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Abstract

Let D2n be a Dyck path chosen uniformly in the set of Dyck paths with

2n steps. The aim of this note is to show that for any λ > 0 the sequence

E
(

exp
(

λ(2n)−1/2 maxD2n

))

converges, and therefore is bounded uniformly in n.

The uniform bound justifies an assumption used in literature to prove certain

estimates of high moments of large random matrices.
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1 Introduction

Let N = {0, 1, 2, 3, . . . } be the set of non-negative integers. For any n ∈ N, we

denote by Wn the set of Bernoulli chains with n steps :

Wn = {S = (Si)0≤i≤n : S0 = 0, Si+1 = Si ± 1 for any i ∈ J0, n − 1K},

where Ja, bK = [a, b]∩N. The set of Dyck paths Dn (sometimes called simple or Bernoulli

excursions) is defined by

Dn = {S : S ∈ Wn, Sn = 0, Si ≥ 0 for any i ∈ J0, nK}.

Of course Dn is empty for odd n, and one has

#D2n =
1

n + 1

(

2n

n

)

(1)

the nth Catalan number. Let P
(w)
n and P

(d)
2n be the uniform distributions on Wn and

D2n. The expectations with respect to these measures will be denoted by E
(w)
n and

E
(d)
2n . The aim of this note is to prove the following statement.
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Theorem 1 For any λ > 0, we have

E
(d)
2n

(

exp

(

λ
maxS√

2n

))

→
n

E

(

exp

(

λ max
t∈[0,1]

e(t)

))

(2)

where (e(t), t ∈ [0, 1])) is the normalized Brownian excursion. In particular, for any

λ > 0

sup
n

E
(d)
2n (exp(λn−1/2 maxS)) < +∞. (3)

We may notice that the right hand side is finite for every λ using the computation of

Chung [2]:

P

(

max
t∈[0,1]

e(t) ≤ x

)

= 1 + 2
∑

j≥1

(1 − 4j2x2)e−2j2x2
, for x > 0,

and then maxt∈[0,1] e(t) possesses all exponential moments.

1.1 Relations with the spectral theory of large random matrices

Dyck paths play a central role in combinatorics and arise in many situations (see

for instance 66 examples of the appearance of the Catalan numbers in combinatorics

in Stanley [10, ex. 6.19 p.219]). In the present case, the motivation for establishing

Theorem 1 comes from the study of the moments of random real symmetric (or hermi-

tian) matrices known as the Wigner ensemble [13, 16]. In these settings, the Catalan

numbers (1) represent the moments of the eigenvalue distribution of random matrices

of Wigner ensemble AN in the limit of their infinite dimension N → ∞ [16]. Recent

studies [13, 15] of high moments of large Wigner random matrices have used the expo-

nential moments of the maxima of the Dyck paths. More precisely, it was shown that

[7, 15]

E
(

Tr A2n
N

)

≤ C1
eC2t1/3

t1/6
Qn(C3t

1/6)(1 + o(1)), n = btN 2/3c, N → ∞, (4)

where Tr denotes the trace of the square matrix, C1, C2 and C3 are certain constants,

and

Qn(λ) = E
(d)
2n

(

exp

(

λ
maxS√

2n

))

.

It was assumed in [7, 13, 15] that lim supn Qn(λ) is bounded. Theorem 1 above shows

that this assertion is true.

2



2 Proof of the Theorem

Before proving the Theorem, we first discuss the appearance of maxt∈[0,1] e(t) and

the non-triviality of the result. Let C[0, 1] be the set of continuous functions defined

on [0, 1] with real values. For any S ∈ Wn, denote by un = uS
n the function in C[0, 1]

obtained from S by interpolation and rescaling:

un(t) =
1√
n

(

S(bntc) + {nt}(S(dnte) − S(bntc))
)

for any t ∈ [0, 1]. (5)

It is known that under P
(d)
2n , u2n

(d)−−→
n

e in C[0, 1] endowed with the topology of uniform

convergence where
(d)−−→
n

means the convergence in distribution (see e.g. Kaigh [6] where

this results is shown for general increment distributions). By continuity of the map

f 7→ eλ max f from C[0, 1] into R, under P
(d)
2n ,

exp

(

λmaxS√
2n

)

= exp(λmax u2n)
(d)−−→
n

exp

(

λ max
t∈[0,1]

e(t)

)

. (6)

Then the uniform integrability argument is sufficient: given λ > 0, in order to prove

that (6) implies (2), it suffices to show that

sup
n

E
(d)
2n

(

exp

(

(λ + ε)
maxS√

2n

))

< +∞, (7)

for some ε > 0 (see Billingsley [1, Section 16]). Hence to prove the Theorem, using (6),

only the second assertion (3) (weaker in appearance) needs to be proved. This is what

we will do.

Remark 1 Smith & Diaconis [14] proved that P
(d)
2n (max S√

2n
≤ y) = P

(d)
2n (max e ≤ y) +

O(n1/2), and the convergence of moments of max S√
2n

(under P
(d)
2n ) to those of max e is

also known (see Flajolet & Odlyzko [5] and references therein, where this is stated in

link with the convergence of the height of random trees). These convergence results are

not strong enough to obtain Theorem 1.

The strategy will be at first to transform the question in terms of Bernoulli bridges,

and then to transform the question in terms of simple random walks where the answer

is easy. The steps follow some ideas developed in Janson & Marckert [8] in their proof

of their Lemma 1.
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2.1 From Dyck paths to Bernoulli bridges

Let us introduce the set Bn of “Bernoulli bridges” with n steps

Bn = {S : S ∈ Wn, Sn = −1}.

The quotes around “Bernoulli bridges” are there to signal that often the terms “Bernoulli

bridges” concerns walks ending at 0 instead at −1. Clearly, Bn is empty for even n and

it is easy to see that #B2n+1 =
(2n+1

n

)

; we denote by P
(b)
2n+1 the uniform distribution

on B2n+1, and by E
(b)
2n+1 the expectation with respect to P

(b)
2n+1.

The cycle Lemma (introduced by Dvoretzky & Motzkin [3], see also Raney [9] and

also Pitman [12], Section 6.1) allows to relate quantities on Dyck paths and on Bernoulli

bridges, and among other explains why

(2n + 1)#D2n = #B2n+1. (8)

Consider the set of Dyck paths with size 2n with an additional last step −1 :

D?
2n+1 := {S : S ∈ W2n+1, Si ≥ 0 for any i ∈ J0, 2nK, S2n = 0, S2n+1 = −1}.

Obviously there is a canonical correspondence between D?
2n+1 and D2n, and this corre-

spondence conserves the value of the maximum of the paths. Now, the left hand side

of (8) is viewed to be the cardinality of D?
2n+1 × J1, 2n + 1K.

We state the cycle Lemma as follows:

Lemma 2 (Cycle Lemma) There exists a one-to-one correspondence Ψ2n+1 between

D?
2n+1×J1, 2n+1K and B2n+1 and such that if S

′ = Ψ2n+1(S, k) for some k ∈ J1, 2n+1K

then
∣

∣(maxS) − (maxS
′ − minS

′)
∣

∣ ≤ 1. (9)

We provide a proof of this classical result for reader’s convenience.

Proof. For any walk S in Wn+1, let

∆j(S) = Sj+1 − Sj , j ∈ J0, nK

denote the list of increments of S. For a fixed (S, k) element in D?
2n+1×J1, 2n+1K, we let

Ψ2n+1(S, k) be the walk which list of increments is (∆(i+k) mod (2n+1)(S), i = 0 . . . , 2n).
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For any k in J1, 2n + 1K, S
′ := Ψ2n+1(S, k) is indeed a bridge since the sum of the

increments is −1. We now explain why Ψ2n+1 is a bijection from D?
2n+1 × J1, 2n + 1K

onto B2n+1. For a fixed element S ∈ D?
2n+1, let

Ψ2n+1(S) :=
{

Ψ
(k)
2n+1(S), k ∈ J0, 2nK

}

,

be “a rotation class”. It is easy to see that Ψ2n+1(S, k) reaches its minimum for the first

time at time 2n+1−k. Hence, Ψ2n+1(S, k) 6= Ψ2n+1(S, k′) if k 6= k′, and each rotation

class Ψ2n+1(S) contains a unique Dyck path. It remains to explain why each bridge

belongs to a unique rotation class: take a bridge S that reaches its minimum for the first

time at time k. The walk S
′ which list of increments is (∆(i+2n+1−k) mod (2n+1)(S), i =

0 . . . , 2n) is a Dyck path. Thus, Ψ2n+1(S
′, k) = S, and then S belongs to the rotation

class of S
′ (and only to this one).

As a conclusion, each rotation class contains a unique element of D?
2n+1, has cardi-

nality 2n + 1, and of course each element of D?
2n+1 belongs to a rotation class.

Now, it is easy to see that for S in D?
2n+1, for any k ∈ J0, 2nK, the bridges S

′ =

Ψ2n+1(S, k) satisfies |(maxS) − (maxS
′ − minS

′)| ≤ 1. �

Hence, the uniform distribution on B2n+1 is the push-forward measure of the uniform

distribution on D?
2n+1 × J1, 2n + 1K by Ψ2n (which amounts to first choosing a Dyck

path uniformly, and then a rotation). It follows from all these considerations that

sup
n

E
(d)
2n

(

e
λmax S√

2n

)

< +∞ if and only if sup
n

E
(b)
2n+1

(

e
λmax S−minS√

2n

)

< +∞.

We now show that this second assertion holds.

2.2 From bridges to simple walks

For any walk S let

Y S

[a,b] := max
a≤k≤b

Sk − min
a≤k≤b

Sk.

We have, using Y S

[0,2n+1] ≤ Y S

[0,n] + Y S

[n,2n+1] and the Cauchy-Schwarz inequality

E
(b)
2n+1

(

e
λmaxS−minS√

2n

)

= E
(b)
2n+1

(

e
λ

Y S

[0,2n+1]√
2n

)

(10)

≤
[

E
(b)
2n+1

(

e
2λ

Y S

[0,n]√
2n

)

E
(b)
2n+1

(

e
2λ

Y S

[n,2n+1]√
2n

)]1/2

(11)
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The idea here is to work on the half of the trajectory where the conditioning S2n+1 = −1

will appear to be ”not so important”. Since a time reversal of Bernoulli bridges with

size 2n + 1, followed by a symmetry with respect to the x-axis send B2n+1 onto B2n+1

and exchange the ”two halves” of the trajectory, we just have to prove that for a = 0

and a = 1

sup
n

E
(b)
2n+1

(

e
2λY S

[0,n+a]

)

< +∞. (12)

We will treat the case a = 0 the other one being very similar.

We equip the space W2n+1 with the filtration F := (Fk) where Fk is generated by

the random variables (S1, . . . , Sk).

Lemma 3 Let An be an Fn-measurable event. We have

P
(b)
2n+1(An) ≤ C0P

(w)
2n+1(An) = C0P

(w)
n (An), (13)

for a constant C0 valid for all n (and all An).

Proof . The equality in this formula is clear since under P
(w)
2n+1, S is a Markov chain.

Only the existence of C0 is needed to be proved. In the following computations, we will

use that since both P
(w)
2n+1 and P

(b)
2n+1 are the uniform distributions on their respective

set, we have

P
(b)
2n+1 = P

(w)
2n+1( · |S2n+1 = −1).

We will also use that under both P
(w)
2n+1 and P

(b)
2n+1, S is a Markov chain.

Let A be F (S)
n - measurable, we have

P
(w)
2n+1(A|Sn = k, S2n+1 = −1) = P

(w)
2n+1(A|Sn = k) = P

(w)
n (A|Sn = k). (14)

We have the following chain of equalities

P
(b)
2n+1(A) = P

(w)
2n+1(A|S2n+1 = −1) =

P
(w)
2n+1(A,S2n+1 = −1)

P
(w)
2n+1(S2n+1 = −1)

(15)

=
∑

k

P
(w)
n (A|Sn = k)P

(w)
2n+1(Sn = k|S2n+1 = −1). (16)

(this last equality coming from (14)). Let us denote by N(m, j) the number of tra-

jectories of simple walks of the length m that end at j. Clearly N(m, j) =
(

m
(m+j)/2

)

,

when m and j have the same parity, zero if not. Also it is easy to see that the number
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of trajectories S in B2n+1 such that Sn = j is N(n, j)N(n+1, j +1). Then one obtains

by simple counting arguments that

P
(w)
2n+1(Sn = k|S2n+1 = −1) =

N(n, k)N(n + 1, k + 1)

N(2n + 1,−1)

=
N(n, k)

2n

2nN(n + 1, k + 1)

N(2n + 1,−1)

= P
(w)
n (Sn = k)

2nN(n + 1, k + 1)

N(2n + 1,−1)
≤ C0P

(w)
n (Sn = k),

where

C0 = sup
n≥1

sup
k

2nN(n, k + 1)

N(2n + 1,−1)
= sup

n≥1
2n

(

n

bn/2c

)(

2n

n

)−1

,

is indeed finite (as one may check using the Stirling formula). Hence, the right hand

side in (16) is bounded by

∑

k

P
(w)
n (A|Sn = k)C0P

(w)
n (Sn = k) = C0P

(w)
n (A).

This ends the proof of the Lemma. �

To conclude the proof of Theorem 1, we explain why (12) holds true. Using Lemma

3, we have

sup
n

E
(b)
2n+1

(

e
2λY S

[0,n]

)

≤ C0 sup
n

E
(w)
n

(

e
2λY S

[0,n]

)

, (17)

since Y S

[0,n] is Fn-measurable. The right hand side of (17) is much simpler than the left,

since it deals with simple random walks under the uniform distribution. Then using

again Cauchy-Schwarz, it suffices to show that

sup
n

E
(w)
n

(

e
4λ

max0≤k≤n Sk√
2n

)

< +∞ (18)

and the same thing for max replaced by min (which gives the same quantity). Now, by

the André reflexion principle (see Feller [4], page 72), we have

P
(w)
n ( max

0≤k≤n
Sk ≥ x) = 2P

(w)
n (Sn > x) + P

(w)
n (Sn = x) ≤ 2P

(w)
n (Sn ≥ x).

Now, the use of Hoeffding’s inequality yields directly (18).
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