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ABSTRACT: We study parkings with n places, where m(n) cars are placed ac-
cording to a nonuniform probability. The aim of this paper is to show a threshold
function (depending on the distribution) for the emergence of a giant component.
The size of the largest blocks of consecutive occupied places and the total displace-
ment of the cars are also studied.

1 Introduction

The usual parking problem, introduced by Knuth [11], p. 545, is the following one: m(n) cars,
(m(n) < n) try to park on n places labeled {p1,--- ,pn}. The ith car chooses a place p
equally likely among the n places (independently from the other cars). Then, it parks on the
first empty place among pi;), Pi(i)+1> Pi(i)+2> " (with the convention p,+1 = pi, that is the
parking is a circle).

In this paper, we consider parkings in which the place of each car is chosen with a probability
distribution which is not uniform. Consider (X;);—1....;(n) @ sequence of i.i.d. random variables
on [0, 1] with common density f. With these variables we construct a parking denoted

Par(n,m(n), f) :

n is the number of places, m(n) the number of cars and in Par(n,m(n), f) the ith car chooses
place py;) with

1) = [n Xi].

See Figure (1.1). In Par(n,m(n), f), the ith car chooses place p; with probability

]P’,C:P(Xie]$,g]) =/(k_ f(z) dz.

Our model can also be interpreted as follows: the interval [0,1] is split into n subintervals
(I,-(n))lgign with Ii(n) =|(i—1)/n,i/n]. Ii(n) is interpreted as the ith parking place, of width 1/n.
Car k chooses place p; with probability P(Xy € I;). The usual parking problem described above
appears to be the uniform parking, that is Par(n,m(n), I (7))

Several parameters are useful to study and to understand the behavior of the parking: the
displacement of a car, that is the number of places it visits before it finds an empty place (at
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least 1) and the total displacement, that is the sum of all the displacements; more formally, if
V; is the place on which the ith car parks at the end, the displacement of car i is:

Vi —1() +1 if 1(6) < V(i)
n—1@)+1+V(i) else.

For example, in Figure (1.1), the displacement of car 1 is 1, of car 5 is 4, and the total displace-
ment is 16. Once m(n) cars are parked in the parking, one focuses on the following questions:

[1flloo
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Figure 1.1 : parking with density

— What is the worst case displacement for a m(n) + 1** car?

— What is the law of the displacement for a m(n) + 1** car?

— What is the law, the mean of the total displacement for the m(n) first cars?

The first two questions are closely related to the size of the blocks of consecutive occupied
places on the parking after the placement of the first m(n) cars (the size of the blocks of
the parking in Figure (1.1) are 5, 2 and 2). The third question (seemingly more complex in
appearance) depends on the evolution of the size of the blocks during the “building” of the
parking.

The aim of this paper is to study the influence of f on the behavior of each of these variables
and to show that given a nonuniform density f, there exists a threshold function for m(n) for
the appearance of a giant block (of order n).

In computer science, the parking problem with density corresponds to the study of hashing
with linear probing (see following paragraph) on nonuniform data (see Devroye [6], Gonnet [10],
Pflug & Kessler [14] and Aldous [1] for similar assumptions). The profound difference between
uniform and nonuniform case justifies also a study.

Hashing with linear probing (HLP)

HLP is an important algorithm used (in computer science) to store and to recover stored data
on a disk in an economic way (Knuth [11]). According to HLP, a record z is hashed to the cell
h(z). If the cell h(x) is not empty, z is hashed in the first empty place among h(z)+1, h(z)+2,- -
(with the convention n 4+ 1 = 1). h is called the hashing function, n the size of the table. To
recover z one just has to probe position h(z),h(z) + 1,---. The correspondence with parking is



obvious. When m records are hashed, the size of the largest block of consecutive occupied cells
(plus one) is the worst case cost (the maximal number of cells to visit) to place a m(n) 4+ 1t}
item, the total displacement (that is the sum of the number of cells visited), divided by m(n)
gives the average cost analysis of HLP.

In order to analyse HLP, one generally assumes that the sequence of records z1,- - , x,, and
the hashing function are such that h(z1),--- , h(z,,) are independent, uniformly distributed over
{1,--- ,n}. For a survey on this topic one can consult Chassaing & Louchard [3]. For a study
of hashing under nonuniform probabilities, we refer to Aldous [1]. The point of view of Aldous
is different from the one of the present paper since he “adapts” HLP to the nonuniform case;
the probings are no linear but randomized in some sense. This way to proceed is very efficient
(since he shows that the asymptotic behavior is in the same range as in the uniform case) but
not at all realistic in terms of parking (the successive places where cars try to park would be
given by a random cycle of the n places).

In the following paragraph, we mention some results about uniform parkings that are signif-
icant and/or that are useful for the sequel of this paper.

Results on uniform parking

Denote by Bj, Bs,--- the sequence of the block sizes sorted in decreasing order. Denote by
dp m(n) the total displacement for the m(n) first cars. In figure 1.1, By = 5,B2 = B3 = 2,d149 =
16
e Full parking (m(n) = n). We have B; = n and

dn,n (d),Moments} /1 e(s)ds
0

n3/2 n—>+oo

where (e;)o<s<1 is a normalized Brownian excursion. This convergence is a moment convergence,
and a law convergence. The limit law is the Airy law. See Flajolet & al. [7] for a fine analysis
and Chassaing & Marckert [4] for a probabilistic explanation of the presence of the normalized
Brownian excursion.
e Parking under construction, sparse parking (m(n) = an,0 < a < 1).

1

3
B, = @(logn— iloglogn—I—Cn) -1

where C,, is a r.v. which is asymptotically double exponentially distributed (Pittel [13]) and
clr)=z—1—-logz, 0<z<]l. (1.1)

The total displacement is asymptotically normally distributed [7]:

dn,m(n) — Kn,m(n) ﬂN(O 1)

Tn,m(n)
where N (0,1) is a centered normal distributed r.v. with variance 1 and

a a

— _ _ —1
Bnm(n) = E(dn,m(n)) - 2(1 — a)m(n) 2(1 _ a)g + O(n )7 (1'2)
6a — 6a2 + 403 — ot 603 + 2402 + 6a 4
O-Z.,m(n) = Va'r(dn,m(n)) = 12(1 — Ot)4 m(n) — 12(1 — a)6 +O0(n ).
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e Phase transition (m(n) = n— Ay/n, A > 0). One finds in Chassaing & Louchard [3] a complete
and dynamic (when A changes) probabilistic study in this case, and its relation with coalescence
(see also Chassaing & Janson [2]).

Bi @, g
n

where B()) is the width of the largest excursion of the process
(Tre)(z) = e(z) — A=) + sup {dy —e(y)},
o<y<z

where e is a normalized Brownian excursion. The joint limit law of (B, Ba, - -+ , By) is expressed
in term of Gaussian law.

2 Parking with density

The first part of this section is devoted to show a threshold phenomena for the appearance
of a giant component of consecutively occupied places in the parking. The second part of the
section is devoted to the study of the behavior of the parking in the subcritical and in the
supercritical case.

2.1 A threshold function for the appearance of a giant component

For a parking Par, denote by Bj(Par), Bo(Par),--- the size of the largest blocks sorted
in decreasing order. In order to simplify the notations, in the sequel of the paper, we suppose
that an is an integer. We do not assume that f is continuous in this theorem. We define
|| fllcoc = ess sup f (resp. inf f = ess inf f), the essential supremum (resp. infimum) of f.

Theorem 2.1 (Threshold)
Suppose that m(n) = an with 0 < a < 1. Par denoting the parking Par(n,an, f), we have:
i) If | fllo < 1 then:
1 E(B (P E(B; (P 1
%Sliminfwglimsup (B1(Par)) < .
c(a inf f) n logn n logn c(a]| flloo)

where the function c is defined in (1.1).
i1) If a||f|lco > 1 then there exists a constant v > 0 such that

P(B;(Par)) > yn) — 1.

n—-—+oo
The sizes of these components (and their locations) are given in Theorem 2.12.

Case (i7) is to be compared to the uniform case where the size of the largest block is close to

(logn)/c(a).

2.2 The subcritical case: m(n) = an with o f|/, < 1

The study of the subcritical parking that we give here, relies on a coupling argument. We
construct two auxiliar uniform parkings (Parl and Par3) on the same probability space as
Par2 = Par(n,m(n), f). Thus, we can compare, realization by realization, the largest block of
Par2 to Parl and Par3 largest blocks (cf. Lemma 2.2 and 2.5, Proposition 2.3 and Corollary
2.6).



Construction of the three parkings Parl, Par2, Par3

Consider the sequence of independent random variables (U;);i>1 = ((aci,yi))z.>1, uniform on
[0,1] x [0, || flleo]- With this sequence, we define three parkings Parl, Par2 and Par3, in the
following way:

e Parl, Par2 and Par3 have n places labeled {p1,--- ,p,} (on a circle).
o If [nz;] = k then

—In Parl, car ¢ chooses place py.

~In Par2, if y; < f(x;), car i chooses place py else it disappears.

—In Par3, if y; < inf{f(z)|0 < z < 1}, car i chooses place py else it disappears.

Cars park until the number of cars in Par2 is an. If Parl is full before Par2 contains an cars,
then we go on with the construction of Par2 but stop the one of Parl. One shall see that the
probability that such an event happens is negligible.

x 1 = variable U;

[ lloo
inf f
| | | | | | | | | | | | |
0 1

Parl 9

| |7 | 1|9 | |6 | 5 8 |4 | !
Par2 )

L | | 1 9 6 5 | | 4 |
Par3 1 | | | | | 6 | | | | 4 j
places p1 p2 p3 Pn

Figure 2.1 : The three parkings

We can compare the size of the largest block of the three parkings:

Lemma 2.2

Bi(Parl) > Bi(Par2) > Bi(Par3).



Proof: By construction, Parl contains Par2 which contains Par3. That is, if place py is
occupied in Par(i + 1) then it is also occupied in Par(i) (for i =1 or 2). [.

The next proposition identifies the constructed parkings: Par2 is Par(n,m(n), f), Parl and
Par2 are uniform parking but contain random numbers of cars.

Proposition 2.3
i) Par2 @ Par(n,m(n), f), m(n) = an.

i1) Parl 9 Par(n, N,Ipy(z)) and

NY NI(F <n) +nl(N>n)

where N is a negative binomial r.v. with parameter (an,| f||), that is

P =)= ( 7 )72 (1 = [l 0" 1G> am).
1

an —

i1i) Par3 @ Par(n, N', T 11(x)) where N' is binomial with parameter (an,inf f), that is

P(N' = j) = (O‘j”> (inf f)(1 — inf £)*™ .

Proof : (i) Par2 contains an cars which choose places independently from each other. A trite
computation shows that a car that parks in Par2 chooses place py with probability Py.

(#7) By construction, Parl is associated with the uniform distribution on [0,1]. The number
of cars N that park on Parl is the number of cars that try to park on Par2 (successfully or
not). For one car on Par2, there are G(||f||>}) cars that try to park on Parl, where G(||f||z})
denotes a classical geometric r.v. with parameter || f||5}. Indeed

1
d 1
P(car 1 parks on Par2) = Jo S (w)de =

[1£1lo0 [1flloo”
Thus, if N; denotes the label of the first car that parks on Par2:

P(N1 =) = (1/[lflloo) (1 = 1/[|flloo)? -

Define ]\7, the sum of an i.i.d. r.v. with the same law as Ni. We obtain:

N9 NN <n)+nl(V>n)

since the number of cars in Parl is bounded by the number of places, n.
(731) The probability for a car that parks in Par2 to also parks in Par3 is inf f.0J
Pittel’s results apply when the number of cars is known (fixed). In Parl and in Par3, the
number of cars is random. Using large deviation techniques, we bound the number of cars in
Parl and in Par3 with probability exponentially close to 1. Then, we use the fact that the size
of the largest block (in a given parking) is an increasing function of the number of the cars.
The following lemma, due to Cramér, gives a large deviation principle for N and N’.



Lemma 2.4 (Cramér)
(a) For z > ||flloc

P(2- 2 0) < exp(-n Af(@)).
(b) For z < inf f,
P(% < ) < exp(—n A3(z)).
where
ilo) = { o (=) [FIETCE voest
z log (m) — log (W) if z>1
and
Aj(z) = { oo 1—inff g 1—inf f Z:f z>1orz<0
xlog( nf f ﬂ) —log( el ) if zel0,1]

Proof: For a proof of Cramér’s theorem see [5], chap. 2.2, proof of Theorem 2.2.3.. N is the sum
of an independent geometric r.v. with parameter 1/||f||c and N’ the sum of an independent
Bernoulli r.v. with parameter inf f. Let g; (resp. b1) be a geometric r.v. with parameter
1/]|fllco (resp. a Bernoulli r.v. with parameter inf f). Set

A1(A) = log(B(eM)),  Ag(N) = log(B(eM™))
and

A(z) = ilelﬁ{m —M(N} A(z) = ilelg{kw —A2(N)}

the Fenchel-Legendre transform of A; and As. One has, AT > 0 and Aj(z) =0 < z = || f]|oo;
one also has, A5 > 0 and A5(z) =0 < z = inf f.0
Crameér’s Lemma implies that (with probability that tends exponentially fast to 1), we have:

N < an(||flleo +¢€) and N' > an(inf f — ¢).

The number of cars in the two uniform parkings Parl and Par3 are then (roughly speaking)
essentially bounded. Then, by Pittel’s result [13],

E(By (Par(n, Bn, Ly 1)(2))))
c(B)~1logn

— 1, (2.3)

we obtain:

Lemma 2.5 For any e > 0,

i) limsup E(B: (Parl))

2P BB, (Par(m, an(flloe + ), To@)) ~ - 00 vk that allflloe +6) < 1)
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i) liminf E(B, (Par3))
n E(By(Par(n,an(inf f —¢€)),1j1(z)))

> 1 (for € such that inf f —e > 0)

Proof : Consider A and B two integers such that 0 < A < B < n, then:
E(B; (Par(n, A,]I[O,l](x)))) < E(Par(Bi (n, B,]I[O’l](m)))). (2.4)
For any € > 0 such that
a([fllc +€) <1,
one has:

N

IN

an(|lflle + ) fcan(iflo+e) M Azan(ifllote)
NI > an(lnff - €)I[N’2an(infffs)'

Using (2.4), we obtain:

E(B1(Parl)) < E(Bi(n,an(||flle + €):Ijo1(x))) BV < an(||flleo +¢))
+n P(N > an(||fe +¢€))

and
E(B1 (Par3)) > E(Bi(n,an(inf f —€),1j 1)(z))) P(N' > a(inf f — ¢)).

Indeed, the largest block is smaller than n. Lemma 2.5 follows from these inequalities and from
Lemma 2.4.00

The proof of Theorem 2.1 (i) is completed by using Lemma 2.5 and the continuity of the function
c. The construction of the three parkings Parl, Par2 and Par3 and Lemma 2.4 allows us also
to bound the mean total displacement in Par(n,m(n), f) (using (1.2)):

Corollary 2.6 (Total displacement in sparse parking)
In Par(n,an, f), for 0 < a < ||f|lc, one has:

E(dn,an)

n

Hn (ainf)n
n

E(dnan) _ Foyallflleo)n
n

< lim inf <
n n

< limsup
n

WheTe [y, ym(n) 5 defined in equation (1.2).

Pflug and Kessler [14] obtained a better result since they proved that

E(dn,a n) ! 1-— (205 — 1)f($) + azfQ(x)
n n—_H—)oo /0 21 — af(x))? de.

They also give a similar result for the average cost of the successful search in the table.




2.3 The supercritical case: m(n) = an with o||f||. > 1

Let Y be the number of cars that choose place py and Hy the number of cars that try (at
first or later) to park on place pg. In Figure (1.1), H; = 1,Hy = 0,H3 = 2, Hy = 2,--- and
Y1 =0,Y=0,Y3 =2,Y; =1,---. Thesequence (Hj)j—1.... n, is called the profile of the parking
(this notion is already used in Chassaing & Marckert [4]). The profile obviously contains all the
information relative to the parking. A block of consecutive occupied places is equivalent to a
block of consecutive indices k£ such that Hj > 0. We have:

Y, = Z Ixie1k—1)/n.k/n)-

=1

The sequences H. and Y. are related by:
Hiyy = (Hk — 1)4 + Yit1, (2.5)

since all the cars that try to park on place py minus 1 (the ones which stays on place pg) try
also to park on place pi+1. Relation (2.5) on its own does not define the parking profile since it
is a “circular relation”, but:

szglggc{Yk+---+Yk_l—l} (2.6)
where
Yi = Y mod n for k #0and Yy =Y,.
Indeed, similarly, we define:

pk:pkmodnfork#oandpﬂzpn-

One observes then, that on the places {px_1,Pr—2, -+ ,Pk—i}, at most [ cars can park; the ones
in excess, plus Y, try to park on place py.

Proof of Theorem 2.1 (i1). For any bounded f, with || f||cc = ess supyg,1)f, @||f|lc > 1, there
exists an z €]0,1[ and a constant 5 > 0 such that

1 1
5 o fly)dy > 5(1 +B)

for all § small enough, where I5(z) is any interval of length ¢ containing z. We apply the
Lebesgue density theorem. Let [a,b] denotes one particular such interval. The number of cars
Yiant1] + -+ + Y|pn that arrive on the places {pran+11,° - ;P|sn|} is stochastically larger than
a binomial B(an,§(1 + B)/a). Since

é(1
om0 14 ) = np— )1 4 ),
we obtain
IP’(Y A+ Y —n(b—a) > én(b—a)) —1
[an+1] Lbn] =9
The statement (i7) of Theorem 2.1 holds with v = g(b —a). O
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Limit of the profile

The aim of this paragraph is to study the limit profile in order to obtain some results about
the total displacement in the parking. We shall describe more precisely the asymptotic width
of the largest blocks and where they are placed. We introduce the same notations and objects
as in [3, 4]. Denote by F}, the empirical cumulative function associated to the r.v. (Xy)i<p<m:

i X<t 1<i<m}
_ - .

F()
The knowledge of the function F,, is obviously sufficient to build the parking, since we have:
Y, = m(Fm(k/n) - Fm((k - 1)/’”’))
Equality (2.6) can be reformulated as:
k k—1-1
e = g {m(En ) = Fn(C=2)) =1, 27)

where the symbol T denotes the fractional part of z. Now, we use the strong convergence of Fy,
towards F'. Let a;, be the function defined on [0,1] by:

am(F (1)

Fo(t) = F(t) + N

(2.8)

Theorem 2.7 (Komlos, Major & Tusnady[12])
Gwen X1, Xo, .. i.i.d. r.v. on [0,1] with cumulative function F, there exists a sequence (brp)n>1
of normalized Brownian bridges such that for all n and ,

Alogn + x
P sup |an(t) — br,(t)| > ——
(sup, lan(®) —bra(t)] > =22

where A, M and p are positive absolute constants.

) < Me ke,

In other terms, we can write:

bra(F(8) | calt)
Jm m

where ¢, (t) denotes v/n(ay,(t) — br,(t)), and satisfies:

F(t) = F(t) +

P( sup |cn(t)] > Alogn + z) < Me H*, (2.9)
0<t<1

By (2.7), (2.8) and Theorem 2.7, one has:

Hy = I?ggc{m/_ Fa)de +vin(om(F () —an(PE=71)) <1} 210)

Ak n
n n

where

b
if0<a<b

/ f(z)d o
z)dr = a b
anb /1f(x)dx+/ fle)dz f0<b<a
a 0
10



From (2.7) one has for any k € {1,--- ,n}:

Hy, l
il fe 00 1)

Theorem 2.8 We define the (normalized) piecewise constant function h, which interpolates
the profile of the parking (Hj)k=0,.. n by:

< Zomlloe.

<= (2.11)

H |

m(n)

hn(t) =

One has:

hy — h

n—-—+oo

where (h(t)):efo,1] 95 the deterministic function defined by:

h(t) = 1;158( { /(t_w)mtf(u) du — g}

This convergence is almost sure for ||.||« on [0, 1].

d 1/a m

B2 B Qz
Figure 2.2 : Relation between density and limit profile

Proof : Using (2.11) and Theorem 2.7 we obtain:

Pl -t 29 < B

which is summable, since for any 4:

2

P([|brilloc > ) = €% Tz,

and by (2.9).Theorem 2.8 follows from Borel-Cantelli Lemma. O
One deduces from this theorem the asymptotics of the total displacement in this parking;:

11



Corollary 2.9 (Total displacement)
TD(n,an, f), the total displacement in Par(n,an, f) satisfies:

1
T—D(”’C;n’f) %/ h(t)dt.
an 0
Proof: We have
TD(n,an,f) 1e~H, 1e<Hpnr 1
=) =) ==y ha(k/n).

an an n n
k=1 k=1 k=1

The results follows from Theorem 2.8 and Riemann sums.[]
Corollary 2.10 (The mazimal number of visits on a given place)

max H, .S,
F — max hyp =25 max h.
m(n) 1<k<n

The most visited places are in the neighborhood of the place prp argmaz (h)]-

Note that these places are not the places where f reaches its maximum.

Limit of the block sizes

The weak convergence in Theorem 2.8 does not imply the convergence of the intervals where
hp is positive to the intervals where h is positive. To give the limit size of the blocks, we shall
impose some constraints on the density f. We identify each block of the parking by the two
positions of the “bounding cars”. Hence, in Figure (2.3), the set of blocks is

I(H) =A{[4,7[,[11,2[, [8,9[}.

1 2 4 6 8 11 12
Figure 2.3 : Blocks of the parkings

We define the blocks of h with (also) a cyclical point of view: [a,b] is a block of h if
h(a) = h(b) = 0 and h(z) > 0 on ]a,b[ if a < b and on Ja,1] U [0,b] if b < a (the blocks
are called excursions in probability theory). The width w([a,b]) of a block [a,b] is b — a if
0<a<band 1l—a+belse. We note that

I(h) = {[a,b] | [a,b] is a block of h}.

In Figure (2.2), we have I(h) = {[a1, ], [a2,B2]}. We denote by I(hy) (resp. IY(hy)) the
normalized blocks of H (resp. with width larger than y):

I(h,) = {[a/n,b/n] for [a,bl€ I(H)},
Y(h,) = {[a/n,b/n] for [a,b]€ I(H) such that w(b—a) > y}.

12



In order to avoid problems related to the critical case (that is h(z) = 0 and f(z) = 1/a) we set
Z =Az|f(z) =1/}

and
Z' = {z|h(z) = 0},

the set of zeros of h. We denote by (Hyp) the set of hypothesis:

f is continuous
7 N Z' has no accumulation points

(Hyp) : {

For a given continuous function f (Hyp) holds for almost all « in [0,1].
Under Assumptions (Hyp), the “one car per place” rate (f = 1/« and an cars) happens only
on isolated point (on Z N Z') or when h > 0; in this last case, the cars in excess coming from the
left cancel the effects of this “one car per place” rate. The following theorem is not true without
this kind of hypothesis (see the phenomenon described in Chassaing & Louchard: blocks of size
of order n with n — A\/n cars, for uniform parking).

Lemma 2.11 is used to prove that the “one car per place” rate (when not excess cars come
from the left) holds only on isolated points of [0, 1].

Lemma 2.11 Under the set of assumptions (Hyp), we have:
Card(I(h)) < +o0.

Proof: If [a;, b;] is a block of h then h(a;) = 0 and f(a;) = 1/a (f is continuous). So a; € ZN Z’
and since Z N Z' has no accumulation points, Card(Z N Z') < +o0. O
The result about the convergence of the blocks of h, to the blocks of h is given by:

Theorem 2.12 (Convergence of the blocks)
Suppose that the blocks of h are disjoint (there are no two blocks [a,b] and [c,d] in I(h) with
b=c). Let n be any real positive number such that

n < min{w([a, b)), [a,b] € I(h)}. (2.12)

Under (Hyp), we have:

1 1
/0 |Tr (@) — Lpng,,) (@) |da = /0 Lrn\1(he) (®) + Trgua\icw) (2)dz = 0.

The large blocks of Par(n,m(n), f) (with size larger than nn), suitably normalized, converge to
the blocks of h. The small blocks of h,, with width smaller than 7 do not appear in the limit. It
is easy to see that, roughly speaking, (o — fol I7(n)(x)dz)n cars in Par(n,m(n), f) are in these
small blocks.

The assumption that the blocks of h are disjoint is needed to prove the convergence of each large
block of h, to a corresponding block of h.

Proof of Theorem 2.12: Using the uniform convergence of h,, to h, we have

1
/0 L1(h)\ () (&) = 0.
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Let us study

1
/0 Lrntho\1(n)(2)dz.

I(h) and I"(h,) contain at most [1/n] intervals. Consider the set J = [0,1] — I(h). For an
interval [a,b] in J there exists a corresponding set of places on the parking, say:
Planpn] = {p[an] st ,prnJ }

We prove, in the following lemma, that each connex subset of the set of places pp, n,55) containing
£n consecutive places contains at least an empty place (with a probability exponentially close
to 1). It follows that at the limit, there does not exist any block with size larger than en that
are not expected.

Lemma 2.13 Let € such that 0 < e <.
P(Ja,b] € J|w(b—a) > /2 and panpn) contains no empty place) < gexp(—nl(e))

where I(e) > 0.

Hence, for sufficiently large n, there are no blocks of size larger than ¢ for h,, in the set [0, 1]\I(h)
(with probability tends to 1) and then in the set I(h,)\I(h). Taking a small ¢ and since
I(hy)\I(h) is constituted by at most 2/ intervals, Theorem 2.12 appears to be a simple conse-
quence of Lemma 2.13 and Borel-Cantelli Lemma.

Proof of Lemma 2.13: Consider K, a (fixed) set of disjoint intervals (4; = [a;, b;]); - with width
/6 - included in J and such that there are no interval of width larger than £/6 in J — (U; 4;).

P(3[ai, b;] € Ke|ppa;n,p;n] contains no empty place)

< Z P(p[a;n,bin] contains no empty place). (2.13)
[ai,bi]EKE

The number of cars that choose one of the places pjg; n s, nj i Binomial B(an, f:; f(z)dz) dis-
tributed; since a; € [0,1] — I(H), we have Hg,n, = o(n). Since f < 1/« on [a4, b;], by Cramér:

P(P[q; n,b; n] contains no empty place) < exp(—ni;(e))

for a positive function /; of . K. contains at most |6/¢| intervals and the summands in (2.13)
goes to 0, for any ¢, when n go to +00. O
Conclusion

The study of the supercritical case relies on equation (2.10) which relates the profile of the
parking to the random process «,, largely studied by mathematical statisticians. Taking m =n
and f(z) = [jp,1)(z) in (2.10) yields formula

H k k—1—-1
T2 =max{on(0) —an(*——)
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which is used in [4] to study the uniform parking. The Brownian excursion which is the limit
of uniform parking profile appears in the present paper to be simply the second terms in the
asymptotics of the profile of parkings with density.

Equation (2.10) allows also to easily study linear parking with density on R. In linear park-
ing with density f (defined on R), car i parks on the first empty place among PlnX:]» PlnX;]+10" "
(for ¢ from 1 to vn, the number of cars). Then, the threshold phenomenon, depends on the values
of v. For example, taking f(z) = Ijg(z), v = 1, we obtain the analogous of uniform parking,
where the cars in excess on place p, park on place p,41,Pn+2,- - instead of parking on place
P1,P2,- -+ . Using formula (2.10), one sees that the number of cars in excess on place n is about
—v/nmin{br(s)|0 < s < 1}. In terms of hashing with linear probing, this result means that if
the table is linear and if the n data are hashed uniformally on the first n cells, the number of
data that are at the end placed in the cells n + 1,n + 2,--- are (roughly speaking) distributed
as —y/nmin{br(s)|0 < s < 1} = o(nl/2t9).
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