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Abstract

We consider branching random walks built on Galton-Watson trees with offspring distribu-

tion having a bounded support, conditioned to have n nodes, and their rescaled convergences

to the Brownian snake. We exhibit a notion of “globally centered discrete snake” that extends

the usual settings in which the displacements are supposed centered. We show that under some

additional moment conditions, when n goes to +∞, “globally centered discrete snakes” con-

verge to the Brownian snake. The proof relies on a precise study of the lineage of the nodes in

a Galton-Watson tree conditioned by the size, and their links with a multinomial process (the

lineage of a node u is the vector indexed by (k, j) giving the number of ancestors of u having

k children and for which u is a descendant of the jth one). Some consequences concerning

Galton-Watson trees conditioned by the size are also derived.

Subject classification : 60J80, 60F17, 60J65.
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1 Introduction

1.1 A model of centered discrete snake

We first begin with the formal description of the notion of trees and branching random walks.

Let U = {∅} ∪ ⋃n≥1 N⋆n be the set of finite words on the alphabet N⋆ = {1, 2, . . . }. For

u = u1 . . . un, and v = v1 . . . vm ∈ U, we let uv = u1 . . . unv1 . . . vm be the concatenation of the

words u and v (by convention ∅u = u∅ = u). Following Neveu [22] we call planar tree T a subset

of U containing the root ∅, and such that if ui ∈ T for some u ∈ U and i ∈ N⋆, then u ∈ T and

for all j ∈ J1, iK, uj ∈ T . The elements of a tree are called nodes or vertices. For i 6= j, the nodes

ui and uj are called brothers and u their father. We let cu(T ) = sup{i : ui ∈ T} be the number

of children of u (here cu(T ) will be always finite). A node without any child is called a leaf, and

we denote by ∂T the set of leaves of T . If v 6= ∅, we say that uv is a descendant of u and u is

an ancestor of uv. An edge is a pair {u, v} where u is the father of v. A path Ju, vK between the

nodes u and v in a tree T is the (minimal) sequence of nodes u := u0, . . . , uj := v such that for

any i ∈ J0, j − 1K, {ui, ui+1} is an edge. Set also Ku, vJ= Ju, vK \ {u, v} and similar notation for
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Ju, vJ and for Ku, vK. The distance dT , or simply d, is the usual graph distance. The depth of u is

|u| = d(∅, u). The cardinality of T is denoted by |T |, and we let T (resp. Tn) be the set of planar

trees (resp. with n edges, i.e. n + 1 vertices).

A branching walk is a pair (T, ℓ) where T is a tree – called the underlying tree – and ℓ, the label

function, is an application from T taking its values in R. In other words it is a tree in which every

vertex owns a real label. We let B be the set of branching walks, and Bn be the branching walks

associated with trees from Tn.

We introduce now some randomness and construct a probability distribution on B and on Bn.

The set of underlying trees is endowed with the distribution of the family tree of a Galton-

Watson (GW) process with offspring distribution µ = (µk)k≥0 starting from one individual. In

this model, all the nodes have a random number of children, according to the distribution µ,

independently from the other individuals. We denote by T a random tree under this distribution

(see e.g. [1, 10] and most of the cited papers for more information on GW processes and trees).

The distribution of the labels is defined as follows. Consider (νk)k∈{1,2,... } a family of distribu-

tions, where νk is a distribution on Rk. The labels are defined conditionally on the underlying tree

T: Set ℓ(∅) = 0, and for any u ∈ T \ ∂T, consider

Xu :=
(
ℓ(u1) − ℓ(u), . . . , ℓ(ucu(T)) − ℓ(u)

)
,

the evolution-vector of the labels between u and its children. Conditionally on T, we assume that

the r.v. Xu are independent, and that Xu has distribution νcu(T). This determines a distribution on

B. For example, if νk is the uniform distribution on {−1,+1}k for any k > 0, then the r.v. ℓ(u1)−
ℓ(u), . . . , ℓ(ucu(T)) − ℓ(u) are independent with common distribution 1

2 (δ+1 + δ−1) (δx stands for

the Dirac mass at x). In the case where νk is the uniform distribution on {(1, . . . , k), (−1, . . . ,−k)},
the r.v. ℓ(ui) − ℓ(u) and ℓ(uj) − ℓ(u) are not independent and do not have the same distribution.

Notice that a sequence of i.i.d. µ-distributed random variables indexed by U, allows to build

the Galton-Watson trees, and a sequence of random variables indexed by U ×N allows to build all

the labels (by attaching to the elements of U a list of random variables with distribution ν1, ν2, . . . ).

We assume that we work on an underlying probability space (Ω,A, P) on which are defined all the

random variables and processes used in this paper.

We define now two sets of assumptions (H1) and (H2) that will be assumed to be satisfied in

most of our results. (H1) is the conditions that µ is non-degenerate, critical and has a bounded

support:

(H1) :=
(
µ0 + µ1 6= 1,

∑

k≥0

kµk = 1, there exists K > 0 s.t.
∑

k≤K

µk = 1
)
.

Under (H1) the variance σ2
µ of µ is finite and non zero. The bounded support condition is quite a

strong restriction but considering non-bounded distribution leads to non-trivial complications, and

we were unable to extend to that case the most important results. The condition on the mean can
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be seen as a normalization, since any distribution µ̃ related to µ by µ̃k = µka
k/(
∑

j akµk) for some

a > 0 induces the same distribution as µ on GW trees conditioned by the size.

Let Y (k) = (Yk,1, . . . , Yk,k) be νk-distributed. We denote by νk,j, mk,j and σ2
k,j the distribution,

the mean and the variance of Yk,j. We call global mean and global variance of the branching random

walk,

m =
∑

k≥1

k∑

j=1

µkmk,j, and β2 =
∑

k≥1

k∑

j=1

µkE(Y 2
k,j).

Let (H2) denote the conditions that the global mean is null, the global variance finite and positive,

and for a p > 4, the centered pth moment of the Yk,j’s are finite:

(H2) :=

(
m = 0 and β ∈ (0,+∞),

there exist p > 4 s.t. for any (k, j), 1 ≤ j ≤ k ≤ K, E (|Yk,j − mk,j|p) < +∞.

)
.

∅
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Figure 1: A tree on which is indicated the depth first traversal, its height and contour processes.

Encoding of branching random walks

We denote by 4 the lexicographical order (LO) on the planar trees (and u ≺ v if u 4 v and u 6= v),

and let u(k) be the k-th vertex in the LO (u(0) = ∅).

We study the asymptotic behavior of branching random walks via their encoding by depth first

traversal. The depth-first traversal of a tree T ∈ Tn is a function:

FT : {0, ..., 2n} → { vertices of T },

which we regard as a walk around T , as follows: FT (0) = ∅, and given FT (i) = z, choose if possible

and according to the LO, the smallest child w of z which has not already been visited, and set

FT (i + 1) = w. If not possible, let FT (i + 1) be the father of z.

We now encode the branching random walk with the help of a pair of processes. For any

k ∈ J0, |T |−1K, let HT
k = |u(k)| and RT

k = ℓ(u(k)). The height process (HT
s , s ∈ [0, |T |−1]) and label

process (RT
s , s ∈ [0, |T |−1]) are obtained from the sequences (HT

k ) and (RT
k ) by linear interpolation.

Alternatively, one may encode the branching random walk with a pair of processes associated with

the depth first traversal: for any k ∈ J0, 2(|T | − 1)K, let ĤT
k = |FT (k)| and R̂T

k = ℓ(FT (k)). The

processes (ĤT
s , s ∈ [0, 2(|T |−1])]) and (R̂T

s , s ∈ [0, 2(|T |−1)]), obtained by interpolation, are called
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Figure 2: A branching random walk from B9. On the first column, the contour process and the

contour label process, on the second column, the height process and the height label process.

respectively the contour process and the contour label process; the pair (ĤT , R̂T ) is called the head

of the discrete snake.

Let d := gcd{k, k ≥ 1, µk > 0}. The support of the distribution of |T| – we write supp(|T|) –

is included in 1 + d N (and P(|T| = 1 + kd) > 0 for every k large enough). For n + 1 ∈ supp(|T|),
the distribution P under the conditioning by |T| = n + 1 is denoted by Pn, in other words

Pn = P( . | |T| = n + 1).

Even if not recalled, each statement concerning weak convergence under Pn is assumed to be along

the subsequence (nk)k for which Pnk
is well defined. In the proofs we will treat only the case d = 1

the general case being treated with slight modifications.

We define hn, ĥn, rn and r̂n to be the processes HT, ĤT, RT, and R̂T under Pn, interpolated

as follows:

hn(s) =
HT

ns

n1/2
, ĥn(s) =

ĤT
2ns

n1/2
, rn(s) =

RT
ns

n1/4
, r̂n(s) =

R̂T
2ns

n1/4
, for any s ∈ [0, 1].

Theorem 1 If (H1) and (H2) are satisfied then

(
hn, ĥn, rn, r̂n

)
(d)−−→
n

(h,h, βr, βr)

in C([0, 1], R4) endowed with the topology of uniform convergence, where h = 2e/σµ and e is the

normalized Brownian excursion, and where conditionally on h, r is a centered Gaussian process

with covariance function

cov(r(s), r(t)) = ȟ(s, t) := min
u∈[s∧t,s∨t]

h(u), for any s, t ∈ [0, 1].
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Notice that the same processes h and r appear twice in the limit process. The convergence of

processes associated with the contour processes (with a ̂) to the same limit as the one associated

with the height processes is well understood now, and “almost” generic (Duquesne & Le Gall [9,

Section 2.5] and [21]), we then concentrate only of the height process. The process (r,h) (or with a

different scaling) will be called the head of the Brownian snake with lifetime process the normalized

Brownian excursion (BSBE). We refer to the works of Le Gall (e.g. [16] and with Duquesne [10])

for information on the Brownian snake and to the papers cited below for discrete approaches to

this object.

In the present work we deal only with the head of the snakes; this is in principle different than

snakes even if thanks to the homeomorphism theorem [20], evoked below, Theorem 1 has some

direct interpretation in term of snakes. We refer to [20, 13] for the notion of discrete snake which

is the discrete analogue of BSBE: the discrete snake associated with the branching random walk

(T, ℓ), is the pair (ĤT ,Φ) where Φ = (Φk)k∈J0,2(|T |−1)K and Φk is the sequence of labels on the

branch J∅, FT (k)K.

Related works

The convergence ĥn
(d)−−→
n

h is due to Aldous [1, 2] (see also Marckert & Mokkadem [21] for a revisited

proof, Pitman [25, Chap. 5 and 6], and Duquesne [9] and Duquesne & Le Gall [10, section 2.5] for

generalization to GW trees with offspring distribution having infinite variance).

The two first results concerning the convergence of discrete snakes to the BSBE appeared in

two independent works:

• Chassaing & Schaeffer [7] deal with discrete snakes built on underlying trees chosen uniformly in

Tn (this corresponds to the case µ ∼ Geom(1/2)) and where the displacements are i.i.d., and for

any k, j, νk,j is the uniform distribution in {−1, 0,+1}. They show the convergence of the head of

the discrete snake for the Skorohod topology, and the convergence of the moments of the maximum

of rn are also given. This study was motivated by the deep relation between this model of discrete

snake and random rooted quadrangulations, underlined by the authors.

• Marckert & Mokkadem [20] studied also the case µ ∼ Geom(1/2) but with more general centered

displacements that have moments of order 6 + ε (the distribution νk,j does not depend on k, j,

but νk is not assumed to be νk,1 × · · · × νk,k). The convergence of the head of the snake holds in

(C[0, 1], R2) and the convergence of the snake itself is given thanks to a “homeomorphism theorem”

which implies that the convergence of the snake and of its tour (in space of continuous functions) are

equivalent. Here it implies that under the hypothesis of Theorem 1, the discrete snake associated

with our model of labeled trees converges weakly to the BSBE.

Then some generalizations appears few months later:

• Gittenberger [11] provides a generalization of a lemma from [20] allowing him to consider snakes

with underlying trees GW trees conditioned by the size (condition equivalent to H1). The displace-

ments must be centered and have moments of order 8 + ε.
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• Janson & Marckert [13] show that in the i.i.d. case (νk,j do not depend on (k, j)), moments of

order 4 + ε are necessary and sufficient to get the convergence to the BSBE. If no such moment

exists the convergence to a “hairy snake” is proved under the Hausdorff topology.

• In Marckert & Miermont [19], the case of νk,j depending of k, j is investigated (also the underlying

GW trees are allowed to have two types). The hypothesis are for each k, j, mk,j = 0, condition (H2)

is satisfied, and then
∑

k,j µkσ
2
k,j < +∞. A motivation was to generalize the works of Chassaing &

Schaeffer [7] concerning quadrangulations to bipartite maps.

Another important point is the convergence of the occupation measure of the head of the discrete

snake to the one of the BSBE, the random measure named ISE (the integrated superBrownian

excursion introduced by Aldous [3], see also Le Gall [16] and [20, 13]). Using the convergence of

discrete snake to the BSBE, Bousquet-Mélou [4] and Bousquet-Mélou & Janson [5] deduce new

results on ISE and on the BSBE; for example, some properties on the support of ISE, and of the

random density of ISE are derived. We refer also to Le Gall [15] for the convergence of discrete

snake conditioned to stay positive.

The novelty in the present paper is that the condition {mk,j = 0,∀k, j} is replaced by m =
∑

k≥1

∑k
j=1 µkmk,j = 0. This allows to consider some natural models where, for example, the dis-

placements are not random knowing the underlying tree (see Section 1.3). The proof of Theorem 1

relies in part on some results from [19], and on a new approach, necessary to control the contribu-

tion of the mean of the displacements; the main point for this, is the comparison of the lineage of

each node, with some multinomial r.v. : this is the aim of Theorem 2, that we think interesting in

itself, since it reveals a thin global behavior of GW trees conditioned by the size. Unfortunately,

the price of this generalization is to consider only offspring distribution with bounded support.

The reason comes from the proof of Theorem 2. We guess that some generalization for all families

of GW trees (with finite variance) may be found but for this a control of an infinite sequence of

processes arising in Theorem 2 should be provided what we were unable to do.

1.2 On the lineage of nodes

Assume that (H1) and (H2) holds, and let K be a bound on the support of the offspring distribution.

We work again conditionally on T. For any node u = i1 . . . ih ∈ T, let uj = i1 . . . ij and J∅, uK =

{∅ = u0, u1, . . . , uh} be the ancestral line of u back to the root. Conditionally on T, ℓ(u) owns the

following representations:

ℓ(u) =

|u|∑

m=1

ℓ(um) − ℓ(um−1) (1)

where ℓ(um) − ℓ(um−1) is νk,j-distributed when cum−1(T) = k and im = j, and where the r.v.

(ℓ(um) − ℓ(um−1))’s are independent (conditionally on T); the variables ℓ(um) − ℓ(um−1) will be

often called displacements.
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Consider the array

IK = {(k, j), 1 ≤ j ≤ k ≤ K} .

Let T ∈ T and u be a node of T . For any (k, j) ∈ IK , let Au,k,j(T ) be the number of strict ancestors

v of u (the nodes v ∈ J∅, uJ) such that cv(T ) = k, and such that u is a descendant of vj, the jth

child of v (we write fv(u) = j). We say that v is an ancestor of type k, j of u, and we call the

vector Au = (Au,i)i∈IK
the lineage of u (or the content of J∅, uK). See Figure 3.

u

Figure 3: On this tree Au,1,1 = 1, Au,2,2 = 1, Au,4,2 = 1, Au,5,3 = 1, the others Au,i are 0.

By (1), conditionally on T, the label ℓ(u) owns the following representations:

ℓ(u)
(d)
=

∑

(k,j)∈IK

Au,k,j(T)∑

l=1

Y
(l)
k,j ,

where the r.v. Y
(l)
k,j are independent, and where for any l, Y

(l)
k,j is νk,j distributed. In order to make

more apparent the contribution of the means mk,j’s , and using that m = 0, write

ℓ(u)
(d)
=

∑

(k,j)∈IK

Au,k,j(T)∑

l=1

(
Y

(l)
k,j − mk,j

)
+

∑

(k,j)∈IK

(Au,k,j(T) − µk|u|) mk,j. (2)

Assume that T is Pn distributed, and that u = u(ns) for some s ∈ (0, 1). Conditionally on |u|, we

will see that both parts of the right hand side of (2) divided by n1/4 converge in distribution, and

the limit r.v. are asymptotically independent: in the first part, the fluctuations of Au,k,j around

µk|u| are not important when they are crucial in the second sum.

We now concentrate on the r.v. (Au)′s under Pn. For any l ∈ J0, nK, (k, j) ∈ IK , set

g
(n)
(k,j)(l) := Au(l),k,j − µk|u(l)|.

For every (k, j) ∈ IK , the process l 7→ g
(n)
(k,j)(l) encodes the evolution of the number of ancestors of

type k, j of u(l), when l varies. Consider G(n) = (G(n)(s))s∈[0,1] the process taking its values in

RIK defined by: For any s, G(n)(s) =
(
G

(n)
k,j (s)

)
(k,j)∈IK

where s 7→ G
(n)
k,j (s) is the real continuous

process that interpolates g
(n)
k,j as follows:

G
(n)
k,j (s) :=

g
(n)
k,j (⌊ns⌋) + {ns}

(
g

(n)
k,j (⌊ns + 1⌋) − g

(n)
k,j (⌊ns⌋)

)

n1/4
, s ∈ [0, 1], (3)
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where {x} stands for the rational part of x. The random process G(n) encodes the lineage of all

the nodes of T; its limiting behavior is described by the following theorem.

Theorem 2 Under (H1) and (H2) the following convergence in distribution holds in C([0, 1])#IK ×
C[0, 1] endowed with the topology of the uniform convergence

(G(n),hn)
(d)−−→
n

(G,h)

where h is defined as in Theorem 1, and where conditionally on h, G = (Gk,j(s))(k,j)∈IK ,s∈[0,1] is

a real centered Gaussian field with the following covariance function: for any (k, j) and (k′, j′) in

IK , s and s′ in [0, 1],

cov
(
Gk,j(s),Gk′,j′(s

′)
)

=
(
−µkµk′ + µk1(k,j)=(k′,j′)

)
ȟ(s, s′). (4)

1.3 Comments, examples and applications

1) Theorem 2 may be considered as the strongest result of this paper. It gives very precise infor-

mation on the asymptotic behavior of the process G(n) that encodes the lineage of all the nodes.

This gives a “global asymptotic” property reminiscent of the properties of the distinguished branch

in “a size biased GW tree” (see [17, chap. 11]).

2) For any fixed (k, j) ∈ IK , knowing h, Gk,j is a Gaussian process with covariance function

cov
(
Gk,j(s),Gk,j(s

′)
)

=
(
−µ2

k + µk

)
ȟ(s, s′).

In other words, the processes (Gk,j,h) has the same distribution as (
√

−µ2
k + µk r,h), and then

up to some multiplicative constants, (Gk,j,h) is the head of a BSBE. As a simple consequence

of Theorem 2, we have that (Gk,j,h)(k,j)∈IK
is a sequence of heads of BSBE, and that for any

(k, j) ∈ IK ,
(
G

(n)
k,j ,hn

) (d)−−→
n

(
Gk,j,h

)
. (5)

The dependence between the different processes Gk,j is ruled out by (4). For any families of real

numbers (λk,j)(k,j)∈IK
, we have




∑

(k,j)∈IK

λk,jG
(n)
k,j ,hn



 (d)−−→
n




∑

k,j

λk,jGk,j,h



 . (6)

3) Consider the case µ = 1
2(δ0 + δ2), ν2 = δ(+1,−1), of binary trees in which the displacements are

not random: ℓ(u1)− ℓ(u) = +1 and ℓ(u2)− ℓ(u) = −1. We have m = 0 and β2 = 1
2 (1 + 1) = 1 and

Theorems 1 and 2 apply. Hence, the clear positive bias for Rn(t) for small values of t, disappears at

the limit. Note also that this normalizing factor is exactly the same as if ν2 = 1
2 (δ(+1,−1) + δ(−1,+1))

(case where (ℓ(u1) − ℓ(u), ℓ(u2) − ℓ(u)) is equally likely (+1,−1) or (−1,+1)) and as if ν2 =

(1
2(δ+1 + δ−1))

2 (case where the ℓ(u1) − ℓ(u) and ℓ(u2) − ℓ(u) are i.i.d., uniform on {−1, 1}). The
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question of the convergence of the discrete snake in the case ν2 = δ(+1,−1) appears first in Marckert

[18] in relation with some properties of the rotation correspondence, and the difference between left

and right depth in binary trees . The convergence of (rn) is not given in [18], but the convergence

of the occupation measure of rn, “the discrete ISE”, to ISE is established. We refer also to Janson

[12] for recent developments concerning the same question.

Further, notice that in this model, the label ℓ(u) of a vertex u is ℓ(u) = Au,2,1 − Au,2,2, that is

the number of left steps minus the number of right steps necessary to climb from the root to u in

the binary tree. The convergence of (rn) can be seen directly via the one of (G(n)):

(G
(n)
2,1 ,G

(n)
2,2 ,hn)

(d)−−→
n

(
G2,1,G2,2,h

)
, (7)

and then rn = G
(n)
2,1 − G

(n)
2,2

(d)−−→
n

G2,1 − G2,2 which is, conditionally to h and according to (4), a

centered Gaussian process with covariance function ȟ(s, t). Here, the convergence of (rn) appears

to be a consequence of the convergence of G2,1 and G2,2, encoding the right depth and the left

depth in binary trees.

We would like to stress on the following point: discrete snake are usually constructed with “two

levels of randomness”: the underlying trees are random and so are the displacements given the

underlying tree, and then BSBE appears to be a natural limit of these objects . Here, we provide

some objects with only “one level of randomness” that converge to the Brownian snake. The BSBE

appears as a kind of internal complexity measure in trees measuring the difference between the

number of ancestors of type k, j and some expected quantities.

2 Proofs

The proofs rely on a precise study of the lineage of the nodes under Pn and in particular on the

comparison of Au with a multinomial random variable. For this reason we first give some elements

on multinomial distributions and on their asymptotic behaviors. We then proceed to the proof of

Theorem 2, showing first the convergence of the uni-dimensional distribution then the convergence

of the finite-dimensional distribution. The proof of Theorem 1 is given afterward. We think that

some points of view especially in the description of the distribution of the lineages in trees under

Pn should provide some new approaches to study the trees under Pn.

2.1 Prerequisite on multinomial distributions

The contents of this section is quite classical. Consider p = (pi)i∈IK
the distribution on IK , defined

by

pk,j := µk for any (k, j) ∈ IK .
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For any h ≥ 1, let NI [h] be the set of elements c = (ci)i∈IK
of N#IK , such that

∑
i∈IK

ci = h. We

say that M(h) is a multinomial r.v. with parameter h and p, if, for any m = (mi)i∈IK
,

Qh({m}) := P(M(h) = m) =

(
h

(mi)i∈IK

) ∏

i∈IK

pmi
i 1NI [h](m)

where
( h
(mi)i∈IK

)
= h!/(

∏
i∈IK

mi!). Recall that for any i ∈ IK , M(h)
i is a binomial r.v. with

parameters n and pi.

In order to fit with further considerations, we introduce the #IK dimensional real vector

G(n, h) = (Gi(n, h))i∈IK
defined by

Gk,j(n, h) = n−1/4
(
M(h)

k,j − µk h
)

for any (k, j) ∈ IK .

Let G∞ = (G∞,i)i∈IK
be a centered Gaussian vector having as covariance function

cov(G∞,i,G∞,i′) = −pipi′ + pi1i=i′ for any i, i′ ∈ IK . (8)

Proposition 3 Let (h(n)) be a sequence of positive integers s.t. h(n)/
√

n → λ ∈ (0,+∞). Under

(H1) we have G(n, h(n))
(d)−−→
n

√
λG∞ in R#IK .

Proof. This may be proved using classical tools. As pointed out by E. Rio in a personal discussion,

this is also a consequence of the convergence of the empirical process to the Brownian bridge. We

only sketch the proof (for λ = 1): let (Ul)l be a sequence of i.i.d. r.v. uniform on [0,1]. Let Fn

be the associated empirical distribution function and F the distribution function of U . Denote by

gn = Fn − F . According to Donsker [8],
√

ngn
(d)−−→
n

b where b is a normalized Brownian bridge.

Take q = (ql)l∈N a distribution on N and consider

N (n)
k = #{j, j ∈ {1, . . . , n}, Uj ∈ [q1 + · · · + qk, q1 + · · · + qk+1]}.

Then (N (n)
k )k≥1 is a multinomial r.v. with parameters n and q and satisfies

(N (n)
k − qkn)/

√
n =

√
n
(
gn(q1 + · · · + qk+1) − gn(q1 + · · · + qk)

)
.

By Donsker, for any L > 0,
(
(N (n)

k − qkn)/
√

n
)
k≤L

converges in distribution to (bq1+···+qk+1
−

bq1+···+qk
)k≤L. The properties of b allow to conclude. �

The following Proposition will be used in the proof of the tightness of (G(n)).

Proposition 4 Under (H1), for any β > 1, there exists c > 0 such that, for any h > 0, any n > 0,

E
(∥∥G(n, h)‖β

1

)
≤ c

(
h/

√
n
)β/2

.

Recall that all the norms are equivalent in R#IK . Here, we use ‖X‖1 =
∑

(k,j)∈IK
|Xk,j |.

Proof. First, since ‖X‖β
1 ≤ c

∑ |Xk,j |β for some c > 0,

E
(∥∥G(n, h)‖β

1

)
≤ c

∑

(k,j)∈IK

E(|n−1/4
(
M(h)

k,j − µk h
)
|β).

Since M(h)
k,j is a binomial random variable with parameter µk and h, E(|

(
M(h)

k,j − µk h
)
|β) ≤

C(µk, β)hβ/2 where the constant C(µk, β) depends on µk and β (see Petrov [24], th. 2.10 p.62). �
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2.2 Decomposition of trees using the lineages

A forest is a finite sequence of trees, that is an element of F := ∪k≥0T k. For any k ∈ N, a forest

with k roots is a k-tuple of planar trees f = (t1, . . . , tk). The size |f | of f is |t1| + . . . |tk|. We

denote by fk = (T1, . . . ,Tk) a random forest in which the trees T1, . . . ,Tk are i.i.d. GW trees with

offspring distribution µ. For any a = (ak,j)(k,j)∈IK
∈ R#IK , write

N1(a) =
∑

(k,j)∈IK

(j − 1)ak,j and N2(a) =
∑

(k,j)∈IK

(k − j)ak,j.

Proposition 5 Let h be a non-negative integer. For any a ∈ NI [h], and any m ∈ J0, nK:

Pn

(
Au(m) = a

)
= Qh(a)

P
(
|fN1(a)| = m − h, |f ′

1+N2(a)| = n + 1 − m
)

P(|T| = n)
, (9)

where f and f ′ are two independent forests.

Proof. To build a tree T of Tn such that Au(m) = a, we first build the branch b = J∅, u(m)K:

Exactly ak,j ancestors v among the h strict ancestors of u satisfy (cv(T ), fv(u)) = (k, j). Hence,

there are
(
n
a

)
way to build b. Then, we complete b in grafting on its neighbors some subtrees

satisfying the following constraints. When Au(m) = a, the number of subtrees rooted on the

neighbors of the branch J∅, u(m)J visited before u(m) (resp. after u(m)) are respectively

N1(a) = #
{
w, d(J∅, u(m)J, w) = 1, w ≺ u(m)

}
,

1 + N2(a) = #
(
{u(m)} ∪

{
w, d(Ku(m), ∅K, w) = 1, u(m) ≺ w

})
.

See an illustration on Figure 4. The N1(a) subtrees must contain exactly m − |u(m)| nodes (the

u(m)

∅

Figure 4: The two forests considered in the decomposition.

nodes, among the m + 1 first, not on J∅, u(m)K), and the 1 + N2(a) subtrees must contain exactly

n+1−m nodes (the nodes visited after u(m), u(m) included). In other words, we need two forests

containing respectively m − h and n + 1 − m nodes. Hence, using simple considerations on the

probability distribution of GW trees we get the announced result. �

11



A consequence of this Proposition is

Pn (|u(m)| = h) =
∑

x∈NI [h]

Qh(x)
P(|f N1(x)| = m − h, |f ′

1+N2(x)| = n + 1 − m)

P(|T| = n)
(10)

=
P
(
|fN1(M(h))| = m − h, |f ′

1+N2(M(h))
| = n + 1 − m

)

P(|T| = n)
. (11)

where M(h) is a multinomial random variable with parameters h and p.

2.2.1 Few fact concerning random forests and random trees

Let (Wi)i≥0 be a random walk starting from 0 with i.i.d. increments with distribution (µ̃k)k≥−1 =

(µk+1)k≥−1 (that is with increment ξ − 1, where ξ is µ-distributed). We have

Lemma 6 Assume (H1) holds true.

(i) (Otter [23]) For any k ≥ 1 and n ≥ k, P(| f k| = n) =
k

n
P(Wn = −k).

(ii) (Central local limit theorem (CLLT) )

sup
l∈−n+dN

∣∣∣∣∣

√
n

d
P(Wn = l) − 1√

2πσµ

exp

(
− l2

2σ2
µn

)∣∣∣∣∣ −−−→n
0. (12)

(iii) supn≥0 supx≥0 x P(Wn = x) < +∞.

(i) is often called “conjugation of tree principle” or “cyclical lemma”, and may be found in Pitman

[25, chap 5.1] and is usually attributed to Otter, Kemperman or Dvoretzky-Motzkin.

(ii) is usually called the central local limit theorem (see Breuillard [6] for a state of the art). Recall

that d is the span of µ. The support of Wn is included in −n + dN = {u ∈ Z, u = −n + di, i ∈ N}.
A consequence of (i) and (ii) is that

P(|T| = n) ∼ dn−3/2

√
2πσµ

, (13)

the equivalent being taken along the subsequence where the left hand side is non-null.

Proof of (iii): supn≥0 supx≥c
√

n{x P(Wn = x)} is bounded by the Tchebichev inequality. By (ii),

supx≤c
√

n

√
n P(Wn = x) −→

n

d√
2πσµ

, then supn≥0 supx≤c
√

n

√
n P(Wn = x) is finite. �

The following Lemma controls the maximum increment in the process H under Pn.

Lemma 7 Assume (H1). For any c > 0 then exists ρ > 0 such that

Pn

(
max

l

{∣∣|u(l + 1)| − |u(l)|
∣∣} ≥ ρ log n

)
= O(n−c).

12



Proof. The proof deeply relies on the conjugation of tree principle. Take n + 1 i.i.d. r.v.

X1, . . . ,Xn+1, µ-distributed. Conditionally on
∑n+1

i=1 (Xi − 1) = −1, among the n + 1 shifted se-

quences (X1, . . . ,Xn+1), (X2, . . . ,Xn+1,X1), . . . , (Xn+1,X1, . . . ,Xn), exactly one (X⋆
1 , . . . ,X⋆

n+1)

corresponds to a sequence (cu, u ∈ T ) for a tree T ∈ Tn (where the cu are sorted according the

depth first order), and (X⋆
1 , . . . ,X⋆

n+1)
(d)
= (cu, u ∈ T) for T under Pn.

The inequality
∣∣|u(l)| − |u(l + 1)|

∣∣ = h > 1 implies that |u(l + 1)| < |u(l)|, and the deepest

common ancestor v of u(l + 1) and u(l) has depth |u(l + 1)| − 1. Assume that the tree is visited

according to the reversed LO (the order on the alphabet N is reversed, but if z is a prefix of z′,

z is still smaller than z′ : this amounts to walk around the tree counterclockwise and rank the

nodes according to their first visit time). In the reversed LO, the nodes in Kv, u(l)J are visited

consecutively, and each of them has at least one child. Under P, when traversing the tree in the LO

(or by symmetry in the reversed LO) the gap between two nodes having zero child is a geometrical

r.v. Geom(µ0). We work from now on on the LO order. Denote by X1, . . . ,Xn+1 i.i.d. random

variables µ-distributed and by G1, G2, . . . the successive gaps between the zeros.

P

(
max

i
Gi ≥

ρ log n

2

∣∣∣
n+1∑

i=1

(Xi − 1) = −1

)
= O

(
n1/2P

(
max
i≤n

Gi ≥
ρ log n

2

))
= o(n−c−1),

for ρ large enough. Note that the first maximum is taken on a random number of terms, a.s.

bounded by n. By the conjugation of tree principle, we get the result. �

Remark 1 Using the same argument, one may control the depth of the last node u(n): for any

c > 0 then exists ρ > 0 such that

Pn(|u(n)| ≥ ρ log n) = O(n−c). (14)

For u ∈ T, l ∈ J0, |u|K and (k, j) ∈ IK , let Au,l,k,j be the number of ancestors v ∈ J∅, uJ such

that d(u, v) ≤ l, and for which cu(T ) = k and fv(u) = j.

Lemma 8 (i) For every c > 0, there exists γ > 0, such that for n large enough,

Pn

(
∃(k, j) ∈ IK , u ∈ T, |Au,k,j − µk|u|| ≥ γ

√
|u| log n

)
≤ n−c

(ii) For every c > 0, there exists γ > 0 such that, for n large enough

Pn

(
∃(k, j) ∈ IK , u ∈ T, l ∈ (0, |u|], |Au,l,k,j − µkl| ≥ γ

√
l log n

)
≤ n−c.

Proof. (ii) clearly implies (i). But let us prove (i) first. Using (9) and (13), we have for some

constant c > 0, for any m ∈ J0, nK, any h ≥ 1, any a ∈ NI [h],

Pn(Au(m) = a) ≤ cn3/2Qh(a)1h≤n. (15)
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Then Pn

(
∃m ∈ J0, nK, (k, j) ∈ IK ,

∣∣Au(m),k,j − µk|u(m)|
∣∣ ≥ γ

√
|u(m)| log n

)
≤

cn3/2
n∑

m=0

n∑

h=0

P
(
∃(k, j) ∈ IK ,

∣∣M(h)
k,j − µk|h|

∣∣ ≥ γ
√

h log n
)
.

This latter probability is smaller, for any m ≤ n, h ≤ n than #IKn−γ2/2 by Hoeffding. Hence

Pn

(
∃(k, j) ∈ IK , u ∈ T, |Au,k,j − µk|u|| ≥ γ

√
|u| log n

)
≤ cn7/2n−2γ2

.

For (ii), assume that u(m) = h and for l ≤ h, take v1, . . . , vl the ancestors of u(m) at depth

0 ≤ h1 < · · · < hl < h, and set A′
u(m),l,k,j = #{i, cvi = k, fvi(u(m)) = j}, the lineage of u(m)

restricted to the nodes vi’s. By ”symmetry“, (A′
u(m),l,k,j)k,j and (Au(m),l,k,j)k,j have the same

distributions. Here “symmetry” means the following: let v1 and v2 be two ancestors of u(m).

Exchange in T , the two nodes v1 and v2 together with the subtrees rooted on their children not on

J0, u(m)K, as on figure 5. We get T ′. First T ′ and T has the same weight under Pn. Second, Au(m)

has the same value in T and T ′, and the nodes u(m) in T and T ′ have the same depth (u(m) is by

definition the mth node).
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u(m)u(m)

v1

v2

Figure 5: Exchange of two nodes in a lineage

Now take v the ancestor of u(m) at depth l. By symmetry, (Av,k,j)k,j and (Au(m),l,k,j)k,j have

the same distributions. And thus, by (i), for any m ≤ n, l ≤ n, P(∃(k, j) ∈ IK ,
∣∣Au(m),l,k,j − µk|l|

∣∣ ≥
γ
√

l log n) is certainly smaller than cn7/2n−2γ2
. As a direct consequence, cn7/2+2n−2γ2

is a bound

for Pn

(
∃(k, j) ∈ IK , u ∈ T, l ∈ (0, |u|), |Au,l,k,j − µkl| ≥ γ

√
l log n

)
. �

We end this section with a result concerning multinomial random variables. For any h > 0, set

Jh =

{
a ∈ NI [h], (N1(a),N2(a)) ∈

[σ2
µ

2
h − h2/3,

σ2
µ

2
h + h2/3

]2
}

.

Lemma 9 For any h ∈ N, N1(M(h)) and N2(M(h)) have the same law and there exists c1 >

0, c2 > 0 such that

P
(
M(h) /∈ Jh

)
≤ c1 exp(−c2 h1/3).

14



Proof. The first assertion is easy. Writing {|N1(M(h)) − σ2
µh

2 | ≥ n2/3} ⊂ ⋃
k,j{|M

(h)
k,j − hµk| ≥

h2/3/#IK} (check that
∑

k,j(j − 1)µk =
∑

k,j(k − j)µk =
σ2

µ

2 ), by Hoeffding, one has P(|M(h)
k,j −

hµk| ≥ h2/3/#IK) ≤ 2 exp(−h1/3/(2#IK)). Summing this for (k, j) ∈ IK , the result is shown to

be true. �

2.2.2 A first comparison Lemma

In this section S denote a Polish space. For any r.v. X taking its values in S, we denote by PX

the distribution of X: that is PX(A) = P(X ∈ A) for any A Borelian of S.

Definition 1 Let (Y1, Y2, . . . ) and (X1,X2, . . . ) be two sequences of r.v. taking their values in S

such that PXn is absolutely continuous with respect to PYn, we write PXn ≺ PYn. Let fn be a non

negative measurable function fn such that PXn = fnPYn (in other words PXn(A) =
∫
A fndPYn for

any Borelian A of S); the existence of fn is ensured by the Radon-Nikodym Theorem. For any

ε > 0, let An
ε := {x, |fn(x) − 1| < ε}. We say that PXn/PYn → 1, or Xn//Yn → 1, if for any ε > 0,

PYn(An
ε ) → 1 (this is a convergence of fn to 1 in a weak sense).

If Xn//Yn → 1 then PXn(An
ε ) → 1, and for any B ⊂ An

ε , |PYn(B) − PXn(B)| ≤ εPYn(B), therefore

supB Borelian |PXn(B)− PYn(B)|, the total variation distance between Xn and Yn, goes to 0. Hence

the following Lemma is a straightforward consequence of the Portmanteau theorem:

Lemma 10 If Xn//Yn → 1 and Yn
(d)−−→
n

Y then Xn
(d)−−→
n

Y .

We end this Section by an argument of continuity

Lemma 11 Let (gn) be a sequence of continuous functions from S into a Polish space S′. If

Xn//Yn → 1 then gn(Xn)//gn(Yn) → 1

Proof. If PXn ≺ PYn then so do Pgn(Xn) ≺ Pgn(Yn), and then there exists a non negative measurable

function hn such that Pgn(Xn) = hnPgn(Yn). As above denote An
ε′ := {x, |fn(x) − 1| < ε′} where fn

satisfies PXn = fnPYn and PYn(An
ε′) → 1 and set Bn

ε′ = gn(An
ε′). We have Pgn(Yn)(B

n
ε′) → 1. For

any A ⊂ Bn
ε′ ∣∣Pgn(Xn)(A) − Pgn(Yn)(A)

∣∣ =

∣∣∣∣
∫

A
(hn − 1)dPgn(Yn)

∣∣∣∣ < ε′

the inequality follows that g−1
n (A) ⊂ An

ε′ . Let now ε > 0 be fixed and set A = {x, hn(x)−1 > ε}∩Bn
ε′

(or A = {x, hn(x) − 1 < −ε} ∩ Bn
ε′), we get Pgn(Yn)({x, |hn(x) − 1| ≥ ε}) ≤ 2ε′/ε; choosing ε′ > 0

small, one sees that this is arbitrary small for n large enough. �

2.2.3 Proof of the convergence of the uni-dimensional distributions in Theorem 2

In this section we work under Pn. Let Xn
m := (Au(m), |u(m)|) and Y n

m := (A⋆
m, |u(m)|) where the

distribution of A⋆
m knowing |u(m)| = h is simply Qh. The aim of this section is to compare Xn

m

15



with Y n
m and to deduce from the asymptotic behavior of Y n

m the one of Xn
m. The proof of the

convergence of the finite-dimensional distributions will also use this strategy.

For M > 0, and n ∈ N, consider

Λn,M =
{
(a, h), h ∈ √

n[M−1,M ], a ∈ Jh

}
.

We have

Proposition 12 i) For any m,n, with m ≤ n, we have PXn
m
≺ PY n

m
.

ii) For any s ∈ (0, 1), α > 0, there exists M0 s.t. for n large enough, Pn

(
Y n
⌊ns⌋ ∈ Λn,M0

)
≥ 1 − α

and for any M > 0,

sup
(a,h)∈Λn,M

∣∣∣∣∣
Pn(Xn

⌊ns⌋ = (a, h))

Pn(Y n
⌊ns⌋ = (a, h))

− 1

∣∣∣∣∣ −−→n 0 (16)

iii) For any s ∈ (0, 1), Xn
⌊ns⌋//Y

n
⌊ns⌋ → 1.

Proof. (iii) is a consequence of (ii). Let a ∈ NI [h]. Since {Au(m) = a} ⊂ {|u(m)| = h},
Pn((Au(m), |u(m)|) = (a, h)) = Pn(Au(m) = a). According to Proposition 5, and Formula (10)

Pn(Xn
m = (a, h))

Pn(Y n
m = (a, h))

=
P(|fN1(a)| = m − h, |f ′1+N2(a)| = n + 1 − m)

P
(
|fN1(M(h))| = m − h, |f ′

1+N2(M(h))
| = n + 1 − m

) . (17)

Then (i) holds true. Assume now that s ∈ (0, 1) and α > 0 are fixed. There exists M such that for

n large enough, Pn(|u(⌊ns⌋)| ∈ √
n[M−1,M ]) ≥ 1−α/2 (since hn

(d)−−→
n

2
σµ

e and since P(es = 0) = 0

for any s ∈ (0, 1)). For such a M ,

Pn

(
Y n
⌊ns⌋ ∈ Λn,M

)
= Pn

(
Y n
⌊ns⌋ ∈ Λn,M , |u(⌊ns⌋)| ∈ √

n[M−1,M ]
)

=
∑

l∈√n[M−1,M ]

Pn(|u(⌊ns⌋)| = l)Pn

(
Y n
⌊ns⌋ ∈ Λn,M

∣∣ |u(⌊ns⌋)| = l
)

≥ Pn

(
|u(⌊ns⌋)| ∈ √

n[M−1,M ]
)

min
l∈√n[M−1,M ]

P
(
M(l) ∈ Jl

)

This minimum goes to 1 thanks to Lemma 9.

Now, according to Lemma 6 (i) and (ii), since f and f ′ are independent, P(|fN1(a)| = ⌊ns⌋ −
h, |f ′1+N2(a)| = n + 1 − ⌊ns⌋) =

N1(a)(1 + N2(a))

(⌊ns⌋ − h)(n + 1 − ⌊ns⌋)P(W⌊ns⌋−h = −N1(a))P(Wn−⌊ns⌋+1 = −N2(a) − 1)

and then for any M > 0,

sup
(a,h)∈Λn,M

∣∣∣∣∣
P(|fN1(a)| = ⌊ns⌋ − h, |f ′1+N2(a)| = n + 1 − ⌊ns⌋)

qn,s,h
− 1

∣∣∣∣∣ −−→n 0
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for

qn,s,h =
σ2

µh2 exp
(
− σ4

µh2

8ns(1−s)

)

8πn3(s(1 − s))3/2
.

Now, P
(
|fN1(M(h))| = ⌊ns⌋ − h, |f ′

1+N2(M(h))
| = 1 + n − ⌊ns⌋

)
= Ah + Bh where

Ah := P
(
|fN1(M(h))| = ⌊ns⌋ − h, |f ′

1+N2(M(h))
| = 1 + n − ⌊ns⌋,M(h) /∈ Jh

)

Bh := P
(
|fN1(M(h))| = ⌊ns⌋ − h, |f ′

1+N2(M(h))
| = 1 + n − ⌊ns⌋,M(h) ∈ Jh

)

Using again Lemma 6 (i) and (ii), we get

sup
h∈√n[M−1,M ]

∣∣∣∣
Bh

qn,s,h
− 1

∣∣∣∣ −−→n 0.

On the other hand, Ah ≤ P(M(h) /∈ Jh) ≤ c1 exp(−c2h
1/3) ≤ 2 exp(−c n1/6/M) for any h ∈√

n[M−1,M ]. To complete the proof of (ii), check that suph∈√n[M−1,M ] |Ah/Bh| −−→
n

0. �

We have now all the tools to conclude:

Corollary 13 For any s ∈ (0, 1), let sn = ⌊ns⌋/n, we have

(
G(n)(sn),hn(sn)

)
//
(
G
(
n,

√
nhn(sn)

)
,hn(sn)

)
→
n

1,

and the convergence of the uni-dimensional distributions holds in Theorem 2.

(Recall that G is defined in Section 2.1.)

Proof. Proposition 12 and Lemma 11 yield the first assertion of the Corollary.

For the second assertion, we first examine s = 0 and s = 1. Since hn(0) = 0 and Remark 1

entails that hn(1)
proba.−−−−→

n
0, the convergence of the uni-dimensional distributions holds in Theorem

2 for s = 0 and s = 1.

For s ∈ (0, 1), since hn
(d)−−→
n

h in C[0, 1], by the Skorohod representation theorem [14, Theorem

3.30], there exists a probability space on which this convergence is a.s.. On this space (or on an

augmented space on which the pair (G (n,
√

nhn(sn)) ,hn(sn)) is defined

(
G
(
n,

√
nhn(sn)

)
,hn(sn)

) (d)−−→
n

(Ghs
∞ ,hs) (18)

where Ghs∞ is a Gaussian process which covariance function (see (8)) allows to check that (Ghs∞ ,hs)
(d)
=

(G(s),hs) for any s ∈ (0, 1). To prove that the convergence of the uni-dimensional distribution holds

in Theorem 2, it remains to control the distance between
(
G(n)(sn),hn(sn)

)
and

(
G(n)(s),hn(s)

)
.

Since hn
(d)−−→
n

h in C[0, 1], |hn(sn) − hn(s)| proba.−−−−→
n

0. For G(n) this is more complex, and we will

establish some bounds useful also for the proof of the tightness. Let

Ωρ
n =

{
T ∈ Tn,max

l

∣∣|u(l + 1)| − |u(l)|
∣∣ ≤ ρ log n

}
.
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Let ε > 0. According to Lemma 7, for ρ large enough, Pn(Ωρ
n) > 1− ε for n large enough. We have

for s′n = ⌊ns + 1⌋/n,

‖G(n)(sn) −G(n)(s)‖11Ωρ
n

= n(s − sn)
∑

i∈IK

1Ωρ
n

∣∣∣G(n)
i (s′n) − G

(n)
i (sn)

∣∣∣ . (19)

In Ωρ
n, for any k, j, the differences |G(n)

k,j (s′n) − G
(n)
k,j (sn)| are bounded by 2ρn−1/4 log n (which is a

bound on the number of non common ancestors of two consecutive nodes in the LO for a tree in

Ωρ
n). Hence, since s − sn ≤ 1/n, for any ε′ > 0, for n large enough

‖G(n)(sn) − G(n)(s)‖11Ωρ
n
≤ c(s − sn)1/4−ε′ (20)

for some constant c. One concludes that ‖G(n)(sn) − G(n)(s)‖1
proba.−−−−→

n
0. �

2.3 Convergence of the finite-dimensional distributions

In this Section, κ ≥ 2 is a fixed integer. We denote by s(κ) the vector (s1, . . . , sκ) where 0 < s1 <

· · · < sκ ≤ 1 are fixed. Let T ∈ Tn. For i ∈ J1, κK, set ui = u(⌊nsi⌋), u0 = uκ+1 = ∅, and

L(T ) = {ui, i ∈ J1, κK}.

We assume that n is large enough such that ⌊ns1⌋ ≥ 1, and ⌊nsi⌋ 6= ⌊nsj⌋ for i 6= j, so that the

ui’s are different nodes of T sorted according to the LO.

The aim of this section is to study the distribution of (Aui)i∈J1,κK under Pn, and to deduce from

this the convergence of the finite dimensional distribution in Theorem 2. The ideas are of the same

type as in the case of the uni-dimensional distributions but the details are more involved since the

dependences between the r.v. Aui ’s must be taken into account. For this, the shape of the tree

spanned by the ui’s we must be considered.

Denote by ǔi,j the deepest (i.e. youngest) common ancestor of ui and uj. Let T
s(κ) =

⋃κ
i=1J∅, uiK

be the subtree “spanned” by the ui’s,

Z(T ) = {ǔi,j , 1 ≤ i < j ≤ κ} = {ǔi,i+1, i ∈ J1, κ − 1K},
Z⋆(T ) = Z(T ) ∩ L(T ),

the set of branching nodes in T
s(κ) , and the nodes in L(T ) that are ancestors of other nodes of L(T ).

Definition 2 The shape function b(n) associates with T
s(κ) the smallest tree in T having the same

branching structure (that we call shape) together with a coding of the nodes of Z⋆(T ) (see Figure

6). Formally

b(n) : Tn × [0, 1]κ −→ T × PF (U)

(T, s(κ)) 7−→ (T b(n), I
b(n)
T )

where PF (U) is the set of finite subsets of U and where T b(n) is characterized by:

i) T b(n) is a tree having #
(
Z(T ) ∪ L(T ) ∪ {∅}

)
nodes,

18



ii) there exists an increasing function ΦT from Z(T )∪L(T )∪ {∅} in T b(n), preserving the descen-

dants: ΦT (u) is an ancestor of ΦT (v) in T b(n) iff u is an ancestor of v in T .

The set I
b(n)
T is defined to be ΦT (Z⋆(T )).

replacemen

∅

u6

u1 u2

u3
u4 = ǔ4,5

u5

ǔ3,4 = ǔ4,6

ǔ1,2
ǔ2,3

Figure 6: A tree T and the associated tree Φ(T ) = {∅, 1, 11, 111, 112, 12, 121, 122, 1221, 123}.
On this example Z⋆(T ) = u4, and then I

b(n)
T = {122}

The tree T b(n) can be constructed in somehow squeezing the paths between the nodes of Z(T ) ∪
L(T ) ∪ {∅} in unit length edge and in renaming the vertices in order to get a tree. The function

ΦT is unique and for short for any u ∈ Z(T ) ∪ L(T ) ∪ {∅}, we write ub(n) instead of ΦT (u). The

set I
b(n)
T encodes the images of the nodes of Z⋆(T ). Notice that #I

b(n)
T = κ − #∂T b(n), and when

I
b(n)
T is not empty the tree T b(n) alone is not sufficient in general to guess I

b(n)
T .

In what follows, we will often write b instead of b(n).

A pair (u, v) (with u, v ∈ L(T ) ∪ Z(T ){∅}) such that ub = fa(vb) is the father of vb in T b will

be called a spanned branch. The contents of the spanned branches will be carefully handled since

they contribute in general to several Aui ’s. The set of spanned branches can naturally be indexed

by the edges (ub, vb) of T b, but also by the nodes vb of T b \ {∅} using the bijection between the

edges of T b and T b \ {∅} that associates with the edge (ub, vb) the node vb.

Using this labeling, we define A(vb) the content of the spanned edge (u, v) by

A(vb),k,j := # {w ∈Ku, vJ, cw = k, fw(v) = j} .

The extremities of the spanned branches are not counted in the A(vb),k,j’s in order to simplify the

decompositions (∅ was counted in the unidimensional case). It is easy to check that

A(vb),k,j = (Av,k,j − Au,k,j) −1(cu,fu(v))(k, j). (21)

We also introduce the “ordered content” of the edges. For any vb ∈ T b \ {∅}, define
−→
A (vb)(T ), the

ordered content of the edge (u, v) by

−→
A (vb)(T ) := ((cw, fw(v)), w ∈Ku, vJ) ,

the nodes of Ku, vJ being sorted according to the LO.
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We write simply
−→
A (T ) =

(−→
A (vb)(T )

)

vb∈T b\{∅}
the list of ordered contents of the spanned edges.

The ordered content of any edge belongs to ∪i≥0(IK)i. The canonical surjection π from
⋃

i≥0(IK)i

into NIK associates with the ordered content
−→
B = ((ki, ji), i = 1, . . . , l) the content B:

Bk,j =
(
π(
−→
B )
)

k,j
= #{i, (ki, ji) = (k, j)}.

The application π can be extended to the list of ordered contents, and we set

A(T ) = π
((−→

A (vb)(T )
))

vb∈T b\{∅}
=
(
π
(−→

A (vb)(T )
))

vb∈T b\{∅}
.

The definition of N1 and N2 (given in Section 2.2) are extended to
⋃

i≥0(IK)i : we set,

N1

(−→
B
)

:= N1

(
π(
−→
B )
)

and N2

(−→
B
)

:= N2

(
π(
−→
B )
)

.

We denote by Hvb the cardinality #Ku, vJ where ub = fa(vb). We set

HT = (Hvb)vb∈T b\{∅},

the ordered list of the spanned branches lengths.

The nodes of Z(T ) ∪ {∅} are the “hinge nodes” laying between the spanned edges, and they

also contribute to the Aui ’s. For any u in Z(T )∪{∅}, the set fu(L(T )) is a subset of J1, . . . , cu(T )K

with cub(T b) elements: the set of the ranks of the children of u, that are ancestors of the nodes of

L(T ). We encode the contribution of Z(T ) ∪ {∅} to the lineage thanks to the sequence ΘT :

ΘT =
(
C(ub), R(ub1), . . . , R(ubC(ub))

)
ub∈T b\∂T b ,

where C(ub) = cu(T ) and R(ub1) < · · · < R(ubC(ub)) is the sorted list of the elements of fu(L(T )).

Note that ub1, . . . , ubC(ub) are the children of ub in T b and then the arguments of R are unam-

biguous.

The idea now is the following. If (T b(n), I
b(n)
T ,

−→
A (T ),ΘT ) is known, to end the description of

T using Ts(κ) , it remains to describe the fringe subtrees rooted in the neighborhood of Ts(κ) (the

fringe subtree of T rooted at u is Tu = {v ∈ U : uv ∈ T}). We pack these subtrees into forests that

are, up to some border effects, rooted on the neighbors of Ts(κ) between ui and ui+1.

For any simple path I in T , we denote by N (I) the neighborhood of I:

N (I) := {u ∈ T, dT (u, I) = 1}.

We now build the set of roots of the forest we consider (see Figure 7):

S0 = {v ∈ N (J∅, u1J), ∅ ≺ v ≺ u1} ,

Si =

{
{v ∈ N (Kui, ui+1J), ui ≺ v ≺ ui+1} ∪ {ui} if ui ∈ L(T ) \ Z⋆(T ),

{v ∈ N (Jui, ui+1J), ui ≺ v ≺ ui+1} if ui ∈ Z⋆(T ),
, i ∈ J1, κ − 1K,

Sκ = {v ∈ N (Kuκ, ∅K), uκ ≺ v} ∪ {uκ}.
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u0

u1 u4
u2

u3

u3 = z3

z1

z2

F0

F1

F2

F3

F4

Figure 7: The forests considered in the decomposition are surrendered. Notice that the node

ui belongs to a forest only if it is a leaf in Ts(κ) . Observe also the contribution of the neighbors

of the “hinge nodes”, the nodes zi’s on the picture.

The forests we consider are

Fi(T ) := (Tu, u ∈ Si) ;

we denote by F(T ) = (Fi(T ))i=0,...,κ the (ordered) sequence of forests.

Let l ∈ J0, κ − 1K be fixed. Let ub
l = vb

0, v
b
1, . . . , v

b
m = ub

l+1, the shortest path in T b between ub
l

and ub
l+1. Let vb

i = ub
l ∨ ub

l+1 be the deepest (youngest) common ancestor of ub
l and ub

l+1. Since

vb
0 ≺ vb

m two cases arise, vb
i = vb

0 or 0 < i < m. We have

#S l(T
b, Ib

T ,
−→
AT ,Θ(T )) = Nl,l+1(T

b, Ib
T ,

−→
A (T )) + Yl,l+1(T

b, Ib
T ,Θ(T )) (22)

where for any l, Nl,l+1(T
b, Ib

T ,
−→
A (T )) counts the number of subtrees rooted on the neighbors of the

spanned branches visited between ul and ul+1, according that these subtrees are on the right or on

the left of these spanned branches:

Nl,l+1(T
b, Ib

T ,
−→
A (T )) =

i−1∑

p=0

N2(
−→
A (vp)) +

m∑

p=i+1

N1(
−→
A (vp)),

and Yl,l+1(T
b, Ib

T ,ΘT ) counts the number of subtrees rooted on the neighbors of the nodes of

Z(T ) ∪ {∅}:

Yl,l+1(T
b, Ib

T ,ΘT ) = 1ub
l∈∂T b+R(vp

i+1)−R(vp
i−1)1i>0−1+

i−1∑

p=1

[
C(vb

p) − R(vb
pC(vb

p))
]
+

m−1∑

p=i+1

[
R(vb

p) − 1
]
.

Indeed, R(vp
i+1)−R(vp

i−1)1i>0−1 is the number of children of vp
i in Sl, the sum

∑i−1
p=1

[
C(vb

p) − R(vb
pC(vb

p))
]

counts the number of children of vp
1 , . . . , v

p
i−1 in Sl, and

∑m−1
p=i+1

[
R(vb

p) − 1
]
the children of vp

i+1, . . . , v
p
m−1

in Sl.
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For l = κ, let ub
κ = vb

0, v
b
1, . . . , v

b
m = ub

κ+1 = ∅. Since vb
i is an ancestor of vb

i−1, we have

Nl,l+1(T
b, Ib

T ,
−→
A (T )) =

m−1∑

p=0

N2(
−→
A (vp)),

Yl,l+1(T
b, Ib

T ,ΘT ) =

m∑

p=1

[
C(vb

p) − R(vb
pC(vb

p))
]
,

notice that the term p = m concerns the root.

The cardinalities Fl(T ) = #Fi(T ) satisfy

Fl(HT , T b) = (⌊nsl+1⌋ − ⌊nsl⌋ + 1) − (|ul+1| − |ǔl,l+1|) −1ub
l /∈∂T b , (23)

since the visit times of the nodes ui are ⌊nsi⌋ and since |ul+1| − |ǔl,l+1| + 1 nodes visited during

Jnsl, nsl+1K are not in ∪u∈Sl
Tu.

For any tree t having n nodes, P(T = t) =
∏

u∈t pcu(t). Hence, if t has n nodes, putting together

the contribution of the forests and of the ordered edge contents, we get

P (T = t) =

(
l∏

i=0

P
(
f#S(tb,A(t),Θ(t)) = Fi(t)

))



∏

vb∈tb\{∅}

∏

k,j

p
π(

−→
A

(vb)
(t))k,j

k








∏

zb∈tb\∂tb

pC(zb)



 (24)

where fx is a random forest with x roots (see Section 2.2).

Comments 1 A few points worth mentioning:

– Let A = (Ak,j)(k,j)∈IK
with

∑
i∈IK

Ai = h. The number of ordered content having A as content

is

#π−1(A) =

(
h

(Ai)i∈IK

)
, (25)

and thus ∑

−→
B∈π−1(A)

∏

k,j

p
π(

−→
B )k,j

k =

(
h

(Ai)i∈IK

)∏

k,j

p
Ak,j

k = Qh(A). (26)

This is simply due to the fact that all permutations of the “symbols” (k, j)’s are possible in the

ordered contents
−→
B ’s such that π(

−→
B ) = A.

– The size of the forests Fi as well as their number of trees, is a function of the contents (it

does not depends on the order of the content).

We are now able to express the probability to observe a shape together with the (ordered) contents

in term of the probability that some forests have some prescribed sizes.

The probability to observe some contents will be obtained by summing on all corresponding ordered

contents thanks to (26). We won’t do this job on all possible shapes since asymptotically only “the

simplest shapes” eventually happen. We first state a result in this direction.
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2.3.1 Decomposition of a tree T given AT and T b

Let T B
2κ−1 = {T ∈ T2κ−1,deg(∅) = 1,∀u ∈ T \ ∅,deg(u) ∈ {0, 2}} be the set of trees with 2κ − 1

edges, with binary branching points (except the root that has only one child). Denote by

∆n,M = {T ∈ Tn, T b ∈ T B
2κ−1,∀(ub, vb) ∈ T b, ub = fa(vb), d(u, v) ∈ √

n[M−1,M ], }.

A tree in ∆n,M has its shape in T B
2κ−1, and all its spanned branches lengths in

√
n[M−1,M ]. By a

counting argument, Ib
T = ∅ which means that the nodes ui are sent on the leaves of T b by ΦT .

Lemma 14 For any ε > 0, there exists M > 0 such that for n large enough

Pn(∆n,M ) ≥ 1 − ε.

Proof. This is a consequence of hn
(d)−−→
n

h = 2e/σµ and of the properties of e: e is a.s. non null on

(0, 1) and the local minima of e are a.s. all different (the continuum random tree is a.s. a binary

tree). �

For any T ∈ ∆n,M , ΦT sends the nodes of L(T ) on the leaves of T b and the nodes of Z(T ) on the

internal nodes of T b \{∅}. The branching points are distinct #Z(T ) = κ−1 and L(T )∩Z(T ) = ∅.
Therefore ΘT belongs to Db = D2 × Dκ−1

3 where D2 = {(c, x), 1 ≤ x ≤ c} and D3 = {(c, x, y), 1 ≤
x < y ≤ c}. Note that under (H1), Db is a subset of J1,KK3κ−1.

2.3.2 A second comparison result

The idea is to compare (A(T),HT,ΘT,Tb) under Pn with some simplest random variables. Thanks

to the previous Lemma, we will somehow consider only the case Ib
T = ∅.

Denote by (An,Hn,Θn,Tb
n) the r.v. (A(T),HT,ΘT,Tb) under Pn. Hence An = (Ai

n)i=1,...,K

is the sequence of contents, Hn = (H1
n, . . . ,HK

n ) the sequence of spanned edge lengths, Θn the

sequence of branching properties of the hinge nodes where K is then the number of spanned

branches (the number of edges of Tb
n). These sequences were labeled by the nodes of the tree Tb,

but, we may and will consider that they are labeled by integers (the LO is a total order). This is

equivalent knowing the shape and allows one to work also when the shape is not known.

We define now the 4-tuple (A⋆
n,Hn,Θ⋆

n,Tb
n) as follows: Hn and Tb

n have the same law as above,

and A⋆
n and Θ⋆

n are described conditionally on Hn and Tb
n. Conditionally on Hn = (H1

n, . . . ,HK
n )

where K is then the number of spanned branches (the number of edges of Tb
n), we have A⋆

n =

(Ai,⋆
n )i=1,...,K where the r.v. Ai,⋆

n s are independent with respective distribution QHi
n
. The ran-

dom variable Θ⋆
n = (Θ⋆

n(i))i=1,...,κ has κ coordinates that are independent of (Hn,A⋆
n,Tb

n) and

distributed as follows :

P
(
Θ⋆

n(1) = (j0, j1)
)

= µj0 for any (j0, j1) ∈ D2

P
(
Θ⋆

n(i) = (j0, j1, j2)
)

= 2µj0/σ2
µ for any (j0, j1, j2) ∈ D3, i ≥ 2.
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Since the mean and the variance under µ are respectively 1 and σ2
µ, these formulas define indeed

two distributions. In the following O[l] stands for the vector (O1, . . . , Ol). Let

Γn,M =
{(

a[2κ−1], x[2κ−1], θ[κ], T b
)

, xi ∈
√

n[M−1,M ], ai ∈ Jxi , T
b ∈ T B

2κ−1

}

∩ supp
(
A⋆

n,Hn,Θ⋆
n,Tb

n

)
.

The following Proposition generalizes to finite-dimensional distributions the Proposition 5.

Proposition 15 (i) For any ε > 0, there exists M such that, for n large enough

Pn

(
(A⋆

n,Hn,Θ⋆
n,Tb

n) ∈ Γn,M

)
≥ 1 − ε.

(ii)

sup
(a,x,θ,τb)∈Γn,M

∣∣∣∣∣
Pn

(
(An,Hn,Θn,Tb

n) = (a, x, θ, τ b)
)

Pn ((A⋆
n,Hn,Θ⋆

n,Tb
n) = (a, x, θ, τ b))

− 1

∣∣∣∣∣ −→n 0. (27)

In general P(An,Hn,Θn,Tb
n) ⊀ P(A⋆

n,Hn,Θ⋆
n,Tb

n) since supp(Θ⋆
n) is strictly included in supp(Θn) when

µ[3,+∞) > 0 (the variable Θ⋆ mimics the coding of binary branchings on Tb
n). In that case,

moreover Pn(Tb
n /∈ TB

2κ−1) > 0 for n large enough, and no control of (An,Hn,Θn,Tb
n) is provided

on ∁TB
2κ−1. But an analogous of Lemma 10 and 11 can be written by weakening slightly the

condition PXn ≺ PYn of Definition 1:

Definition 3 Let (Y1, Y2, . . . ) and (X1,X2, . . . ) be two sequences of r.v. taking their values in

a Polish space S. We say that PXn/PYn

⋆→ 1 or Xn//⋆ Yn → 1 if for any ε > 0 there exists a

measurable set Aε
n and a measurable function f ε

n : Aε
n 7→ R satisfying PXn = f ε

nPYn on Aε
n, such

that supx∈Aε
n
|f ε

n(x) − 1| →
n

0 and such that PYn(Aε
n) ≥ 1 − ε for n large enough.

Lemma 16 Assume that Xn//⋆Yn → 1 then:

• If Yn
(d)−−→
n

Y then Xn
(d)−−→
n

Y .

• Let (gn) be a sequence of continuous functions from S into a Polish space S′. If Xn//⋆ Yn → 1

then gn(Xn)//⋆ gn(Yn) → 1

The proof is the same as those of Lemma 10 and 11 and is left to the reader.

Proof of Proposition 15 (i) Let ε > 0 be fixed. By Lemma 14, there exists M such that

P(∆n,M) > 1−ε/2. Now conditionally on T ∈ ∆n,M , the Hi
n’s belongs to [

√
n/M,

√
nM ], and then

the multinomial random variables Ai,⋆
n by Lemma 9 satisfy together Ai,⋆

n ∈ Jh(Hi
n) with probability

arbitrary close to 1 (for any M , when n is large enough).

We examine now (ii). Let (a, x, θ, τ b) ∈ Γn,M for θ =
(
(j0

1 , j1
1 ), (j0

2 , j1
2 , j2

2 ), . . . , (j0
κ, j1

κ, j2
κ)
)
.

Using (24) and Comment 1, P
(
(An,Hn,Θn,Tb

n) = (a, x, θ, τ b)
)

=

(
2κ−1∏

i=1

Qxi(ai)

)(
κ∏

i=1

µj0
i

)
P
(
|f (l)

#S(τb,∅,a,θ)
| = Fl(x, τ

b), 0 ≤ l ≤ κ
)

P(|T| = n)
, (28)

24



where the f (l)’s are independent forests.

On the other hand, P
(
(A⋆

n,Hn,Θ⋆
n,Tb

n) = (a, x, θ, τ b)
)

= P
(
(A⋆

n,Θ⋆
n) = (a, θ)

∣∣ (Hn,Tb
n

)
= (x, τ b

))
P
((

Hn,Tb
n

)
= (x, τ b

))

=

(
2κ−1∏

i=1

Qxi(ai)

)(
κ∏

i=1

µj0
i

)(
2

σµ

)κ−1

P
((

Hn,Tb
n

)
= (x, τ b

))
;

summing formula (28) on all possible values of the ai’s and the θ’s leads to

P
(
(Hn,Tb

n) = (x, τ b)
)

=
(

σ2
µ

2 )κ−1 P
(
|f (l)

#S(τb,∅,m,θ̃)
| = Fl(x, τ

b), 0 ≤ l ≤ κ
)

P(|T| = n)
, (29)

where m = (mi)i=1,...,κ is a vector of κ multinomial independent r.v. (the parameters of mi are xi

and p), and where θ̃ = (θ̃(i))i∈J1,κK
(d)
= Θ⋆

n and is independent of m. Hence, for (a, x, θ, τ b) ∈ Γn,M ,

P
(
(An,Hn,Θn,Tb

n) = (a, x, θ, τ b)
)

P ((A⋆
n,Hn,Θ⋆

n,Tb
n) = (a, x, θ, τ b))

=
P
(
|f (l)

#S(τb,∅,a,θ)
| = Fl(x, τ

b), 0 ≤ l ≤ κ
)

P
(
|f (l)

#S(τb,∅,m,θ̃)
| = Fl(x, τ b), 0 ≤ l ≤ κ

) . (30)

It is easy to check that for any (a, x, τ b, θ) in Γn,M , any l, for n large enough

|Fl(x, τ
b) − n(sl+1 − sl)| ≤ n2/3, |#S l(τ

b, ∅, a, θ) −
σ2

µ

2
d(ul, ul+1)| ≤ n5/12,

since (1/2)2/3 < 5/12. This allows to approximate on one hand Fl(x, τ
b) by n(sl+1−sl), and on the

other hand #S l(τ
b, a, θ) by

σ2
µ

2 d(ul, ul+1) on Γn,M since n5/12 = o(n1/2), the order of d(ul, ul+1).

By Otter and the central local limit theorem and thanks also a decomposition of the denominator

along {m ∈∏ Jxi} or in its complements (as in the proof of Proposition 12), we get

sup
(a,x,θ,τb)∈Γn,M

∣∣∣∣∣∣

Pn

(
|f (l)

#S(τb,∅,a,θ)
| = Fl(x, τ

b), 0 ≤ l ≤ κ
)

Pn

(
|f (l)

#S(τb,∅,m,θ̃)
| = Fl(x, τ b), 0 ≤ l ≤ κ

) − 1

∣∣∣∣∣∣
−→
n

0. � (31)

2.3.3 Proof of the convergence of the finite-dimensional distribution in Theorem 2

We now show that Proposition 15 and Lemma 16 imply the convergence of the finite-dimensional

distributions in Theorem 2. The proof is similar to that of Corollary 13.

Thanks to the Skorohod representation theorem [14, Theorem 3.30], there exists a probability

space Ω on which the convergence of hn to h is a.s.. On Ω, the vector

Vn = (hn(s1), ȟn(s1, s2),hn(s2), ȟn(s2, s3), . . . ,hn(sκ)),

which determines Tb
n as well as the length of the spanned branches, converges a.s. to

V∞ = (h(s1), ȟ(s1, s2),h(s2), ȟ(s2, s3), . . . ,h(sκ)),
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which determines τs the ordered discrete subtree of the continuum random tree τ∞, with contour

process h, spanned by the root and the nodes visited at times s1, . . . , sκ. The edge lengths of τs

are given by the normalized Brownian excursion (see Aldous [1, 2]). The coordinates of V∞ are

distinct and non zero a.s., and then τs has only binary branching points, and its shape τ b
s belongs

to T B
2κ−1 (we call here shape the tree τs where the edge lengths are somehow fixed to 1). Let

H∞ = (H∞,i)i∈J1,2κ−1K be the lengths of the (sorted) spanned branches in τ∞. By the property of

the Brownian excursion, a.s. the coordinate of H∞ are almost surely all positive and finite, and

then there exists M such that all the H∞,i belongs to [M−1,M ] (for a M depending on τ∞). On

Ω,

Tb
n

a.s.−−→
n

τ b
s , (32)

and therefore for n large enough, Tn ∈ Γn,2M .

Denote by (Ai
n)i∈J1,2κ−1K the (sorted) corresponding contents of the spanned branches of Tn,

and by (Hi
n)i∈J1,2κ−1K their lengths. The normalized contents are then given by

g
(n)
i,k,j = n−1/4

(
(Ai

n)k,j − µk Hi
n

)
.

Proposition 15 and Lemma 16 entail that

(
(g

(n)
i )i∈J1,2κ−1K,Hn/

√
n
)

//
(
(G(i)(n,Hi

n))i∈J1,2κ−1K,Hn/
√

n
)
→ 1,

where the r.v. G(i)(n,Hi
n)’s are independent, and conditionally on Hi

n = l, (G(i)(n,Hi
n))

(d)
= G(n, l)

(these variables were introduced in Section 2.1). On Ω, Hn/
√

n
a.s.−−→
n

H∞. Conditionally on H∞,

by Proposition 3, (G(i)(n,Hi
n))i∈J1,2κ−1K converges in distribution to (G(i)

∞ )i∈J1,2κ−1K where the G(i)
∞

are independent, and G(i)
∞ is a centered Gaussian vector having as covariance function

cov
(
(G(i)

∞ )k,j, (G(i)
∞ )k′,j′

)
=
(
−µkµk′ + µk1(k,j)=(k′,j′)

)
H∞,i. (33)

In order to check that this implies the convergence of the finite-dimensional distributions in Theorem

2, it suffices to reconstitute the contents of the branches J∅, uiK’s by summing the contents of the

spanned branches they contain, and to use that asymptotically, conditionally on H∞, these contents

are independent (and that the shape is fixed by (32) for n large enough). Hence, by (33), one easily

gets the fact that each Gk,j(si) is Gaussian with the law described in Theorem 2. Knowing V∞, the

limiting G(si)’s are obtained as sums of independent Gaussian vectors. To compute the covariance

between Gk,j(si) and Gk′,j′(si′) (for si < si′), we use that the nodes in J∅, ˇui,i′J are the common

ancestors of ui and ui′ . The contents of the branches K ˇui,i′, uiJ and K ˇui,i′ , u
′
iJ are asymptotically

independent. By (33), one then checks that, knowing V∞, the covariance cov
(
(G(i)

∞ )k,j, (G(i′)
∞ )k′,j′

)
is

ruled by the common ancestors, and then equals
(
−µkµk′ + µk1(k,j)=(k′,j′)

)
min{h(s), s ∈ [si, si′ ]}.

�
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2.4 Tightness in Theorem 2

We only prove the tightness of the family (G(n)), since one already knows that (hn) is tight (since

hn
(d)−−→
n

h). In this section, we assume (H1) and (H2).

We collect in the set Ωα,δ,γ,ρ
n , the trees with n edges having some suitable properties:

Ωα,δ,γ,ρ
n =

{
T ∈ Tn,∀t, s ∈ [0, 1], |hn(s) − hn(t)| ≤ δ|t − s|α,max

l

∣∣|u(l + 1)| − |u(l)|
∣∣ ≤ ρ log n,

|u(n)| < ρ log n,∀(k, j) ∈ IK , l ∈ (0, |u|], |Au,l,k,j − µkl| ≤ γ
√

l log n
}
.

Lemma 17 For any ε > 0, α < 1/2, there exists δ > 0, γ > 0, ρ > 0, s.t. P(Ωα,δ,γ,ρ
n ) ≥ 1 − ε.

According to Lemmas 7 and 8, and Remark 1, only the condition on the Hölderienity of H has

to be checked. We refer to Marckert & Miermont [19, Section 5.2] for a proof of this result.

Let ε > 0 be fixed. Set α = 2/5 and choose δ > 0, γ > 0, ρ > 0 s.t. P(Ωα,δ,γ,ρ
n ) ≥ 1 − ε for n

large enough. For these choices, write Ωε instead of Ωα,δ,γ,ρ
n .

We will establish the following Proposition.

Proposition 18 For any a > 0, there exist β > 0, c > 0 s.t. for any sufficiently large n,

E
(
‖G(n)

s − G
(n)
t ‖β

11Ωε

)
≤ c |t − s|1+a for any s, t ∈ [0, 1]. (34)

This implies that for any a > 0 the (1 + a)/β-Hölder norm of the family (G(n)) is tight, and then

that (G(n)) is tight in C([0, 1])#IK (recall that G
(n)
0 is the null vector of R#IK ).

We first point out that using (20), we get that for any a > 0 there exists β > 0 such that for n

large enough E(‖G(n)(sn)−G(n)(s)‖β
11Ωρ

n
) ≤ c(s− sn)1+a. Hence, we can restrict ourself to prove

(34) only for s and t such that ns and nt are integer (this is classical). From now on, we assume

that s, t are in [0, 1]n := [0, 1] ∩ N/n, and s 6= t.

We set u1 = u(⌊ns⌋), u2 = u(⌊nt⌋), ǔ1,2 their deepest common ancestor and Dn(s, t) = d(u1, u2).

There exists δ′ > 0, such that for T ∈ Ωε, any s, t ∈ [0, 1]n, s 6= t,

Dn(s, t) ≤ 2 + Hn(nt) + Hn(ns) − 2 min
k∈[ns,nt]

Hn(k) ≤ 2
√

n δ|t − s|2/5 + 2 ≤ δ′
√

n|t − s|2/5.

Lemma 19 For any α′ > 0, a > 0, there exist β > 0, c > 0 s.t. for any s, t ∈ [0, 1] such that

|s − t| ≤ (log n)−3, for n large enough,

E
(
‖G(n)

s − G
(n)
t ‖β

1 1Ωε

)
≤ c|t − s|1+a. (35)

Proof. Let s, t ∈ [0, 1]n, s 6= t. We use a deterministic bound valid for all trees T in Ωε. Let

(k, j) ∈ IK fixed. As in the proof of Proposition 4, it suffices to show that

n−β/4 |Au1,k,j − µk|u1| − Au2,k,j + µk|u2||β ≤ c|s − t|1+a (36)
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Passing via ǔ1,2, the left hand side of (36) is smaller than

c1n
−β/4

(
|Au1,h1,k,j − µk|h1||β + |Au2,h2k,j − µk|h2||β + 2β

)

where h1 := d(u1, ǔ1,2) − 1 and h2 := d(u2, ǔ1,2) − 1 (the contribution of ǔ1,2 is bounded by the

term 2). Using that |Au,l,k,j − µkl| ≤ γ
√

l log n for any l and l ≤ Dn(s, t) ≤ δ′n1/2|t− s|2/5, we find

n−β/4 |Au1,k,j − µk|u1||β + |Au2,k,j − µk|u2||β ≤ c2(t − s)β/5(log n)β/2

and since |t− s| ≤ (log n)−3, |t− s|β/6(log n)β/2 ≤ 1 and then c2(t− s)β/5(log n)β/2 is smaller than

|t − s|1+a for β and n large enough. �

Lemma 20 For any a > 0, there exist β > 0, c > 0 s.t. for any t ∈ [0, 1], for any n large enough,

E
(
‖G(n)

t ‖β
1 1Ωε

)
≤ c t1+a. (37)

Proof. First, consider the case t = 1. In Ωε, we have |u(n)| ≤ ρ log n and then

E(‖G(n)
1 ‖β

11Ωε) ≤ c1(ρ log n)βn−β/4

and this is smaller than c11+a for any a > 0, c > 0, β > 0 for n large enough. By the previous

Lemma and a simple computation (using that max ||u(l + 1)| − |u(l)|| ≤ ρ log n) one sees that (37)

is true if t /∈ Vn where

Vn := [(log n)−3, 1 − (log n)−3].

Assume now that t ∈ Vn. In Ωε, the Hölder property of hn and the inequality |u(n)| ≤ ρ log n,

implies that for t ∈ Vn,

|u(⌊nt⌋)| ≤ Ln(t) := c2n
1/2[t ∧ (1 − t)]α. (38)

For any real number a, we denote by a.µ the vector (aµk)(k,j)∈IK
. Using (9) and (13), there

exists c3 > 0 such that for t ∈ Vn and n large enough, E
(
‖G(n)

t ‖β
1 1Ωε

)
≤

c3

∑

h≤Ln(t)

∑

a∈NI
[h]

Qh(a)
‖a − h.µ‖β

1

nβ/4−3/2
P
(
|fN1(a)| = ⌊nt⌋ − h, |f ′

1+N2(a)
| = n + 1 − ⌊nt⌋

)

and by Otter than

c4

∑

h≤Ln(t)

∑

a∈NI
[h]

Qh(a)
‖a − h.µ‖β

1

nβ/4−3/2

N1(a)(1 + N2(a))P(W⌊nt⌋−h = N1(a))P(Wn−⌊nt⌋+1 = 1 + N2(a))

(⌊nt⌋ − h)(n − ⌊nt⌋ + 1)
,

where (Wk) is the random walk described in the beginning of Section 2.2.1. In order to bound

these two last probabilities, we use a classical concentration property valid for any non-degenerate

28



random walk (Wk)k (trivial consequence of Petrov [24, Theo. 2.22 p.76]): there exists a constant

c5 such that for any n ≥ 0,

sup
y

P(Wn = y) ≤ c5/
√

n. (39)

Now, for any a ∈ NI
[h], N1(a) and N2(a) are smaller than Kh, and for any h ≤ Ln(t), t ∈ Vn and n

large enough, nt − h ≥ nt/2. We then get

E(‖G(n)
t ‖β

11Ωε) ≤ c6

∑

h≤Ln(t)

∑

a∈NI
[h]

Qh(a)‖a − h.µ‖β
1 h2

nβ/4−3/2(⌊nt⌋ − h)3/2(n − ⌊nt⌋ + 1)3/2
.

Using Proposition 4, we obtain that for any t ∈ Vn,

E(‖G(n)
t ‖β

11Ωε) ≤ c7

(
Ln(t)

)β/2+3

nβ/4+3/2(t(1 − t))3/2
≤ c8

(t ∧ (1 − t))β/2+3

(t(1 − t))3/2
. �

Remark 2 The last formula implies that for any a > 0, there exist β > 0, c > 0 s.t. for any

t ∈ Vn, for any n large enough,

E(‖G(n)
t ‖β

11Ωε) ≤ c(t ∧ (1 − t))1+a. (40)

This allows to prove a part of Proposition 18: since E(‖G(n)
t − G

(n)
s ‖β

11Ωε) ≤ cE(1Ωε(‖G(n)
t ‖β

1 +

‖G(n)
s ‖β

1 )) when s, t ∈ Vn and s ≤ t,

– if s ≤ t − s (in this case t ≤ 2(t − s)) then E(‖G(n)
t − G

(n)
s ‖β

11Ωε) ≤ c(t − s)1+a,

– if 1 − t ≤ t − s (in this case 1 − s ≤ 2(t − s)) then

E(‖G(n)
t − G(n)

s ‖β
11Ωε) ≤ c((1 − t)1+a + (1 − s)1+a) ≤ c2(t − s)1+a.

Thanks to this remarks, only the case s, t ∈ Vn, s ≤ t, and

[s ∧ (1 − s)] ≥ t − s and [t ∧ (1 − t)] ≥ t − s (41)

remains to be checked. So assume that s and t satisfy these constraints.

Consider An = (A1
n,A2

n,A3
n) = (A(ǔ1,2,u1), A(ǔ1,2,u2), A(∅,ǔ1,2)) the contents of the “three”

spanned branches in Ts2 (some of these spanned branches may be empty). We have

E
(
‖G(n)

s − G
(n)
t ‖β

11Ωε

)
≤

∑

h1,h2,h3

∑

a1,a2,a3

Pn(Ai
n = ai, i = 1, 2, 3)

[
‖a1 − h1.µ‖β

1 + ‖a2 − h2.µ‖β
1

]

nβ/4
(42)

where the first sum is taken on h1 +h3 ≤ Ln(s), h2 +h3 ≤ Ln(t), h1 +h2 ≤ Dn(s, t) := δ′n1/2|t−s|α
where Ln(x) is given in (38). By (24), Comment 1, and the Otter formula, h1, h2, h3, a1, a2, a3 fixed,

Pn(Ai
n = ai, i = 1, 2, 3) ≤ cn3/2 sup

θ

3∏

i=1

Qhi
(ai)

Si(θ)P(WFi = Si(θ))

Fi
(43)
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where the supremum is taken on θ = (θ1, θ2, θ3) ∈ J0,KK8, and where F1 = ns + 1 − |u(⌊ns⌋)| − 1,

F2 = n(t − s) + 1 − (|u(⌊nt⌋)| − |ǔ1,2|), F3 = n(1 − t) + 1, S1 = N1(a3) + N1(a1) + θ1, S2 =

N2(a1) + N1(a2) + θ2, S3 = N2(a2) + N2(a3) + θ3.

We plug this bounds in (42), and bound the left hand side using the following ingredient:

– the probabilities in (43) involving the random walks are bounded using (39).

– for a ∈ NI
[h], Ni(a) ≤ Kh and then for a constant c > 0,

S1 ≤ K|u(⌊ns⌋)| + θ1 ≤ cLn(s),

S2 ≤ c|Dn(s, t)|,
S3 ≤ K|u(⌊nt⌋)| + θ3 ≤ cLn(t).

The denominator are bounded using |t−s| ≥ (log n)−3, [t∧(1−t)] ≥ (log n)−3, [s∧(1−s)] ≥ (log n)−3,

and then for n large enough,

F1 ≥ ns/2, F2 ≥ n(t − 1)/2, F3 ≥ n(1 − t)/2.

Finally we get that the left hand side of (42) is smaller than

c
Ln(s)Ln(t)Dn(s, t)

∑
h1,h2,h3

∑
a1,a2,a3

∏3
i=1 Qhi

(ai)
[
‖a1 − h1.µ‖β

1 + ‖a2 − h2.µ‖β
1

]

nβ/4−3/2 [n3(s ∧ (1 − s))(t ∧ (1 − t))(t − s)]3/2

The double sum is smaller than

∑

h1,h2,h3

h
β/2
1 + h

β/2
2 ≤ (Dn(s, t))β/2+2Ln(s)

this last factor Ln(s) being a bound of h3. Finally,

E
(
‖G(n)

s − G
(n)
t ‖β

11Ωε

)
≤ cn3/2−β/4 (Ln(s))2Ln(t)(Dn(s, t))β/2+3

[n3(s ∧ (1 − s))(t ∧ (1 − t))(t − s)]3/2

By (41), it suffices to take β large enough. �

2.5 Proof of Theorem 1

Consider the representation of ℓ(u) given in (2). For any s such that ns is an integer,

rn(s) = r(1)
n (s) + r(2)

n (s) (44)

where

r(1)
n (s) = n−1/4

∑

(k,j)∈IK

Au(ns),k,j∑

l=1

(
Y

(l)
k,j − mk,j

)
,

r(2)
n (s) = n−1/4

∑

(k,j)∈IK

(
Au(ns),k,j − µk|u(ns)|

)
mk,j =< G(n)(s),−→m >,
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where −→m = (mk,j)(k,j)∈IK
and < a, b >=

∑
(k,j)∈IK

ak,jbk,j. For s in [i/n, (i + 1)/, n], r
(1)
n (s) and

r
(2)
n (s) are defined by linear interpolation. Since hn

(d)−−→
n

h in C[0, 1], by the Skorohod representation

theorem [14, Theorem 3.30], there exists a probability space Ω on which this convergence is a.s..

On this space by Theorem 2, G(n) converges in distribution in C([0, 1])#IK to Gh, where Gh has

the distribution of G knowing h. Now, since the application

Ψ−→m : C([0, 1])#IK −→ (C[0, 1])(
s 7→ g(s)

)
7−→

(
s 7→< g(s),−→m >

)

is continuous, on Ω we have

< G(n),−→m >
(d)−−→
n

r(2) :=< Gh,−→m > (45)

in C([0, 1]). On Ω, r(2) is a centered Gaussian process with covariance function

cov
(
r(2)(s), r(2)(t)

)
= ȟ(s, t)

∑

(k,j)∈IK

∑

(k′,j′)∈IK

(−µkµk′ + µk1(k,j)=(k′,j′))mk,jmk′,j′ .

On Ω (or on an enlarged space), r
(1)
n is the standard head of a discrete snake associated with

independent centered displacements. As shown in [19], under (H1) and (H2),

r(1)
n

(d)−−→
n

r(1) (46)

in C([0, 1], R) where r(1) given h is a centered Gaussian process with covariance function

cov
(
r(1)(s), r(1)(t)

)
= ȟ(s, t)

∑

(k,j)∈IK

µkσ
2
k,j.

It remains to prove that given h, the finite-dimensional distributions of r(1) and r(2) are in-

dependent. We establish the “asymptotic independence” between the two processes r
(1)
n and r

(2)
n

knowing h. The arguments are quite straightforward; we just explicit the uni-dimensional case.

Let

T ν
n =

{
T ∈ Tn,∀(k, j) ∈ IK , u ∈ T,

∣∣Au,k,j − µk|u|
∣∣ ≤ n1/4+ν

}
.

According to Lemma 9 in [19], for any ν > 0, ε > 0, if n is large enough Pn(T ν
n ) ≥ 1 − ε. Let

s ∈ [0, 1] (such that ns is an integer), one may compare

r′n(s) = n−1/4
∑

(k,j)∈IK

⌊µk |u(⌊ns⌋)|−n1/4+ν⌋∑

l=1

(
Y

(l)
k,j − mk,j

)

with r
(1)
n (s), where the same r.v. Y

(l)
k,j are involved in both r′n and r

(1)
n . Knowing |u(⌊ns⌋)|,

r′n(s) is independent of r
(2)
n (s) since r′n(s) is a function of the Yk,j’s when r

(2)
n is a function

of the Au(ns),k,j’s. We will prove that |r(1)
n (s) − r′n(s)| proba.−−−−→

n
0 which is sufficient to deduce
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that r(1) and r(2) are independent given h (in the uni-dimensional case): indeed the distance

in R3 between (r′n(s), r
(2)
n (s),hn(s)) and (r

(1)
n (s), r

(2)
n (s),hn(s)) goes to 0 in probability; hence

(r′n(s), r
(2)
n (s),hn(s))

(d)−−→
n

(r(1)(s), r(2)(s),h(s)) and then (r(1)(s), r(2)(s)) are independent given

h(s) since (r′n(s), r
(2)
n (s)) are independent given (hn(s)).

We have

Pn(|r′n(s) − r(1)
n | ≥ x) ≤ P(|r′n(s) − r(1)

n | ≥ x,T ν
n ) + Pn(Tn \ T ν

n ).

The last term goes to 0 for any ν > 0. The Rosenthal inequality [24, Theorem 2.11] asserts that if

(Xk)k is a sequence of centered r.v. and q ≥ 2, then

E
(
|

n∑

i=1

Xi|q
)
≤ c(q)

( n∑

i=1

E(|Xi|q) +
( n∑

i=1

var(Xi)
)q/2)

(47)

where c(q) is a positive constant depending only on q. For p satisfying (H2), we have

P(|r′n(s) − r(1)
n | ≥ x,T ν

n ) ≤ E
(
x−p|r′n(s) − r(1)

n |p1T ν
n

)

Conditioning at first by the A(u(ns)), and using (47), we get P(|r′n(s) − r
(1)
n | ≥ x,T ν

n ) ≤

x−pc(p)

np/4

( ∑

(k,j)∈IK

2n1/4+νE(|Yk,j − mk,j|p) +
( ∑

(k,j)∈IK

2n1/4+νσ2
k,j)
)p/2)

and then for ν < 1/4, for any x > 0 the bound goes to 0.

Hence r is a centered Gaussian process with covariance function sum of the ones of r(1) and

r(2). Using that
∑

(k,j) µkmk,j = m = 0, we get cov(r(s), r(t)) = ȟ(s, t)
∑

(k,j) µkE(Y 2
k,j). �.
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