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Young diagrams

Definition
A partition λ is a finite non-increasing
sequence of positive integers
λ1 ≥ λ2 ≥ · · · ≥ λk . It can be
represented by a Young diagram λ. The
size of the Young diagram λ is defined
by |λ| :=

∑
i λi .

Problem
We want to investigate some asymptotic properties of Young diagrams as
their size is tending to infinity. How to do it?

Solution
Look on ’large Young diagrams’ from a ’large perspective’ and treat these
discrete objects as continuous ones!
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Young diagrams as continuous objects

French convention:
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Young diagrams as continuous objects

Russian convention:
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Young diagrams as continuous objects

Russian convention:

z
−5 −4 −3 −2 −1 1 2 3 4 5

t

1

2

3

4

5

x

1

2

3

4

5

y

1

2

3

4



Random Young diagrams Jack measure Jack characters Structure constants

Young diagrams as continuous objects

Russian convention:
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Definition

A profile of a Young diagram λ is a function ω(λ) : R→ R+ such that its
graph is a profile of λ drawn in Russian convention.
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Continuous Young diagrams

Definition
A continuous Young diagram is a function ω : R→ R+ such that

ω(x)− |x | has compact support;
|ω(x1)− ω(x2)| ≤ |x1 − x2| for any x1, x2 ∈ R.

An area of a continuous Young diagram ω is given by:

Area(ω) :=
1
2

∫
R
|ω(x)− |x || dx .

Remark

Let λ - Young diagram with |λ| = n. Then

Area(ω(λ)) = n.
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Normalized Young diagrams

Problem
How to look on the ’large Young diagrams’ from ’large perspective’?

Solution
Normalize them in a way that their areas are constant.

Definition

Let λ - Young diagram with |λ| = n. We define scaled (continuous)
Young diagram

ω(D√n−1(λ))(x) :=
√
n
−1
ω(λ)(

√
nx).

Remark

Area
(
ω(D√n−1(λ))

)
= 1.
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Asymptotic shape of large Young diagrams

Let
(
λ(n)

)
n∈N+

- sequence of Young diagrams with |λ(n)| = n.

Definition

We say that
(
λ(n)

)
n∈N+

has a limit shape ω if∥∥∥ω(D√n−1(λ(n)))− ω
∥∥∥→ 0,

as n→∞, where ‖f ‖ = supx∈R |f (x)|.

Problem

Let us choose
(
λ(n)

)
n∈N+

randomly according with some ’nice’
distribution. Does it have a limit shape with a high probability? Is it
unique? Can we say more about it?
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’Nice’ distribution = Plancherel distribution

•

a(•) = number of boxes to the right of the
given box
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’Nice’ distribution = Plancherel distribution

•

`(•) = number of boxes above the given
box



Random Young diagrams Jack measure Jack characters Structure constants

’Nice’ distribution = Plancherel distribution

•

hook(1)(•) := a(•) + `(•) + 1.
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’Nice’ distribution = Plancherel distribution

•

P(1)
n (λ) =

dim(λ)2

n!
,

where (hook formula:)

dim(λ) =
n!∏

�∈λ hook(�)
.
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’Nice’ distribution = Plancherel distribution

•

P(1)
n (λ) =

dim(λ)2

n!
,

where (hook formula:)

dim(λ) =
n!∏

�∈λ hook(�)
.

P(1)
n (λ) =

n!∏
�∈λ(hook(�))2 .

Plancherel measure P(1)
n is a probability

measure on the set Yn of Young diagrams
of size n.
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Vershik-Kerov, Logan-Shepp limit shape

Figure : Scaled random Young diagram of size 100 distributed according with
Plancherel measure
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Vershik-Kerov, Logan-Shepp limit shape

Figure : Scaled random Young diagram of size 1000 distributed according with
Plancherel measure
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Vershik-Kerov, Logan-Shepp limit shape

Figure : Scaled random Young diagram of size 5000 distributed according with
Plancherel measure
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Vershik-Kerov, Logan-Shepp limit shape

−2 −1 1 2

1

2
Ω(x)

Figure : Ω(x) =

{
|x | if |x | ≥ 2;
2
π

(
x · arcsin x

2 +
√

4− x2
)

otherwise.
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First order asymptotic = ’law of large numbers’

−2 −1 1 2

1

2
Ω(x)

Ω(x) =

{
|x| if |x| ≥ 2;
2
π

(
x · arcsin x

2 +
√

4 − x2
)

otherwise.

Theorem (Vershik-Kerov, Logan-Shepp ’77)

Let λ(n) be a random Young diagram of size n distributed with Plancherel
measure P(1)

n . Then, in probability, as n→∞∥∥ω(D1/
√
n(λ(n))

)
− Ω

∥∥→ 0.
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Second order asymptotic

Problem
Can we describe the second order asymptotic? What does it really mean?

Solution
We should look on the fluctuations around the limit shape.

Let λ(n) - random Young diagram distributed according with P(1)
n .

We know that
∥∥ω(D1/

√
n(λ(n))

)
− Ω

∥∥→ 0 in probability.
We would like to investigate behaviour of random variables:

mk(λ(n)) :=

∫
R
xk∆(λ(n))(x) dx ,

where

∆(λ)(x) :=
√
n
ω
(
D1/
√
n(λ)

)
(x)− Ω(x)

2
.
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Second order asymptotic = ’central limit theorem’

uk(x) = Uk(x/2) =
∑

0≤j≤bk/2c(−1)j
(
k−j
j

)
xk−2j ;

uk(2 cos(θ)) = sin((k+1)θ)
sin(θ) ;

uk(λ) =
∫
R uk(x)∆(λ)(x) dx .

Theorem (Kerov, 1993)

Choose a sequence (Ξk)k=2,3,... of independent standard Gaussian
random variables and let λ(n) be a random Young diagram of size n
distributed with Plancherel measure. As n→∞, we have:(

uk(λ(n))
)
k=1,2,...

d−→
(

Ξk+1√
k + 1

)
k=1,2,...

.
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Jack measure

Let us recall that
hook(�) = a(�) + `(�) + 1.

Let α ∈ R+. α-deformations of hook length:

hook(α)(�) :=
√
α(a(�) + 1) +

√
α
−1
`(�),(

hook(α)
)′

(�) :=
√
αa(�) +

√
α
−1

(`(�) + 1).

Definition
is a probability measure Pn on the set Yn defined by

Pn(λ) :=
n!∏

�∈λ(hook(�) (hook)′ (�)

.
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Jack measure

Let us recall that
hook(�) = a(�) + `(�) + 1.

Let α ∈ R+. α-deformations of hook length:

hook(α)(�) :=
√
α(a(�) + 1) +

√
α
−1
`(�),(

hook(α)
)′
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(`(�) + 1).

Definition

Jack measure is a probability measure P(α)
n on the set Yn defined by

P(α)
n (λ) :=

n!∏
�∈λ(hook(α)(�)

(
hook(α)

)′
(�)

,

where α ∈ R+.
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Jack measure

Let us recall that
hook(�) = a(�) + `(�) + 1.

Let α ∈ R+. α-deformations of hook length:

hook(α)(�) :=
√
α(a(�) + 1) +

√
α
−1
`(�),(

hook(α)
)′

(�) :=
√
αa(�) +

√
α
−1

(`(�) + 1).

Definition

Plancherel measure is a probability measure P(1)
n on the set Yn defined by

P(1)
n (λ) :=

n!∏
�∈λ(hook(1)(�)

(
hook(1)

)′
(�)

=
n!∏

�∈λ(hook(�))2

.

for α = 1 Jack measure ≡ Plancherel measure.
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α-anisotropic Young diagrams

Let λ be a Young diagram.

Definition

α-anisotropic Young diagram Aα(λ) (for α ∈ R+) - continuous Young
diagram obtained from λ (considered in French convention) by a
horizontal stretching of ratio

√
α and a vertical stretching of ratio

√
α
−1.

λ 7→ A4(λ)
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First order asymptotic = ’law of large numbers’

Theorem (D., Féray)

Let λ(n) be a random Young diagram of size n distributed with Jack
measure P(α)

n . Then, in probability, as n→∞∥∥ω(D1/
√
n(Aα(λ(n)))

)
− Ω

∥∥→ 0.

Remark
Plugging α = 1 we recover Vershik-Kerov, Logan-Shepp limit shape for
Plancherel measure.
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Second order asymptotic = ’central limit theorem’

Theorem (D. Féray)

Choose a sequence (Ξk)k=2,3,... of independent standard Gaussian
random variables and let λ(n) be a random Young diagram of size n
distributed with Jack measure. As n→∞, we have:(

u
(α)
k (λ(n))

)
k=1,2,...

d−→
(

Ξk+1√
k + 1

− γ

k + 1
[k is odd]

)
k=1,2,...

,

where u
(α)
k (λ) =

∫
R uk(x)∆(Aα(λ))(x) dx , γ :=

√
α−
√
α
−1, and we use

the usual notation [condition] for the indicator function of the
corresponding condition.

Remark
Plugging α = 1 we recover central limit theorem of Kerov for Plancherel
measure.



Random Young diagrams Jack measure Jack characters Structure constants

Jack polynomials and Jack characters

Jack polynomials J(α)
λ :

symmetric functions introduced by Jack;
generalization of Schur symmetric function (for α = 1);
special case of Macdonald polynomials

Expand Jack polynomial in power-sum symmetric basis:

J
(α)
λ =

∑
ρ:

|ρ|=|λ|

θ(α)
ρ (λ) pρ.

We call quantities θ(α)
ρ (λ) Jack characters (for α = 1 they coincide with

the irreducible characters of the symmetric groups up to some
normalization constant).
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Characterization of Jack measure

EP(α)
n

(θ(α)
µ ) =

{
1 if µ = 1n,
0 otherwise.

Let λ ∈ Yn.

Proposition∫
R xk∆(Aα(λ))(x) dx can be expressed as a function of

θ
(α)
(1n), θ

(α)
(2,1n−2), . . . , θ

(α)
(k−1,1n−k+1)

.

Corollary

Our central limit theorem has equivalent, algebraic version!
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Algebraic central limit theorem

Theorem (D., Féray)

Choose a sequence (Ξk)k=2,3,... of independent standard Gaussian
random variables. As n→∞, we have:√k θ(α)

(k,1n−k )
(λ(n))

nk/2


k=2,3,...

d−→ (Ξk)k=2,3,... ,

where the distribution of λ(n) is Jack measure of size n and where d−→
means convergence in distribution of the finite-dimensional law.

We can prove this theorem using algebraic methods (Jack characters
after normalization span a very nice algebra)!
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Polynomials functions

We define

Ch(α)
µ (λ) =

{
α−

|µ|−`(µ)
2

(|λ|−|µ|+m1(µ)
m1(µ)

)
zµ θ

(α)

µ,1|λ|−|µ|(λ) if |λ| ≥ |µ|;
0 if |λ| < |µ|,

where
zµ = µ1µ2 · · ·m1(µ)!m2(µ)! · · · ,
mi (µ) - number of parts of µ equal to i .

Theorem (Lassalle, 2009)

The family
(
Ch(α)

µ

)
µ
span linearly an algebra Λ

(α)
? of α-shifted symmetric

functions.
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What do we have and what do we miss?

In order to prove our main theorem:

We want to estimate mixed moments of Jack characters;
Expectation of the Jack characters is easy to compute;
Suitably normalized Jack characters span linearly some nice algebra
Λ

(α)
? ;

We want to expand a product:

Ch(α)
µ Ch(α)

ν =
∑
ρ

g (α)
µ,ν;π Ch

(α)
π

as a linear combination of suitably normalized Jack characters.

Problem

What can we say about g (α)
µ,ν;π?
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Main result for structure constants

Theorem (D., Féray)

Let
Ch(α)

µ Ch(α)
ν =

∑
ρ

g (α)
µ,ν;π Ch

(α)
π .

Then, structure constants g (α)
µ,ν;π are polynomials in γ := α1/2 − α−1/2 of

degree less than
min

i=1,2,3
(ni (µ) + ni (ν)− ni (π)) ,

with rational coefficients, where ni (λ) - natural valued function of λ.

It is crucial for proving central limit theorem;
It is applicable to different problems.
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Projection on the set of Young diagrams of a fixed size

Let µ, ν, π ∈ Yn.

θ(α)
µ (λ)θ(α)

ν (λ) =
∑
|π|=n

c(α)
µ,ν;πθ

(α)
π .

Hence

c(α)
µ,ν;π =

αd(µ,ν;π)/2

zµ̃zν̃

∑
0≤i≤m1(π)

g
(α)
µ̃,ν̃;π̃1i · zπ̃ · i ! ·

(
n − |π̃|

i

)
,

where
µ̃ is created from µ by removing all parts equal to 1,
d(µ, ν;π) = |µ| − `(µ) + |ν| − `(ν)− (|π| − `(π)).
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α = 1 - Structure contants of the Z (C[Sn])

Let C[Sn] := {f : f : Sn → C} be a group algebra of the symmetric
group. This is algebra with the multiplication defined by:

f · g(σ) :=
∑

σ1σ2=σ

f (σ1)g(σ2).

Let
Z (C[Sn]) := {f ∈ C[Sn] : ∀g ∈ C[Sn], fg = gf }

be the center of that algebra. It has a basis (fµ)|µ|=n, where

fµ(σ) =

{
1 if σ has cycle type µ,
0 otherwise.
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α = 1 - Structure contants of the Z (C[Sn])

Let
fµfν =

∑
|ρ|=n

cµ,ν;ρfρ.

Lemma
The structure constant cµ,ν;ρ is equal to the number of pairs of
permutation (σ1, σ2) such that

σ1 has cycle type µ,
σ2 has cycle type ν,
σ1σ2 = σ, where σ is a fixed permutation of the cycle-type ρ.
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α = 1 - Structure contants of the Z (C[Sn])

One has a following relation:

c(1)
µ,ν;ρ = cµ,ν;ρ.

Remark

From the previous theorem and a relation between c(α) and g (α) one can
deduce a classical result of Farahat and Higman: cµ1n−|µ|,ν1n−|ν|;ρ1n−|ρ| is
a polynomial in n.



Random Young diagrams Jack measure Jack characters Structure constants

α = 2 - Structure contants of the Hecke algebra of
(S2n,Hn)

Let S2n acts on the set Xn := {1, 1̄, . . . , n, n̄} by permutations and let

S2n > Hn := {σ ∈ S2n : ∀i ∈ Xn σ(ī) = ¯σ(i)}

be a hyperoctahedral subgroup.
Hecke algebra C[Hn\S2n/Hn] < C[S2n] of the pair (S2n,Hn) is defined
by:

C[Hn\S2n/Hn] := {x ∈ C[S2n] : hxh′ = x∀h, h′ ∈ Hn}.

Double-cosets: equivalence classes for the relation x ∼ hxh′ (for x ∈ S2n
and h, h′ ∈ Hn)

naturally indexed by partitions of size n;
Fµ =

∑
x of type µ δx - linear basis of C[Hn\S2n/Hn].
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α = 2 - Structure contants of the Hecke algebra of
(S2n,Hn)

Let
FµFν =

∑
|ρ|=n

hµ,ν;ρFρ.

Then
c(2)
µ,ν;ρ =

hµ,ν;ρ

2nn!
.

Remark

From the previous theorem and a relation between c(α) and g (α) one can
deduce a result of Tout (2013):

hµ1n−|µ|,ν1n−|ν|;π1n−|π|

n! 2n

is a polynomial in n.
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Fin
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