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Abstract

Let ¢t be a rooted tree and;(¢) the number of nodes ihhaving: children. The degree sequence
(ni(t),i > 0) of t satisfiesy .., ni(t) =14, ini(t) = |t|, where|t| denotes the number of nodes
in t. In this paper, we consider trees sampled Jniformly amdrigegls having the same degree sequence
s; we writePs for the corresponding distribution. Letx) = (n;(k),i > 0) be a list of degree sequences
indexed by corresponding to trees with sing — +oo. We show that under some simple and natural
hypotheses ofs(x), s > 0) the trees sampled undg,.y converge to the Brownian continuum random
tree after normalisation by,lg/z. Some applications concerning Galton—Watson trees andsasnce
processes are provided.

1 Introduction

Lett be a rooted tree and;(¢) the number of nodes ihhaving: children. The sequende:;(t),i > 0)
is called the degree sequencet oind satisfied ., ni(t) = >~ ini(t) = |t|, the number of nodes in
The aim of this paper is to study trees chosen uritlerthe uniform distribution on the set of trees
with specified degree sequense= (n;,i > 0), and then siz¢s| := >, n;. More precisely, a sequence
of degree sequencés(x),x > 0) with s(k) = (n;(k),i > 0), corresponding to trees with sizg :=
Is(r)| — +oc is given, and the investigations concern the limiting bédrasf tree undei .

SISOV

Figure 1: The 10 trees df; for the degree sequense= (3,1,2,0,0,...).

We now introduce some notation valid all along the paper. fote byp(x) = (p;(k),7 > 0) the
degree distribution undefy,,)

pi(k) = =2, (1)
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the associated variance. The maximum degree of any treededffee sequencgr) is
A, = max{i : n;(k) > 0}.

All along the paperp = (p;,i > 0) is a distribution with mean 1, and variane% € (0,40) =
Zpoz'?pl- — 1 € (0,00). In the following theorem, the main result of the present pajhe convergence
p(k) = p is the standard pointwise convergengg(x) — p;, asx — oo, which is equivalent to the
convergence in distribution qf(x) to p.

Theorem 1. Let (s(x),x > 0) be a sequence of degree sequences suchmthat +o0o, A, = o(n,ﬁ/Q),

p(k) = p with 2 — o3, that is convergence of second moment. tbe a plane tree chosen under

Ps(.) and letd; be the graph distance ib. Under Py, whens — +oo, (t,a,in,jl/Zdt) converges in
distribution to Aldous’s continuum random tree (encodedviige a Brownian excursion), in the Gromov—
Hausdorff sense.

First observe that the very strong result of Haas and Mietrfi2] about the asymptotics of Markov
branching trees that has been used to give asymptoticsrfdonatrees in a wide variety of settings does not
apply in the present case of trees with a prescribed degpegee. Indeed, the subtrees of a given node
are not independent given their sizes when one fixes the elegrpience.Our approach uses the observation
by Marckert and MokkadenBp] that all natural encodings of the trees are asymptotigaigportional. In
particular, theheight processr thecontour proces®oth encoding the metric structure of the tree resemble
the depth-first queue procesncoding the sequence of degrees observed when perforndegth-first
traversal. This fact was used by Marckert and Mokkad&6h o give an alternative proof of Aldous’ result
in the case of Galton—Watson trees conditioned on the tobtglgmy under some moment condition (Bennies
and Kersting 13] also observed this phenomenon).

One of the crucial questions underlying our work is that @f timiversality of the convergence of ran-
dom trees to the continuum random tree (CRT). We are motivayethe metric structure of graphs with a
prescribed degree sequence. Introduced by Bender and i[@ddafgand by Bollobas 20] in the form of
the configuration model, these graphs have received a |atayfteon since the first tight analysis of the size
of connected components by Molloy and Re8§, [39]. This is mainly because the model allows for a lot
of flexibility in the degree sequence. In particular, the glquovides a construction of random graphs with
degree sequences that may match the observations in lalgeadd networks.

Of course, random graphs with a prescribed degree sequemeeugh more complex than trees with
a prescribed degree sequence, but there is no doubt thah#lfsia of trees is a first step towards the
identification of the metric structure of the correspondgrgphs. Indeed, recent results of JosepH [
show that under some moment condition, the sizes of the ctesheomponents of random graphs with a
prescribectritical degree sequence are similar to those of Erd6s—R&fyip) random graphs?l, 24, 30]:
they may be asymptotically described in terms of the lengfhiike excursions of a Brownian motion with
parabolic drift above its current minimum, as demonstrdtgdldous P]. On the other hand, the metric
structure ofG(n,p) inside the critical window has recently been identified ime of modifications of
Brownian CRT by Addario-Berry et al2[ 3]. In other words, the present analysis is one more building
block towards an invariance principle for scaling limitsrahdom graphs, i.e., that critical random graphs
with a prescribed degree sequence have (under a suitablemb@ondition on the degree distribution) the

2



same scaling limit (as sequence of compact metric spacedassical random graph8][ This is at least
what is suggested by the results of Bhamidi et B8],[van der Hofstad44] and Josephd1].

Moreover, in the same way that uniform random trees or feresty be seen as the results of coagu-
lation/fragmentation processes involving particlés, [42], trees with a prescribed degree sequence appear
naturally in similar aggregation processes. The model &/particles have constrained valence may ap-
pear more “physically” grounded. The relevant underlyinglescing procedure is the additive coalescent
[10, 15], a Markov process whose dynamics are such that particlegenae a rate proportional to the sum of
their masses/sizes. The additive coalescent is the adignegaocess appearing in Knuth’s modification of
Rényi’'s parking problem38, 43] or the hashing with linear probind ¥, 22]. The reader may find more in-
formation about coagulation/fragmentation processesdamtonograph by Bertoirip] or the recent survey
by Berestycki 14].

The modelPs is related to Galton—Watson treekl] 27], also called simply generated trees in the
combinatorial literature, by a simple conditioning: thetdbutionPs coincides with the distribution of the
family treet of a Galton—Watson process with offspring distribut{ef ¢ > 0) (which must satisfies; > 0
if n; > 0) conditioned on{n;(t) = n;,i > 0}. In this sense, the distributian plays a role of secondary
importance, ands appears to be a model of combinatorial nature, fairly seang the world of Galton—
Watson processes. Nevertheless, we will see that Thebiiemplies the following result of Aldous (stated
in a slightly different form in §]) (see also §-8, 33, 36)).

Proposition 2 (Aldous [6]). Let i = (u;,7 > 0) be a distribution with meamn,, = 1 and variance
ai € (0,400), and letP, be the distribution of a Galton—Watson tree with offspringtribution ... Along
the subsequencg: : P, (|t| = n) > 0}, underP,( . ||t| =n)

<Ht(nx)> (law) ie

vn z€f0,1] VT Ou

wheree denotes a standard Brownian excursion, the convergenakripin the spac€|0, 1] equipped with
the topology of uniform convergence.

We will see that this theorem may be seen indeed as a conserjoEfnheoreni; the argument morally
relies on the fact that undé,( . | [t| = n), the empirical degree sequence satisfies with probabititygy
to 1, the hypothesis of Theorelr(this is stated in Lemmal). The proof of this theorem is postponed until
Section6.

Note also a result of KortchemskBZ?] that has a flavor similar to our Theorein(although neither
implies the other): he proves that Galton—Watson treesitondd to have all their node degrees in a subset
A of the support of the measurehas a limiting behavior depending eh

PLAN OF THE PAPER In Section2 we introduce precisely the model of trees we consider. Ge&iis
devoted a useful backbone decomposition for these treethéligorove our main result, the convergence of
rescaled trees to the continuum random trees, in Sedtibimally, the application to coagulation processes
with particles with constrained valence is developed intiSed.

2 Trees with prescribed degree sequence

We here define formally the combinatorial object discussethis paper. For convenience we write
N = {1,2,...} for the set of positive natural numbers. First recall somindi®ns related to standard



rooted plane trees. Lét = (J,,-, N" be the set of finite words on the alphabgtwhereN’ = {2}, and@
denotes the empty word. Denote by the concatenation af andv; by conventionzu = u@ = u.

A subsetT of U/ is aplane tree(see Figure?) if it contains @ (called the root), if it stable by prefix (if
uv € T for w andv in U, thenu € T) and if uk € T for somek > 1 andu € U) thenujy € T for j in
{1,...,k}. This last condition appears necessary to get a unique itbeavgiven genealogical structure.
The set of plane trees will be denoted By

131 151 152

11 12 13 14 15

1

%}

Figure 2: Usual representation of the plane tfee1, 11,12, 13,14, 15,131, 151, 152}

Notice that the lexicographical order oni/, also named the depth-first order, induces a total order on
any treet; this is of prime importance for the encodingstofve will present. Fort € T, andu € t, let
ci(u) = max{i : ui € t} be the number of children af in ¢. The depth ofu in ¢, its number of letters as
a word ini/, is denotedu|. The notation¢| refers to the cardinality of, its number of nodes including the
root &.

With a treet € T, one can associate its degree sequaite= (n;(t),7 > 0), wheren;(t) = #{u €
t : ¢(u) = i} is the number of nodes with degréén ¢. For a fixed degree sequensewrite Ty for the
set of treeg € T such that(t) = s, and letPs be the uniform distribution offs. To investigate the shape
of random trees unddfs, we will use the usual encodingsieight processd and depth-first walkS (or
tukasiewicz path). These encodings are defined by first fittieqy values at the integral points, and then
linear interpolation in between (See Figule Foratreet € T, letu; = @ < ay < --- < uy, denote
the nodes of in the lexicographic order otd. Then we definedd = H; by H(i) = |u;11], S = Si by
Si(i) = Zézo(ct(ﬁj) — 1); the procesdd, is defined on0, |t| — 1] and S; on [0, |t|]. To simplify the
normalisations in the sequel, s&t(|t|) := 0.

Figure 3: A plane tree € T, its height proces#/; and Lukasiewicz walls;.



Theorem 3. Under the hypothesis of TheorémunderPy,.),

(Ht(acn,i) St(xnli)> - <ie o e>
1/2 1/2 k=00 P
ny/ ny wefor] T NP

in distribution in the spacé€([0, 1], R?) of continuous functions froMd, 1] with values inR?, equipped with
the supremum distance.

Note that the condition thautfD > 0 is necessary: it ensures that= lim,_,~ no(k)/n, > 0 and that
large trees are not close to a linear tree, where most of thesnbave degree one. A treec T can also
be seen as a metric space when equipped with the graph distank consequence of Theores that,

underPy ., the metric space
Ok
(7=)

converges to the continuum random tree encodezkliy the sense of Gromov—Hausdorff distance between
equivalence classes of compact metric spaces. The fadhthabnvergence of the height process implies
that for the Gromov—Hausdorff topology is well known, seedgample Lemma 2.3 in Le GalBfl]. So, in
particular, to prove Theoretit suffices to prove Theore/d

Remark. One can define other models of random trees with a prescribgoee sequence: for example,
rooted labelled trees Let Qi) be the uniform distribution on those with degree sequesiég. Since
labelled trees have a canonical ordering (using an ordeh@tabels to order the children of each node),
forgetting the labels, they can be seen as plane trees \eitbatime degree sequence, inducing a distribution
IP”S(k) on the set of plane trees. By a simple counting argument;ristout thatP’;(k) = Py(). This situation
is drastically different from the general case, since th@eaation of uniform labelled trees on plane tree
(that is without fixing the degree sequence) does not incheeiform distribution on plane trees.

In conclusion, Theorertis also valid for the model of labelled trees with a presatilegree sequence.

3 Combinatorial considerations: a backbone decomposition

In this section we develop a decomposition of trees uiiiggy along a branch. Itis essentially the usual
backbone decompositidor Galton-Watson trees Lyons et al. [see, €3§],transposed undéf ). The
decomposition amounts to describing the structure of thedir from the root to a distinguished nodge
together with the (ordered) forest formed by the trees atehe neighbors of that branch.

FOREST WITH A GIVEN DEGREE SEQUENCEA forestf = (¢1,...,t) is a finite sequence of trees; its
degree sequencgf) = Zle s(t;) is the (component-wise) sum of the degree sequences oegwhich
compose it. Ifs = (n;,7 > 0) is the degree sequence of a foreghen the number of roots éfis given by
r=|s| — ZiZO in;. LetFg be the set of forests of (ordered) plane trees having degree sequend&’e

#&_TQ s >:L_Jﬂj_ -

a H ni,i > 0) s| Hz‘zo ng:



THE CONTENT OF A BRANCH Lett be a plane tree, and let=1; ... i be one of its node, whetig € N
foranyj. Forj < |u|, write u; = i; ...1;, the ancestor of having depthj (with the conventiony, = &,
the root oft). The seffl@, u] = {u; :j < |u|} is called the branch af (notice that: is excluded). For any
1 > 0, the number of ancestors othavingi children is written

M;(u,t) = #{v : v strict ancestors of, ¢;(v) = i}.

We refer toM(u,t) = (M;(u,t),i > 0) as the composition of the branch. Note that we necessanlg ha
My (u,t) = 0. Clearly ifu € ¢, then
Jul = >~ Mi(u,t) = [M(u,1)]. (4)
i>1
Further letLR(u, t) (for left or right) be the number of nodes off the pdth, ], that is the number of nodes
that are children of a node i@, u] without being themselves i@, u] (See Figured)

Figure 4: A tree with a marked node; the sets in the two right-hand side pictures show the nooested
by R(u, t) and inLR(u, t).

Let alsoR(u,t) be the number of such nodes countedUR(«, ¢) that lie to the right of the path. A
nodew is counted irR(u, t) if it is a child of someu;, fori € {0,. .., |u| — 1}, and satisfies > u;; in the
lexicographic order ot¥. Therefore

ul -1

LR t) = 3 (elug) — 1) = 3 M, )i — 1)
=0 i>0
Ju|—1

Rlut) = Y (eo(uy) = iji1)-
j=0
Leti = @ < Gy < --- < 1y be the nodes of, in increasing lexicographic order. Théfy (k) = [ty 1|
andS;(k) = R(ug, t) +ci(uy), so that the discrepancy betweBpandS, can be accessed using the number
of nodes to the right of the pathsdg, i = 1,. .., |t|. This observation lies at the heart of our approach.
The set of plane trees with degree sequenarad a distinguished node (marked plane trees) is denoted
by Ts = {(t,u) :t € Ts,u € t}, and the uniform distribution on this set is denod UnderPg, a marked
tree (¢, u) is distributed agt’,«’) wheret’ is a tree sampled und@; andw’ is a uniformly random node
in ¢’. We now decompose a marked tri@eu) along the branclig, u]. First, consider the structure of this
branch, that we call the contents:

Cont(t,u) == ((ct(uo),i1),-- -, (ct(u‘u|,1),z'|u‘)).
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We write J™ for the set of potential vector€ont(t,«) when the composition of the brandlw, u] is
M(u,t) = m. Besides, notice that

o ()T
JH = 7. 5
= (s ©

Since, ifCont(u,t) € J™ thenLR(u,t) = >, (i — 1)m;, we will use the following notation:

LR(m) := > (i — L)m.

i>0

THE FOREST OFF A DISTINGUISHED PATHFoOr a treet and any node € ¢, lett, = {w : vw € t} be the
subtree of rooted atv. The sequence of tre€st, u) = (¢,,v € LR(u,t)) is the forest constituted by the
subtrees of rooted at the vertices belonging t®(u, ¢), and sorted according to the rank of their root for
the lexicographic order.

The decomposition which associatgnt (¢, u), F(¢,u)) to a marked treét, v) is clearly one-to-one.
The following proposition characterizes the distributaf M(u,t), Cont(u, t), andR(u, t) when(t,u)
is sampled undepy.

Proposition 4. Lets = (ng, nq, ... ) be a degree sequence anddet= (mg, m1, ... ) be such thatny = 0,
andm,; < n; foranyi > 1. Let(t, u) be chosen according 2.
(a) We have

PY (M(u,t) = m) = | SR [mlls =mlt ry (”)Zm

s[![s —m|
(b) Moreover, for any vectot' € J™,
Pg (Cont(u,t) = C' | M(u,t) =m) = 1/#J™.
(c) For anyx > 0, andm such thatP?(M(u,t) = m) > 0,

M(u,t):m> P(ZiU}k)"fm >x) (6)

i>1 k=1

2

P? (‘R(u,t) - %|u|

>z

where theU](k) are independent random variable(s’j(k) is uniform in{0,...,j — 1} and whereo? is the

variance associated wittp; = n;/|s|, ¢ > 0) (as done onZ)).

Proof. Since the backbone decomposition is a bijection, we havarfgwvectorC € J™, we have

#Fs—m
|s| - #Fs

o (2 )/ (> 0)

by the expression for the number of forests 3. (As P2 (Cont(u,t) = C) is independent o € J™,
it suffices to multiply by#.J™ in order to getPs (M(u,t) = m). After simplification, this yields the

Pg (Cont(u,t) =C) =
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first statement in (a), and then (b). Now, (b) implies thatday R > 0, any compositionm for which
P2(M(u,t) = m) > 0, we have

P (R(u,t) = R | M(u,t) = m) = P (Zi(/j’“ R) :

where theU](k) are independent random variables, dv‘_ﬁ) is uniform in{0,...,5 — 1}. This implies
assertion (c) and completes the proof. O

4 Convergence of uniform trees to the CRT: Proof of Theoren8

4.1 The general approach

Our approach uses the phenomenon observed in Marckert & adlgkk B6] in the case of critical
Galton—Watson tree (having a variance): under some mildnagsons the tukasiewicz path; and the
height procesdi; are asymptotically proportional, that is, up to a scalammadisation, the difference be-
tween these processes converge to the zero function. # ewfrthat a similar phenomenon occurs when the
degree sequence is prescribed, and this is the basis ofa@aft pr

In order to prove Theorer we proceed in two steps: the first one consists in showingthieatiepth-
first walk Sy associated to a tree sampled unélgt,) converges to a Brownian excursion. The procgsis
much easier to deal with thaH, sinceS; is essentially a random walk conditioned to stay non-negati
and forced to end up at the origin. We provide the details ictiS&e4.2 below. The core of the work lies
in the second step, which consists in proving thatand H are indeed close, uniformly df, 1]. More
precisely, by Theorem 3.1 p. 27 dfq], the following proposition is sufficient to show tha,fl/QZSt(nH-)
andny; /%62 Hy(n,.+) have the same limit ifC[0, 1], || o).

Proposition 5. Under the hypothesis of Theordinthere exists,, = o(n,ﬁ/Q) such that, as — oo,

IP’S(H) ( sup
z€[0,1]

In order to prove Propositioh, we recall the representation 8f and H; in terms ofR(u, t) and|u|: for
i) = @ <1y < --- < 1 the nodes of in the lexicographic order, one hag(k) = R(ig,t) + c (i) and
Hy(k) = |tg+1]. A non-uniform version of the claim in Propositiéns the following:

o2
Se(zny) — TnHt(mnH)

K—00

Z%) — 0.

Proposition 6. Assume the hypothesis of TheorgmLet (t,u) chosen undeﬁ”;(ﬁ). There exists;,, =
o(n}/Q) such that,
() (

From Propositior6 one can control the discrepancy between the two processey dinite number of
random points if0, 1] using the union bound. So Propositiéimplies convergence of the finite dimen-
sional distributions. To complete the proof of Proposit®iit suffices to show that the under the sequence

2
R(w, t) = [ul

R—00

> c,§> — 0.
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of distributionPs,.), the rescaled difference of the two processfe%/2(5t(mn,§) — %Ht(mnﬁ)) is tight [see,
e.g.19. Since the rescaled version 8f (see Sectio.2) are tight, it suffices to prove that the rescaled
versions ofH; are tight as well.

Remark. Under slightly stronger assumptions on the degree seqgsgiids possible to control the dis-
crepancy between the height process and the tukasiewibzapavery pointin {0,1,...,n, — 1}. More
precisely it would be possible to show that

2
{ ] UH
]P)S(li) (‘R(u,t) — 7’11‘

> ) — o(1/ny). )

Using the union bound, this yields the convergence of theated height process to a Brownian excursion,
as a random function i@[0, 1]. One is easily convinced that with the optimal assumptiansrheorem3,
the bound in 7) might just not be true.

We now move on to the ingredients of the proof: we first give det¢ails of the convergence of
n,Zl/QSt( - n,) to a Brownian excursion in Sectioh2, then we prove tightness for, '/ H, (- ng) in
Section4.3. The longer proof of Propositio@is delayed until Sectiob.

4.2 Convergence of the Lukasiewicz walk

In this section, we give the details of the proof of the cogeece of the depth-first walk undgy,)
towards the Brownian excursion.

Lemma 7. Assume the hypothesis of TheorenunderPy,),
(St(xln/f-;)> (ff) o
O, Ng €[0,1] k=00

Proof. Letc = {¢1,co,...,cn, } be a multiset oh,, integers whose distribution is given byx). Whent

is sampled undePy .., the Lukasiewicz patl$ is easily related to the partial sums of the elements samples
uniformly at random from the set: Let 7 = (w1, 7m9,...,m,,) be a uniformly random permutation of
{1,2,...,n.},and forj € {1,...,n,}, define

as random functions i@ [0, 1].

Wﬂ'(]) - Z(Cﬂi - 1)'

i=1

Theorem 20.7 of Aldouss] (see also Theorem 24.1 i) ensures that, when,, = o(y/n,),

(Ww(sn,.i)> (law) b
1/2 k—+4oo
OxNk s€[0,1] e

in C[0, 1], whereb = (b(s), s € [0, 1]) is a standard Brownian bridge.



The increments of the walkV:(j),0 < j < n,) satisfyz,, — 1 > —1 for everyi (such walks are
sometimes calledeft-continuous Furthermore, one finally had’;(n,,) = —1. The cycle lemmaZ3]
ensures that there is a unique way to turn the pro¢Bssnto an excursion by shifting the increments
cyclically. Extend the definition of the permutation in swctvay that, forj € {n, + 1,...,2n,}, we have
7j i= Tj_n,. Letj, be the unique integer (the location of the first minimum ofwrak W) in {1,... n,}
such thatV.(j + j.) — Wx(jr) is an excursion in the following sense:

Sr(§) == Wr(j + kx) — Wr(jz) >0 forj <ng andS,(n,) = —1.

Then, fort uniformly chosen irfT),

(56(7),0 < § < no) £ (5(7).0 < j < ny),

for 7 a random permutation dfl, ..., n,}. Since the Brownian bridge has almost surely a unique mini-
mum, the claim follows by the mapping theorei®]. O

4.3 Tightness for the height process

The rescaled height process unte(x) is the process i6[0, 1], h,, = ngl/QH( - ny). In this section,
we prove that the familyh,, < > 0) is tight (we will omit thex when unnecessary). Sinég(0) = 0, the
following lemma is sufficient to prove tightness [see, €1§],

Letwy, be the modulus of continuity of the rescaled height proéeger 6 > 0

wp(0) = sup |h(s) — h(t)].
|t—s|<d
Lemma 8. Under the hypothesis of Theoreinfor anye > 0 andn > 0, there exist$ > 0 such that, for
all x large enough,
PS(H) (wh(é) > 6) <.

The bound we provide consists in reducing the bounds on tligieas ofh to bounds on the variations
of the Lukasiewicz patl$, which is known to be tight since it converges in distribati.emma7). The
underlying ideas are due to Addario-Berry et d]. 4nd Addario-Berry 1] to prove Gaussian tail bounds
for the height and width of Galton—Watson trees and rand@estiwith a prescribed degree sequence,
respectively.

For a plane tree € T, let¢~ be the mirror image of, or in other words, the tree obtained by flipping
the order of the children of every node. Then, wedgt := S,- be thereverse depth-first walkObserve
that the mirror flip is a bijection, so th&; andS;” have the same distribution undgy,.,.

Proof of Lemma3. In this proof, we identify the nodes of a treand their index in the lexicographic order;
so in particular, we writgd; (u) for the height of a node in ¢, and we writgu — v| < § to mean that. and
v are withind in the lexicographic order.
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Consider a tree and two nodes, andv. Write u A v for the first common ancestor afandv in ¢. In
the following we writeu < v to mean that: is an ancestor of in ¢ (u = v is allowed). Then,

|Hy(u) — He(v)| < [Hy(u) — Hi(u Av)| + [He(v) = Hi(u Av), (8)
so that it suffices to bound variations B between two nodes on the same path to the root:

sup  [Hy(u) — Hi(v)| <2 sup |Hi(u) — He(w)]
|lu—v|<dn,. w=u,|Ju—w|<dn,
Now, observe that, fow < u, every nodes on the path betweew andu which has degree more than one
contributes at least one to the number of nodes off the patiele®w andu:

L+ Y (aw)—1) = H(u) = Hi(w) = > iew-1
w=3v=u w=v=u
However, one may also bound this same number of nodes in tdriing depth-first walks,, and the reverse
depth-first walkS; :

L+ Y (er(v) = 1) < Sylu) = Sy(w) + Sy (u) = Sy (w) + ci(w). 9)

w=xv=U

In other words, we have

sup [Hi(v) — Hi(uw)| <2 sup  [Si(w) = Si(w)+2  sup |8 (w) - S (w)]

|[u—v|<dnk [u—w|<ong,w=u |[u—w|<onk,w=3u

+ max c(w) +  sup Z Lici(v)=1}

|lu—w|<dnk w=v=u

<2 sup |Si(u) —Si(w)|+2 sup |S; (u) = S; (w)

|lu—w|<on |lu—w|<dnk

FAH s Y )=

[u—w|<donk w=v=<u

< 2n}/2w5(5) + 2n,1,€/2w5_(5) +A,+ sup Z liei(w)=1}> (10)

|lu—w|<donk w=v=u

wherew, andw,- denote the moduli of continuity of the rescaled Lukasievviaizhn;l/zst andngl/QS;,
respectively.

The first three terms inlQ) are easy to bound singe,; = o(y/n,) andS; andsS;” are tight undei,).
The only term remaining to control is the one concerning thmiper of nodes of degree one:

Y}((S) = sup Z 1{0,5(1)):1}'

|lu—w|<dny w=v=u

To boundY;(5) we relate the distribution of trees undey,, to those undeiy ., wheres(x)* =
(nf,n7,...) is obtained froms(x) by removing all nodes of degree one, i.ej, = 0 andn} = n; for
everyi # 1. Then, in a tre¢* sampled undePy,)«, one has’;«(0) = 0. Recall also that\,; = o(y/n,,).
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Now, for a sum of three terms to be at leasat least one term must excee. So for every, ¢ > 0, there
exists & > 0 such that, for alk large enough,

Pyeyr (Wh(6) > €) < Py« (2ws () > €/3) + Py (2w (0) > €/3)
= 2]?5(5)* (6&)5(5) > 6) <mn,

since, undePy .-, Sy andS;” have the same distribution an@l/QSt is tight, and sinc@’s(,_i)*(A,ﬁn;l/2 >
¢/3) is zero forx large enough. This proves thail/QHt is tight underPg ).

Now, we can couple the trees sampled unlgy,). andPs(x). Since the nodes of degree one do not
modify the tree structure, a tréeunderPg ) may be obtained by first samplirtg usingP,)«, and then
placing the nodes of degree one uniformly at random : pricid@s insertion of nodes is done inside the
edges of* (plus a phantom edge below the root). Given any orderingeétlges of* (plus the one below
the root), the vectofX7, .. X - )) of numbers of nodes of degree one falling in these edges s suc
that

1 1
X ., X < Multinomial : .
o Knomo) (s )

Conversely{* is obtained from: by removing the nodes of degree one, so thetd¢* can be thought
as random variables in the same probability space ufgey. To boundY;(d), observe that it is unlikely
that adding the nodes of degree one in this way creates tgglatis.

In fact, “the length of paths” is expected to be multiplied by g, for ¢, = n1(x)/(nx — n1(x)). Let
o = 2+qy, and fixs > 0 such thaly .y« (ws(d) > €/a) < n/2; such & > 0 exists since the height process
is tight underPy ). Note that since we add nodes in the constructiohwfderPy ) from t* underPg,)-,
nodes that are withian, in ¢ are also withinin, in t*. Write h* for the rescaled height process obtained
from¢*, the tree associated wittby deletion of all nodes of degree one (the rescaling sfays. We have,

Py(iy (wn(0) > €) < Pgey(wi(9) > €/ ) + Pgpy (wi(0)
< Py()r (wn(6) = €/a) + Py (wn(6)

| \/

wpx(0) < €/a)

)

!ww 0) < e/a)

| \/

S/
gPs(n)*(Wh )>€/C¥ +5n2]P’< Z l—l—X* >€m)

e/Ne /a
< 1/2 + 6n2P ( S X > eyl - 1/a)> :
i=1

where theX; are i.i.d. Binomia{ny,1/(n, —ny)) random variables. The last line follows from the standard
fact that the numbergX}) obtained from a samplingithout replacemenfof the n, () nodes of degree
one) are more concentrated than their countergsf coming from a samplingvith replacement5].

Now, the sum in the right-hand side is itself a binomial randariable:

ey/Ni/a
Z X, £ Binomial <e\/_n1/oz >
—ny

12



whose mean is,/nxq. /(2 + ¢..) whene/n (1 — 1/a) = ey/n.(1 + qx)/(2 + ¢.). By Chernoff's bound,
using thaty,, converges, it follows that for some constant 0 valid for « large enough,

Py (wh(8) > €) < 1/2 + dnZe Ve,

Finally, for all » large enough, with this value far, we havePs,(ws(0) > €) < 1, which completes the
proof. O

5 Finite dimensional distributions: Proof of Proposition 6

5.1 Aroadmap to Proposition6: identifying the bad events

Our approach consists in showing that if the event in Prajoosé occurs, then one of the following
three events must occur: (1) either the deptiof nodeu is unusually large, (2) or the content of the branch
[@,u] is atypical, (3) or the number of nodes to the right of the paiiot what it should be, despite of the
length|u| and contenM (u, t) being typical.

We will then prove that those simpler events are unlikely: &¢ 0, and two sequences= (a,, x >
0), andb = (b, x > 0) we define families of setd;, , ; as follows. Given a sequence of degree distribution

(s(k),k >0),
g mi _ hok : <a E mgi2 < b
~ 7 2 2 — K 7 — YK .

If m € Ay, (k) thenm| = h, andm corresponds to the content of a brarfeh «] such thafu| = h.
The setd,, ,5(+) are designed to contain most typical contents of a brancgngtth’. underPy,.), provided
the choices for the sequencesandb are suitable. The decomposition of the bad event we havanedt!
above is then expressed formally by

Ah,a,b(’i) = {m : |m| = h,

2
[ ] UH
2o ([Reav) -

> ) < Bl (lul > ov/m)

Pl (LR(W ) > ay/in)

+ Pg (u V LR(u,t) < zy/ng, M(u,t) ¢ U Ah’mb(li))

h<z\/ng
. ox
b B (R - S

h<z,/Mg
meAh,a,b(”)

> ¢, M(u,t) = m> . (11

Proving Propositiors reduces to proving that, for some choiceapf b., ¢, andx, every term in the right-
hand side above tends to zerasas: oo. The bound on the first term is a direct consequence of thedizaus
tail bounds for the height of trees recently proved by Ada@erry [1] in the very setting we use:

Pl > o) < Pugy (maxlul > 2 ) < expl-ca?/o?) (12

13



for a universal constant > 0 and all sufficiently large:. The second term is bounded using the depth-first
walk S and the reverse depth-first wask , as in the proof of Lemm&:

0<k<n, =3

< 2P, < max S(k) > z nn> ,

for all x large enough, sincd,; = o(n,) andS andS~ have the same distribution undgy,.). We finish
using the tightness oﬁl/zs(nn.) underPg,); more precisely, we have
0,2
Pin (LR(w,8) > /) < 16-9- 5, (13)

by Lemma 20.5 of]. The bounds on the two remaining terms are stated in Len®aasl 10, the proof of
which appear in Sectiors2and5.3, respectively.

Lemma 9. SinceA; = o(n,) there existg,; such thatA,, < e,,/n,, with0 < ¢,, — 0. Leta,, = g}/ﬂ‘w/n,ﬁ

andb,. = ei/Qn,{. Then, for every > 0, and all x large enough,

—1/2
P | 1l VLR(wt) < 2yie M(ut) € | Anas(s) | < 627" exp <_ﬁ>
h<zy/mm z(of +1) +

Lemma 10. SinceA; = o(n,) there existg,, such thatA, < e,/n,, With0 < g, — 0 ande;3/4 = o(ny)

ask — oo. Leta, = 5,11/4w/n,£, b, = ei/znﬁ, andc, = s,ﬁ/gﬁ/nﬁ. Then, for allx large enough,
° 0121 —8,;1/2
> Pl ([Rwt) = ZFufl > e M(u,t) =m ) <275 (14)
h<a /i
meAh,a,b(”)

Before proceeding with the proofs of these two lemmas, wieatd how to use them in order to com-
plete the proof of Propositio. Lete, be such that\, < e../n., Withe, — 0 ask — oo. Then, set
Q. = s}/ﬂi /N, b. = g}/QnH andc,, = a,ﬁ/gw /n.. Let nowe > 0 be arbitrary. Pick: > 0 large enough such

that, for allx large enough,

sy (luf = 2y/ng) + P (LR(u, t) > 2v/ny) < e/2.

The bounds in12) and (L3), and the fact that? — o—f, ensure that this is possible. The value fobeing
fixed, Lemma® and10 now make it possible to choosg large enough such that, for all > kg, the two
remaining terms in the right-hand side Gflf also sum to at most/2. Thus, for allx > k¢, we have

2
[ ] O-K)
Pen) <‘R(u,t) — Elu\

> o) <o

which completes the proof, sineavas arbitrary.
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5.2 The content of a branch is very likely typical: Proof of Lanma 9

We now prove that, on the event that andLR(u, t) are not too large, the content of the brarjeh u]
is typical with high probability.
We start by rewriting the probability of interest using Posjion 4:

S [l VIR t) <z M t) ¢ | Anap(s)

h<z\/ng
= Z P;(n) (’u‘ - hv LR(uv t) < w\/n—m M(u, t) ¢ Ah,a,b("i))
h<z\/ng
= > > P2 (Ju] = b, M(u, t) = m)
h<z/ng |m|=h

mgAh,a,b(“)’LR(m)SI\/ﬁ

_ Z Z |LR(m)|h!(“ﬂ—h)!H(”i>im¢. (15)
h<zfin jm|=h nl(ne —h) ]\
mgAp o (k). LR(m) <z v/
where, for short, we have writtem; instead ofn;(x). We now reduce the right-hand side to an expected
value with respect to multinomial random variables. [t i > 1) be multinomial with parameteris and
(in;/nk,i > 1). Then, for anym = (0, my, mo,...) such thaim| = h, we have

217 > N

Now, since(1 — z)~! < exp(2x) for |z| < 1/2 we have for alh < z,/n,, and allx large enough,
(nﬂ — h Ii 1 2i/n
~ TR < r<
ny! H 1—1i/n, H) ¢ ¢

Note also that, for every> 1, we haven;! < n;”' (n; —m,;)!, so that, rewriting 15) in terms of events with
respect tq P;,7 > 1), we obtain

P | ul VLR(u, t) < z/ne, M(u, t) U Apap(k
h<x\/ﬁ
B Z Z LR(m) (n. —h) In H
h<z/ix | =h ne—h- b 12% —mi)!
- mQAh a,b(r),LR(m) <z /fk

< > er S P((Pyi>1) = (my,i > 1))
h<m\/ﬁ Im|=h

mgAp o (k)
< 2% sup P((P;,i>1) & Apap(k)).
h<z\/ng
Now, we decompose the setnf in the right-hand side so as to obtain bad events that areidugilly
simpler to deal with

2o (U] VLR(u, t) < 2y/me, M(u,t) & Ap (k) < 220%™ sup (G + Ca)
h<z i
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where

i—1 ho? 9
G =P Y p | -5 2 e and (=P |) P >0,
i>1 i>1

We now bound the termg and(, individually.
THE FIRST TERM(;. Observe first, that

i—1 ho?
B\ R ="
i>1

so that bounding; consists in bounding the deviations of (a function of) a molnial vector. However,

one can write
E p .t _ %k 4
; 2 2 :
i>1 J

h
(Bj — EB;),

=1

whereB;, j = 1,...,h, are i.i.d. random variables taking val@e— 1)/2 with probability in;/n,, for

i > 1. Now, the sumiﬁzl(Bi — E[By]), £ = 0,1,...,h, form a martingale. We bound their deviations

using a concentration inequality fror87] (Theorem 3.15), which says that §f is a sum of independent

random variableX; + - - - + X, such thate(S) = u, var(S) = V, and if for all K X}, — E(X}) < b, then

P(S — p > t) < e~ #*/@VA+6/BV)) The variance of3; may be bounded as follows:

(i —1)% in;

o
var(Bj) < E[B}] = 3t < ALY T < Ao/,
K

i>1 i>1 K

for all x large enough. Now, sinaeax{|B; — E(B;)|: j =0,...,h} < A,, one has, foh < z,/n,,

h 2

a

P E B; —EB,)| > <2 — L
j:l( J i) Zan | < eXp( ZhAHJ,%/4+2AnaH/3>

ay
< 2e R —
- xp< x\/nHA,ﬁa,%>’
1/4

for all x large enough, since, = ¢’ \/n, = o(y/nx). It follows that, for everyhr < x,/n,;, we have

i—1)  ho? en/?
(1= sup P ZPZT - 2"“ >ay | <2exp| —— |- (16)
hgx\/ﬁ i>1 .%'O'H

THE THIRD TERM (3. We bound(, using the idea we used when boundiigone can express the event in

terms of independent random variablgs, j = 1, ..., h, whereB; takes value? with probability in; /n,.
Observe first that
h mn;
E|> PP | =E|> Bj| =h) i — < hA(o2 +1).
i>1 j=1 i>1 Nk
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So, we have

h
P (ZiQPZ > bﬁ) =P (ZB] > bﬁ)
i>1 j=1
h b,
<P Z(Bj —E[Bj]) > 5 |

j=1
for all x large enough, sinceA, < zeqn, = o(s,lf/Qn,{) = o(bk). The right-hand side above can be
bounded using the martingale inequality 8Y] (Theorem 3.15). We note that the varianceXfsatisfies
21 _ g Ny 3.2
var(B;) < E[B?] = ;z . Ad(0? +1).

Sincemax{|B;| : i = 1,...,h} < A2, it follows by McDiarmid’s inequality that

G <P h(B-—E[B»])>b—” <exp (- /4
S Pt = ) =P T2 e AB (02 + 1) + 2420, /3

J

< exp (‘2(35(0%; n f;—i- 1/3)A%>

- e 17
TP\ Tag(e2 1 1) +2/3 ) (17)

for all x large enough, sincA,/n, = o(by).
To complete the proof, it suffices to combine the boundsl8)«(17), and observe that they imply the
claim for  large enough, since the upper bound6)(is much smaller than the one ih7).

5.3 The structure of a branch with typical content: Proof of Lemma10

Finally, we consider the probability that the structure @franch is not what one expects, in spite of the
length and content being close to the typical values. Thénbeid side in14) is bounded by

2 2 m;j
sup P | |R(u,t) — %|u| >c¢ [M(u,t)=m | = sup P Tep — E E UM > ¢, ,
h<z.,/n S(H 2 h<z./n 2 , J
= K >~ K j>1 k‘:l
mEAh,a,b(ﬁ) meAh,a,b('i) =

by Propositior4 (3), Wherer(k) are independent random variables V\lilﬁ) uniform on{0,1,...,j —1}.
By the triangle inequality, the quantity in the right-handesabove is at most
) e

-1 S 0 o2h i1
JSw  F > mit5— =2 > UMG) S omt
mE Ap,q,b(%) jz1 j>1 k=1 =
By definition of A;, , (), and since:,, > 2a,, for all  large enough, the quantity id8) is bounded by

J—1 - k)| < Cx
s P(mezzuj >2)-

meApqp(x)  \IZ1 21 k=1

ch—
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Now, since all the random variablég(k), Jj>1,k=1,...,m; are symmetric about their respective
mean(j — 1)/2, one obtains using Chernoff’s bounding method

P ( >omitym =23 U2 cz) <2infe /R [etzmzk—ﬂ(% 5 )]

i>1 i>1 k=1
. sinh(tj/2)
—9 f tCN/Q sin
zltrzlo € H Jj sinh( t/2

2t2 t2 t4
<21nfexp —t——{—ZmJ <ﬂ ﬁ‘i‘@)

j>1

2t2 t2
<2 inf % Jv_ 19
= oy P 2 m; ( 24 48> (19)

7>1

c t2
<2 inf —t= 52
<2 0l e | g g 2l
Jj=1
Here the third line follows from the boundsg(sinh(s)) < log(s) + s2/6 andlog(sinh(s)) > log(s) +
52 /6 — s*/180 valid for s > 0. Finally, we obtain

2
(k) . Cx t°by
sup ( E m]—— g E U >) §2t€1(r(1)7f1)exp <—t5 24)

h<w\/ir
men () j>1 5>1 k=1

< 90— 3¢ck/(2bx)

upon choosing = 6¢, /b,, which is indeed ir{0, 1) for « large enough (we restricted the range of (19)).
This completes the proof singe2 /(2b,) = 3=.>/* /2 > =,/ for all « large enough.
6 The limit of rescaled Galton—Watson trees: Proof of Proposion 2
Denote bys; := (n;(t),7 > 0) the empirical degree sequencetpfet
fii = ng(t)/[t],

~ oni(t t|—1
52 = 12”1( ) _ |t]
[t] [t]

>0

A = max{i: 7; > 0}.

Write P (- ) = Pj;. In what follows, all the assertions containin@};” are to be understood “fas such that
Pu([t] = n) > 07 similarly, the limit with respect td”}, are to be understood in the same manner, along
subsequences included{n : P, (|t| = n) > 0}.
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Lemma 11. Assume thai has mean 1 and variance;, € (0, +oc). Then unde®’:,

NPT d
(1.5% A/vm) S (n.02,0), (20)
where the convergence holds in the spAd¢N) x R x R equipped with the product topology.

M(N) is the set of probability measures Bh The topology onM(N) is metrizable, for example, by

the distance
D(v,v') = dry(vil,V'[i])
i>0

wherev[i] is the distribution of theth first marginals under anddry is the distance in total variation.
Since here the limit is the deterministic measurét suffices to show that, for all ji; — u; in probability
asn — oo With D it is easy to construct a metric o(N) x R x R making of this space a Polish space.
Hence, by the Skohorod theorem there exists a probabildgesphere versions 6fi, 2, ﬁ/\/ﬁ) underP},
converges almost surely {a, ai, 0). On this probability space, the hypothesis of Theodehwolds almost
surely, and then its conclusion, which is a limit in disttiba, holds.

Proof of Lemmad.1l. The claim is about properties of the degree sequence of iGalfatson trees con-
ditioned on their total progeny. We first provide a way to ¢omd the degree sequence. Consider the
tukasiewicz walks,, associated with a treeunderP);; the degree sequence of the ttee essentially (just
shift by one) the empirical distribution of the incremenfsSy,. More precisely, consider first a random
walk W = (W, k =0,...,n), with i.i.d. incrementsX;, = Wy, — Wy_1,k = 1,...,n with distribution

v =P(Xp =1) = g1 1> —1;
thenS = (So, ..., S,) is distributed as¥ conditioned oriV € A™,(n) where
AJ_rl(n) ={w = (wg,...,wy,) : wg=0,w >0,1 <k <n,w, =—1}

is the set of discrete excursions of length
Write K; = #{k : X, = i — 1}, andK = (K;,i > 0). Then, if W € AT (n), the sequence
K = (K;,i > 0) is distributed as the degree sequence of a tree L]mjeln other words, we have

P(K € B|W € AT|(n)) = Pp((7i(t),i > 0) € B).
By the rotation principle, we may remove the positivity citiwth :
P(K € B|W, = —1) =Pj((ni(t),i > 0) € B).

Our aim is now to show that the condition tH&t is a bridge imposed bi/,, = —1 does not completely
wreck the properties ofl in the following sense: leF;, = o(Wy,..., W}) be theo-field generated by
the k first 1W;; then there exists a constant (0, co) such that for any: large enough, and for any event
B € F|,/2) one has

P(B| W, = —1) < cP(B). (21)

19



That is: any even3 in F|,, 5| with a very small probability for a standard (unconditiopeandom walk
also has a small probability in the bridge case (conditiamdll,, = —1). The argument proving this claim
is given in Janson and Marcke&tq], page 662 and goes as follows:

) P(WLTL/QJ = CE,W = —1)

P(B ’ W, = _1) - ZP(B ‘ W|_n/2j =z, W, = _1)

P(W, — —1)
P(an n/2] = —L — 1)
= P(B| W2 = 2)P(Wy2) = ) - ]P’(LI/I; J: =y

It then suffices to (a) observe thatp, P(W,,_|,,/2) = —= — 1) < ¢/+/n for some constant; € (0, 00)
[40, Theorem 2.2 p. 76], and (b) use a local limit theorem to shHwt®(W,, = —1) > c34/n, for some
constant; € (0, 00) and alln large enough35, page 233]. This gives the result i21) with ¢ = ¢; /cs.

Now using that the increments(y, ..., X,,) underP(-|W,, = —1) are exchangeable, any concentra-
tion principle for the first half of them easily extends to Seeond half (the easy details are omitted). Con-
sider the degree sequence induced by the first half of the \MEHIK;/Q =#{k: Xy =i—1,k <|n/2]},
and note that thé(il/2 aref |, o -measurable. Foil (that is, with no conditioning), we have

LniZJ DK = Ln}QJ Y (X 1)) —=E[(X1 —1)’] = o, (22)

: n—o0
120 j=1

by the law of large number, sincg; owns a (finite) moment of order 2. Hence, for any 0, writing
1 1/2. 2 2
Z K" (i—1)" -0,
>0

Ev(e){ (/2] - >5},

we haveP(Ev(e)) — 0 and thus, according to the bound By, P(Ev(e)|W,, = —1) — 0, asn — oo.
Using the argument twice (one for each half of the walk) \deddnvergence? — o—i in probability as

n — Q0.

The same argument also proves that
1/2

K
P ( >¢

nj2] ~

Wy = —1) — 0,

which yieldsji; — u; in probability.

The fact thath = o(y/n) (in probability) undetP), is also a consequence of the convergence of the sum
given in @2). To see this, leC(a) = {k : P(X} > k) > a/k}. SinceE[X7] = Y oo kP(X? > k) <
+o00, we have#C'(a) < +oo for anya > 0. In particular, for any > 0, B

#{n :nP(X? > en) > a/e} < +oo.
Takinga = e¢’, one obtains thag{n : nP(X? > en) > ¢’} < +oo, which implies that
P(max{X; : i <n/2} >ev/n) < nP(X? > en) —0

So under the unconditioned law one has= o(y/n); we complete the proof using the bound 21}, O
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7 Application to constrained coalescing processes

In this final section, we discuss an application of Theotketo a coalescence process with particles
having constrained valences.

The famous additive coalescerdtQ 15, 16, 41, 42] can be seen as arising from the following natural
microscopic description. Consider a setofiistinct particles{1,2,...,n}. The particles are initially free,
and formn clusters; the clusters are organized as rooted trees. Uisiers merge according to the following
dynamics. At each step, choose a particleniformly at random; it belongs to some clusferooted atr.
Choose uniformly a second clustéf # T, with rootr’. Add an edge betweeri andu to obtain a new
cluster rooted at. At each step, the system consists of a forest of generaddabelled trees (an acyclic
graph on{1,2,...,n} with a distinguished node per connected component). Theepsostops after — 1
steps, when the system consists of a single rooted labefled The final tree is then uniform among all
rooted labelled trees.

One can similarly define a system of coalescing particlesravittee degrees would be constrained.
Different algorithms might be used, depending on the peeaiay the uniform choices are made, that yield
a priori different trees.

LABELLED PARTICLES. Consider the set of particlés, 2,...,n}, and aset of degrees < ¢y < --- < ¢,,.
Write s = (n;,7 > 0) for the associated degree sequence= #{j : ¢; = i}. Assign randomly the
particles a degree. For instance, this can be done usingdamapermutatiorv = (o(1),...,0(n)) of
{1,2,...,n} and assigning degreg; to particlei. Think now of the particle as initially having edges to
co(i) free slots that can each contain a single particle. Thegtestivill now merge to form clusters. Each
cluster is represented by a tree with a distinguished vdttexroot). Initially, each particle sits in a tree
containing a single node (which is then also the root). Rrdagith the following algorithm to merge the
particles, as long as there are free slots left:

e Pick a free slot uniformly at random; say it is bound to partigldying in the cluster rooted at.
e Pickanothercluster, uniformly at random, rooted at some netle

e Merge the two clusters by assigningto the free slot; this creates an edge between the partiples
andr’, and removes the slatfrom the set of free slots. The new cluster is rooted. at

At every iteration, precisely one slot is filled and the psxstops aften — 1 steps. The process yields a
random tredabelledtreeT’".

The labelled tred’" is uniform in the set of labelled trees having the same sgecifegree sequence.
To see this, just consider the encoding of the process byrh€tléibelled tree, together with a labelling of
the edge indicating their order of appearance. At iteratien{1,...,n — 1}, there aren — i free slots
left andn — i 4+ 1 connected components, so that the probability that anyleduge slot/other connected
component is precisely

(n—1)2
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Overall, the probability to obtain any particular pairirrgd slots/particles together with a history is

I
(n—1i)?2 (n—1)12

n

i=1

The same particle adjacency —hence the same labelled tre@btdined by th(f[?:1 c;! ways to pair
the free slots with particles; and for any labelled treedhame exactlyn — 1)! distinct histories. Finally,
among then! ways to assign the labels to particles in the first pld¢g, , n;! correspond to the degree/label
pattern of the tree, it follows that the probability of sepamy labelled tree after — 1 iterations is precisely

[Tiz0 ! 1 . [lizo ™ n -
= —1)! = , 23

o S X@Hf (n—1)! X((w,iZO)) (23)
which depends only on the degree sequence, so that treeth@ifame degree sequence are chosen uni-
formly. (This is also, as it should, the inverse of the nunifdabelled trees with degree sequence given by
s = (n;,1 > 0) [42, Example 6.2.2].)

UNLABELLED PARTICLES. Consider a degree sequence in the form ef (n;,7 > 0) wheren; denotes the
number of nodes of degréeForc; < ¢y < --- < ¢, of sizen. So) .., ¢; = n— 1. As before, we think of
the particles as having empty slots, but since there arebatslave imﬁose that the slots of any given particle
be ordered. The particles then merge according to the sagjogthin, in order to distinguish particles use
the canonical labelling giving labelto the particle with degree . After forgetting the canonical labelling,
the process yields a plane trég.

Again, the plane tre&, is uniform among all plane trees with the correct degree esecgl The argu-
ments are similar, only simpler, to those we used in the letd&lase. Since, for a given plane tree, there are
]_[220 n;! ways to assign the canonical labels to the nodes, the pilapdbiobtain any given plane tree is

[T x ﬁ X (n—1)!= ((ni,z’nz 0)>1

>0

In these coalescing particle systems, one of the paranwdtieterest is the metric structure of the cluster
(structure of the “molecule™) eventually obtained aftérparticles have coalesced into a single component.
In the unrestricted case, the metric structure is descrilyethe CRT of Aldous. Our result shows that
the quenched version, conditional on the degree sequenaksai valid under reasonable conditions on the
degree sequence imposed. Results for Galton—Watson wad#ioned on the size only are recovered by
sampling the degree sequence.

For instance, to recover the unrestricted version of theymegmrocess, one can sampléendependent
Poisson(1) random variables, and keep them if their sumiegua 1; the n exchangeable values obtained
are then the degreé&s,, Cs, ..., C, of then particles.
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