LetU =
⋃

n≥0N
n be the set of finite words on the alphabetN, whereN0 = {∅}, and∅

denotes the empty word. Denote byuv the concatenation ofu andv; by convention∅u = u∅ = u.

A subsetT of U is aplane tree(see Figure2) if it contains∅ (called the root), if it stable by prefix (if

uv ∈ T for u andv in U , thenu ∈ T ) and if (uk ∈ T for somek > 1 andu ∈ U ) thenuj ∈ T for j in

{1, . . . , k}. This last condition appears necessary to get a unique tree with a given genealogical structure.

The set of plane trees will be denoted byT.

∅

1

11 12 13 14
15

131 151 152

Figure 2: Usual representation of the plane tree{∅, 1, 11, 12, 13, 14, 15, 131, 151, 152}

Notice that the lexicographical order< onU , also named the depth-first order, induces a total order on

any treet; this is of prime importance for the encodings oft we will present. Fort ∈ T, andu ∈ t, let

ct(u) = max{i : ui ∈ t} be the number of children ofu in t. The depth ofu in t, its number of letters as

a word inU , is denoted|u|. The notation|t| refers to the cardinality oft, its number of nodes including the

root∅.

With a treet ∈ T, one can associate its degree sequences(t) = (ni(t), i ≥ 0), whereni(t) = #{u ∈
t : ct(u) = i} is the number of nodes with degreei in t. For a fixed degree sequences, write Ts for the

set of treest ∈ T such thats(t) = s, and letPs be the uniform distribution onTs. To investigate the shape

of random trees underPs, we will use the usual encodings:height processH anddepth-first walkS (or

Łukasiewicz path). These encodings are defined by first fixingtheir values at the integral points, and then

linear interpolation in between (See Figure3). For a treet ∈ T, let ũ1 = ∅ < ũ2 < · · · < ũ|t| denote

the nodes oft in the lexicographic order onU . Then we defineH = Ht by H(i) = |ũi+1|, S = St by

St(i) =
∑i

j=0(ct(ũj) − 1); the processHt is defined on[0, |t| − 1] andSt on [0, |t|]. To simplify the

normalisations in the sequel, setHt(|t|) := 0.

Figure 3: A plane treet ∈ T, its height processHt and Łukasiewicz walkSt.
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Theorem 3. Under the hypothesis of Theorem1, underPs(κ),

(
Ht(xnκ)

n
1/2
κ

,
St(xnκ)

n
1/2
κ

)

x∈[0,1]
−−−→
κ→∞

(
2

σp
e, σpe

)

in distribution in the spaceC([0, 1],R2) of continuous functions from[0, 1] with values inR2, equipped with

the supremum distance.

Note that the condition thatσ2
p > 0 is necessary: it ensures thatp0 = limκ→∞ n0(κ)/nκ > 0 and that

large trees are not close to a linear tree, where most of the nodes have degree one. A treet ∈ T can also

be seen as a metric space when equipped with the graph distance dt. A consequence of Theorem3 is that,

underPs(κ), the metric space (
t,

σκ√
nκ

dt

)

converges to the continuum random tree encoded by2e in the sense of Gromov–Hausdorff distance between

equivalence classes of compact metric spaces. The fact thatthe convergence of the height process implies

that for the Gromov–Hausdorff topology is well known, see for example Lemma 2.3 in Le Gall [34]. So, in

particular, to prove Theorem1 it suffices to prove Theorem3.

Remark. One can define other models of random trees with a prescribed degree sequence: for example,

rooted labelled trees. Let Qs(k) be the uniform distribution on those with degree sequences(k). Since

labelled trees have a canonical ordering (using an order on the labels to order the children of each node),

forgetting the labels, they can be seen as plane trees with the same degree sequence, inducing a distribution

P′
s(k) on the set of plane trees. By a simple counting argument, it turns out thatP′

s(k) = Ps(k). This situation

is drastically different from the general case, since the projection of uniform labelled trees on plane tree

(that is without fixing the degree sequence) does not induce the uniform distribution on plane trees.

In conclusion, Theorem1 is also valid for the model of labelled trees with a prescribed degree sequence.

3 Combinatorial considerations: a backbone decomposition

In this section we develop a decomposition of trees underPs(k) along a branch. It is essentially the usual

backbone decompositionfor Galton–Watson trees Lyons et al. [see, e.g.,35] transposed underPs(k). The

decomposition amounts to describing the structure of the branch from the root to a distinguished nodeu,

together with the (ordered) forest formed by the trees rooted at the neighbors of that branch.

FOREST WITH A GIVEN DEGREE SEQUENCE. A forest f = (t1, . . . , tk) is a finite sequence of trees; its

degree sequences(f) =
∑k

i=1 s(ti) is the (component-wise) sum of the degree sequences of the trees which

compose it. Ifs = (ni, i ≥ 0) is the degree sequence of a forestf, then the number of roots off is given by

r = |s| −∑i≥0 ini. Let Fs be the set of forests of (r ordered) plane trees having degree sequences. We

have

#Fs =
r

|s|

( |s|
(ni, i ≥ 0)

)
=

r

|s| ·
|s|!∏
i≥0 ni!

. (3)
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THE CONTENT OF A BRANCH. Let t be a plane tree, and letu = i1 . . . i|u| be one of its node, whereij ∈ N

for anyj. Forj ≤ |u|, write uj = i1 . . . ij , the ancestor ofu having depthj (with the conventionu0 = ∅,

the root oft). The setJ∅, uK = {uj : j < |u|} is called the branch ofu (notice thatu is excluded). For any

i ≥ 0, the number of ancestors ofu havingi children is written

Mi(u, t) = #{v : v strict ancestors ofu, ct(v) = i}.

We refer toM(u, t) = (Mi(u, t), i ≥ 0) as the composition of the branch. Note that we necessarily have

M0(u, t) = 0. Clearly if u ∈ t, then

|u| =
∑

i≥1

Mi(u, t) = |M(u, t)|. (4)

Further letLR(u, t) (for left or right) be the number of nodes off the pathJ∅, uK, that is the number of nodes

that are children of a node inJ∅, uK without being themselves inJ∅, uK (See Figure4)

u uu

Figure 4: A treet with a marked nodeu; the sets in the two right-hand side pictures show the nodes counted

by R(u, t) and inLR(u, t).

Let alsoR(u, t) be the number of such nodes counted byLR(u, t) that lie to the right of the path. A

nodev is counted inR(u, t) if it is a child of someui, for i ∈ {0, . . . , |u| − 1}, and satisfiesv > ui+1 in the

lexicographic order onU . Therefore

LR(u, t) =

|u|−1∑

j=0

(ct(uj)− 1) =
∑

i≥0

Mi(u, t)(i − 1)

R(u, t) =

|u|−1∑

j=0

(ct(uj)− ij+1).

Let ũ1 = ∅ < ũ2 < · · · < ũ|t| be the nodes oft, in increasing lexicographic order. ThenHt(k) = |ũk+1|
andSt(k) = R(ũk, t)+ct(ũk), so that the discrepancy betweenHt andSt can be accessed using the number

of nodes to the right of the paths tõui, i = 1, . . . , |t|. This observation lies at the heart of our approach.

The set of plane trees with degree sequences and a distinguished node (marked plane trees) is denoted

byT•
s = {(t, u) : t ∈ Ts, u ∈ t}, and the uniform distribution on this set is denotedP•

s. UnderP•
s, a marked

tree(t, u) is distributed as(t′, u′) wheret′ is a tree sampled underPs andu′ is a uniformly random node

in t′. We now decompose a marked tree(t, u) along the branchJ∅, uK. First, consider the structure of this

branch, that we call the contents:

Cont(t, u) :=
(
(ct(u0), i1), . . . , (ct(u|u|−1), i|u|)

)
.
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We write Jm for the set of potential vectorsCont(t, u) when the composition of the branchJ∅, uK is

M(u, t) = m. Besides, notice that

|Jm| =
( |m|
(mi, i ≥ 1)

)∏

i≥1

imi . (5)

Since, ifCont(u, t) ∈ Jm thenLR(u, t) =
∑

i≥0(i− 1)mi, we will use the following notation:

LR(m) :=
∑

i≥0

(i− 1)mi.

THE FOREST OFF A DISTINGUISHED PATH. For a treet and any nodev ∈ t, let tv = {w : vw ∈ t} be the

subtree oft rooted atv. The sequence of treesF(t, u) = (tv, v ∈ LR(u, t)) is the forest constituted by the

subtrees oft rooted at the vertices belonging toLR(u, t), and sorted according to the rank of their root for

the lexicographic order.

The decomposition which associates(Cont(t, u),F(t, u)) to a marked tree(t, u) is clearly one-to-one.

The following proposition characterizes the distributions ofM(u, t), Cont(u, t), andR(u, t) when(t,u)

is sampled underP•
s.

Proposition 4. Lets = (n0, n1, . . . ) be a degree sequence and letm = (m0,m1, . . . ) be such thatm0 = 0,

andmi ≤ ni for anyi ≥ 1. Let(t,u) be chosen according toP•
s.

(a) We have

P•
s (M(u, t) = m) =

|LR(m)| |m|! |s −m|!
|s|! |s −m| ·

∏

i≥1

(
ni

mi

)
imi .

(b) Moreover, for any vectorC ∈ Jm,

P•
s (Cont(u, t) = C | M(u, t) = m) = 1/#Jm.

(c) For anyx ≥ 0, andm such thatP•
s(M(u, t) = m) > 0,

P•
s

(∣∣∣∣R(u, t)−
σ2
s

2
|u|
∣∣∣∣ ≥ x

∣∣∣∣∣M(u, t) = m

)
= P



∣∣∣∣∣∣

∑

j≥1

mj∑

k=1

U
(k)
j − σ2

s

2
|m|

∣∣∣∣∣∣
≥ x


 (6)

where theU (k)
j are independent random variables,U (k)

j is uniform in{0, . . . , j − 1} and whereσ2
s is the

variance associated with(pi = ni/|s|, i ≥ 0) (as done on (2)).

Proof. Since the backbone decomposition is a bijection, we have forany vectorC ∈ Jm, we have

P•
s (Cont(u, t) = C) =

#Fs−m

|s| ·#Fs

=
|LR(m)|
|s| − |m|

( |s| − |m|
(ni −mi, i ≥ 0)

)/( |s|
(ni, i ≥ 0)

)
,

by the expression for the number of forests in (3). As P•
s (Cont(u, t) = C) is independent ofC ∈ Jm,

it suffices to multiply by#Jm in order to getP•
s (M(u, t) = m). After simplification, this yields the
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first statement in (a), and then (b). Now, (b) implies that foranyR ≥ 0, any compositionm for which

P•
s(M(u, t) = m) > 0, we have

P•
s (R(u, t) = R | M(u, t) = m) = P


∑

j≥1

mj∑

k=1

U
(k)
j = R


 ,

where theU (k)
j are independent random variables, andU

(k)
j is uniform in {0, . . . , j − 1}. This implies

assertion (c) and completes the proof.

4 Convergence of uniform trees to the CRT: Proof of Theorem3

4.1 The general approach

Our approach uses the phenomenon observed in Marckert & Mokkadem [36] in the case of critical

Galton–Watson tree (having a variance): under some mild assumptions the Łukasiewicz pathSt and the

height processHt are asymptotically proportional, that is, up to a scalar normalisation, the difference be-

tween these processes converge to the zero function. It turns out that a similar phenomenon occurs when the

degree sequence is prescribed, and this is the basis of our proof.

In order to prove Theorem3 we proceed in two steps: the first one consists in showing thatthe depth-

first walkSt associated to a tree sampled underPs(κ) converges to a Brownian excursion. The processSt is

much easier to deal with thanHt, sinceSt is essentially a random walk conditioned to stay non-negative,

and forced to end up at the origin. We provide the details in Section 4.2 below. The core of the work lies

in the second step, which consists in proving thatSt andHt are indeed close, uniformly on[0, 1]. More

precisely, by Theorem 3.1 p. 27 of [19], the following proposition is sufficient to show thatn−1/2
κ 2St(nκ·)

andn−1/2
κ σ2

κHt(nκ·) have the same limit in(C[0, 1], ‖∞).

Proposition 5. Under the hypothesis of Theorem1, there existscκ = o(n
1/2
κ ) such that, asκ → ∞,

Ps(κ)

(
sup

x∈[0,1]

∣∣∣∣St(xnκ)−
σ2
κ

2
Ht(xnκ)

∣∣∣∣ ≥ cκ

)
−−−→
κ→∞

0.

In order to prove Proposition5, we recall the representation ofSt andHt in terms ofR(u, t) and|u|: for

ũ1 = ∅ < ũ2 < · · · < ũ|t| the nodes oft in the lexicographic order, one hasSt(k) = R(ũk, t) + ct(ũk) and

Ht(k) = |ũk+1|. A non-uniform version of the claim in Proposition5 is the following:

Proposition 6. Assume the hypothesis of Theorem1. Let (t,u) chosen underP•
s(κ). There existscκ =

o(n
1/2
κ ) such that,

P•
s(κ)

(∣∣∣∣R(u, t)−
σ2
κ

2
|u|
∣∣∣∣ ≥ cκ

)
−−−→
κ→∞

0.

From Proposition6 one can control the discrepancy between the two processes atany finite number of

random points in[0, 1] using the union bound. So Proposition6 implies convergence of the finite dimen-

sional distributions. To complete the proof of Proposition5, it suffices to show that the under the sequence
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of distributionPs(κ), the rescaled difference of the two processesn
−1/2
κ (St(xnκ)− σ2

κ
2 Ht(xnκ)) is tight [see,

e.g.19]. Since the rescaled version ofSt (see Section4.2) are tight, it suffices to prove that the rescaled

versions ofHt are tight as well.

Remark. Under slightly stronger assumptions on the degree sequences, it is possible to control the dis-

crepancy between the height process and the Łukasiewicz path atevery pointin {0, 1, . . . , nκ − 1}. More

precisely it would be possible to show that

P•
s(κ)

(∣∣∣∣R(u, t)−
σ2
κ

2
|u|
∣∣∣∣ ≥ cκ

)
= o(1/nκ). (7)

Using the union bound, this yields the convergence of the rescaled height process to a Brownian excursion,

as a random function inC[0, 1]. One is easily convinced that with the optimal assumptions for Theorem3,

the bound in (7) might just not be true.

We now move on to the ingredients of the proof: we first give thedetails of the convergence of

n
−1/2
κ St( · nκ) to a Brownian excursion in Section4.2, then we prove tightness forn−1/2

κ Ht (· nκ) in

Section4.3. The longer proof of Proposition6 is delayed until Section5.

4.2 Convergence of the Łukasiewicz walk

In this section, we give the details of the proof of the convergence of the depth-first walk underPs(κ)

towards the Brownian excursion.

Lemma 7. Assume the hypothesis of Theorem1. UnderPs(κ),

(
St(xnκ)

σκn
1/2
κ

)

x∈[0,1]

(law)−−−−→
κ→+∞

e

as random functions inC[0, 1].

Proof. Let c = {c1, c2, . . . , cnκ} be a multiset ofnκ integers whose distribution is given bys(κ). Whent

is sampled underPs(κ), the Łukasiewicz pathS is easily related to the partial sums of the elements samples

uniformly at random from the setc: Let π = (π1, π2, . . . , πnκ) be a uniformly random permutation of

{1, 2, . . . , nκ}, and forj ∈ {1, . . . , nκ}, define

Wπ(j) =

j∑

i=1

(cπi − 1).

Theorem 20.7 of Aldous [5] (see also Theorem 24.1 in [19]) ensures that, when∆κ = o(
√
nκ),

(
Wπ(snκ)

σκn
1/2
κ

)

s∈[0,1]

(law)−−−−→
κ→+∞

b,

in C[0, 1], whereb = (b(s), s ∈ [0, 1]) is a standard Brownian bridge.
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The increments of the walk(Wπ(j), 0 ≤ j ≤ nκ) satisfyxπi − 1 ≥ −1 for every i (such walks are

sometimes calledleft-continuous). Furthermore, one finally hasWπ(nκ) = −1. The cycle lemma [23]

ensures that there is a unique way to turn the processWπ into an excursion by shifting the increments

cyclically. Extend the definition of the permutation in sucha way that, forj ∈ {nκ + 1, . . . , 2nκ}, we have

πj := πj−nκ . Let jπ be the unique integer (the location of the first minimum of thewalkWπ) in {1, . . . , nκ}
such thatWπ(j + jπ)−Wπ(jπ) is an excursion in the following sense:

S̃π(j) := Wπ(j + kπ)−Wπ(jπ) ≥ 0 for j < nκ andS̃π(nκ) = −1.

Then, fort uniformly chosen inTs(κ),

(St(j), 0 ≤ j ≤ nκ)
d
= (S̃π(j), 0 ≤ j ≤ nκ),

for π a random permutation of{1, . . . , nκ}. Since the Brownian bridgeb has almost surely a unique mini-

mum, the claim follows by the mapping theorem [19].

4.3 Tightness for the height process

The rescaled height process underPs(κ) is the process inC[0, 1], hκ = n
−1/2
κ H( · nκ). In this section,

we prove that the family(hκ, κ > 0) is tight (we will omit theκ when unnecessary). Sincehκ(0) = 0, the

following lemma is sufficient to prove tightness [see, e.g.,19].

Let ωh be the modulus of continuity of the rescaled height processh: for δ > 0

ωh(δ) = sup
|t−s|≤δ

|h(s)− h(t)|.

Lemma 8. Under the hypothesis of Theorem1, for anyǫ > 0 andη > 0, there existsδ > 0 such that, for

all κ large enough,

Ps(κ)(ωh(δ) > ǫ) < η.

The bound we provide consists in reducing the bounds on the variations ofh to bounds on the variations

of the Łukasiewicz pathS, which is known to be tight since it converges in distribution (Lemma7). The

underlying ideas are due to Addario-Berry et al. [4] and Addario-Berry [1] to prove Gaussian tail bounds

for the height and width of Galton–Watson trees and random trees with a prescribed degree sequence,

respectively.

For a plane treet ∈ T, let t− be the mirror image oft, or in other words, the tree obtained by flipping

the order of the children of every node. Then, we letS−
t := St− be thereverse depth-first walk. Observe

that the mirror flip is a bijection, so thatSt andS−
t have the same distribution underPs(κ).

Proof of Lemma8. In this proof, we identify the nodes of a treet and their index in the lexicographic order;

so in particular, we writeHt(u) for the height of a nodeu in t, and we write|u− v| ≤ δ to mean thatu and

v are withinδ in the lexicographic order.
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Consider a treet and two nodesu andv. Write u ∧ v for the first common ancestor ofu andv in t. In

the following we writeu � v to mean thatu is an ancestor ofv in t (u = v is allowed). Then,

|Ht(u)−Ht(v)| ≤ |Ht(u)−Ht(u ∧ v)|+ |Ht(v) −Ht(u ∧ v)|, (8)

so that it suffices to bound variations ofHt between two nodes on the same path to the root:

sup
|u−v|≤δnκ

|Ht(u)−Ht(v)| ≤ 2 sup
w�u,|u−w|≤δnκ

|Ht(u)−Ht(w)|

Now, observe that, forw � u, every nodev on the path betweenw andu which has degree more than one

contributes at least one to the number of nodes off the path betweenw andu:

1 +
∑

w�v�u

(ct(v)− 1) ≥ Ht(u)−Ht(w)−
∑

w�v�u

1{ct(v)=1}

However, one may also bound this same number of nodes in termsof the depth-first walkSt, and the reverse

depth-first walkS−
t :

1 +
∑

w�v�u

(ct(v)− 1) ≤ St(u)− St(w) + S−
t (u)− S−

t (w) + ct(w). (9)

In other words, we have

sup
|u−v|≤δnκ

|Ht(v) −Ht(u)| ≤ 2 sup
|u−w|≤δnκ,w�u

|St(u)− St(w)| + 2 sup
|u−w|≤δnκ,w�u

|S−
t (u)− S−

t (w)|

+max
w

ct(w) + sup
|u−w|≤δnκ

∑

w�v�u

1{ct(v)=1}

≤ 2 sup
|u−w|≤δn

|St(u)− St(w)| + 2 sup
|u−w|≤δnκ

|S−
t (u)− S−

t (w)|

+∆κ + sup
|u−w|≤δnκ

∑

w�v�u

1{ct(v)=1}

≤ 2n1/2κ ωs(δ) + 2n1/2κ ωs−(δ) + ∆κ + sup
|u−w|≤δnκ

∑

w�v�u

1{ct(v)=1}, (10)

whereωs andωs− denote the moduli of continuity of the rescaled Łukasiewiczpathn−1/2
κ St andn−1/2

κ S−
t ,

respectively.

The first three terms in (10) are easy to bound since∆κ = o(
√
nκ) andSt andS−

t are tight underPs(κ).

The only term remaining to control is the one concerning the number of nodes of degree one:

Yt(δ) := sup
|u−w|≤δnκ

∑

w�v�u

1{ct(v)=1}.

To boundYt(δ) we relate the distribution of trees underPs(κ) to those underPs(κ)⋆ , wheres(κ)⋆ =

(n⋆
0, n

⋆
1, . . . ) is obtained froms(κ) by removing all nodes of degree one, i.e.,n⋆

1 = 0 andn⋆
i = ni for

everyi 6= 1. Then, in a treet⋆ sampled underPs(κ)⋆ , one hasYt⋆(δ) = 0. Recall also that∆κ = o(
√
nκ).

11



Now, for a sum of three terms to be at leastǫ, at least one term must exceedǫ/3. So for everyǫ, δ > 0, there

exists aδ > 0 such that, for allκ large enough,

Ps(κ)⋆(ωh(δ) ≥ ǫ) ≤ Ps(κ)⋆(2ωs(δ) > ǫ/3) + Ps(κ)⋆(2ωs−(δ) > ǫ/3)

= 2Ps(κ)⋆(6ωs(δ) ≥ ǫ) < η,

since, underPs(κ)⋆ , St andS−
t have the same distribution andn−1/2

κ St is tight, and sincePs(κ)⋆(∆κn
−1/2
κ ≥

ε/3) is zero forκ large enough. This proves thatn
−1/2
κ Ht is tight underPs(κ)⋆ .

Now, we can couple the trees sampled underPs(κ)⋆ andPs(κ). Since the nodes of degree one do not

modify the tree structure, a treet underPs(κ) may be obtained by first samplingt⋆ usingPs(κ)⋆ , and then

placing the nodes of degree one uniformly at random : precisely, this insertion of nodes is done inside the

edges oft⋆ (plus a phantom edge below the root). Given any ordering of the edges oft⋆ (plus the one below

the root), the vector(X⋆
1 , . . . ,X

⋆
nκ−n1(κ)

) of numbers of nodes of degree one falling in these edges is such

that

(X⋆
1 , . . . ,X

⋆
nκ−n1(κ)

)
d
= Multinomial

(
n1(κ);

1

nκ − n1(κ)
, . . . ,

1

nκ − n1(κ)

)
.

Conversely,t⋆ is obtained fromt by removing the nodes of degree one, so thatt andt⋆ can be thought

as random variables in the same probability space underPs(κ). To boundYt(δ), observe that it is unlikely

that adding the nodes of degree one in this way creates too long paths.

In fact, “the length of paths” is expected to be multiplied by1 + qκ for qκ = n1(κ)/(nκ − n1(κ)). Let

α = 2+qκ, and fixδ > 0 such thatPs(κ)⋆(ωh(δ) ≥ ǫ/α) < η/2; such aδ > 0 exists since the height process

is tight underPs(κ)⋆ . Note that since we add nodes in the construction oft underPs(κ) from t⋆ underPs(κ)⋆ ,

nodes that are withinδnκ in t are also withinδnκ in t⋆. Write h⋆ for the rescaled height process obtained

from t⋆, the tree associated witht by deletion of all nodes of degree one (the rescaling stays
√
nκ). We have,

Ps(κ)(ωh(δ) ≥ ǫ) ≤ Ps(κ)(ωh⋆(δ) ≥ ǫ/α) + Ps(κ)(ωh(δ) ≥ ǫ , ωh⋆(δ) ≤ ǫ/α)

≤ Ps(κ)⋆(ωh(δ) ≥ ǫ/α) + Ps(κ)(ωh(δ) ≥ ǫ | ωh⋆(δ) ≤ ǫ/α)

≤ Ps(κ)⋆(ωh(δ) ≥ ǫ/α) + δn2κP




ǫ
√
nκ/α∑

i=1

(1 +X⋆
i ) ≥ ε

√
nκ




≤ η/2 + δn2κP




ǫ
√
nκ/α∑

i=1

Xi ≥ ε
√
nκ(1− 1/α)


 ,

where theXi are i.i.d. Binomial(n1, 1/(nκ −n1)) random variables. The last line follows from the standard

fact that the numbers(X⋆
i ) obtained from a samplingwithout replacement(of then1(κ) nodes of degree

one) are more concentrated than their counterpart(Xi) coming from a samplingwith replacement[5].

Now, the sum in the right-hand side is itself a binomial random variable:

ǫ
√
nκ/α∑

i=1

Xi
d
= Binomial

(
ǫ
√
nκn1/α,

1

nκ − n1

)
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whose mean isε
√
nkqκ/(2 + qκ) whenε

√
nκ(1− 1/α) = ε

√
nκ(1 + qκ)/(2 + qκ). By Chernoff’s bound,

using thatqκ converges, it follows that for some constantc > 0 valid for κ large enough,

Ps(κ)(ωh(δ) ≥ ǫ) ≤ η/2 + δn2κe
−c

√
nκ/ǫ.

Finally, for all κ large enough, with this value forδ, we havePs(κ)(ωh(δ) ≥ ǫ) < η, which completes the

proof.

5 Finite dimensional distributions: Proof of Proposition 6

5.1 A roadmap to Proposition6: identifying the bad events

Our approach consists in showing that if the event in Proposition 6 occurs, then one of the following

three events must occur: (1) either the depth|u| of nodeu is unusually large, (2) or the content of the branch

J∅,uK is atypical, (3) or the number of nodes to the right of the pathis not what it should be, despite of the

length|u| and contentM(u, t) being typical.

We will then prove that those simpler events are unlikely. For h ≥ 0, and two sequencesa = (aκ, κ ≥
0), andb = (bκ, κ ≥ 0) we define families of setsAh,a,b as follows. Given a sequence of degree distribution

(s(κ), κ ≥ 0),

Ah,a,b(κ) :=



m : |m| = h,

∣∣∣∣∣∣


∑

i≥0

mi
i− 1

2


− hσ2

κ

2

∣∣∣∣∣∣
≤ aκ,

∑

i≥1

mii
2 ≤ bκ



 .

If m ∈ Ah,a,b(κ) then|m| = h, andm corresponds to the content of a branchJ∅, uK such that|u| = h.

The setAh,a,b(κ) are designed to contain most typical contents of a branch of lengthh underPs(κ), provided

the choices for the sequencesa andb are suitable. The decomposition of the bad event we have outlined

above is then expressed formally by

P•
s(κ)

(∣∣∣∣R(u, t)−
σ2
κ

2
|u|
∣∣∣∣ ≥ cκ

)
≤ P•

s(κ)(|u| ≥ x
√
nκ)

+ P•
s(κ) (LR(u, t) ≥ x

√
nκ)

+ P•
s(κ)


|u| ∨ LR(u, t) ≤ x

√
nκ,M(u, t) /∈

⋃

h≤x
√
nκ

Ah,a,b(κ)




+
∑

h≤x
√

nκ
m∈Ah,a,b(κ)

P•
s(κ)

(∣∣∣∣R(u, t)−
σ2
κ

2
|u|
∣∣∣∣ ≥ cκ,M(u, t) = m

)
. (11)

Proving Proposition6 reduces to proving that, for some choice ofaκ, bκ, cκ andx, every term in the right-

hand side above tends to zero asκ → ∞. The bound on the first term is a direct consequence of the Gaussian

tail bounds for the height of trees recently proved by Addario-Berry [1] in the very setting we use:

P•
s(κ)(|u| ≥ x

√
nκ) ≤ Ps(κ)

(
max
u∈t

|u| ≥ x
√
nκ

)
≤ exp(−cx2/σ2

κ), (12)

13



for a universal constantc > 0 and all sufficiently largeκ. The second term is bounded using the depth-first

walk S and the reverse depth-first walkS−, as in the proof of Lemma8:

P•
s(κ)(LR(u, t) ≥ x

√
nκ) ≤ Ps(κ)

(
max

0≤k≤nκ

{S(k) + S−(k)}+∆κ ≥ x
√
nκ

)

≤ 2Ps(κ)

(
max

0≤k≤nκ

S(k) ≥ x

3

√
nκ

)
,

for all κ large enough, since∆κ = o(nκ) andS andS− have the same distribution underPs(κ). We finish

using the tightness ofn−1/2
κ S(nκ.) underPs(κ); more precisely, we have

P•
s(κ)(LR(u, t) ≥ x

√
nκ) ≤ 16 · 9 · σ

2
κ

x2
, (13)

by Lemma 20.5 of [5]. The bounds on the two remaining terms are stated in Lemmas9 and10, the proof of

which appear in Sections5.2and5.3, respectively.

Lemma 9. Since∆k = o(nκ) there existsεκ such that∆κ ≤ εκ
√
nκ, with 0 < εκ → 0. Letaκ = ε

1/4
κ

√
nκ

andbκ = ε
1/2
κ nκ. Then, for everyx > 0, and allκ large enough,

P•
s(κ)


|u| ∨ LR(u, t) ≤ x

√
nκ,M(u, t) 6∈

⋃

h≤x
√
nκ

Ah,a,b(κ)


 ≤ 6x2ex

2
exp

(
− ε

−1/2
κ

2x(σ2
κ + 1) + 2

)
.

Lemma 10. Since∆k = o(nκ) there existsεκ such that∆κ ≤ εκ
√
nκ, with0 < εκ → 0 andε−3/4

κ = o(nκ)

asκ → ∞. Letaκ = ε
1/4
κ

√
nκ, bκ = ε

1/2
κ nκ, andcκ = ε

1/8
κ

√
nκ. Then, for allκ large enough,

∑

h≤x
√

nκ
m∈Ah,a,b(κ)

P•
s(κ)

(∣∣∣∣R(u, t)−
σ2
κ

2
|u|
∣∣∣∣ ≥ cκ,M(u, t) = m

)
≤ 2e−ε

−1/2
κ . (14)

Before proceeding with the proofs of these two lemmas, we indicate how to use them in order to com-

plete the proof of Proposition6. Let εκ be such that∆κ ≤ εκ
√
nκ, with εκ → 0 asκ → ∞. Then, set

aκ = ε
1/4
κ

√
nκ, bκ = ε

1/2
κ nκ andcκ = ε

1/8
κ

√
nκ. Let nowǫ > 0 be arbitrary. Pickx > 0 large enough such

that, for allκ large enough,

P•
s(κ)(|u| ≥ x

√
nκ) + P•

s(κ)(LR(u, t) ≥ x
√
nκ) < ǫ/2.

The bounds in (12) and (13), and the fact thatσ2
κ → σ2

p ensure that this is possible. The value forx being

fixed, Lemmas9 and10 now make it possible to chooseκ0 large enough such that, for allκ ≥ κ0, the two

remaining terms in the right-hand side of (11) also sum to at mostǫ/2. Thus, for allκ ≥ κ0, we have

P•
s(κ)

(∣∣∣∣R(u, t)−
σ2
κ

2
|u|
∣∣∣∣ ≥ cκ

)
< ǫ,

which completes the proof, sinceǫ was arbitrary.
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5.2 The content of a branch is very likely typical: Proof of Lemma 9

We now prove that, on the event that|u| andLR(u, t) are not too large, the content of the branchJ∅,uK

is typical with high probability.

We start by rewriting the probability of interest using Proposition4:

P•
s(κ)


|u| ∨ LR(u, t) ≤ x

√
nκ,M(u, t) 6∈

⋃

h≤x
√
nκ

Ah,a,b(κ)




=
∑

h≤x
√
nκ

P•
s(κ) (|u| = h, LR(u, t) ≤ x

√
nκ,M(u, t) 6∈ Ah,a,b(κ))

=
∑

h≤x
√
nκ

∑

|m|=h
m 6∈Ah,a,b(κ),LR(m)≤x

√
nκ

P•
s(κ) (|u| = h,M(u, t) = m)

=
∑

h≤x
√
nκ

∑

|m|=h
m 6∈Ah,a,b(κ),LR(m)≤x

√
nκ

|LR(m)|h! (nκ − h)!

nκ!(nκ − h)

∏

i≥1

(
ni

mi

)
imi . (15)

where, for short, we have writtenni instead ofni(κ). We now reduce the right-hand side to an expected

value with respect to multinomial random variables. Let(Pi, i ≥ 1) be multinomial with parametersh and

(ini/nκ, i ≥ 1). Then, for anym = (0,m1,m2, . . . ) such that|m| = h, we have

P ((Pi, i ≥ 1) = (mi, i ≥ 1)) =
h!∏

i≥1 mi!
·
∏

i≥1

(
ini

nκ

)mi

.

Now, since(1− x)−1 ≤ exp(2x) for |x| ≤ 1/2, we have for allh ≤ x
√
nκ, and allκ large enough,

(nκ − h)!nhκ
nκ!

≤
h−1∏

i=0

1

1− i/nκ
≤

h−1∏

i=0

e2i/nκ ≤ ex
2
.

Note also that, for everyi ≥ 1, we haveni! ≤ nmi
i (ni −mi)!, so that, rewriting (15) in terms of events with

respect to(Pi, i ≥ 1), we obtain

P•
s(κ)


|u| ∨ LR(u, t) ≤ x

√
nκ,M(u, t) 6∈

⋃

h≤x
√
nκ

Ah,a,b(κ)




=
∑

h≤x
√
nκ

∑

|m|=h
m 6∈Ah,a,b(κ),LR(m)≤x

√
nκ

LR(m)

nκ − h
· (nκ − h)!nhκ

nκ!

∏

i≥1

ni!

nmi
i (ni −mi)!

· P ((Pi, i ≥ 1) = (mi, i ≥ 1))

≤
∑

h≤x
√
nκ

2x√
nκ

ex
2

∑

|m|=h
m 6∈Ah,a,b(κ)

P ((Pi, i ≥ 1) = (mi, i ≥ 1))

≤ 2x2ex
2

sup
h≤x

√
nκ

P((Pi, i ≥ 1) 6∈ Ah,a,b(κ)).

Now, we decompose the set ofm in the right-hand side so as to obtain bad events that are individually

simpler to deal with

P•
s(κ) (|u| ∨ LR(u, t) ≤ x

√
nκ,M(u, t) 6∈ Ah,a,b(κ)) ≤ 2x2ex

2
sup

h≤x
√
nκ

(ζ1 + ζ2)
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where

ζ1 = P



∣∣∣∣∣∣


∑

i≥1

Pi
i− 1

2


− hσ2

κ

2

∣∣∣∣∣∣
≥ aκ


 and ζ2 = P


∑

i≥1

i2Pi > bκ


 .

We now bound the termsζ1 andζ2 individually.

THE FIRST TERMζ1. Observe first, that

E



∑

i≥1

Pi
i− 1

2


 =

hσ2
κ

2
,

so that boundingζ1 consists in bounding the deviations of (a function of) a multinomial vector. However,

one can write
∑

i≥1

Pi ·
i− 1

2
− h

σ2
κ

2

d
=

h∑

j=1

(Bj − EBj),

whereBj, j = 1, . . . , h, are i.i.d. random variables taking value(i − 1)/2 with probability ini/nκ, for

i ≥ 1. Now, the sums
∑ℓ

j=1(Bi − E[Bj]), ℓ = 0, 1, . . . , h, form a martingale. We bound their deviations

using a concentration inequality from [37] (Theorem 3.15), which says that ifS is a sum of independent

random variableX1 + · · · +Xn such thatE(S) = µ, var(S) = V , and if for all kXk − E(Xk) ≤ b, then

P(S − µ ≥ t) ≤ e−t2/(2V (1+bt/(3V )). The variance ofBj may be bounded as follows:

var(Bj) ≤ E[B2
j ] =

∑

i≥1

(i− 1)2

4

ini

nκ
≤ ∆κ

∑

i≥1

i− 1

4

ini

nκ
≤ ∆κσ

2
κ/4,

for all κ large enough. Now, sincemax{|Bj − E(Bj)| : j = 0, . . . , h} ≤ ∆κ, one has, forh ≤ x
√
nκ,

P



∣∣∣∣∣∣

h∑

j=1

(Bj − EBj)

∣∣∣∣∣∣
≥ aκ


 ≤ 2 exp

(
− a2κ
2h∆κσ2

κ/4 + 2∆κaκ/3

)

≤ 2 exp

(
− a2κ
x
√
nκ∆κσ2

κ

)
,

for all κ large enough, sinceaκ = ε
1/4
κ

√
nκ = o(

√
nκ). It follows that, for everyh ≤ x

√
nκ, we have

ζ1 = sup
h≤x

√
nκ

P



∣∣∣∣∣∣


∑

i≥1

Pi
i− 1

2


− hσ2

κ

2

∣∣∣∣∣∣
≥ aκ


 ≤ 2 exp

(
−ε

−1/2
κ

xσ2
κ

)
. (16)

THE THIRD TERM ζ2. We boundζ2 using the idea we used when boundingζ1: one can express the event in

terms of independent random variablesBj , j = 1, . . . , h, whereBj takes valuei2 with probability ini/nκ.

Observe first that

E


∑

i≥1

i2Pi


 = E




h∑

j=1

Bj


 = h

∑

i≥1

i2 · ini

nκ
≤ h∆κ(σ

2
κ + 1).

16



So, we have

P


∑

i≥1

i2Pi > bκ


 = P




h∑

j=1

Bj > bκ




≤ P




h∑

j=1

(Bj − E[Bj]) >
bκ
2


 ,

for all κ large enough, sinceh∆κ ≤ xεκnκ = o(ε
1/2
κ nκ) = o(bκ). The right-hand side above can be

bounded using the martingale inequality in [37] (Theorem 3.15). We note that the variance ofBj satisfies

var(Bj) ≤ E[B2
j ] =

∑

i≥1

i4 · ini

nκ
≤ ∆3

κ(σ
2
κ + 1).

Sincemax{|Bi| : i = 1, . . . , h} ≤ ∆2
κ, it follows by McDiarmid’s inequality that

ζ2 ≤ P




h∑

j=1

(Bj − E[Bj]) >
bκ
2


 ≤ exp

(
− b2κ/4

2x
√
nκ∆3

κ(σ
2
κ + 1) + 2∆2

κbκ/3

)

≤ exp

(
− bκ
2(x(σ2

κ + 1) + 1/3)∆2
κ

)

= exp

(
− ε

−3/2
κ

2x(σ2
κ + 1) + 2/3

)
, (17)

for all κ large enough, since∆κ
√
nκ = o(bκ).

To complete the proof, it suffices to combine the bounds in (16)–(17), and observe that they imply the

claim forκ large enough, since the upper bound in (16) is much smaller than the one in (17).

5.3 The structure of a branch with typical content: Proof of Lemma10

Finally, we consider the probability that the structure of abranch is not what one expects, in spite of the

length and content being close to the typical values. The left hand side in (14) is bounded by

sup
h≤x

√
nκ

m∈Ah,a,b(κ)

P•
s(κ)

(∣∣∣∣R(u, t)−
σ2
κ

2
|u|
∣∣∣∣ ≥ cκ

∣∣∣∣∣M(u, t) = m

)
= sup

h≤x
√
nκ

m∈Ah,a,b(κ)

P



∣∣∣∣∣∣
σ2
κ

2
h−

∑

j≥1

mj∑

k=1

U
(k)
j

∣∣∣∣∣∣
≥ cκ


 ,

by Proposition4 (3), whereU (k)
j are independent random variables withU

(k)
j uniform on{0, 1, . . . , j − 1}.

By the triangle inequality, the quantity in the right-hand side above is at most

sup
h≤x

√
nκ

m∈Ah,a,b(κ)

P



∣∣∣∣∣∣

∑

j≥1

mj
j − 1

2
−
∑

j≥1

mj∑

k=1

U (k)(j)

∣∣∣∣∣∣
≥ cκ −

∣∣∣∣∣∣
σ2
κh

2
−
∑

j≥1

mj
j − 1

2

∣∣∣∣∣∣


 . (18)

By definition ofAh,a,b(κ), and sincecκ > 2aκ for all κ large enough, the quantity in (18) is bounded by

sup
h≤x

√
nκ

m∈Ah,a,b(κ)

P



∣∣∣∣∣∣

∑

j≥1

mj
j − 1

2
−
∑

j≥1

mj∑

k=1

U
(k)
j

∣∣∣∣∣∣
≥ cκ

2


 .
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Now, since all the random variablesU (k)
j , j ≥ 1, k = 1, . . . ,mj are symmetric about their respective

mean(j − 1)/2, one obtains using Chernoff’s bounding method

P



∣∣∣∣∣∣

∑

j≥1

mj
j − 1

2
−
∑

j≥1

mj∑

k=1

U
(k)
j

∣∣∣∣∣∣
≥ cκ

2


 ≤ 2 inf

t≥0
e−tcκ/2E

[
e
t
∑

j≥1

∑mj
k=1

(

U
(k)
j − (j−1)

2

) ]

= 2 inf
t≥0

e−tcκ/2
∏

j≥1

(
sinh(tj/2)

j sinh(t/2)

)mj

≤ 2 inf
t≥0

exp


−t

cκ
2

+
∑

j≥1

mj

(
j2t2

24
− t2

24
+

t4

2880

)


≤ 2 inf
t∈(0,1)

exp


−t

cκ
2

+
∑

j≥1

mj

(
j2t2

24
− t2

48

)
 (19)

≤ 2 inf
t∈(0,1)

exp


−t

cκ
2

+
t2

24

∑

j≥1

mjj
2


 .

Here the third line follows from the boundslog(sinh(s)) ≤ log(s) + s2/6 and log(sinh(s)) ≥ log(s) +

s2/6− s4/180 valid for s ≥ 0. Finally, we obtain

sup
h≤x

√
nκ

m∈Ah,a,b(κ)

P



∣∣∣∣∣∣

∑

j≥1

mj
j − 1

2
−
∑

j≥1

mj∑

k=1

U
(k)
j

∣∣∣∣∣∣
≥ cκ

2


 ≤ 2 inf

t∈(0,1)
exp

(
−t

cκ
2

+
t2bκ
24

)

≤ 2e−3c2κ/(2bκ),

upon choosingt = 6cκ/bκ, which is indeed in(0, 1) for κ large enough (we restricted the range oft in (19)).

This completes the proof since3c2κ/(2bκ) = 3ε
−3/4
κ /2 ≥ ε

−1/2
κ , for all κ large enough.

6 The limit of rescaled Galton–Watson trees: Proof of Proposition 2

Denote bŷst := (n̂i(t), i ≥ 0) the empirical degree sequence oft, let

µ̂i = n̂i(t)/|t|,

σ̂2 =
∑

i≥0

i2
n̂i(t)

|t| − |t| − 1

|t|

∆̂ = max{i : n̂i > 0}.

WritePn
µ( · ) = Pn

µ. In what follows, all the assertions containing “Pn
µ” are to be understood “forn such that

Pµ(|t| = n) > 0”; similarly, the limit with respect toPn
µ are to be understood in the same manner, along

subsequences included in{n : Pµ(|t| = n) > 0}.

18



Lemma 11. Assume thatµ has mean 1 and varianceσ2
µ ∈ (0,+∞). Then underPn

µ,

(µ̂, σ̂2, ∆̂/
√
n)

(d)−−→
n

(µ, σ2
µ, 0), (20)

where the convergence holds in the spaceM(N)× R× R equipped with the product topology.

M(N) is the set of probability measures onN. The topology onM(N) is metrizable, for example, by

the distance

D(ν, ν ′) =
∑

i≥0

dTV(ν[i], ν
′[i])

whereν[i] is the distribution of theith first marginals underν anddTV is the distance in total variation.

Since here the limit is the deterministic measureµ, it suffices to show that, for alli, µ̂i → µi in probability

asn → ∞ With D it is easy to construct a metric onM(N) × R × R making of this space a Polish space.

Hence, by the Skohorod theorem there exists a probability space where versions of(µ̂, σ̂2, ∆̂/
√
n) underPn

µ

converges almost surely to(µ, σ2
µ, 0). On this probability space, the hypothesis of Theorem1 holds almost

surely, and then its conclusion, which is a limit in distribution, holds.

Proof of Lemma11. The claim is about properties of the degree sequence of Galton–Watson trees con-

ditioned on their total progeny. We first provide a way to construct the degree sequence. Consider the

Łukasiewicz walkSn associated with a treet underPn
µ; the degree sequence of the treet is essentially (just

shift by one) the empirical distribution of the increments of Sn. More precisely, consider first a random

walkW = (Wk, k = 0, . . . , n), with i.i.d. incrementsXk = Wk −Wk−1, k = 1, . . . , n with distribution

νi = P(Xk = i) = µi+1 i ≥ −1;

thenS = (S0, . . . , Sn) is distributed asW conditioned onW ∈ A+
−1(n) where

A+
−1(n) = {w = (w0, . . . , wn) : w0 = 0, wk ≥ 0, 1 ≤ k < n,wn = −1}

is the set of discrete excursions of lengthn.

Write Ki = #{k : Xk = i − 1}, andK = (Ki, i ≥ 0). Then, if W ∈ A+
−1(n), the sequence

K = (Ki, i ≥ 0) is distributed as the degree sequence of a tree underPn
µ. In other words, we have

P(K ∈ B | W ∈ A+
−1(n)) = Pn

µ((n̂i(t), i ≥ 0) ∈ B).

By the rotation principle, we may remove the positivity condition :

P(K ∈ B | Wn = −1) = Pn
µ((n̂i(t), i ≥ 0) ∈ B).

Our aim is now to show that the condition thatW is a bridge imposed byWn = −1 does not completely

wreck the properties ofW in the following sense: letFk = σ(W0, . . . ,Wk) be theσ-field generated by

thek first Wi; then there exists a constantc ∈ (0,∞) such that for anyn large enough, and for any event

B ∈ F⌊n/2⌋ one has

P(B | Wn = −1) ≤ cP(B). (21)
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That is: any eventB in F⌊n/2⌋ with a very small probability for a standard (unconditioned) random walk

also has a small probability in the bridge case (conditionalonWn = −1). The argument proving this claim

is given in Janson and Marckert [29], page 662 and goes as follows:

P(B |Wn = −1) =
∑

x

P(B |W⌊n/2⌋ = x,Wn = −1) ·
P(W⌊n/2⌋ = x,Wn = −1)

P(Wn = −1)

=
∑

x

P(B |W⌊n/2⌋ = x)P(W⌊n/2⌋ = x) ·
P(Wn−⌊n/2⌋ = −x− 1)

P(Wn = −1)
.

It then suffices to (a) observe thatsupx P(Wn−⌊n/2⌋ = −x − 1) ≤ c/
√
n for some constantc1 ∈ (0,∞)

[40, Theorem 2.2 p. 76], and (b) use a local limit theorem to show thatP(Wn = −1) ≥ c2
√
n, for some

constantc2 ∈ (0,∞) and alln large enough [25, page 233]. This gives the result in (21) with c = c1/c2.

Now using that the increments(X1, . . . ,Xn) underP( · |Wn = −1) are exchangeable, any concentra-

tion principle for the first half of them easily extends to thesecond half (the easy details are omitted). Con-

sider the degree sequence induced by the first half of the walk: letK1/2
i = #{k : Xk = i− 1, k ≤ ⌊n/2⌋},

and note that theK1/2
i areF⌊n/2⌋-measurable. ForW (that is, with no conditioning), we have

1

⌊n/2⌋
∑

i≥0

K
1/2
i (i− 1)2 =

1

⌊n/2⌋

⌊n/2⌋∑

j=1

(Xj − 1)2 −−−→
n→∞

E[(X1 − 1)2] = σ2
µ (22)

by the law of large number, sinceXi owns a (finite) moment of order 2. Hence, for anyε > 0, writing

Ev(ε) =





∣∣∣∣∣∣
1

⌊n/2⌋
∑

i≥0

K
1/2
i (i− 1)2 − σ2

µ

∣∣∣∣∣∣
≥ ε



 ,

we haveP(Ev(ε)) → 0 and thus, according to the bound in (21), P(Ev(ε)|Wn = −1) → 0, asn → ∞.

Using the argument twice (one for each half of the walk) yields convergencêσ2 → σ2
µ in probability as

n → ∞.

The same argument also proves that

P

(∣∣∣∣∣
K

1/2
i

⌊n/2⌋ − µi

∣∣∣∣∣ ≥ ε

∣∣∣∣∣Wn = −1

)
→ 0,

which yieldsµ̂i → µi in probability.

The fact that̂∆ = o(
√
n) (in probability) underPn

µ is also a consequence of the convergence of the sum

given in (22). To see this, letC(α) = {k : P(X2
1 ≥ k) ≥ α/k}. SinceE[X2

1 ] =
∑

k≥0 kP(X
2
1 ≥ k) <

+∞, we have#C(α) < +∞ for anyα > 0. In particular, for anyε > 0,

#{n : nP(X2
1 ≥ εn) ≥ α/ε} < +∞.

Takingα = εε′, one obtains that#{n : nP(X2
1 ≥ εn) ≥ ε′} < +∞, which implies that

P(max{Xi : i ≤ n/2} ≥ ε
√
n) ≤ nP(X2

1 ≥ εn) −−−→
n→∞

0.

So under the unconditioned law one has∆̂ = o(
√
n); we complete the proof using the bound in (21).
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7 Application to constrained coalescing processes

In this final section, we discuss an application of Theorem1 to a coalescence process with particles

having constrained valences.

The famous additive coalescent [10, 15, 16, 41, 42] can be seen as arising from the following natural

microscopic description. Consider a set ofn distinct particles{1, 2, . . . , n}. The particles are initially free,

and formn clusters; the clusters are organized as rooted trees. The clusters merge according to the following

dynamics. At each step, choose a particleu uniformly at random; it belongs to some clusterT rooted atr.

Choose uniformly a second clusterT ′ 6= T , with root r′. Add an edge betweenr′ andu to obtain a new

cluster rooted atr. At each step, the system consists of a forest of general rooted labelled trees (an acyclic

graph on{1, 2, . . . , n} with a distinguished node per connected component). The process stops aftern − 1

steps, when the system consists of a single rooted labelled tree. The final tree is then uniform among all

rooted labelled trees.

One can similarly define a system of coalescing particles where the degrees would be constrained.

Different algorithms might be used, depending on the precise way the uniform choices are made, that yield

a priori different trees.

LABELLED PARTICLES. Consider the set of particles{1, 2, . . . , n}, and a set of degreesc1 ≤ c2 ≤ · · · ≤ cn.

Write s = (ni, i ≥ 0) for the associated degree sequence,ni = #{j : cj = i}. Assign randomly the

particles a degree. For instance, this can be done using a random permutationσ = (σ(1), . . . , σ(n)) of

{1, 2, . . . , n} and assigning degreecσ(i) to particlei. Think now of the particlei as initially having edges to

cσ(i) free slots that can each contain a single particle. The particles will now merge to form clusters. Each

cluster is represented by a tree with a distinguished vertex(the root). Initially, each particle sits in a tree

containing a single node (which is then also the root). Proceed with the following algorithm to merge the

particles, as long as there are free slots left:

• Pick a free slots uniformly at random; say it is bound to particlep lying in the cluster rooted atr.

• Pick anothercluster, uniformly at random, rooted at some noder′.

• Merge the two clusters by assigningr′ to the free slots; this creates an edge between the particlesp

andr′, and removes the slots from the set of free slots. The new cluster is rooted atr.

At every iteration, precisely one slot is filled and the process stops aftern − 1 steps. The process yields a

random treelabelledtreeTL
n .

The labelled treeTL
n is uniform in the set of labelled trees having the same specified degree sequence.

To see this, just consider the encoding of the process by the final labelled tree, together with a labelling of

the edge indicating their order of appearance. At iterationi ∈ {1, . . . , n − 1}, there aren − i free slots

left andn − i + 1 connected components, so that the probability that any couple free slot/other connected

component is precisely
1

(n− i)2
.
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Overall, the probability to obtain any particular pairing free slots/particles together with a history is

n∏

i=1

1

(n− i)2
=

1

(n− 1)!2
.

The same particle adjacency —hence the same labelled tree— is obtained by the
∏n

j=1 cj ! ways to pair

the free slots with particles; and for any labelled tree there are exactly(n − 1)! distinct histories. Finally,

among then! ways to assign the labels to particles in the first place,
∏

i≥0 ni! correspond to the degree/label

pattern of the tree, it follows that the probability of seeing any labelled tree aftern− 1 iterations is precisely
∏

i≥0 ni!

n!
× 1

(n− 1)!2
× (n− 1)!×

n∏

i=1

ci! =

∏
i≥0 i!

ni

(n− 1)!
×
(

n

(ni, i ≥ 0)

)−1

, (23)

which depends only on the degree sequence, so that trees withthe same degree sequence are chosen uni-

formly. (This is also, as it should, the inverse of the numberof labelled trees with degree sequence given by

s = (ni, i ≥ 0) [42, Example 6.2.2].)

UNLABELLED PARTICLES. Consider a degree sequence in the form ofs = (ni, i ≥ 0) whereni denotes the

number of nodes of degreei. Forc1 ≤ c2 ≤ · · · ≤ cn of sizen. So
∑

i≥0 ci = n−1. As before, we think of

the particles as having empty slots, but since there are no labels, we impose that the slots of any given particle

be ordered. The particles then merge according to the same algorithm, in order to distinguish particles use

the canonical labelling giving labeli to the particle with degreeci. After forgetting the canonical labelling,

the process yields a plane treeTn.

Again, the plane treeTn is uniform among all plane trees with the correct degree sequence. The argu-

ments are similar, only simpler, to those we used in the labelled case. Since, for a given plane tree, there are∏
i≥0 ni! ways to assign the canonical labels to the nodes, the probability to obtain any given plane tree is

∏

i≥0

ni!×
1

(n− 1)!2
× (n− 1)! = n

(
n

(ni, i ≥ 0)

)−1

In these coalescing particle systems, one of the parametersof interest is the metric structure of the cluster

(structure of the “molecule”) eventually obtained after all particles have coalesced into a single component.

In the unrestricted case, the metric structure is describedby the CRT of Aldous. Our result shows that

the quenched version, conditional on the degree sequence, is also valid under reasonable conditions on the

degree sequence imposed. Results for Galton–Watson trees conditioned on the size only are recovered by

sampling the degree sequence.

For instance, to recover the unrestricted version of the merging process, one can samplen independent

Poisson(1) random variables, and keep them if their sum equals n− 1; then exchangeable values obtained

are then the degreesC1, C2, . . . , Cn of then particles.
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