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The election is a classical problem in distributed algonith It aims to design and to analyze a distributed algorithm
choosing a node in a graph, here, in a tree. In this papersa ofaandomized algorithms for the election is studied.

The election amounts to removing leaves one by one untilréeeis reduced to a unique node which is then elected.
The algorithm assigns to each leaf a probability distrinu{ithat may depends on the information transmitted by the
eliminated nodes) used by the leaf to generate its remanaimdom lifetime. In the general case, the probability of

each node to be elected is given. For two categories of #hgosi close formulas are provided.
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1 Introduction

1.1 The problem

Starting from a configuration where all processors are irséime state, the goal of an election algorithm
is to obtain a configuration where exactly one processortisérstatdeader, the other ones being in the
statelost The (leader) election problem is often the first problemdivesin a distributed environment.
A leader permits to centralize some information, to make esalecisions, to coordinate the processors
for subsequent tasks. Hence, the election problem — firgcpbg Le Lann in [6] — is one of the most
studied problems in distributed algorithmic, and this unad@ny different assumptions [9]. The graph
encoding the relations between the processors can be aaringe, a complete or a general connected
graph. The system can be synchronous or asynchronous acesposs may have access to a total or
partial information of the geometry of the underlying graphof the current state of the system, etc.

In this paper we consider the case of election in trees, wihemodes have at time= 0 a very par-
tial information on the geometry of the tree: each node onlgvks its number of neighbors. A possible
method for electing in a tree, introduced by Angluin ([1] ©hem 4.4), amounts to eliminating succes-
sively the leaves till only one node remains, the leaderhis paper, we investigate this method in the
general case: assume that a nadeeing a leaf (was a leaf at timte= 0, or that becomes a leaf at time
t) decides to live a random remaining tinig, before being eliminated; in other words, it is eliminated at
timet+ D, exceptifitis elected before this date. Starting with a gitreeT} at time 0, denote by the
tree constituted with the non-eliminated nodes at tim&he family (T;).>( is a random process taking
its values in the set of trees. Givép, the distribution of(7}):>o — and then, also the probability that a
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given node is elected — depends on the way the nodes choadisttfiteution according to which they will
compute their random remaining lifetime.

—In [7] the authors consider two elementary approaches.fif$teone is based on the assumption that
all sequencesf leaves elimination have tteameprobability (no distributed algorithm seems to have this
property). Their second approach assumes that at eachlsteaveshave the same probability of being
removed. This corresponds to the case wherdxheare all exponentially distributed with parameter 1.
The authors study thoroughly both approaches and prove prapgrties of resulting random processes.
— In [8], the authors show that if the nodes suitably choos# ttemaining random lifetime then a to-
tally fair election process is possible, the nodes beincteteequally likely (in Section 3.2 this example is
revisited). In [4] and [3], the authors extend the resulirfii@] to a more general class of graphs: the poly-
ominoid graphs. They also prove a conjecture: the expeciiee wf the election duration is equalitg n.

In this paper, we investigate the general case, namely, wader the case where a laafjenerates its
remaining lifetimeD,, according to a distributio®,,, whereD,, may depend on all the information that
u has at its disposal (see Remark 2 below). We warm the readistioguish the notatio®,, andD,,.

Remark 1 —In order to avoid that two nodes may disappear exactly asttmee time, the distributiori3,
need to avoid atoms (points with a positive mass). Even ifewatled in the statements, we assume that
the distributionsD,, have no atom. (In Section 3.3 a case whBremaybe 0 with a positive probability
arises and leads to problems).

—Itis assumed throughout the paper, that the nodes own aragnt random generators. This assump-
tion is needed each time that the independence argumeredsinshe paper.

1.2 The general scheme

Throughout this papel’ = (V, E) is a tree in the graph theoretic sen$éis its set of nodesk the set
of edges. The graph is acyclic and connected, and undirected. Eleeof 7', denoted byT|, is the
number of nodes.

In the class of algorithms we study, a nodéecoming a leaf at time (or which was a leaf at time
t = 0) disappears at time+ D,, (except if it is elected before!); the quantiy,, called the remaining
lifetime of u, is computed locally by the leaf. The description of the way chooses the distributicR,,
is crucial: this description is in fact equivalent to the atgstion of an algorithm using the general method
of elimination of leaves. We then enter into details here.

When a leaf is eliminated, it may transmit to its unique nbitsomeinformation(this notion will be
formalized below). During the execution of the algorithma,aresult of the successive eliminations of
the leaves, each internal nodesventually becomes a leaf, say at time At this time, it may use the
information received to compute the distributidy : then, it generates a random varialilg following
D, using a random generator. After this delay (at timer D,,), u is eliminated: it may transmit some
information to its (unique) neighbor, and disappears fromttee. The election goes on till eventually
only one single node remains; this node is then elected.

As said above, the key point here is to understand that anitilgo (from the class we study) is
parametrized by the way a nodehooses — according to the information it has — the distiobuD,, .

We here formalize more precisely what we understanthfigrmation received and information trans-
mitted, this needed to be coherent with the distributed model weidensThis will straightforwardly
leads to the formal definition of our class of algorithms.
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Fig. 1: On this example, are circled at each step the next leaf tppésa. On this example, the remaining lifetime
of the leaf 11, according to an algorithsa is allowed to depend on the information given by the nodes24arthe
information provided by 4 may include the information it edéed from the node 3. The total information received
by 11 has a forest structure (a forest having 2,4 as rootshavidg as set of nodex 3, 4, and possibly containing
all the lifetimes, prescribed weights, and computed vatiésese nodes).

a) The only information a node has at time 0 is its degrekg, and a prescribed weight,, which
is an element oR, R? or any set (this may be viewed as a personal parameter),

b) atits time of disappearance a leafransmits to its unique neighborall the information it has:
—the information it has received from its neighbors elinkanodes,
—the 4-tupleL,, = (deg,,, Du,w., 'y) which is thelocal valueof «; the quantityl’,, is computed
by v using the information it has received and possibly the @&ig, , w, ). In the application we
have,I', is used to comput®,,, and then we assume tHa} is not a function ofD,,. We callT",
thecomputed valuef u, it may belong to any set. See the remark below.

Assume that a node becomes a leaf at timewhenk of its k£ + 1 neighborsvy, ..., v;, have been
eliminated. Denote by, ..., I; the information these nodes have transmitted.tdhe node, has at its
disposal the multiseft/y, . .., I;. }. Recursively, one sees that the structure of the informagoeived by

u is a forest withk rooted trees (a forest being here a multiset of trees) raattétev;’s and constituted
with eliminated nodes; this forest has the geometry of tbefrfringed at thev;’s. The nodeu: formally
knows the local value of each of the nodes of this forest.

Remark 2 ¢ w, andI', are not used by each algorithm: when not used, they may bevosedpo be 0.

e The notion of computed values aims to simplify the desoniif some algorithms, summing the needed
information. Formally the transmission of this value is netessary since it can be computed by a node
having in hand all the other information.

e Let . be a distribution orR with cumulative distribution functiof’. If U is uniform on|0, 1] then the
law of F=*(U) is u, whereF~1(u) = inf{x | F(x) > u} is the right continuous inverse &f; hence to
simulate any distributiom, a uniform random variable of0, 1] is sufficient. We assume that the nodes
have at their disposal some independent random generatoviding uniform random values df, 1].

Hence clearly, the information a node has received can bededcwithout loss of information by a
labelled forestf, where each node is labelled by the 4-tuplé.,. The set of received information will
then be identified with¥ the set of forests labelled by 4-tuple corresponding ta/th's.

The other information at the disposal of a given nadkat may be used to compulg, is its ownlocal
informationL} = (deg(u), w,, ), where as said abo\g, has been computed usifdeg(u), w,, ) and
the received information. We denote By the set of local information.
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An algorithm is then just parametrized by a functitin

A: FxLr — M
(fi17)  — A(f1)

where M is the set of probability measures having their supportuidet! in[0, +o0c). The function
A associates with a paiif,!*) a probability distributionA(f,*). Any mapA encodes an algorithm
ALGO(A): when ALGQ(A) is used, a node becoming a leaf and having received the information
and having as local informatialj, computesD,, = A(f,!*) and generate®,, according toD,,. The
mapsA exemplified below depend only on a part of the informatioreiezd. The algorithms ALGQ\)
are in the class of algorithms using the method of Anglui, sattisfy the constraints to be distributed.

Example1l We translate into the form ALG@\) the algorithm defined in Métivier & al. [8]. For each
nodeu, w, = 1. A node which is a leaf at time 0 computEg = 1. Letw be an internal node and
Iyy..., Iy, bethe computed values of the eliminated neighbors dihenu computes:

Ty=1+Ty +-+T,,. 1)

Now the applicatiom depends only on the computed values: supposeithas receivedf,(*) and has
computed’,,, thenD, = A(f,1*) is simply Expo(T',), the exponential distributiéh with parameter
I',. Hence D, = Expo(1) if u is a leaf at tim&), and ifu becomes a leaf later, théh, = Expo(T,,),
wherel',, equals one plus the size of the forest of eliminated nodelrigdo it (see Fig. 1). It turns
out that in this case, each node is elected equally likelydlicreeT’). We provide in Section 3.2 a new
proof of this fact. Métivier et al. [8], [4] and [5] introded election algorithms on treekstrees and
polyominoids having also this property.

We address the question to compute according a general ANGQhe probabilityg,, that a given
nodeu is eventually elected. In Section 2 we answer in the genass# to this question, and express the
result in terms of properties of some variables arising ielated problem of directed elimination.

In the sequel, we introduce and study two categories of glgos in the class of algorithms ALGQ.).
Before discussing their properties, we have to say thatderdio get close formulas fdg, ) ,ev, Some
stabilities in the computations are necessary, and thistipossible for general functions. The two
categories we propose raise on two different kinds of stgbthe (max, +) algebra in distribution, and
the stable distributions for the convolutions.

— The first one is built using the properties of the exponédisribution, and generalizes the computa-
tion of Métivier & al: the application\ takes its values in the set of exponential distributions e set
of convolutions of such distributions. This category camtan algorithm ALGQA) such that g, )uev
is proportional to the prescribed weiglts, ) .cv . For technical reasons the prescribed weights),.c v
are to be integer valued. When tfe, ).y are allowed to be real numbers, we propose an algorithm
which elects proportionally to these weights in case of sascbut which fails with fow probability,

— the second category may be less interesting from an aigaigtpoint of view, since the algorithms
are more time consuming than the algorithms of the first catedt has however two main advantages: it
clarify in some sense the properties needed to make the datigufor a given functior\, and it leads
to a surprising proof of some mathematical identities imva the functiomrctan.

() a random variable r.\£ has the distributiofExpo(a), for somea > 0 if P(€ > ) = exp(—azx), forallz > 0.
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2 General case: probability of a given node to be elected

In this section, we give a general formula givifig,),.cv for ALGO(A). The proposition below is a
generalization of a proposition of Métivier &. al [8] (theupling argument we use is new).

The idea of the proof is to decompose the evenis not elected into disjoint events: ifu is not
elected, this means thathas become a leaf (or was a leat at 0) and then has been eliminated. ltet
be the time whem has become a leaf. At this timehad only one neighbar, and since afterward was
not elected, this means thathas disappeared befose If at time 0,u hask neighborsvy, ..., v in the
treeT, all of these nodes are possibly the last surviving nodeoked above: the family of events

E; = {uis not elected and the last neighborofvasv; }. (2)

are the “disjoint events” mentioned above. We just have topateP(E;).

Our idea to compute the probability of this event is to chaafjpoint of view, and to introduce a
notion ofdirected eliminationif « is eliminated before, this means that the sub-tr&gu, ] — which is
defined to be the tree rooteddinmaximal for the inclusion irf” which does not contain (see Fig. 2)) —
disappears entirely befofwv, y]; in the treel’[u, ] the elimination is done from the leaves to the raot

2.1 Directed elimination in rooted trees

%@ﬁu@f

Fig. 2: AtreeT’, and the two rooted treés[v andT

We define an algorithm ALGGA) (very similar to ALGQA)) which aims to eliminate all the nodes
of arootedtree, from the leaves to the root. We do not investigate tbetieln since the last living node
will be the root, but we are interested in the duration of tlmeaded elimination of the whole tree.

We define ALGO(A) recursively on a rooted tree The only difference between ALG@) and
ALGO*(A) is that with ALGO"(A) the root ofr is never considered as a leaf: using ALGQ)

— the leaves ofr are eliminated as with ALGQ@\), transmit and receive the same information, and
compute their remaining lifetimes distribution with thersafunctionA, butthe root ofr is not considered
as a leaf even if it has only one child,

—when the root of 7 becomes alone, it has received some information from itghiogirs (or none if it
was yet alone at time 0), then it computes usinghe distributionD};, and generat®;; accordingly; in
other words, the root once alone behaves as a leaf in AL/GOAfter the delayD}, v disappears.

v

We define theluration D*(7) of the whole treer rooted inv according to ALGO(A) as the date of
disappearance af If 7 is a rooted tree with roai, and such that the subtreeofooted at the children
ofuarery,..., 7. one has

D*(r) = Dj +max D*(r,); ©)

Dy has a distribution given by with the same rules as in ALGQ.).
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We come back in the election problem in a (unrooted) fresccording to ALGQA). Letw andv be
two neighbors in a tre@’; consider in one hand the event

E.. = {uis not elected and the last neighbor.ois v}

corresponding to a generic eventin (2). In the other hand, the two tre&%u, ¥] andT [v, #] are rooted
trees, respectively in andv; consider two independent directed eliminations on thesestas explained
above, and denote by*(7'[u, ¢]) andD*(T'[v, #]) their independent durations. It turns out that

Proposition 1 The following identity holds true:

P(Ey,,) = P(D*(T[u,#]) < D*(T[v,#])). (4)

Proof: We propose a proof via a coupling argument. The idea is to enenine election process which
takes place iff” with the directed eliminations ii"[v, %] andT'[u, ¢, that are directed. The comparison
is not immediate since these algorithms are not defined osaime probability space.

The algorithms ALGQA) and ALGO"(A) allow each node: to choose a distributio®,, or D}, de-
pending on the information received, from which the nodezegate their lifetime®,, or D. According
to Remark 2, a variabl& uniform is sufficient to generat®,, or D}. Hence, we suppose that at time 0
each nodev in the tre€l” has at its disposal a real numléy, obtained by a uniform random generator
on [0,1]. This is the key-point: a node in 7' maybe considered also as a nod€’iw, | or in T'[u, #],
depending on which of these trees it belongs. If one now érecdLGQA) onT" and ALGO(A) on
T'[u, ] andT'[v, #] using the variablé&/,, for the generation of th®,,'s and theD};’s, one can compare
the eventd £, , } and{D*(T'[u, ¥]) < D*(T'[v, #])}, since they are now on the same probability space.

It turns out that for each assignment of ttig’s, we have{E, ,} = {D*(T'[u,¥]) < D*(T[v,#])}.
Indeed, since both algorithms use tig’s, since the algorithms have the same constructions argathe
rules concerning\, we see that the disappearance of leaves coincide in the twlelsntill the disappear-
ance ofu or of v: after this time, the information transmitted are diffeeand then the two processes
evolve in a non comparable manner. Now, in the election m®A&GQA) in T, if u is eliminated before
v, then the tred’[u, #| has lived a directed election, and thD¥$(7'[u, ¢]) coincides with the disappear-
ance time ofx (for ALGO(A)). At this time, sincev is still alive, this means that the directed elimination
in T'[v, #] is not finished, thu* (T'[u, ¥]) < D*(T'[v,#]). Conversely, ifD*(T'[u,y]) < D*(T[v,#]),
thenu disappears beforeaccording to ALGQA), since till the timemin(D*(T[u, #]), D*(T'[v, #])) the
two elimination processes coincide.

We then have construct a probability space (the one wherdefieed thel/,,’'s) on which the two
events{ £, , } and{D*(T'[u, #]) < D*(T[v,#])} coincide; thus, they have the same probability. O

As a corollary we have

Corollary 1 Letu be a node of a tre& andus,..., uy, its neighbors. Using ALGQ\)

qu=1— 3 P(D*(Tu,ph]) < D*(TTui, #])). )

1<i<k
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3 First category: around the (max, +) algebra

In this category, the distributio®,, are either the exponential distribution or a convolutiorsath dis-
tributions. We will see that this category contains the athm of Métivier &. al. allowing to elect
uniformly in the tree, an algorithm electing proportiogalh positive integer valued prescribed weights,
some algorithms allowing to elect proportionally to sonrectural features of the tree.

Before doing this, we recall some classical facts. In theisbf{*! denote a r.v. having thExpo(a)
distribution, andV,, = max; <;<, £") is the maximum of. i.i.d. r.v. Expo(1) distributed. The distri-
bution of M,, is denoted from now on by1,, (we haveP(M,, < z) = (1 — exp(—=z))", for anyz > 0).

Lemmal Let M, ... £ ben independent exponential random variables with parameters. , n.
The random variable§! + ... + £[" has distributionM,,.

Proof: Consider(&;, 1 <i < n), the order statistics of i.i.d. Expo(1) random variableg{”, L EN
that is the sequenc(é,‘im, 1 < i < n), sorted in the increasing order. The variablg, = maxgim is
also the sum of the random variablgs— &1, fori = 1, ..., n with the conventiorf, = 0. Using the
memoryless property of the exponential distribution, oasth—&;_4 4 gln+1-il forall i ¢ {1,...,n},

and the variable€€; — &;_1) are independent (for more details, see Proposition p.18llef{2]). O

From the lemma we easily derive:

Corollary 2 i) Considerk > 1 positive integers,, . . . , ax summing tau. If the r.v. M,,,’s are indepen-

dent, and independent 6f**+1 thenM,,,; < gln+1 4 maxy<;<x Mg,
ii) Foranyk > 1andn > 1, set

Voo L gl 4 glnt2l 4 glnth] (6)

where the variable§["+7 are independent. We havé,,, < M,, + Yo k-

3.1 The algorithms of the first category

The first category of algorithms we design is based on CagoRa It may be more easily understood
via the directed elimination ALGQA), where the duration of a rooted treeaccording to ALGO(A)
will have distributionM,,, for somen. The applicatiomA will take its values in the set of distributions
{Y[n,k],n > 1,k > 1}, whereY[n, k| is the distribution ofY,, ;. (given in (6)).

The only difference between the algorithms of the first categs the computed valuds,’s : the class
of algorithm considered is then simply parametrized by tossiple computed valuds satisfying the
constraint below. It is convenient to consider bi-dimenalccomputed valueg,, = (C,, g,,) whereC,,
will be use to add some quantities coming from the receivéatination, andy,, is used to make some
local computations.

Here are in two points the description of all the algorithrhihe first category:

— Attime 0, the computed valug,, of any leafu isT,, = (0, g.,) whereg,, is a positive integer. Then set

Dy = V[0, 9] £ Mc, 1y, 7)
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— Letw be an internal node ifi' becoming a leaf; lef be the received information, and in particular let
'y =(C1,91),-..,Tx = (Ck, gx) be the computed values of its eliminated neighbors. Thendldeu
compute an integer valug, according to its informationf{and L}), and letC,, = Zle C; + g;- Then
setD, = YV [Cu, gu] -

Let us think in terms of directed elimination. Recall tha¢ thotion of computed values are defined
similarly in ALGO*(A) and in ALGQ(A), but in the directed case, it is convenient to make appear the
tree notation in the computed values instead of the nodeionta

If a rooted treer is reduced to a leaf, setC'(7) = 0, g(7) = g,. If 7 has rootu, and if the sub-trees

rooted at the children af arer, . . ., 73, then seC(7) = Ele C(7) + g(m). The lifetime of the root of
7 is then distributed as the maximum of the(7;)’s plus a random variable distributed #6C' (1), g(7)).
To simplify a bit the formula, for any rooted tree let

O(r) = g(1) + C(7). 8)
Proposition 2 For any algorithm ALGO(A) of the first category the duration of a rooted tresatisfies
. d
D (T) = M@(T).
Proof: The lifetime of a treer reduced to a leaf i3(0, g(7)) = Mc(r)4g9(r) = Meo(r). Assume by

induction that the proposition is true for any rooted tregifg less tham nodes. Consider now a

rooted tree withn nodes and the; defined as above. By recurrent® (r;) 4 Me(~,), and thus, by
independence of th&lg,y's, D*(7) = YV [>_, O(7:), g(7)] + max; Mg, is in distribution equal to

d
]\4(2:7 o) +g(r) = M@(T) by Corollary 2. O
As a corollary we have
Theorem 1 For any algorithm ALGQA) of the first category, any treE,

L O (Tfus )
=1 2 S} + 6T Al ©

Proof: This is a consequence of Propositions 1 and 2 and of the folfpwdentity: if M, and M, are
independent, theR(M, < M) = a/(a +b). O

This theorem has a direct consequence quite surprisingg #ideals with very general functidn It
is obtained by summing Equality (9) over all nodes:

Corollary 3 For any treeT’, any choice of positive integer values function= (C., g..)

i O(Tfus ) _
2N 2 ) 1 6T ) | &

u

Remark 1 ensures that almost surely the election eventsiadigeeds. Indeed, each leaf eventually dies
out with probability one, and then the election stops afténite time. All the disappearance dates are

different, since the lifetimes distributions have no at@mnthe end it eventually remains only one leaving

node which is elected.

Remark 3 In general the denominator in the RHS of (9) depends on the naahd, thus, apart from the
two first examples below where this denominator is consthatiormula (9) cannot be “simplified”.
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3.2 Examples

1. The uniform electing algorithm (treated in Example 1) [gaaticular case of this model by letting
g. = 1 and, therefore@(¢) = |¢|, the total number of nodes in Since each node is either in
T[u, 5] or in T'[u;, ], by (9)

Gu = 1- Z T |T[u“}§l| :1_%:%;
1<i<k (T [ gha]| + 1T [, ]| |T| T
this is the uniform distribution off’, as found by Métivier & al.

2. Assume that all prescribed weights are positive intedérg, = w,, for every nodes the®(t) =
>_uet wu the total weight of the rooted trée In this casey, = ;¢ Wherew(T) = 3 .7 w(u)
is the total weight irif. Indeed, in the RHS of (9) the denominator is equabt@’) whatever is the
value ofi, and summing the numerators give&l’') — w,,.

3. Forg, = deg(u), ¢, becomes proportional tbeg(u) (takew, = deg(w) in the previous point 2).

4. In the case wherg, = 1 for the leaves and, = |t| more generally for all the nodes, then
O(t) = PLS(t) + |t| becomes the path length of (the rooted treglus its size. Then Formula (9)
gives the value of,.

3.3 Real-valued weights

In Example 3.2.2, we gave an algorithm of the first categochghatg,, is proportional tow,, provided
that thew, s are integers. The computations relying on Corollary 2, te&its have to be integer valued,
or say have a known common divisor. A natural question arisethere an algorithm such thay is
proportional to general real-valued weights's? We were not able to answer to this question, but using
a randomized version of the algorithms of the first categeeyprovide an algorithm that may fail with a
small probability, but such that conditionally on succélssg,,’s are indeed proportional to the,’s.

The difference with the algorithm described above is ao¥adl Instead of using its weight, as
a parameter in a distributiop(n, k), a nodeu becoming a leaf, uses its weight, as a parameter of
a Poisson distribution: it generatés, a r.v. following the Poissonf,) distribution and then uses this
integer as its weight in the description of algorithms of finst category we gave. In other words, the
computed valug, instead of being simply,, will take the valuek with probabilityexp(—w,, )wk /k!.
Let us discuss some points linked to the failure of the atbori

Remark 4 — If the random generate,, is zero for somes, then conditionally tolV,, the remaining
lifetime isExpo(0) distributed, that is zero almost surely:is eliminated immediately.

— If all nodes generate zero, then the algorithm fails: itnt@mates without choosing any node. The
probability of failure for the algorithm ig~*(") wherew(T") = > uev Wy 1S the total weight. It becomes
insignificantwheneven(T') grows. To guarantee the success with a high probabilituffices to multiply

w by a great numbet known by all nodes.

The following lemma, which is easily proved, simplifies threqf of the main proposition of this section.
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Lemma?2 Let Xy, ..., X,, ben independent r.v. of Poisson distributions with parameters.., A,, re-
spectively. For anyt > 0, the distribution ofX; conditionally onX; + --- + X,, = k is binomial
Bk, A/ (M1 + -4 An)).

Proposition 3 LetT" be any tree. The probability that the algorithm chooses aenodonditioned by the
event that not all nodes generate 0 is proportionatutp: P (u elected‘ > ovey Wy > O) = wy, /w(T).

Proof: Consider some intege(%, ),cv , with at least oné;,, > 0. Given the value$V, = k, according
to Section 3.2, second example, we have:

P (u elected W, =k, foranyvinT) = k./(>_ k).
veV

Therefore the probability that the algorithm choose®nditioned by) ©, W, > 0, is nothing but:
Wy

Wy >0/,
Zv WU zv: g )
whereE denotes the expected value. But then, according to thequelemma, for a fixed > 0,
VVH, Wy
E Wy =k| = .
<Zv WU | Z: ) Z?) Wy

This implies that if the sum of generated numbers is positideatever the values it takes, the probability
of u to be elected |s£“’—w The proposition follows. O

P(u elected’ > W,>0) = E <

4 Second category: around the stable distributions

The second category relies on Formula (3). One sees thasicigomsuitablé)* may let themax operator
acting on the RHS disappears: the idea is to chdosender the form

Dy = X" —maxD(r;) + »_ D(r;) (10)

(2

for some X whose distribution depends of the information receivedubyln this case Formula (3)
concerning the directed elimination becomes simply

D*(r) = X" + ZD*(Q).

3

And the duration of a rooted tree satisfies:

D*(r) = X“-I—ZD*(E): > oxv (11)

v nodes int

Once again, the involved variabl&S’ have a distribution that may depend on the history of theightion
of the sub-tree of rooted inv. The algorithms of the second category are parametrizetl thegpossible
distribution forX* (the variablesX* appearing in (10) and (11)).
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In the case where th&" are i.i.d, the distribution oD*(7) is simple: it is a sum ofr| i.i.d. random
variables, and then it is indexed by the unique intégerDenoting bysS,, a sum ofn i.i.d. copies ofX?,

according to Corollary 1 we have for a nodéavingu, . . ., ux as neighbors,
w=1=3 Py < Sirpu i) (12)
1<i<k

There is an interesting case where the computation in (12)beamade explicitly, and leads to close
formulas: the case of the stable distribution with indg2. The stable distributions are the families
of distribution that are stable for the convolution (seddtdl2] for more information). We say that

has the stable distribution with index2 if the density ofX is f(t) = 1@%. If X1,...,X) are

independent copies of thenS, = X; +--- + X 2 k2X. Consider nows,, andsS!, two independent
sums ofm andn independent copies of . One has
P(S,, < S) =P(m*X <n?X’) (13)

for two copiesX andX’ of X. Using the density ok andX’, one get®(S,, < S;,) = 2 arctan(n/m).
Hence

Lemma 3 For any treeT’, for any node: havinguy, . . . , u; as neighbors, under the algorithm presented
above ) Tlus ]|
Ui,
qu =1— — arctan <7) .
Zk ™ [T, ]

In particular, since ¢, = 1 this gives for each tree a formula related to the arctan fanciVe review
below some examples and derive formulas.

4.1 Applications: some identities involving the arctan function

Consider the star tree withh nodes: it is the tree where a nodéasn — 1 neighbors, sayi,...,v,_1.
By symmetryg,, does not depend an sincev; has for only neighbowv, by Lemma 3

Gv, =1 — (2/m)arctan(n — 1).

Using again Lemma 3, one has for the center of the star tree

2(n —1 1
G =1~— 7(n ) arctan (—) )
T 1

Sinceg, + Zf;ll ¢v; = 1 (since a node is eventually elected with probability 1), veefor anyn > 2,
arctan(n — 1) + arctan(1/(n — 1)) = 7 /2. (14)

Consider now a sequence of tréBs such thatT;, is formed by two stars having,, + 1 and3,, + 1
nodes with center, andwv, linked by an edge betweanandv. The election probability of any leaf is
Qv; = 1 — (2/m) arctan (o, + Br+1) , When

11— —arctan| ——— | — —arctan | ———
™ oy + 677,4—1 ™ ap + 1

1— — arctan| ———— | — — arctan .
™ (079 + 6n,+1 ™ 677, + 1

qu

Qv
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Using (o + 3n)qv, + ¢u + ¢o = 1 and (14), we get

2 n+1 n 1+ 1
— | arctan On + + arctan P + =1.
T On + 1 o, +1

If a, /B, — x > 0, by continuity ofarctan one obtains the famous formula

arctan(z) + arctan(1/z) = 7/2.

Going further, letl’, be the sequence of trees having a path of Bige nodesu, . . ., ux such that there
is an edge betweewy andu;; and such that; hasa,, ; other neighbors that are leaves). The probability
of election of any of thé" v, ; leaves isy; = 1 — Z arctan(}" o, + k — 1), that ofu; is

2 1 lan+1 ‘ian.'+1
1—— |y, arctan <—> -+ arctan M -+ arctan M

m >0+ k=1 ngi(amj +1) iji(amj +1)
Finally, assuming that for any «,, ; — «; for some positive real number;, we get by continuity, and
using that the sum of all events must be 1, that for any pesital numbet, .. ., ag,

QL Qs
Z arctan @ -+ arctan @ =
p ngz' Qj iji Qj
Each simple finite tree used as a skeleton on which are grsdi@e packets of leaves (with siag ;, &
corresponding to a labeling of the nodes of the skeletort)pndlvide a formula similar to (15).

(k—1). (15)

o N
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