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The election is a classical problem in distributed algorithmic. It aims to design and to analyze a distributed algorithm
choosing a node in a graph, here, in a tree. In this paper, a class of randomized algorithms for the election is studied.
The election amounts to removing leaves one by one until the tree is reduced to a unique node which is then elected.
The algorithm assigns to each leaf a probability distribution (that may depends on the information transmitted by the
eliminated nodes) used by the leaf to generate its remainingrandom lifetime. In the general case, the probability of
each node to be elected is given. For two categories of algorithms, close formulas are provided.
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1 Introduction
1.1 The problem
Starting from a configuration where all processors are in thesame state, the goal of an election algorithm
is to obtain a configuration where exactly one processor is inthe stateleader, the other ones being in the
statelost. The (leader) election problem is often the first problem to solve in a distributed environment.
A leader permits to centralize some information, to make some decisions, to coordinate the processors
for subsequent tasks. Hence, the election problem – first posed by Le Lann in [6] – is one of the most
studied problems in distributed algorithmic, and this under many different assumptions [9]. The graph
encoding the relations between the processors can be a ring,a tree, a complete or a general connected
graph. The system can be synchronous or asynchronous and processors may have access to a total or
partial information of the geometry of the underlying graph, or of the current state of the system, etc.

In this paper we consider the case of election in trees, when the nodes have at timet = 0 a very par-
tial information on the geometry of the tree: each node only knows its number of neighbors. A possible
method for electing in a tree, introduced by Angluin ([1] Theorem 4.4), amounts to eliminating succes-
sively the leaves till only one node remains, the leader. In this paper, we investigate this method in the
general case: assume that a nodeu being a leaf (was a leaf at timet = 0, or that becomes a leaf at time
t) decides to live a random remaining timeDu before being eliminated; in other words, it is eliminated at
time t+Du except if it is elected before this date. Starting with a given treeT0 at time 0, denote byTt the
tree constituted with the non-eliminated nodes at timet. The family(Tt)t≥0 is a random process taking
its values in the set of trees. GivenT0, the distribution of(Tt)t≥0 – and then, also the probability that a
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given node is elected – depends on the way the nodes choose thedistribution according to which they will
compute their random remaining lifetime.
– In [7] the authors consider two elementary approaches. Thefirst one is based on the assumption that
all sequencesof leaves elimination have thesameprobability (no distributed algorithm seems to have this
property). Their second approach assumes that at each stepall leaveshave the same probability of being
removed. This corresponds to the case where theD′

us are all exponentially distributed with parameter 1.
The authors study thoroughly both approaches and prove manyproperties of resulting random processes.
– In [8], the authors show that if the nodes suitably choose their remaining random lifetime then a to-
tally fair election process is possible, the nodes being elected equally likely (in Section 3.2 this example is
revisited). In [4] and [3], the authors extend the result from [8] to a more general class of graphs: the poly-
ominoid graphs. They also prove a conjecture: the expected value of the election duration is equal tolog n.

In this paper, we investigate the general case, namely, we consider the case where a leafu generates its
remaining lifetimeDu according to a distributionDu, whereDu may depend on all the information that
u has at its disposal (see Remark 2 below). We warm the reader todistinguish the notationDu andDu.

Remark 1 – In order to avoid that two nodes may disappear exactly at thesame time, the distributionsDu

need to avoid atoms (points with a positive mass). Even if notrecalled in the statements, we assume that
the distributionsDu have no atom. (In Section 3.3 a case whereDu maybe 0 with a positive probability
arises and leads to problems).

– It is assumed throughout the paper, that the nodes own independent random generators. This assump-
tion is needed each time that the independence argument is used in the paper.

1.2 The general scheme

Throughout this paperT = (V, E) is a tree in the graph theoretic sense:V is its set of nodes,E the set
of edges. The graphT is acyclic and connected, and undirected. Thesizeof T , denoted by|T |, is the
number of nodes.

In the class of algorithms we study, a nodeu becoming a leaf at timet (or which was a leaf at time
t = 0) disappears at timet + Du (except if it is elected before!); the quantityDu, called the remaining
lifetime of u, is computed locally by the leafu. The description of the wayu chooses the distributionDu

is crucial: this description is in fact equivalent to the description of an algorithm using the general method
of elimination of leaves. We then enter into details here.

When a leaf is eliminated, it may transmit to its unique neighbor someinformation(this notion will be
formalized below). During the execution of the algorithm, as a result of the successive eliminations of
the leaves, each internal nodeu eventually becomes a leaf, say at timetu. At this time, it may use the
information received to compute the distributionDu: then, it generates a random variableDu following
Du using a random generator. After this delay (at timetu + Du), u is eliminated: it may transmit some
information to its (unique) neighbor, and disappears from the tree. The election goes on till eventually
only one single node remains; this node is then elected.

As said above, the key point here is to understand that an algorithm (from the class we study) is
parametrized by the way a nodeu chooses – according to the information it has – the distributionDu.

We here formalize more precisely what we understand byinformation received and information trans-
mitted, this needed to be coherent with the distributed model we consider. This will straightforwardly
leads to the formal definition of our class of algorithms.
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Fig. 1: On this example, are circled at each step the next leaf to disappear. On this example, the remaining lifetime
of the leaf 11, according to an algorithm∆ is allowed to depend on the information given by the nodes 2 and 4; the
information provided by 4 may include the information it received from the node 3. The total information received
by 11 has a forest structure (a forest having 2,4 as roots, andhaving as set of nodes2, 3, 4, and possibly containing
all the lifetimes, prescribed weights, and computed valuesof these nodes).

a) The only information a nodeu has at time 0 is its degreedegu and a prescribed weightwu, which
is an element ofR, R

d or any set (this may be viewed as a personal parameter),

b) at its time of disappearance a leafu transmits to its unique neighborv all the information it has:
– the information it has received from its neighbors eliminated nodes,
– the 4-tupleLu = (degu, Du, wu, Γu) which is thelocal valueof u; the quantityΓu is computed
by u using the information it has received and possibly the pair(degu, wu). In the application we
have,Γu is used to computeDu, and then we assume thatΓu is not a function ofDu. We callΓu

thecomputed valueof u, it may belong to any set. See the remark below.

Assume that a nodeu becomes a leaf at timet whenk of its k + 1 neighborsv1, . . . , vk, have been
eliminated. Denote byI1, . . . , Ik the information these nodes have transmitted tou. The nodeu has at its
disposal the multiset{I1, . . . , Ik}. Recursively, one sees that the structure of the information received by
u is a forest withk rooted trees (a forest being here a multiset of trees) rootedat thevi’s and constituted
with eliminated nodes; this forest has the geometry of the treeT fringed at thevi’s. The nodeu formally
knows the local value of each of the nodes of this forest.

Remark 2 • wu andΓu are not used by each algorithm: when not used, they may be supposed to be 0.
• The notion of computed values aims to simplify the description of some algorithms, summing the needed
information. Formally the transmission of this value is notnecessary since it can be computed by a node
having in hand all the other information.
• Let µ be a distribution onR with cumulative distribution functionF . If U is uniform on[0, 1] then the
law ofF−1(U) is µ, whereF−1(u) = inf{x | F (x) ≥ u} is the right continuous inverse ofF ; hence to
simulate any distributionµ, a uniform random variable on[0, 1] is sufficient. We assume that the nodes
have at their disposal some independent random generators providing uniform random values on[0, 1].

Hence clearly, the information a node has received can be encoded without loss of information by a
labelled forestf , where each nodev is labelled by the 4-tupleLv. The set of received information will
then be identified withF the set of forests labelled by 4-tuple corresponding to theLu’s.

The other information at the disposal of a given nodeu that may be used to computeDu is its ownlocal
informationL⋆

u = (deg(u), wu, Γu), where as said aboveΓu has been computed using(deg(u), wu) and
the received information. We denote byL⋆ the set of local information.
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An algorithm is then just parametrized by a function∆

∆ : F × L⋆ −→ M
(f, l⋆) 7−→ ∆(f, l⋆)

whereM is the set of probability measures having their support included in [0, +∞). The function
∆ associates with a pair(f, l⋆) a probability distribution∆(f, l⋆). Any map∆ encodes an algorithm
ALGO(∆): when ALGO(∆) is used, a nodeu becoming a leaf and having received the informationf
and having as local informationl⋆u, computesDu = ∆(f, l⋆) and generatesDu according toDu. The
maps∆ exemplified below depend only on a part of the information received. The algorithms ALGO(∆)
are in the class of algorithms using the method of Angluin, and satisfy the constraints to be distributed.

Example 1 We translate into the form ALGO(∆) the algorithm defined in Métivier & al. [8]. For each
nodeu, wu = 1. A node which is a leaf at time 0 computesΓu = 1. Let u be an internal node and
Γv1 , . . . , Γvk

be the computed values of the eliminated neighbors ofu. Thenu computes:

Γu = 1 + Γv1 + · · · + Γvk
. (1)

Now the application∆ depends only on the computed values: suppose thatu has received(f, l⋆) and has
computedΓu, thenDu = ∆(f, l⋆) is simplyExpo(Γu), the exponential distribution(i) with parameter
Γu. Hence,Du = Expo(1) if u is a leaf at time0, and ifu becomes a leaf later, thenDu = Expo(Γu),
whereΓu equals one plus the size of the forest of eliminated nodes leading to it (see Fig. 1). It turns
out that in this case, each node is elected equally likely (for all treeT ). We provide in Section 3.2 a new
proof of this fact. Métivier et al. [8], [4] and [5] introduced election algorithms on trees,k-trees and
polyominoids having also this property.

We address the question to compute according a general ALGO(∆), the probabilityqu that a given
nodeu is eventually elected. In Section 2 we answer in the general case to this question, and express the
result in terms of properties of some variables arising in a related problem of directed elimination.

In the sequel, we introduce and study two categories of algorithms in the class of algorithms ALGO(∆).
Before discussing their properties, we have to say that in order to get close formulas for(qu)u∈V , some
stabilities in the computations are necessary, and this is not possible for general functions∆. The two
categories we propose raise on two different kinds of stability: the (max, +) algebra in distribution, and
the stable distributions for the convolutions.

– The first one is built using the properties of the exponential distribution, and generalizes the computa-
tion of Métivier & al: the application∆ takes its values in the set of exponential distributions union the set
of convolutions of such distributions. This category contains an algorithm ALGO(∆) such that(qu)u∈V

is proportional to the prescribed weights(wu)u∈V . For technical reasons the prescribed weights(wu)u∈V

are to be integer valued. When the(wu)u∈V are allowed to be real numbers, we propose an algorithm
which elects proportionally to these weights in case of success, but which fails with alow probability,

– the second category may be less interesting from an algorithmic point of view, since the algorithms
are more time consuming than the algorithms of the first category; it has however two main advantages: it
clarify in some sense the properties needed to make the computation for a given function∆, and it leads
to a surprising proof of some mathematical identities involving the functionarctan.

(i) a random variable r.v.E has the distributionExpo(a), for somea > 0 if P(E ≥ x) = exp(−ax), for all x ≥ 0.
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2 General case: probability of a given node to be elected
In this section, we give a general formula giving(qu)u∈V for ALGO(∆). The proposition below is a
generalization of a proposition of Métivier &. al [8] (the coupling argument we use is new).

The idea of the proof is to decompose the event{u is not elected} into disjoint events: ifu is not
elected, this means thatu has become a leaf (or was a leaf att = 0) and then has been eliminated. Lett
be the time whenu has become a leaf. At this timeu had only one neighborv, and since afterwardu was
not elected, this means thatu has disappeared beforev. If at time 0,u hask neighborsv1, . . . , vk in the
treeT , all of these nodes are possibly the last surviving nodev evoked above: the family of events

Ei = {u is not elected and the last neighbor ofu wasvi}. (2)

are the “disjoint events” mentioned above. We just have to computeP(Ei).
Our idea to compute the probability of this event is to changeof point of view, and to introduce a

notion ofdirected elimination: if u is eliminated beforev, this means that the sub-treeT [u, v] – which is
defined to be the tree rooted inu maximal for the inclusion inT which does not containv (see Fig. 2)) –
disappears entirely beforeT [v, u]; in the treeT [u, v] the elimination is done from the leaves to the rootu.

2.1 Directed elimination in rooted trees

u

u

v

v

Fig. 2: A treeT , and the two rooted treesT [v, u] andT [u, v]

We define an algorithm ALGO⋆(∆) (very similar to ALGO(∆)) which aims to eliminate all the nodes
of a rootedtree, from the leaves to the root. We do not investigate the election since the last living node
will be the root, but we are interested in the duration of the directed elimination of the whole tree.

We define ALGO⋆(∆) recursively on a rooted treeτ . The only difference between ALGO(∆) and
ALGO⋆(∆) is that with ALGO⋆(∆) the root ofτ is never considered as a leaf: using ALGO⋆(∆)
– the leaves ofτ are eliminated as with ALGO(∆), transmit and receive the same information, and
compute their remaining lifetimes distribution with the same function∆, butthe root ofτ is not considered
as a leaf, even if it has only one child,
– when the rootv of τ becomes alone, it has received some information from its neighbors (or none if it
was yet alone at time 0), then it computes using∆ the distributionD⋆

v , and generateD⋆
v accordingly; in

other words, the root once alone behaves as a leaf in ALGO(∆). After the delayD⋆
v, v disappears.

We define thedurationD⋆(τ) of the whole treeτ rooted inv according to ALGO⋆(∆) as the date of
disappearance ofv. If τ is a rooted tree with rootu, and such that the subtree ofτ rooted at the children
of u areτ1, . . . , τk: one has

D⋆(τ) = D⋆
u + max

i
D⋆(τi); (3)

D⋆
u has a distribution given by∆ with the same rules as in ALGO(∆).
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We come back in the election problem in a (unrooted) treeT according to ALGO(∆). Let u andv be
two neighbors in a treeT ; consider in one hand the event

Eu,v = {u is not elected and the last neighbor ofu is v}

corresponding to a generic eventEi in (2). In the other hand, the two treesT [u, v] andT [v, u] are rooted
trees, respectively inu andv; consider two independent directed eliminations on these trees as explained
above, and denote byD⋆(T [u, v]) andD⋆(T [v, u]) their independent durations. It turns out that

Proposition 1 The following identity holds true:

P(Eu,v) = P
(

D⋆(T [u, v]) < D⋆(T [v, u])
)

. (4)

Proof: We propose a proof via a coupling argument. The idea is to compare the election process which
takes place inT with the directed eliminations inT [v, u] andT [u, v], that are directed. The comparison
is not immediate since these algorithms are not defined on thesame probability space.

The algorithms ALGO(∆) and ALGO⋆(∆) allow each nodeu to choose a distributionDu or D⋆
u de-

pending on the information received, from which the nodes generate their lifetimesDu or D⋆
u. According

to Remark 2, a variableU uniform is sufficient to generateDu or D⋆
u. Hence, we suppose that at time 0

each nodew in the treeT has at its disposal a real numberUw obtained by a uniform random generator
on [0, 1]. This is the key-point: a nodew in T maybe considered also as a node inT [v, u] or in T [u, v],
depending on which of these trees it belongs. If one now executes ALGO(∆) on T and ALGO⋆(∆) on
T [u, v] andT [v, u] using the variableUw for the generation of theDw ’s and theD⋆

w’s, one can compare
the events{Eu,v} and{D⋆(T [u, v]) < D⋆(T [v, u])}, since they are now on the same probability space.

It turns out that for each assignment of theUw ’s, we have{Eu,v} = {D⋆(T [u, v]) < D⋆(T [v, u])}.
Indeed, since both algorithms use theUw ’s, since the algorithms have the same constructions and thesame
rules concerning∆, we see that the disappearance of leaves coincide in the two models till the disappear-
ance ofu or of v: after this time, the information transmitted are different, and then the two processes
evolve in a non comparable manner. Now, in the election process ALGO(∆) in T , if u is eliminated before
v, then the treeT [u, v] has lived a directed election, and thusD⋆(T [u, v]) coincides with the disappear-
ance time ofu (for ALGO(∆)). At this time, sincev is still alive, this means that the directed elimination
in T [v, u] is not finished, thusD⋆(T [u, v]) < D⋆(T [v, u]). Conversely, ifD⋆(T [u, v]) < D⋆(T [v, u]),
thenu disappears beforev according to ALGO(∆), since till the timemin(D⋆(T [u, v]), D⋆(T [v, u])) the
two elimination processes coincide.

We then have construct a probability space (the one where aredefined theUw’s) on which the two
events{Eu,v} and{D⋆(T [u, v]) < D⋆(T [v, u])} coincide; thus, they have the same probability. 2

As a corollary we have

Corollary 1 Letu be a node of a treeT andu1,...,uk its neighbors. Using ALGO(∆)

qu = 1 −
∑

1≤i≤k

P
(

D⋆(T [u, ui]) < D⋆(T [ui, u])
)

. (5)



Election with delays in trees 7

3 First category: around the (max, +) algebra
In this category, the distributionDu are either the exponential distribution or a convolution ofsuch dis-
tributions. We will see that this category contains the algorithm of Métivier &. al. allowing to elect
uniformly in the tree, an algorithm electing proportionally to positive integer valued prescribed weights,
some algorithms allowing to elect proportionally to some structural features of the tree.

Before doing this, we recall some classical facts. In the sequelE [a] denote a r.v. having theExpo(a)

distribution, andMn = max1≤i≤n E
[1]
i is the maximum ofn i.i.d. r.v. Expo(1) distributed. The distri-

bution ofMn is denoted from now on byMn (we haveP(Mn ≤ x) = (1 − exp(−x))n, for anyx ≥ 0).

Lemma 1 Let E [1], ..., E [n] be n independent exponential random variables with parameters1, . . . , n.
The random variablesE [1] + ... + E [n] has distributionMn.

Proof: Consider(Êi, 1 ≤ i ≤ n), the order statistics ofn i.i.d. Expo(1) random variablesE [1]
1 , . . . , E

[1]
n ,

that is the sequence(E [1]
i , 1 ≤ i ≤ n), sorted in the increasing order. The variableMn = max E

[1]
i is

also the sum of the random variablesÊi − Êi−1, for i = 1, . . . , n with the convention̂E0 = 0. Using the

memoryless property of the exponential distribution, one hasÊi −Êi−1
d
= E [n+1−i] for all i ∈ {1, . . . , n},

and the variables(Êi − Êi−1) are independent (for more details, see Proposition p.19 in Feller [2]). 2

From the lemma we easily derive:

Corollary 2 i) Considerk ≥ 1 positive integersa1, . . . , ak summing ton. If the r.v.Mai ’s are indepen-

dent, and independent ofE [n+1] thenMn+1
d
= E [n+1] + max1≤i≤k Mai .

ii) For anyk ≥ 1 andn ≥ 1, set

Yn,k
d
= E [n+1] + E [n+2] + ... + E [n+k], (6)

where the variablesE [n+i] are independent. We haveMn+k
d
= Mn + Yn,k.

3.1 The algorithms of the first category

The first category of algorithms we design is based on Corollary 2. It may be more easily understood
via the directed elimination ALGO⋆(∆), where the duration of a rooted treeτ according to ALGO⋆(∆)
will have distributionMn, for somen. The application∆ will take its values in the set of distributions
{Y[n, k], n ≥ 1, k ≥ 1}, whereY[n, k] is the distribution ofYn,k (given in (6)).

The only difference between the algorithms of the first category is the computed valuesΓu’s : the class
of algorithm considered is then simply parametrized by the possible computed valuesΓ satisfying the
constraint below. It is convenient to consider bi-dimensional computed valuesΓu = (Cu, gu) whereCu

will be use to add some quantities coming from the received information, andgu is used to make some
local computations.

Here are in two points the description of all the algorithms of the first category:
– At time0, the computed valueΓu of any leafu is Γu = (0, gu) wheregu is a positive integer. Then set

Du = Y[0, gu]
d
= MCu+gu . (7)
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– Let u be an internal node inT becoming a leaf; letf be the received information, and in particular let
Γ1 = (C1, g1), . . . , Γk = (Ck, gk) be the computed values of its eliminated neighbors. Then thenodeu

compute an integer valuegu according to its information (f andL⋆
u), and letCu =

∑k

i=1 Ci + gi. Then
setDu = Y [Cu, gu] .

Let us think in terms of directed elimination. Recall that the notion of computed values are defined
similarly in ALGO⋆(∆) and in ALGO(∆), but in the directed case, it is convenient to make appear the
tree notation in the computed values instead of the node notation.

If a rooted treeτ is reduced to a leafu, setC(τ) = 0, g(τ) = gu. If τ has rootu, and if the sub-trees
rooted at the children ofu areτ1, . . . , τk, then setC(τ) =

∑k

i=1 C(τi)+g(τi). The lifetime of the root of
τ is then distributed as the maximum of theD⋆(τi)

′s plus a random variable distributed asY(C(τ), g(τ)).
To simplify a bit the formula, for any rooted treeτ , let

Θ(τ) = g(τ) + C(τ). (8)

Proposition 2 For any algorithm ALGO⋆(∆) of the first category the duration of a rooted treeτ satisfies

D⋆(τ)
d
= MΘ(τ).

Proof: The lifetime of a treeτ reduced to a leaf isY(0, g(τ)) = MC(τ)+g(τ) = MΘ(τ). Assume by
induction that the proposition is true for any rooted tree having less thann nodes. Consider nowτ a

rooted tree withn nodes and theτi defined as above. By recurrenceD⋆(τi)
d
= MΘ(τi), and thus, by

independence of theMΘ(τi)’s, D⋆(τ) = Y [
∑

i Θ(τi), g(τ)] + maxi MΘ(τi) is in distribution equal to

M(
P

i Θ(τi))+g(τ)
d
= MΘ(τ) by Corollary 2. 2

As a corollary we have

Theorem 1 For any algorithm ALGO(∆) of the first category, any treeT ,

qu = 1 −
∑

1≤i≤k

Θ(T [ui, u])

Θ(T [u, ui]) + Θ(T [ui, u])
(9)

Proof: This is a consequence of Propositions 1 and 2 and of the following identity: if Ma andMb are
independent, thenP(Ma < Mb) = a/(a + b). 2

This theorem has a direct consequence quite surprising, since it deals with very general functionΓ. It
is obtained by summing Equality (9) over all nodes:

Corollary 3 For any treeT , any choice of positive integer values functionΓu = (Cu, gu)

∑

u

[

1 −
∑

i

Θ(T [ui, u])

Θ(T [ui, u]) + Θ(T [u, ui])

]

= 1.

Remark 1 ensures that almost surely the election eventuallysucceeds. Indeed, each leaf eventually dies
out with probability one, and then the election stops after afinite time. All the disappearance dates are
different, since the lifetimes distributions have no atom:at the end it eventually remains only one leaving
node which is elected.

Remark 3 In general the denominator in the RHS of (9) depends on the nodeu and, thus, apart from the
two first examples below where this denominator is constant,the formula (9) cannot be “simplified”.
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3.2 Examples

1. The uniform electing algorithm (treated in Example 1) is aparticular case of this model by letting
gu = 1 and, therefore,Θ(t) = |t|, the total number of nodes int. Since each node is either in
T [u, ui] or in T [ui, u], by (9)

qu = 1 −
∑

1≤i≤k

|T [ui, u]|

|T [u, ui]| + |T [ui, u]|
= 1 −

|T \ {u}|

|T |
=

1

|T |
;

this is the uniform distribution onT , as found by Métivier & al.

2. Assume that all prescribed weights are positive integers. If gu = wu for every nodes thenΘ(t) =
∑

u∈t wu the total weight of the rooted treet. In this casequ = wu

w(T ) wherew(T ) =
∑

u∈T w(u)

is the total weight inT . Indeed, in the RHS of (9) the denominator is equal tow(T ) whatever is the
value ofi, and summing the numerators givesw(T ) − wu.

3. Forgu = deg(u), qu becomes proportional todeg(u) (takewu = deg(u) in the previous point 2).

4. In the case wheregu = 1 for the leaves andgu = |t| more generally for all the nodes, then
Θ(t) = PLS(t) + |t| becomes the path length of (the rooted tree)t plus its size. Then Formula (9)
gives the value ofqu.

3.3 Real-valued weights

In Example 3.2.2, we gave an algorithm of the first category such thatqu is proportional towu provided
that thew′

us are integers. The computations relying on Corollary 2, the weights have to be integer valued,
or say have a known common divisor. A natural question arises: is there an algorithm such thatqu is
proportional to general real-valued weightswu’s? We were not able to answer to this question, but using
a randomized version of the algorithms of the first category,we provide an algorithm that may fail with a
small probability, but such that conditionally on success,thequ’s are indeed proportional to thewu’s.

The difference with the algorithm described above is as follows. Instead of using its weightwu as
a parameter in a distributionY(n, k), a nodeu becoming a leaf, uses its weightwu as a parameter of
a Poisson distribution: it generatesWu a r.v. following the Poisson(wu) distribution and then uses this
integer as its weight in the description of algorithms of thefirst category we gave. In other words, the
computed valuegu instead of being simplywu will take the valuek with probabilityexp(−wu)wk

u/k!.
Let us discuss some points linked to the failure of the algorithm.

Remark 4 – If the random generatedWu is zero for someu, then conditionally toWu the remaining
lifetime isExpo(0) distributed, that is zero almost surely:u is eliminated immediately.
– If all nodes generate zero, then the algorithm fails: it terminates without choosing any node. The
probability of failure for the algorithm ise−w(T ) wherew(T ) =

∑

u∈V wu is the total weight. It becomes
insignificant wheneverw(T ) grows. To guarantee the success with a high probability, it suffices to multiply
w by a great numberc known by all nodes.

The following lemma, which is easily proved, simplifies the proof of the main proposition of this section.
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Lemma 2 Let X1, ..., Xn ben independent r.v. of Poisson distributions with parametersλ1, ..., λn re-
spectively. For anyk > 0, the distribution ofX1 conditionally onX1 + · · · + Xn = k is binomial
B(k, λ1/(λ1 + · · · + λn)).

Proposition 3 LetT be any tree. The probability that the algorithm chooses a nodeu conditioned by the

event that not all nodes generate 0 is proportional towu : P

(

u elected
∣

∣

∣

∑

v∈V Wv > 0
)

= wu/w(T ).

Proof: Consider some integers(kv)v∈V , with at least onekv > 0. Given the valuesWv = kv according
to Section 3.2, second example, we have:

P (u elected| Wv = kv for anyv in T ) = ku/(
∑

v∈V

kv).

Therefore the probability that the algorithm choosesu conditioned by
∑

v Wv > 0, is nothing but:

P(u elected
∣

∣

∣

∑

v

Wv > 0) = E

(

Wu
∑

v Wv

∣

∣

∣

∑

v

Wv > 0

)

,

whereE denotes the expected value. But then, according to the previous lemma, for a fixedk > 0,

E

(

Wu
∑

v Wv

|
∑

v

Wv = k

)

=
wu

∑

v wv

.

This implies that if the sum of generated numbers is positive, whatever the values it takes, the probability
of u to be elected is wu

P

v wv
. The proposition follows. 2

4 Second category: around the stable distributions
The second category relies on Formula (3). One sees that choosing a suitableD⋆ may let themax operator
acting on the RHS disappears: the idea is to chooseD⋆

u under the form

Du = Xu − max
i

D(τi) +
∑

i

D(τi) (10)

for someXu whose distribution depends of the information received byu. In this case Formula (3)
concerning the directed elimination becomes simply

D⋆(τ) = Xu +
∑

i

D⋆(τi).

And the duration of a rooted tree satisfies:

D⋆(τ) = Xu +
∑

i

D⋆(τi) =
∑

v nodes inτ

Xv. (11)

Once again, the involved variablesXv have a distribution that may depend on the history of the elimination
of the sub-tree ofτ rooted inv. The algorithms of the second category are parametrized by all the possible
distribution forXu (the variablesXu appearing in (10) and (11)).
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In the case where theXv are i.i.d, the distribution ofD⋆(τ) is simple: it is a sum of|τ | i.i.d. random
variables, and then it is indexed by the unique integer|τ |. Denoting bySn a sum ofn i.i.d. copies ofXv,
according to Corollary 1 we have for a nodeu havingu1, . . . , uk as neighbors,

qu = 1 −
∑

1≤i≤k

P
(

S|T [u,ui]| < S|T [ui,u]|
)

. (12)

There is an interesting case where the computation in (12) can be made explicitly, and leads to close
formulas: the case of the stable distribution with index1/2. The stable distributions are the families
of distribution that are stable for the convolution (see Feller [2] for more information). We say thatX
has the stable distribution with index1/2 if the density ofX is f(t) = 1t≥0

e−1/(2t)
√

2πt3
. If X1, . . . , Xk are

independent copies ofX thenSk = X1 + · · · + Xk
d
= k2X . Consider nowSm andS′

n two independent
sums ofm andn independent copies ofX . One has

P(Sm < S′
n) = P(m2X ≤ n2X ′) (13)

for two copiesX andX ′ of X . Using the density ofX andX ′, one getsP(Sm < S′
n) = 2

π
arctan(n/m).

Hence

Lemma 3 For any treeT , for any nodeu havingu1, . . . , uk as neighbors, under the algorithm presented
above

qu = 1 −
∑

1≤i≤k

2

π
arctan

(

|T [ui, u]|

|T [u, ui]|

)

.

In particular, since
∑

qu = 1 this gives for each tree a formula related to the arctan function. We review
below some examples and derive formulas.

4.1 Applications: some identities involving the arctan function
Consider the star tree withn nodes: it is the tree where a nodev hasn − 1 neighbors, sayv1, . . . , vn−1.
By symmetryqvi does not depend oni; sincevi has for only neighborv, by Lemma 3

qv1 = 1 − (2/π) arctan(n − 1).

Using again Lemma 3, one has for the center of the star tree

qv = 1 −
2(n − 1)

π
arctan

(

1

n − 1

)

.

Sinceqv +
∑n−1

i=1 qvi = 1 (since a node is eventually elected with probability 1), we get for anyn ≥ 2,

arctan(n − 1) + arctan(1/(n − 1)) = π/2. (14)

Consider now a sequence of treesTn such thatTn is formed by two stars havingαn + 1 andβn + 1
nodes with centeru andv, linked by an edge betweenu andv. The election probability of any leaf is
qvi = 1 − (2/π) arctan (αn + βn+1) , when

qu = 1 −
2αn

π
arctan

(

1

αn + βn+1

)

−
2

π
arctan

(

βn + 1

αn + 1

)

qv = 1 −
2βn

π
arctan

(

1

αn + βn+1

)

−
2

π
arctan

(

αn + 1

βn + 1

)

.
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Using(αn + βn)qv1 + qu + qv = 1 and (14), we get

2

π

(

arctan

(

αn + 1

βn + 1

)

+ arctan

(

βn + 1

αn + 1

))

= 1.

If αn/βn → x > 0, by continuity ofarctan one obtains the famous formula

arctan(x) + arctan(1/x) = π/2.

Going further, letTn be the sequence of trees having a path of sizek (k nodesu1, . . . , uk such that there
is an edge betweenui andui+1 and such thatui hasαn,i other neighbors that are leaves). The probability
of election of any of the

∑

αn,i leaves isql = 1 − 2
π

arctan(
∑

αni + k − 1), that ofui is

1−
2

π

[

αn,i arctan

(

1
∑

αn,i + k − 1

)

+ arctan

(

∑

j>i(αn,j + 1)
∑

j≤i(αn,j + 1)

)

+ arctan

(

∑

j<i(αn,j + 1)
∑

j≥i(αn,j + 1)

)]

.

Finally, assuming that for anyi, αn,i → αi for some positive real numberαi, we get by continuity, and
using that the sum of all events must be 1, that for any positive real numberα1, . . . , αk,

∑

i

[

arctan

(

∑

j>i αj
∑

j≤i αj

)

+ arctan

(

∑

j<i αj
∑

j≥i αj

)]

=
π

2
(k − 1). (15)

Each simple finite tree used as a skeleton on which are graftedsome packets of leaves (with sizeαn,k, k
corresponding to a labeling of the nodes of the skeleton) will provide a formula similar to (15).
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