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INVARIANCE PRINCIPLES FOR RANDOM
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Random planar maps are considered in the physics literature as the dis-
crete counterpart of random surfaces. It is conjectured that properly rescaled
random planar maps, when conditioned to have a large number of faces,
should converge to a limiting surface whose law does not depend, up to scal-
ing factors, on details of the class of maps that are sampled. Previous works
on the topic, starting with Chassaing and Schaeffer, have shown that the ra-
dius of a random quadrangulation with n faces, that is, the maximal graph
distance on such a quadrangulation to a fixed reference point, converges in
distribution once rescaled by n1/4 to the diameter of the Brownian snake, up
to a scaling constant.

Using a bijection due to Bouttier, Di Francesco and Guitter between bi-
partite planar maps and a family of labeled trees, we show the corresponding
invariance principle for a class of random maps that follow a Boltzmann dis-
tribution putting weight qk on faces of degree 2k: the radius of such maps,
conditioned to have n faces (or n vertices) and under a criticality assumption,
converges in distribution once rescaled by n1/4 to a scaled version of the
diameter of the Brownian snake. Convergence results for the so-called pro-
file of maps are also provided. The convergence of rescaled bipartite maps to
the Brownian map, in the sense introduced by Marckert and Mokkadem, is
also shown. The proofs of these results rely on a new invariance principle for
two-type spatial Galton–Watson trees.

1. Introduction, motivations and main results.

1.1. Motivation. An embedded graph G is an embedding of a connected graph
in the two-dimensional sphere S

2, in which edges do not intersect except possibly
at their endpoints (the vertices). A face of G is a connected component of S

2 \ G.
Faces are homeomorphic to open disks, and the degree of a given face is the num-
ber of edges that are included in the closure of this face, with the convention that
cut edges are counted twice, where cut edges are those edges whose removal dis-
connects the graph. If the graph is the vertex graph with only one vertex and no
edges, we adopt the convention that it bounds one face with degree 0. The degree
of a vertex is the number of edges adjacent to that vertex, where self-loops are
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counted twice, according to the usual graph-theoretic definition. Unlike faces, it
depends only on the underlying graph rather than its embedding in S

2.
We say that two embedded graphs are equivalent if there exists an orientation-

preserving homeomorphism of S
2 that maps the first embedding to the second.

Equivalence classes of embedded graphs are called planar maps, and their set is de-
noted by M0. When considering a planar map m ∈M0, we will slightly improperly
speak of its vertices, edges, faces and their respective degrees (we should first take
an element of the class m to be completely accurate). We let S(m),A(m),F (m)

be the sets of vertices, edges and faces of m. The degree of an element u ∈ S(m)

or f ∈ F(m) will be denoted by deg(u), respectively deg(f ). We denote the class
of the vertex graph by †.

If u, v are vertices in a planar map m ∈M0, and e1, . . . , en are oriented edges,
we say that e1, . . . , en is a path from u to v of length n if the source of e1 is u,
the target of en is v, and the target of ei is the source of ei+1 for all 1 ≤ i ≤
n− 1. The graph distance associated with a planar map m ∈ M0 is the function
dm :S(m)× S(m)→ Z+ defined by letting dm(u, v) be the least n such that there
exists a path of length n leading from u to v. This can be interpreted by saying that
we turn m into a metric space, by endowing edges with lengths all equal to 1.

Planar maps have been of particular interest to physicists in the last decade
as they can be considered as discretized versions of surfaces. In order to give a
mathematical ground to the stochastic quantization of two-dimensional gravity, in
which an integral with respect to an ill-defined uniform measure on Riemannian
surfaces is involved, a possible attempt is to replace the integral by a finite sum
over distinct discrete geometries, whose role is performed by planar maps [3].
Informally, it is believed that:

• A random map chosen in some class of planar maps with size n (e.g., a quad-
rangulation with n faces, i.e., a map whose n faces are all of degree 4), whose
edge lengths are properly rescaled, should converge in distribution as n→∞ to
a limiting random surface.

• The limiting random surface should not depend, up to scale factors, on details
of the class of maps which is randomly sampled.

The second property is called universality. A similar situation is well known to
probabilists: the role of a Lebesgue measure on paths is performed by Brownian
motion, which is the scaling limit of discretized random paths (random walks)
whose step distributions have a finite variance.

In a pioneering work, Chassaing and Schaeffer [8] made a very substantial
progress in answering the first question, by establishing that the largest distance
to the root in a uniform rooted quadrangulation with n faces (see definition below)
divided by n1/4 converges in distribution to some random variable (which is, up to
a multiplicative constant, the diameter of the range of the so-called Brownian snake
with lifetime process the normalized Brownian excursion). By using an invariance
principle for discrete labeled trees satisfying a positivity constraint, Le Gall [16]
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has given an alternative proof of the results of [8]. This involves a new random
object, called the Brownian snake conditioned to be positive, that was introduced
in Le Gall and Weill [17]. Marckert and Mokkadem [20] gave a description of
quadrangulations by gluing two trees, and showed that these trees converge when
suitably normalized as n goes to ∞. They introduced the notion of Brownian map,
and showed that under a certain topology, rescaled quadrangulations converge in
distribution to the Brownian map. All these results have been obtained by using
bijective methods which take their source in the work of Schaeffer [23], and which
allow to study random quadrangulations in terms of certain labeled trees. The nice
feature of this method is that the labels allow to keep track of geodesic distances
to a reference vertex in the map, so that some geometric information on the maps
is present in the associated labeled trees.

On the other hand, the second question has not been addressed up to now in
a purely probabilistic form, and in the context of scaling limits of planar maps.
Angel [4] and Angel and Schramm [5] give evidence that the large-scale properties
of large planar maps should not depend on the local details of the map (like the
degree of faces), but these remarks hold in the context of local limits of random
maps, where all edges have a length fixed to 1 as the number of faces of the map
goes to infinity (this is an infinite volume limit), rather than in the context of scaling
limits, where edge lengths tend to 0 as the number of faces goes to infinity (so
that the total volume is kept finite). In a recent article, Bouttier, Di Francesco and
Guitter [6] have given a generalization of Schaeffer’s bijection to general planar
maps. They obtain identities for the generating series of the most general family
of (weighted) planar maps, and infer a number of clues for the universality of the
pure 2D gravity model, for example, by computing certain scaling exponents with
a combinatorial approach.

Their bijection suggests a path to prove invariance principles (the probabilistic
word for universality) for random maps. The present work explores this path in the
case of bipartite maps, by first giving a probabilistic interpretation of the identities
of [6].

1.2. Boltzmann laws on planar maps. A planar map is said to be bipartite if all
its faces have even degree. In this paper, we will only be concerned with bipartite
maps, notice † is bipartite with our convention.

Every edge of a map can be given two orientations. A bipartite rooted planar
map is a pair (m, e) where m is a bipartite map and e is a distinguished oriented
edge of m. The basic objects that are considered in this article are bipartite planar
maps which are rooted and pointed, that is, triples (m, e, r) where (m, e) is a bi-
partite rooted planar map and r is a vertex of m. We let M be the set of rooted,
pointed, bipartite planar maps. The map † cannot be rooted and can be pointed
only at its unique vertex, but is still considered as an element of M. By abuse of
notation, we will often denote a generic element of M by m without referring to
(e, r) when it is free of ambiguity.
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By the bipartite nature of elements of M, we have |dm(r, u) − dm(r, v)| = 1
whenever u, v ∈ S(m) are neighbors. Therefore, if (m, e, r) ∈ M \ {†}, we have
either dm(r, e+) > dm(r, e−) or dm(r, e+) < dm(r, e−), where e− and e+ are the
source and the target of the oriented edge e. We let

M+ = {(m, e, r) ∈M :dm(r, e+) > dm(r, e−)} ∪ {†}.
All probability distributions on maps in this paper are going to be defined on the
set M+. Notice that an alternative definition for this set is to consider it as the set
of pointed maps where a nonoriented edge has been distinguished.

Let q= (qi, i ≥ 1) be a sequence of nonnegative weights such that qi > 0 for at
least one i > 1. By convention, let q0 = 1. Consider the σ -finite measure Wq on
M+ that assigns to each map m ∈M+ a weight qi per face of degree 2i:

Wq(m)= ∏
f∈F(m)

qdeg(f )/2,(1)

with the convention Wq(†) = q0 = 1. This multiplicative form is reminiscent of
the measures associated with the so-called simply generated trees, which are of
the form w(t) =∏

u∈t qct(u) for any tree t, where ct(u) is the number of children
of a vertex u in t, and where (qi, i ≥ 0) is a sequence of nonnegative numbers (see
[1], pages 27–28).

Let Zq = Wq(M+) be the “partition function of q.” Notice that Zq ∈ (1,∞]
since Wq(†)= 1. If Zq <∞, we say that q is admissible, and introduce the Boltz-
mann distribution on M+ with susceptibility q by letting

Pq = Wq

Zq
.

For k ≥ 1, let N(k)= (2k−1
k−1

)
. For any weight sequence q (not necessarily admissi-

ble) define

fq(x)=∑
k≥0

xkN(k + 1)qk+1 ∈ [0,∞], x ≥ 0.

The function fq : [0,∞)→[0,∞] is a completely positive power series, that is, its
derivatives of every order are nonnegative, and since (qi, i > 1) is not identically
zero, fq is strictly positive on (0,∞), and strictly increasing on the interval [0,Rq],
where Rq ∈ [0,∞] is the radius of convergence of fq. Moreover, fq(x) converges
to ∞ as x →∞, and the monotone convergence theorem entails that the function
fq is continuous from [0,Rq] to [0,∞], that is, fq(Rq)= fq(Rq−) [which can be
finite or infinite, while by definition fq(Rq+)=∞]. In the sequel, we understand
that f ′

q(Rq) ∈ (0,∞] stands for the left derivative of fq at Rq (when Rq > 0).
Consider the equation

fq(x)= 1− 1/x, x > 0.(2)
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Since x �→ 1 − x−1 is nonpositive on (0,1] and fq is infinite on (Rq,∞], a so-
lution of (2) always belongs to (1,Rq]. Since x �→ 1− x−1 is strictly concave on
(0,+∞), with derivative x �→ x−2, and fq is convex, strictly increasing and con-
tinuous on [0,Rq], we can classify the configurations of solutions for (2) by the
following four exclusive cases:

1. There are no solutions.
2. There are exactly two solutions z1 < z2 in (1,Rq], in which case f ′

q(z1) < z−2
1

and f ′
q(z2) > z−2

2 .

3. There is exactly one solution z1 in (1,Rq] with f ′
q(z1) < z−2

1 .

4. There is exactly one solution z in (1,Rq] with f ′
q(z)= z−2.

As will be shown in Section 2.3, the admissibility of q can be formulated in terms
of fq as follows.

PROPOSITION 1. The weight sequence q is admissible if and only if equa-
tion (2) has at least one solution. In this case, Zq is the solution of (2) that satisfies
Z2

qf ′
q(Zq)≤ 1.

In this paper, we consider case 3 above, and cases when one of the solutions
of (2) is equal to Rq, as nonregular cases. Also, note that the case 4 in the above
classification plays a singular role compared to the others. These remarks motivate
the following.

DEFINITION 1. An admissible weight sequence q is said to be critical if case 4
of the above classification is satisfied, that is,

Z2
q f ′

q(Zq)= 1.(3)

Equivalently, q is critical if and only if the graphs of x �→ fq(x) and x �→ 1− 1/x

are tangent to the left of x = Zq.
We say that q is regular critical if it is critical and Zq < Rq, that is, the graphs

are tangent at Zq both to the left and to the right.

Notice that a critical weight sequence q is automatically regular in the case
where fq(Rq)=∞; in this case, q is regular critical if and only if equation (2) ad-
mits a unique solution (because case 3 in the above classification cannot happen).

1.3. Snakes. In order to state our main theorem, we first briefly describe the
limiting random objects that are involved. Let Bexc be a standard Brownian excur-
sion. Then, given Bexc, we let Sexc be a centered Gaussian process whose covari-
ance function is given by

cov(Sexc
s , Sexc

t )= inf
s∧t≤u≤s∨t

Bexc
u , 0≤ s, t ≤ 1.(4)
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It is known (see, e.g., [15], Section IV.6) that (Bexc, Sexc) has a continuous ver-
sion, which is the one we choose to work with. We let N

(1) be the law of the
pair (Bexc, Sexc). In the sequel, we will let ((es)0≤s≤1, (rs)0≤s≤1) be the canonical
process for the space C(R+,R)2 of continuous functions with values in R

2. The
process (e, r) under N

(1) is called the “head of the Brownian snake” driven by a
Brownian excursion in the literature [12, 13, 19]. We let

�+(r)= sup
t≥0

rt , �−(r)= inf
t≥0

rt and �(r)=�+(r)−�−(r),

the positive and negative range of r, and the diameter of the range of r.

1.4. Main results. For (m, e, r) ∈M+, let

R(m, e, r)= max
u∈S(m)

dm(r, u)

be the radius of (m, e, r) ∈M+. Also, let I (m,e,r) be the normalized profile of the
map m, which is the probability measure on Z+ such that

I (m,e,r)(k)= #{u ∈ S(m) :dm(r, u)= k}
#S(m)

, k ≥ 0.

For simplicity we will usually denote these quantities by R(m),I m. If n ≥ 1,
we also let I m

n be the rescaled measure on R+ which is defined by I m
n (A) =

I m(n1/4A), for A a Borel subset of R+.
Last, if q is a regular critical weight sequence, we let

ρq = 2+Z3
qf ′′

q (Zq).(5)

Letting M :M+→M+ be the identity mapping, our main result states as follows.

THEOREM 2. Let q be a regular critical weight sequence. Then:

(i) The distribution of the random variable n−1/4R(M), under Pq(·|
#F(M)= n), converges weakly as n→∞ to the law under N

(1) of(
4ρq

9(Zq − 1)

)1/4
�(r).

(ii) The distribution of n−1/4dM(r, r′) under Pq(·|#F(M) = n), where r′ ∈
S(M) \ {r} is picked uniformly at random conditionally on M , converges weakly
as n→∞ to the law under N

(1) of(
4ρq

9(Zq − 1)

)1/4
�+(r).
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(iii) The distribution of the random measure I M
n under Pq(·|#F(M)= n) con-

verges weakly to the law under N
(1) of the random probability measure I r

q on R+,
defined by

〈I r
q, g〉 =

∫ 1

0
ds g

((
4ρq

9(Zq − 1)

)1/4(
rs − inf

0≤u≤1
ru

))
,

for any continuous and bounded function g :R→R.

Notice that Boltzmann distributions always put a positive mass on the set
of maps with exactly n faces for all n, so that the conditional distributions
P(·|#F(M) = n) are well defined. There exists also a counterpart of this result
in which we condition on the number of vertices rather than the number of faces,
which states as

PROPOSITION 3. Let q be a regular critical weight sequence. Then the pre-
vious theorem remains true when considering the laws Pq(·|#S(M) = n) instead
of Pq(·|#F(M) = n), where it must be understood that n →∞ along values for
which P(#S(M) = n) > 0, and the rescaling constant (4ρq/(9(Zq − 1)))1/4 ap-
pearing in (i), (ii), (iii) must be replaced by (4ρq/9)1/4.

The last two results are stated under the assumption of admissibility and regular
criticality for the weight sequence. However, since the probability laws that appear
in the statements are conditioned measures, and thus make a slightly indirect use
of the probability Pq, this assumption can be loosened a bit. If

MF=n+ = {m ∈M+ : #F(m)= n},
and q is any weight sequence, then the hypothesis ZF=n

q =Wq(MF=n+ ) <∞ al-
lows to define a probability measure on MF=n+ by

P F=n
q (·)= Wq(· ∩MF=n+ )

ZF=n
q

.

If q is admissible, we are clearly in this case, and Pq(·|#F(M)= n)= P F=n
q , but

the converse is not true: there can be (and there are in many interesting cases)
weight sequences that are not admissible, but for which P F=n

q makes sense. Now,
notice that if α > 0 and αq= (αqi, i ≥ 1), and m ∈MF=n+ ,

Wαq({m})= αnWq({m}), ZF=n
αq = αnZF=n

q .

Therefore, if q is such that ZF=n
q < ∞, then αq is also such a weight sequence,

and P F=n
αq = P F=n

q is independent of α > 0.
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In a similar way, we let MS=n+ to be the set of maps with n vertices, and define
as above ZS=n

q , and P S=n
q if the latter is finite and > 0. For β > 0 let β • q =

(βi−1qi, i ≥ 1). Then for m ∈MS=n+ ,

Wβ•q({m})= ∏
f∈F(m)

βdeg(f )/2−1qdeg(f )/2 = βn−2Wq({m}),

and ZS=n
β•q = βn−2ZS=n

q , where we used
∑

f∈F(m) deg(f )= 2#A(m), and Euler’s
formula #F(m)− #A(m)+ #S(m) = 2. Thus, Theorem 2 and Proposition 3 can
be restated as follows.

COROLLARY 4. (i) Let q be a weight sequence such that ZF=n
q <∞ for every

n ≥ 1 and such that there exists some αc > 0 such that αcq is regular critical.
Then all conclusions of Theorem 2 remain true, when replacing the probabilities
Pq(·|#F(M)= n) in the statement by P F=n

q , and where the normalizing constant
of (i), (ii), (iii) is computed for the weight sequence αcq.

(ii) Let q be such that ZS=n
q <∞ and there exists some βc > 0 with βc • q reg-

ular critical, then the conclusion of Proposition 3 remain true, when considering
P S=n

q instead of Pq(·|#S(M) = n), and computing the scaling constants for the
weight sequence βc • q.

It is also true that conditioning both on the number of faces and vertices is
insensitive to termwise multiplication of q by (αβi−1, i ≥ 1), so this would lead to
finding a critical curve of (αc, βc)’s such that (αcβ

i−1
c qi, i ≥ 1) is critical. We do

not concentrate on this last point, as our methods are inefficient in conditioning on
both these data.

1.5. Two illustrating examples. We illustrate Theorem 2 by explicitly comput-
ing the various constants involved there in two natural particular cases.

1.5.1. 2κ-angulations. Consider the case when q = αδκ , for some integer
κ ≥ 2, and some constant α > 0. The resulting distributions are the Boltzmann
distributions on the set of maps with faces of fixed degree 2κ . These distributions
appear in [7] in the case κ = 2 of quadrangulations (they also appear in [4], but for
triangulations).

In that case, fq takes the simple form of a monomial fq(x) = αN(κ)xκ−1,
which satisfies Rq =∞. According to Proposition 1, Definition 1 and the fact that
fq(Rq) =∞, the weight sequence q is critical, and thus regular critical, if and
only if and the system of equations

fq(z)= 1− 1/z, z2f ′
q(z)= 1

has a real solution. This system, considered in the variables α, z admits the unique
solution

ακ = (κ − 1)κ−1

κκN(κ)
, zκ = κ

κ − 1
.
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FIG. 1. Example 1.5.1: drawing fq for α = 1/18,1/12,1/8 and x �→ 1− 1/x (dashed) in the case
κ = 2 of quadrangulations. Example 1.5.2: drawing fq for β = 1/7,1/8,1/10 and x �→ 1 − 1/x

(dashed).

Since fq(x) increases strictly with α for every x > 0, it is straightforward to see
that q is admissible if and only if α ≤ ακ , and is (regular) critical if and only if
α = ακ . In the critical case α = ακ , the partition function Zq is given by zκ as
defined above, and ρq = κ (see Figure 1).

Notice that when α ≤ ακ , the conditional law Pq(·|#F(M)= n), as considered
in Theorem 2, coincides with the uniform distribution on the set

{m ∈M+ : deg(f )= 2κ for all f ∈ F(m),#F(m)= n}
of 2κ-angulations with n faces, since Wq puts the same weight αn on all the el-
ements of this set. At the light of the discussion leading to Corollary 4, a more
natural way to define this uniform distribution would have been to take the non-
admissible weight sequence q = δκ in the first place, so Wq puts mass 1 on every
2κ-angulation, and P F=n

q is indeed uniform.
By further specialization of these results to the κ = 2 case of quadrangula-

tions, we check that α2 = 1/12,Zα2δ2 = 2, which is consistent with the results
of [7]. Furthermore, the constant (4ρq/(9(Zq − 1)))1/4 appearing in Theorem 2 is
(8/9)1/4 for κ = 2, which is consistent with the results of [8, 16].
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1.5.2. qi = βi . Let β > 0, and let qi = βi for i ≥ 1, so that the weight of a
map m is

Wq({m})= ∏
f∈F(m)

qdeg(f )/2 = β1/2
∑

f∈F(m) deg(f ) = β#A(m),

(when summing the degrees of faces, each edge is counted twice). In this case,

fq(x)=∑
i≥0

xiβi+1N(i + 1)= β
∑
i≥0

(βx)i
(2i + 1)!
(i + 1)!i! ,

which is equal to

fq(x)= 1

2x

∑
j≥1

(βx)j
(2j)!
j !2 = 1

2x

(
(1− 4βx)−1/2 − 1

)
.

We see that Rq = (4β)−1 and that fq(Rq)=∞. Since we are looking for solutions
of equation (2), which must be > 1, we see that the only interesting cases are when
β < 1/4. More precisely, one can check that the equation fq(z)= 1− 1/z has real
solutions if and only if β ≤ 1/8, and these are given by

1+ 4β −√
1− 8β

8β
and

1+ 4β +√
1− 8β

8β
.

These two solutions merge into a unique solution 3/2 at β = 1/8, which is
the value making q (regular) critical. This can be double checked by solving
z2f ′

q(z) = 1, whose solution is 3/(16β). This gives Zq = 3/2 in the critical case

β = 1/8, while ρq = 27/4, and the value (4ρq/9)1/4 of Proposition 3 is 31/4 (see
Figure 1). Conditioning with respect to the number of vertices is indeed a bit more
natural here: notice that we can rewrite q = β • (β, i ≥ 1). We thus obtain that
P S=n

q is equal to P S=n
β , where β stands (a bit improperly) for the constant se-

quence qi = β, i ≥ 1.

1.6. Comments and organization of the paper. As discussed in Section 1.5.1,
the asymptotic behavior of the radius and profile of quadrangulations that are uni-
formly chosen in the set

Qn+ = {m ∈M+ : #F(m)= n,deg(f )= 4 for all f ∈ F(m)}
is obtained as a particular case of Theorem 2 for q= 12−1δ2. Therefore, our results
encompass in principle the results of Chassaing and Schaeffer [8] and Le Gall [16].
The reason why “in principle” is that these two papers deal with slightly different
objects, namely rooted maps which are not pointed, and use the base point of the
root edge as the reference point with respect to which geodesic distances are mea-
sured. Considering these objects would lead us to extra nontrivial complications.
Roughly speaking, both pointing and rooting will allow us to study maps thanks to
freely labeled trees, while simple rooting leads to considerations on labeled trees
with a positivity constraint on labels. It is fortunate, however, that the scaling lim-
its are the same for our model as in [8, 16]. On a very informal level, this indicates
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that the base vertex of the root edge in a uniform rooted quadrangulation with n

faces plays asymptotically the same role as a randomly picked base vertex. This is
natural, since if we believe that a scaling limit for random maps exist, then a desir-
able feature of the limit would be that it (statistically) looks the same everywhere,
and the singular role of the root in the discrete setting should vanish as the size of
the map goes to infinity. On the other hand, we stress that rooting maps is not just
a technical annoyance, but is really a crucial requirement in the methods used in
most articles on the topic.

A natural question would be to ask whether similar techniques as ours could
be used to prove similar invariance principles in nonbipartite cases (e.g., triangu-
lations), using the more elaborate version of Bouttier, Di Francesco and Guitter’s
bijection for Eulerian planar maps. Although this makes the study slightly more
intricate, this is indeed possible and will be addressed elsewhere.

The rest of the article is organized as follows. Section 2 introduces basic de-
finitions for deterministic and random spatial trees, and shows how the bijec-
tion of Bouttier, Di Francesco and Guitter allows to interpret features of Boltz-
mann random bipartite maps in terms of functionals of certain two-type Galton–
Watson (GW) trees coupled with a spatial motion. Section 3 provides the proof of
Theorem 2 and Proposition 3, by introducing a new invariance principle for such
spatial two-type GW trees (Theorem 8), in which the increments of the spatial mo-
tion can depend both on the type of the current vertex and on the local structure
of the tree around the current vertex. This result is interesting in its own right. The
proof of this invariance principle occupies the remaining Sections 4 and 5.

Finally, in Section 6, we show that under the hypothesis of Theorem 2 and
Proposition 3, scaled bipartite maps converge to the Brownian map, introduced
in [20]. This generalization is more or less straightforward, and then we just outline
the procedure leading to this result.

2. Pushing Boltzmann planar maps to two-type spatial GW trees.

2.1. Planar spatial trees. Let N be the set of positive integers, and by conven-
tion let N

0 = {∅}. We define

U= ⊔
n≥0

N
n

(here and in the sequel, the symbol � stands for the disjoint union) the set of
all finite words with alphabet N, using the notation u = u1 · · ·uk ∈ U where
u1, . . . , uk ∈ N. If u = u1 · · ·uk ∈ U is such a word, we let k = |u| be its length,
with |∅| = 0. If u = u1 · · ·uk, v = v1 · · ·vk′ are words, we let uv be the concate-
nated word u1 · · ·ukv1 · · ·vk′ , with the convention ∅u = u∅ = u. If u = vw is a
decomposition of a word u as a concatenation, we say that v is a prefix of u, and
write v � u. If A is a subset of U and u ∈U, we let uA= {uv :v ∈A}. The set U
comes with the natural total lexicographical order �, such that u� v if and only if
either u � v, or u=wu′, v =wv′ with nonempty words u′, v′ such that u′1 < v′1.
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DEFINITION 2. A (rooted, planar) tree is a finite subset t of U that contains ∅,
and such that ui ∈ t (with u ∈ U and i ∈ N) implies that u ∈ t and uj ∈ t for all
1≤ j ≤ i. We let T be the set of trees.

It is well known that this definition of rooted planar trees is equivalent to the
graph-theoretic definition (a rooted planar map with no cycle), by associating every
element u ∈ t with a vertex of a graph, and drawing edges from the vertex associ-
ated to u to the ones associated to u1, . . . , uk ∈ t “from left to right.” If t �= {∅},
the embedded graph thus obtained is rooted at the oriented edge from ∅ to 1. We
call (with a slight abuse of notation) ∅ the root of t. We call vertices the elements
of a tree t ∈ T , the number |u| is called the height of u, and the order � will be
called the depth-first order on t.

The set {ui :ui ∈ t} is interpreted as the set of children of u ∈ t, and its cardi-
nality is denoted by ct(u). If v = ui with v,u ∈U and i ∈ N, we say that u is the
father of v and note u=¬v. If v � u for u, v ∈ t, we say that v is an ancestor of u.
If t ∈ T and u ∈ t is a vertex, we let tu = {v ∈U :uv ∈ t} be the fringe subtree of t
rooted at u. It is easily seen to be an element of T . We also let [t]u = {u}∪ (t\utu)
be the subtree of t which is pruned at u.

Next, let T0,T1 be two copies of T . The picture that we have in mind is that if
t ∈ Ti for i ∈ {0,1}, the mark i is interpreted as a color (white 0 or black 1) that we
assign to the root. All vertices at even height |u| then earn the same color, while
those at odd height earn the color i + 1 mod 2. Although we should differentiate
elements of T0,T1,T to be completely accurate, we keep the same notation t for
elements of either of these sets. For t ∈ Ti , we let t(j) = {u ∈ t : |u| = i + j mod 2}
to be the set of vertices of t with color j [e.g., t(0) is the set of vertices with even
height if t ∈ T0, and with odd height if t ∈ T1]. This notation is the only one that
actually distinguishes T0 from T1. In the sequel, we will often omit the mention of
mod 2 when dealing with marks. For example, it is understood that µk,mk stand
for µk mod 2 and its mean.

The definitions of children of a vertex, fringe subtrees and pruned subtrees ex-
tend naturally to T0,T1. The minor change is that if t ∈ Ti for i ∈ {0,1}, we take
the convention that tu ∈ T|u|+i (this should be clear from the intuitive picture that i

is the color of vertices at even heights in t), and if t ∈ Ti , we still let [t]u ∈ Ti (the
color of the root does not change).

DEFINITION 3. A spatial tree is a pair (t, �) where t ∈ T and � : t → R is
a labeling function that attributes a spatial position to every vertex. We let T

be the set of spatial trees. Notice that for a fixed t ∈ T , taking a labeling � is
equivalent to attributing a label �(∅) to the root and determining the increments
�(u)− �(¬u),u ∈ t \ {∅}.

Again, we consider two copies T0,T1 of T, that assign white or black color to
the root, and alternate color between generations.
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2.2. Two-type spatial GW trees. We now want to consider a particular family
of multitype GW trees, in which vertices of type 0 only give birth to vertices of
type 1 and vice versa. The following construction and discussion on a.s. finiteness
of the tree is not the most economic one, but allows us to introduce some of the
tools that will be needed later.

Let µ = (µ0,µ1) be a pair of probability distributions on Z+ with means m0
and m1, respectively. We make the basic assumption that µ is nondegenerate, that
is, µ0(1)+µ1(1) < 2, and we exclude the trivial case m0m1 = 0. We say that µ is
subcritical if m0m1 < 1, critical if m0m1 = 1 and supercritical if m0m1 > 1.

Consider a family of independent random variables (Xu,u ∈U) on some prob-
ability space (	,A,P ), such that Xu with |u| even all have law µ0 and Xu with
|u| odd all have law µ1, and define

ξ = {u= u1 · · ·uk ∈U :ui ≤Xu1···ui−1,1≤ i ≤ k} ∪ {∅}.
It is elementary to prove that ξ is a random subset of U that satisfies the properties
of a tree. The only difference is that it might be infinite, though every vertex still
has a finite number of children (local finiteness). We let T̂ be the set of such
possibly infinite trees which are locally finite, and keep the notation ct̂(u) for the
number of children of u ∈ t̂ ∈ T̂ . We also let T̂0, T̂1 be two copies of T̂ , and
consider ξ as a random element of T̂0. As before, if t̂ ∈ T̂i we let t̂(j) be the set
{u ∈ t̂ : |u| + i = j mod 2}. Notice that if t ∈ T0, then we have

P(ξ = t)= ∏
u∈t(0)

µ0(ct(u))
∏

u∈t(1)

µ1(ct(u))=∏
u∈t

µ|u|(ct(u)),(6)

and these probabilities sum to 1 if and only if ξ is a.s. an element of T0.
Now, for t̂ ∈ T̂0, we introduce the mapping �t̂ : t̂(0) →U that associates with t̂

the tree having as number of vertices #t̂(0), and which skips the odd generations of
t̂, going straight from a vertex of t̂(0) to its grandsons. Formally, it is defined re-
cursively by �t̂(∅) = ∅, and if v ∈ t̂(0) has grandchildren vw1, . . . , vwk ∈ t̂(0),
where w1, . . . ,wk are words of two letters such that w1 ≺ · · · ≺ wk , and k =∑

1≤i≤ct̂(v) ct̂(vi) is the number of grandchildren of v, then �t̂(vwl)= �t̂(v)l for

1 ≤ l ≤ k. We extend this to a mapping �t̂ : t̂ → U by letting �t̂(u) = �t̂(¬u)

whenever u ∈ t̂(1).
We simply denote the tree �t̂(t̂) by �(t̂). In particular, it is indeed an element

of T̂ , and the root has c
�(t̂)(∅)=∑

1≤k≤ct̂(∅) ct̂(k) children. The tree is unmarked,
because what we have done is to get rid of the vertices with color 1. Moreover, an
easy recursion shows that 2|�t̂(u)| = |u| for u ∈ t̂ with even height.

Now, it is elementary that �(ξ) has the same law as the random element ξ of
T̂ that is defined as follows. Let (Xu,u ∈ U) be an i.i.d. sequence of random
variables that have same distribution as∑

1≤k≤X∅

Xk,(7)
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FIG. 2. The first frame depicts a tree t ∈ T0: the white (resp. black) vertices stand for vertices of
t(0) (resp. t(1)). The second frame represents �(t), and the third frame, �′(1t) to be introduced later
in Lemma 11.

where (Xu,u ∈U) are the variables used to construct ξ . Then let

ξ = {u= u1 · · ·uk ∈U :ui ≤Xu1···ui−1,1≤ i ≤ k} ∪ {∅}.
By construction, ξ is a random variable in T̂ , and the process (#{u ∈ ξ : |u| = n},
n ≥ 0) is a GW process, whose offspring distribution is the law µ of X∅. More-
over, the process is nondegenerate, that is, µ(1) < 1, as is easily deduced from
the nondegeneracy condition on µ0,µ1. In particular, the process becomes extinct
(i.e., ξ is finite) a.s. if and only if the mean m of µ satisfies m≤ 1. For any distri-
bution ν on Z

+, denote by Gν the generating function of ν. We see from (7) that
Gµ = Gµ0 ◦ Gµ1 . Differentiating this shows that the mean of the new offspring
distribution is m = m0m1. Therefore, �(ξ) is a.s. finite if and only if m0m1 ≤ 1,
and the fact that ξ is locally finite implies that the finiteness of �(ξ) is equivalent
to that of ξ .

By recalling formula (6), and considering as well the case where the roles of µ0
and µ1 are interchanged, we have proved:

PROPOSITION 5. The formulas

P (0)
µ (T = t)= ∏

u∈t(0)

µ0(ct(u))
∏

u∈t(1)

µ1(ct(u)), t ∈ T0,

P (1)
µ (T = t)= ∏

u∈t(0)

µ0(ct(u))
∏

u∈t(1)

µ1(ct(u)), t ∈ T1

both sum to 1 when adding over t ∈ T0, respectively T1, if and only if (µ0,µ1) is
(sub)-critical. In this case, P

(0)
µ ,P

(1)
µ are probability distributions, called the law

of a (n alternating) two-type (sub)-critical GW tree, with root of type 0, respec-
tively 1.

Notice that the case µ0 = µ1 is that of a single type GW tree, and we do reobtain
the usual a.s. extinction criterion m ≤ 1 where m is the expectation of µ1. In the
sequel, by a two-type GW tree, we will always mean a random variable with a
law of the form P

(0)
µ or P

(1)
µ , as we will not be interested in the more general

nonalternating cases.
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We now couple the trees with a spatial displacement, in order to turn them into
random elements of T. For our purposes, we need to consider the case when the in-
crements of the spatial motion depend both on the type and the degree of the neigh-
boring vertex. To this end, let (νk

0 , νk
1 , k ≥ 1) be a family of probability distribu-

tions such that νk
0 , νk

1 are defined on R
k . Given t ∈ Ti , i ∈ {0,1}, we let (Yu, u ∈ t)

be a family of independent random variables, such that for u ∈ t with ct(u) = k,
Yu = (Yu1, . . . , Yuk) has law νk

0 for ever u ∈ t(0) and νk
1 for every u ∈ t(1). This

yields a family of random variables (Y t
u, u ∈ t \ {∅}), which we use as increments

of a random labeling function on t, that is, we set �t
∅ = 0 and

�t
u =

∑
v�u,v �=∅

Y t
v, u ∈ t.

We denote by t
ν the law of (�t

u, u ∈ t). We let P
(i)
µ,ν be the law on Ti such that

P
(i)
µ,ν(dtd�)= P (i)

µ (dt)t
ν(d�).

We usually let (T ,L) : Ti → Ti be the identity mapping, so that under P
(i)
µ,ν ,

T has distribution P
(i)
µ , and given T = t, the labeling L is t

ν-distributed. To
avoid trivial degenerate cases, we will always implicitly suppose that there ex-
ists i ∈ {0,1}, k ≥ 1 with µi(k) > 0 and νk

i is not the Dirac mass at 0. We then say
that the displacements laws νk

i are nondegenerate. We now have all the necessary
background to describe the push-forward of the Boltzmann measures Pq under the
bijection of Bouttier–Di Francesco–Guitter.

2.3. The Bouttier–Di Francesco–Guitter bijection and its consequences. The
basic bijection presented in [6], Sections 2.1 and 2.2, is a bijection between the set
of pointed unrooted bipartite planar maps (i.e., planar maps with a distinguished
vertex), and the set of so-called well-labeled mobiles. These objects are unrooted
planar trees together with a bipartite coloration of vertices (black or white say),
such that white vertices carry positive integer labels, which satisfy a set of con-
straints. The nice feature of this bijection, aside from providing enumerative for-
mulas, is that the faces of the initial map with degree k are in one-to-one correspon-
dence with the black vertices of the mobile with degree k/2, while the vertices of
the map that are at distance d > 0 from the distinguished vertex are in one-to-one
correspondence with white vertices of the mobile with label d .

It is explained in [6], Section 2.4, how a further rooting of the pointed map
(giving a map of M+) allows to root the associated mobile at a white vertex, and
lift the constraint that the labels are positive by subtracting the label of the root
vertex to all other labels (recovering the initial labels amounts to subtracting the
minimal label to every label and adding 1). We may reformulate their result as
follows.

Let T ⊂ T0 be the set of pairs (t, �), where the mark of the root of t is 0 and
where the labeling function satisfies the following constraints:
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• �(∅)= 0,
• � takes its values in Z,
• �(u)= �(¬u) if u ∈ t(1) (i.e., |u| is odd),
• if u ∈ t(1) has children u1, . . . , uk, with k = ct(u), then with the conventions

�(u0)= �(u)= �(u(k+ 1)),

�(uj)− �
(
u(j − 1)

) ∈ {−1,0,1,2,3, . . .}, 1≤ j ≤ k + 1.(8)

For a given t ∈ T0, a labeling � satisfying these constraints [i.e., such that (t, �) ∈
T] is called compatible with t, and the set of compatible labelings with t is denoted
by Lt. Note that our conventions are slightly different from those of [6], where
vertices of type 1 would be unlabeled. The difference is minor, since we consider
that these vertices earn the label of their father.

PROPOSITION 6 (BDFG (Bouttier, Di Francesco and Guitter) bijection [6]).
There exists a bijection between the sets M+ and T, which we denote by � :M+→
T, that sends † on {∅} and satisfies the following extra properties. If m ∈M+ \{†}
and (t, �)=�(m):

• Faces f of m with degree 2k are in one-to-one correspondence with vertices
u ∈ t(1) (i.e., with |u| odd) that have k−1 children. In particular, #F(m)= #t(1).

• Vertices v of m such that dm(v, r) = d > 0 are in one-to-one correspondence
with vertices u ∈ t(0) (i.e., with |u| even) with �(u)− minu′∈t �(u

′)+ 1 = d . In
particular, #S(m)= #t(0) + 1,

R(m)=max
u∈t

�(u)−min
u∈t

�(u)+ 1,(9)

and for any k ≥ 0

I m(k)= 1

#t(0) + 1

(
#
{
u ∈ t(0) :�(u)−min

u′∈t
�(u′)+ 1= k

}
+ 1{k=0}

)
.(10)

A short description of �−1 can be found in Section 6.
Except from the trivial difference explained before the statement of this propo-

sition, the only difference with [6], Section 2.4, is that the case of the vertex-map
is not considered there, and the mobiles always have at least one white vertex and
one black vertex. This distinction is important in our study, as we will see after
the next proposition. The key observation of this paper is given by the following
statement, which gives the image measure of the Boltzmann distributions Pq on
M+ by � . We let �(m)= t,�′(m)= � whenever �(m)= (t, �).

PROPOSITION 7. Let q be an admissible weight sequence, and define two
probability distributions (µ0,µ1) by

µ0(k)= Z−1
q fq(Zq)k, k ≥ 0,
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the geometric law with parameter fq(Zq) (as defined in the Introduction), and

µ1(k)= Zk
qN(k + 1)qk+1

fq(Zq)
, k ≥ 0.

Also, for every k ≥ 1, let νk
0 be the Dirac mass at 0 ∈R

k , and νk
1 be the law on Zk

of (X1,X1+X2, . . . ,X1+X2+· · ·+Xk) where (X1, . . . ,Xk+1) is uniform in the
set {

(x1, . . . , xk+1) ∈ (Z+ ∪ {−1})k+1 :x1 + · · · + xk+1 = 0
}
.

Then the two-type GW tree associated with µ0,µ1 is (sub)-critical, and �(M)

under Pq has law P
(0)
µ,ν .

Moreover, the weight sequence q is critical in the sense of Definition 1 if and
only if �(M) under Pq is a critical two-type GW tree, and q is regular criti-
cal if and only if it is critical and µ1 admits small exponential moments, namely
〈µ1, exp(a·)〉<∞ for some a > 0.

This explains why considering † as a map is important for our concern: oth-
erwise, the previous statement would not be true, since the root vertex of �(M)

under Pq would be constrained to have at least one child, and the tree would not
enjoy the GW property (in fact it would enjoy it everywhere but at the root, which
would make the forthcoming discussion tedious). It is also this convention that
allows neat statements in Definition 1 and Proposition 1.

The first step in proving Proposition 7 is to compute the cardinality of the set
Lt of labelings that are compatible with some t ∈ T0. For such t, the constraint (8)
says that for every u ∈ t(1), the label differences �(uj)−�(u(j−1)),1≤ j ≤ k+1
must be in Z+ ∪ {−1} and sum to 0 because of the convention �(u0) = �(u) =
�(u(k+1)). This is the same as the number of k+1-tuples (�(uj)− �(u(j −1))+
2,1≤ j ≤ k + 1) forming a composition of the integer 2k + 2 with k + 1 positive
parts. The number of such compositions is equal to

(2k+1
k+1

) = N(k + 1) with the
conventions of Section 1. Since the label of the root of t is fixed to 0, the number
of admissible labelings � of t is therefore equal to

#Lt =
∏

u∈t(1)

N
(
ct(u)+ 1

)
.(11)

Next, let q = (qi, i ≥ 1) be any nonnegative weight sequence, not necessarily
admissible. Let m ∈M+. Then, by letting (t, �)=�(m) and using Proposition 6
we get that

Wq(M =m)= ∏
f∈F(m)

qdeg(f )/2

(12)
= ∏

u∈t(1)

qct(u)+1 =Wq
(
�(M)= (t, �)

)
.
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This quantity is independent of the values taken by �, for any � compatible with t,
so by (11),

Wq
(
�(M) ∈ {(t, �) :� ∈Lt})= ∑

�∈Lt

∏
u∈t(1)

qct(u)+1

= ∏
u∈t(1)

N
(
ct(u)+ 1

)
qct(u)+1.

Otherwise said,

Wq
(
�(M)= t

)= ∏
u∈t(1)

N
(
ct(u)+ 1

)
qct(u)+1.(13)

We are now ready to prove Proposition 7. Some of the computations appear
implicitly in [6].

PROOF OF PROPOSITION 7. Suppose q is admissible, so Zq =Wq(M+)<∞.
Notice that for any tree t ∈ T0, one has∑

u∈t(0)

ct(u)= #t(1),
∑

u∈t(1)

ct(u)= #t(0) − 1,

since ∅ is the only vertex which has no ancestor. Therefore, we may redisplay (13)
as

Wq
(
�(M)= t

)= (
1

Zq

)#t(0)−1 ∏
u∈t(1)

(Zq)ct(u)N
(
ct(u)+ 1

)
qct(u)+1,

so finally

Pq
(
�(M)= t

)= (
1

Zq

)#t(0) ∏
u∈t(1)

(Zq)ct(u)N
(
ct(u)+ 1

)
qct(u)+1.(14)

We know that summing this formula over t ∈ T0 gives 1. But notice that any tree
t ∈ T0 can be written as t = {∅} ∪ 1t1 ∪ · · · ∪ ktk , if k = ct(∅), and with ti ∈ T1,

1≤ i ≤ k. So summing the last formula over t ∈ T0 amounts to sum over k ≥ 0 and
t(1), . . . , t(k) ∈ T1, and factorize the term 1/Zq that involves the root of t, so

1 =∑
k≥0

1

Zq

∑
t(1),...,t(k)∈T1

k∏
i=1

((
1

Zq

)#t(1)
(i) ∏

u∈t(0)
(i)

(Zq)ct(u)N
(
ct(u)+ 1

)
qct(u)+1

)
(15)

= 1

Zq

∑
k≥0

(∑
t∈T1

(
1

Zq

)#t(1) ∏
u∈t(0)

(Zq)ct(u)N
(
ct(u)+ 1

)
qct(u)+1

)k

.
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But the quantity which is raised to the successive integer powers can be decom-
posed by a similar method, and is equal to

∑
k≥0

(Zq)kN(k + 1)qk+1

(∑
t∈T0

(
1

Zq

)#t(0) ∏
u∈t(1)

(Zq)ct(u)N
(
ct(u)+ 1

)
qct(u)+1

)k

.

This time, the right-most quantity which is raised to the power k is nothing but the
sum of (14) over t ∈ T0, that is Pq(M+)= 1, with which we started. Thus, the last
expression is nothing but fq(Zq). Plugging this in (15), this leads to

1= 1

Zq

∑
k≥0

fq(Zq)k.

This yields both that f (Zq) < 1 and that Zq is solution of equation (2). Therefore,
the definition of µ1 in the statement of the theorem makes sense and defines a
probability distribution.

With this in hand, we can rewrite (14) and easily get

Pq
(
�(M)= t

)= ∏
u∈t(0)

µ0(ct(u))
∏

u∈t(1)

µ1(ct(u)).

Since these probabilities sum to 1 when summing over t, we get that �(M) under
Pq is indeed a (sub) critical two-type GW tree by Proposition 5, and with the
claimed offspring distributions. Obtaining the law of the labeling �′(M) given
�(M) is then easy as (12) may be rewritten

Pq
(
�(M)= (t, �)

)= Pq
(
�(M)= t

) ∏
u∈t(1)

1

N(ct(u)+ 1)
.(16)

Therefore, given �(M) = t, the labeling is uniform among all compatible label-
ings Lt. We can reexpress this by saying that [still under Pq(·|�(M)= t)] the in-
crements (�′(M)(uj)−�′(M)(u(j − 1)),1 ≤ j ≤ ct(u)+ 1), u ∈ t(1), with the
cyclic convention of (8), are independent as u varies, and uniform among all the
N(ct(u) + 1) increments sequences that are respectively allowed. Equivalently,
under Pq(·|�(M) = t), the increments (�′(M)(uj)−�′(M)(u),1 ≤ j ≤ ct(u))

are independent as u varies in t(1) and have the law ν
ct(u)
1 of the statement. Incre-

ments (�′(M)(uj)−�′(M)(u),1≤ j ≤ ct(u)) for vertices u ∈ t(0) are a.s. equal
to 0, and contribute to an invisible factor of 1 to (16), which explains the definition
of νk

0 .
To prove the criticality statement, it suffices to compute the expectations m0 and

m1 of µ0 and µ1. The expectation of the geometric law µ0 is equal to Zq − 1 =
Zqfq(Zq), while

m1 = 1

fq(Zq)

∑
k≥0

kZk
qN(k + 1)qk+1 =

Zqf ′
q(Zq)

fq(Zq)
.
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The product m0m1 is thus Z2
qf ′

q(Zq), which must be ≤ 1 (the tree is subcritical),
which shows that Zq must be the smallest solution of (2), by the classification of
solutions of (2) given in the introduction. The weight sequence q is then critical
in the sense of Definition 1 if and only if m0m1 = 1 = Z2

qf ′
q(Zq), that is, �(M)

under Pq is critical. If q is critical, it is regular critical if and only if Zq < Rq where
Rq is the radius of convergence of fq, and it is easy to see that this is equivalent to
〈µ1, exp(a·)〉<∞ for some a > 0. �

PROOF OF PROPOSITION 1. We have already noticed that if q is admissi-
ble, then Zq satisfies (2) and is the smallest solution, that is, the one satisfying
Z2

qfq(Zq)≤ 1.
Conversely, suppose that (2) admits a solution. Then thanks to the classification

of solutions of the Introduction, we know that one of the solutions, say z, satisfies
z2f ′

q(z)≤ 1. In a similar way as in the proof of Proposition 7, we can write (13) as

Wq(�(M)= t)
z

=
(

1

z

)#t(0)

fq(z)#t(1) ∏
u∈t(1)

zct(u)N(ct(u)+ 1)qct(u)+1

fq(z)

= ∏
u∈t(0)

µ′
0(ct(u))

∏
u∈t(1)

µ′
1(ct(u)),

where µ′
0(k)= z−1fq(z)k and µ′

1(k)= zkN(k + 1)qk+1/fq(z), for k ≥ 0, are two
probability distributions [for µ′

0, use the fact that fq(z)= 1−z−1]. Since moreover
these distributions have means m′

0 = z−1= zfq(z) and m′
1 = zf ′

q(z)/fq(z), whose

product is z2f ′
q(z)≤ 1, we finally recognize that the image of Wq/z under � is the

(probability) law of a (sub) critical two-type GW tree. This shows z = Zq < ∞,
hence the result. �

3. An invariance principle for spatial GW trees. In view of Proposition 6,
and in particular the formulas (9) and (10), and Proposition 7, the asymptotic be-
havior of the radius and profile of random maps under Pq(·|#F(M) = n) [resp.
Pq(·|#S(M)= n)], with q critical boils down to that of the labels distribution in a

critical spatial GW tree with law P
(0)
µ,ν(·|#T (1) = n) [resp. P

(0)
µ,ν(·|#T (0) = n− 1)].

We now state an invariance principle for such trees.

3.1. The invariance principle. For t ∈ T , let ∅ = u(0) ≺ u(1) ≺ · · · ≺
u(#t−1) be the list of vertices of t in depth-first order. We let H t

k = |u(k)|,0≤ k ≤
#t−1, and we construct a continuous piecewise linear process (H t

t ,0≤ t ≤ #t−1)

by linear interpolation between integer points. The process H t is called the height
process of t.

Next, for a labeled tree (t, �) ∈ T, we let (S
t,�
k = �(u(k)),0 ≤ k ≤ #t − 1) be

the head of the discrete snake associated with (t, �). We extend this process into a
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piecewise linear continuous process (S
t,�
t ,0≤ t ≤ #t−1) by interpolating between

integer values.
Let (µ0,µ1) be a nondegenerate critical two-type offspring distribution, and

(νk
i , i ∈ {0,1}, k ≥ 1) be a centered spatial displacement law (〈νk

i , x〉 = 0). We

let P
(i) = P

(i)
µ,ν for simplicity. Let m0,m1, σ

2
0 , σ 2

1 be the means and variances of
µ0,µ1, and define

σ = 1

2

√
σ 2

0
1+m1

m0
+ σ 2

1
1+m0

m1
∈ (0,∞].(17)

Also, for i ∈ {0,1}, k ≥ 1 and 1≤ l ≤ k, let �
k,l
i =

√
〈νk

i , x2
l 〉 be the square root of

the variance of the lth component of a random vector with law νk
i , and

�k
i =

√
〈νk

i , |x|2〉 =
(

k∑
l=1

(�
k,l
i )2

)1/2

,(18)

where |x| is the Euclidean norm of x ∈R
k . We define

� =
√√√√1

2

∑
k≥1

[
µ0(k)

m0
(�k

0)2 + µ1(k)

m1
(�k

1)2
]
.(19)

Recall the definition of N
(1), Section 1.3. We endow C(R+,R) with the uni-

form topology, and C(R+,R)2 with the product topology. The invariance principle
states as:

THEOREM 8. Let (µ0,µ1) be a critical nondegenerate offspring distribution,
and suppose it admits some exponential moments. Let (νk

0 , νk
1 , k ≥ 1) be nonde-

generate spatial displacement laws which are centered, and such that there exists
some η > 0 such that for i ∈ {0,1} and k ≥ 1,

Mk
i :=

∫
Rk
|x|4+ηνk

i (dx) <∞.

Last, assume that for some D > 0, as k →∞,

Mk
0 ∨Mk

1 =O(kD).(20)

Then, the constants σ,� > 0 are finite, and the following convergence in distribu-
tion holds on C(R+,R)2, for i, j ∈ {0,1}:((HT

(#T−1)t

n1/2

)
0≤t≤1

,

(S
T,L
(#T−1)t

n1/4

)
0≤t≤1

)
under P

(i)(·|#T (j) = n
)

(d)−→
n→∞

((2
√

1+mj

σ
et

)
0≤t≤1

,

(√
2�(1+mj)

1/4

σ 1/2 rt

)
0≤t≤1

)
under N

(1),

where by convention, n goes to +∞ along the values for which the conditioning
event has positive probability.
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One of the key ingredients in the proof of this result is the forthcoming
Lemma 15, which deals with the repartition between vertices of either type in
a conditioned two-type GW tree. In order to be able to prove Theorem 2 right
away, we give a simpler statement for now. Let t ∈ Ti for some i ∈ {0,1}. For
0≤ k ≤ #t− 1 and j ∈ {0,1}, we let

J
(j)
t (k)= Card

(
t(j) ∩ {u(0), . . . , u(k)})

be the counting process for the ranks of the vertices of t(j), when t is visited
in depth-first order. We extend it into a right-continuous nondecreasing function

on [0,#t − 1] by letting J
(j)
t (t) = J

(j)
t ([t]). The renormalized function J

(j)

t =
(J

(j)
t ((#t − 1)t)/#t(j),0 ≤ t ≤ 1) is the distribution function for the probability

measure putting equal mass on each number k/(#t − 1) with k ∈ Z+ such that
u(k) ∈ t(j). The following result says that vertices of either type are homoge-
neously displayed in a GW tree conditioned to be large.

LEMMA 9. Let µ0,µ1 be nondegenerate critical, and admitting small expo-
nential moments. Then for i, j ∈ {0,1}, under P (i)(·|#T (j) = n), the processes

(J
(c)

T (t),0≤ t ≤ 1), c ∈ {0,1} converge in probability to the identity (t,0≤ t ≤ 1),
for the uniform norm.

We end the present section by showing how Theorem 8 and Lemma 9 allow to
prove Theorem 2 and Proposition 3.

3.2. Computation of the scaling constants associated with random maps. Let
q be a regular critical admissible weight sequence. Then we know that �(M) un-
der Pq has law P

(0)
µ,ν , where µ,ν are defined as in Proposition 7. We also know

from this proposition that µ0,µ1 admit some exponential moments (µ0 because
the law is geometric, and µ1 because q is regular critical). Also, it is plainly non-
degenerate.

On the other hand, we have to check that the νk
i are centered and satisfy the

moments conditions of Theorem 8. For νk
0 it is trivial (these are Dirac masses

at 0). Since νk
1 is carried by the set [−k, k]k , it is straightforward that its marginals

have moments of order 5 which grow at most like k5.
Next, we compute the constants σ,� associated with µ,ν. On the one hand, µ0

has mean m0 = Zq − 1 = m−1
1 , and variance σ 2

0 = Zq(Zq − 1). Also, Gµ1(x) =
fq(xZq)/fq(Zq) by definition, and by differentiating, µ1 has variance

σ 2
1 =

Z2
qf ′′

q (Zq)

fq(Zq)
+ Zq − 2

(Zq − 1)2 =
Z3

qf ′′
q (Zq)

Zq − 1
+ Zq − 2

(Zq − 1)2 .

This gives, after some simplifications,

σ =
√

Zq ρq

2
,



1664 J.-F. MARCKERT AND G. MIERMONT

where ρq is defined at (5).
On the other hand, we have to compute

∑
1≤l≤k(�

k,l
1 )2 to give the value of

� (notice that �
k,l
0 = 0 for every k, l). Recall that νk

1 is the law of (X1,X1 +
X2, . . . ,X1 + · · · + Xk), where (X1, . . . ,Xk+1) has a uniform law in {(x1, . . . ,

xk+1) ∈ (Z+ ∪ {−1})k+1 :x1 + · · · + xk+1 = 0}. But then, (X1, . . . ,Xk+1) is ex-
changeable, and E[X1] = (k + 1)−1E[X1 + · · · + Xk+1] = 0, so the variables
Xl,1 ≤ l ≤ k, are centered, as well as the marginals of νk

1 . Moreover, it holds
by exchangeability (this argument was suggested by a referee) that

(�
k,l
1 )2 =Var(X1 + · · · +Xl)= l Var(X1)+ l(l − 1)Cov(X1,X2).

Since Var(X1 + · · · ,Xk+1) = 0, we obtain that Cov(X1,X2) = −Var(X1)/k. It
remains to compute the variance of X1. Using the interpretation in terms of com-
positions, one finds easily that

P(X1 = l)=
(

2k − l − 1
k − 1

)/(
2k + 1
k + 1

)
for − 1≤ l ≤ k(21)

and then, since a+1
b+1

(a
b

)= (a+1
b+1

)
,

E((2k −X1)(2k + 1−X1))

k(k + 1)
=

k∑
l=−1

(
2k + 1− l

k + 1

)/(
2k + 1
k + 1

)

=
k+1∑
i=0

(
k + 1+ i

k + 1

)/(
2k + 1
k + 1

)

=
(

2k + 3
k + 2

)/(
2k + 1
k + 1

)
from which we get Var(X1) = 2k/(k + 2). Finally, this gives (�

k,l
1 )2 =

2l(k − l + 1)/(k + 2), and by summing this for 1≤ l ≤ k,

(�k
1)2 = k(k + 1)

3
.

We obtain

� =
√√√√(Zq − 1)

2

∑
k≥1

µ1(k)
k(k + 1)

3
=
√

Z3
qf ′′

q (Zq)+ 2

6
=
√

ρq

6
.

Finally, we obtain that the scaling constants Dq and Cq appearing respectively in
front of e and r in Theorem 8, for j = 1, are

Dq = 4
(
ρq(Zq − 1)

)−1/2
, Cq =

√
2�(1+m1)

1/4

σ 1/2 =
(

4ρq

9(Zq − 1)

)1/4

.

3.3. Proof of Theorem 2. (i) From (9), we know that R(M) under
Pq(·|#F(M) = n) has the same law as maxu∈T L(u) − minu∈T L(u) + 1,
under P

(0)(·|#T (1) = n). In turn, this is equal to 1 + max0≤t≤#T−1 S
T,L
t −
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min0≤t≤#T−1 S
T,L
t . The convergence of the second component in Theorem 8

entails that n−1/4R(M) converges in distribution to Cq�(r), as claimed. In-
deed, the convergence holds for the uniform topology, under which the mapping
f �→ sup0≤t≤1 f (t) [resp. f �→ inf0≤t≤1 f (t)] is continuous.

(ii) Let r′ be picked at random in S(M) \ {r} conditionally on M under
Pq(·|#F(M)= n). Then by Proposition 6, the law of dM(r, r′) is the same as that
of 1+L(V )−minv′∈T L(v′) under P

(0)(·|#T (1) = n), where V is uniformly picked
among the vertices of T (0) conditionally on T ,L. To be completely rigorous, this
involves an enlarging of the probability space T, and we do it in the following
convenient way. We endow the space T

(0)×[0,1] with the law P̃= P
(0)(·|#T (1) =

n) × dx, where dx is Lebesgue measure on [0,1]. If ((T ,L),U) is the identity
map on this space, then under P̃, U is a uniform random variable in [0,1], inde-

pendent of HT ,ST,L, J
(0)

T . Then, let U
(0)
T = (J

(0)

T )−1(U), where (J
(0)

T )−1 is the

right-continuous inverse of J
(0)

T . By definition of J
(0)

T , it holds that (#T − 1)U
(0)
T

is the rank in depth-first order of a uniform random vertex of T (0). Otherwise said,
u((#T − 1)U

(0)
T ) is uniform in T (0) given (T ,L). Hence, the law of the distance

in a Pq(·|#F(M) = n)-chosen random map from the root to a uniformly chosen
nonroot vertex is the same as that of S

T,L

(#T−1)U
(0)
T

−minST,L + 1 under P̃.

On the other hand, the convergence of (J
(0)

T (t),0 ≤ t ≤ 1) to the deterministic
identity function, which is described in Lemma 9, must hold jointly with that of
the height and snake processes under P

(0)(·|#T (1) = n). So, by Skorokhod’s rep-
resentation theorem, we may find a probability space on which the convergence
holds almost surely, that is, we can find processes (Hn,Sn, J

n
) with the same law

as (
n−1/2HT

(#T−1)·, n−1/4S
T,L
(#T−1)·, J

(0)

T

)
under P

(0)(·|#T 1 = n),(22)

and which converge uniformly a.s. to a triple (B,S, id[0,1]) where (B,S) is dis-
tributed as (Dqe,Cqr) under N

(1). We take a uniform random variable Ũ on
[0,1], independent of all these processes, and let Un = (J

n
)−1(Ũ), which has

the same law as U
(0)
T with the above notation. Since J

n
converges uniformly to

the identity, Un converges to Ũ a.s., and therefore, Sn
Un converges a.s. to SŨ as

n→∞. Moreover, infSn converges to infS as n→∞, so finally, we obtain that
n−1/4(S

T,L

(#T−1)U
(0)
T

−minST,L+1) under P̃ converges in distribution to SŨ − infS,

which has the law of Cq(rU − inf r) under N
(1) × dx. By the rerooting properties

of the Brownian snake of [17, 20], (rs+t mod 1 − rt ,0 ≤ s ≤ 1) has same law as r
under N

(1), for every t . So under N
(1) × dx,

rU − inf
0≤s≤1

rs = rU − inf
0≤s≤1

(rs+U mod 1 − rU + rU)

(d)= − inf
0≤s≤1

rs =−�−(r),
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which by symmetry has the same law as �+(r), as claimed.
(iii) For every k > 0, we have, using (10),

I m(k)= (
1+ #t(0))−1(#{u ∈ t(0) :�(u)−min�+ 1= k

})
whenever (t, �)=�(m). We can rewrite this as

#t(0)

1+ #t(0)

∫ 1

0
1{St,�

(#T−1)t−infSt,�+1=k} dJ
(0)

t (t),

Thus, for every g which is Lipschitz and bounded,

〈I m
n , g〉 = #t(0)

1+ #t(0)

∫ 1

0
g

(S
t,�
(#T−1)t − infSt,� + 1

n1/4

)
dJ

(0)

t (t)+ g(0)

1+ #t(0)
.

Note that because of the convergence of J
(0)

T in Lemma 9, the quantity #T (0) un-
der P (0)(·|#T (1) = n) converges to infinity in probability. We then use again the
Skorokhod representation theorem, and suppose given processes Hn,Sn, J

n
with

respective laws that of (22), which converge almost surely for the uniform norm
to (B,S, id[0,1]), where (B,S) is distributed as (Dqe,Cq r) under N

(1). Then, the
measures dJ

n
converge weakly to the uniform law on [0,1]. We have∫ 1

0
g(Sn

t − infSn + n−1/4) dJ
n
(t)−

∫ 1

0
g(St − infS)dt

=
∫ 1

0

(
g(Sn

t − infSn + n−1/4)− g(St − infS)
)
dJ

n
(t)

+
∫ 1

0
g(St − infS)

(
dJ

n
(t)− dt

)
.

The first term on the right-hand side converges to 0, because Sn− infSn converges
uniformly to S− infS, and g is Lipschitz. The second term converges to 0 because
g(St − infS),0 ≤ t ≤ 1, is continuous and bounded, and dJ

n
converges weakly

to dt . Since
∫ 1

0 g(St − infS)dt has the law of 〈I r
q, g〉 under N

(1), this ends the
proof. �

REMARK. A somewhat simpler proof for (ii), using (iii), could be obtained
following the same lines as Le Gall [16]. We thought however that the present
approach, which for example can be easily extended to handle the case of several
sampled points, was worth mentioning.

The proof of Proposition 3 is entirely similar to the previous proof, the only
significant difference being that one should use the probability distributions
P (0)(·|#T (0) = n) rather than P (0)(·|#T (1) = n). This tacitly implies that we must
take n along values for which this conditioning is well defined. Except from that,
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there is a minor change due to the fact that the scaling constants in the limit are
different, namely √

2�(1+m0)
1/4

√
σ

=
(

4ρq

9

)1/4

.

Details are left to the reader.

4. Convergence of the height process. The goal of this section is to prove
the convergence of the first component in Theorem 8. This involves a couple of
lemmas, which we now describe.

4.1. GW forests. A forest f is a subset of U that is of the form

f=⋃
k

kt(k),

where (t(k)) is a finite of infinite sequence of trees, called the tree components of f.
We let F be the set of forests. If f ∈ F and u ∈ f, we define the fringe subtree
fu ∈ T by {v ∈ U :uv ∈ f} as above, and [f]u = {u} ∪ (f \ ufu) ∈ F the pruned
forest. With this notation, observe that the tree components of f are f1, f2, . . . . For
f ∈ F and u ∈ f, we let cf(u) = cfu(∅) be the number of children of u in f. If
it is understood that u is an element of f, for f ∈ F , we call |u| − 1 the height
of u. It differs from the convention on trees because we want the roots of the forest
components to be at height 0. For f ∈ F and u ∈ f, ϒf(u) be the first letter of u,
that is, the rank of the tree component of f containing u.

We also want to consider forests of marked trees, that is, sets of the form⋃
k kt(k) with t(k) ∈ Ti , i ∈ {0,1}. We then define, for i ∈ {0,1},

f(i) =⋃
k

kf(i)k .

We let F0 be the set of forests constituted only of trees marked 0 at the root, and
F1 the set of forests constituted only of trees marked 1 at the root.

If i ∈ {0,1}, and (µ0,µ1) is a (sub) critical pair of offspring distributions as in
Section 2.2, and for r ∈ N � {∞}, we let P

(i)
r be the image law on Fi of (P

(i)
µ )⊗r

under the map (
t(1), t(2), . . .

) �→⋃
k

kt(k),

going from the set of sequences of r trees in Ti to Fi . We do not refer to µ in the
definition of P

(i)
r , but the value of µ0,µ1 should be clear according to the context.

We let F :F →F be the identity mapping.
In the sequel, if t ∈ T or f ∈ F , we let u(0)≺ u(1)≺ · · · be the list of vertices

of t or f in depth-first order. Similarly, for i, j ∈ {0,1} and t ∈ Ti or f ∈ Fi , we let
u(j)(0)≺ u(j)(1)≺ · · · be the list of vertices of t(j) or f(j) listed in depth-first order.
Although there is no mention of t, f in the notation, it should be unambiguous
according to the context.
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4.2. Controlling the height and number of components of forests. The first
technical lemma gives an exponential control on quantities related to the n first
vertices in a monotype GW forest.

LEMMA 10. Let µ be a critical nondegenerate offspring distribution on Z+,
that is, µ(1) < 1 and µ has mean 1. Suppose also that µ has finite variance. Let
P∞ be the law of a GW forest with and infinite number of components and offspring
distribution µ (with the previous notations it is P

(i)∞ whenever µ0 = µ1 = µ, in
that case, the role of i ∈ {0,1} is irrelevant). Then, there exist constants 0 < C1,
C2 <∞ such that for every η > 0, for every n≥ 0,

P∞
(

max
0≤k≤n

|u(k)| ≥ n1/2+η

)
≤ C1(n+ 1) exp(−C2n

η)(23)

and

P∞
(
ϒF (u(n))≥ n1/2+η)≤ C1 exp(−C2n

η).(24)

PROOF. We bound the first probability by (n + 1)max0≤k≤n P∞(|u(k)| ≥
n1/2+η). It is known ([10], Section 2.2) that |u(k)| − 1 has same distribution as
the number of weak records for a random walk with step distribution µ(· + 1) on
{−1} ∪Z+, from time 1 up to time k. Suppose such a random walk (Wn,n≥ 0) is
defined on some probability space (	̃, Ã, P̃ ). By assumption, the step distribution
of this random walk is centered and has finite variance. Therefore, calling τ0 = 0
and τi, i ≥ 1, the time of the ith weak record of (Wn,n ≥ 0), we have from [11]
that (τi−τi−1, i ≥ 1) is i.i.d., and the Laplace exponent of the common distribution
satisfies

φ̃(λ)=− log Ẽ[exp(−λτ1)] ∼
λ↓0

C′√λ(25)

for some C′ > 0. Now, for k ≤ n, we write P∞(|u(k)| − 1≥m) as

P̃

(
m∑

i=1

(τi − τi−1)≤ k

)
≤ eE

[
exp

(
−

m∑
i=1

τi − τi−1

k

)]
(26)

= exp
(
1−mφ̃(1/k)

)
,

which by monotonicity of φ̃ is less than exp(1 − mφ̃(1/n)), and taking m =
�n1/2+η� − 1 and using (25) gives (23) for large enough n, thus for every n up
to tuning the constants C1,C2.

The proof of (24) is very similar. By a well-known application of the Otter–
Dwass formula (see, e.g., [22], Chapter 5), the sizes (#F1,#F2, . . .) of the compo-
nents of the forest F under P∞ are i.i.d. random variables with distribution

P∞(#F1 = n)= 1

n
P̃ (Wn =−1).
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By using once again the fact that the step distribution is centered and has finite
variance, the local limit theorem ([11], Theorem XV.5.3) entails that P∞(#F1 = n)

is equivalent to C′′n−3/2 (or 0 for lattice type reasons), where C′′ > 0 is some
positive constant. Therefore, an Abelian theorem ([11], Theorem XIII.5.5) entails
that the Laplace exponent φ of the distribution of #F1 under P∞ is equivalent to
λ1/2 up to a multiplicative constant as λ ↓ 0. Noticing that {ϒF (u(n)) ≥ m} =
{∑m−1

i=1 #Fi ≤ n}, the result is then obtained by a straightforward analog of (26),
replacing P̃ by P∞, (τi − τi−1) by #Fi , and φ̃ by φ. We finally adapt the constants
C1, C2 so that they match to both cases. �

A consequence of this is the following analogous result for two-type forests.

LEMMA 11. Let (µ0,µ1) be a critical nondegenerate offspring distribution,
and suppose µ0,µ1 have finite variances. Then, for i, j ∈ {0,1}, and every η > 0,
there exists some ε > 0 such that for every n large enough,

P (i)∞
(

max
0≤k≤n

∣∣u(j)(k)
∣∣≥ n1/2+η

)
≤ exp(−nε).(27)

Moreover,

P (i)∞
(
ϒF

(
u(j)(n)

)≥ n1/2+η)≤ exp(−nε).(28)

REMARK. Since maxu�u(j)(n) |u| ≤max0≤k≤n |u(j)(k)| + 1, (27) also yields

P (i)∞
(

max
u�u(j)(n)

|u| ≥ n1/2+η

)
≤ exp(−nε).(29)

PROOF OF LEMMA 11. Suppose that i = j . For f ∈ Fi , define the following
analog of the transformation �f : f→U of Section 2.2, by

�f(kv)= k�fk (v), kv ∈ f(i),

and �f(v) = �f(¬v) if v ∈ f(i+1), so � skips odd generations in all of the tree
components of the forest f. We let �(f) be its image, so that

�(f)= ⋃
k≥1

k�(fk) ∈F .

Notice that �f(u
(i)(n)) is the (n+ 1)st vertex in depth-first order in �(f). It is then

a consequence of the definitions of �t,�f that

2
∣∣�f

(
u(i)(n)

)∣∣− 2 = ∣∣u(i)(n)
∣∣− 1 and

(30)
ϒf
(
u(i)(n)

)=ϒ�(f)
(
�f
(
u(i)(n)

))
.

As in the discussion leading to Proposition 5, under P (i), the tree �(T ) is a mono-
type critical GW tree, and therefore, under P

(i)∞ , the forest �(F) is a monotype
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critical GW forest. Its offspring distribution µ has generating function Gµ =
Gµi

◦ Gµi+1 , and if µ0,µ1 have finite variances, we can differentiate Gµ twice
to obtain that µ itself has finite variance. Hence, Lemma 10 applies and gives that
for every η > 0, there is some ε > 0 such that for n large enough,

P (i)∞
(

max
0≤k≤n

∣∣�F

(
u(i)(k)

)∣∣≥ n1/2+η

)
≤ exp(−nε).(31)

Therefore, using (30), up to taking a smaller ε, we obtain (27) for some ε > 0 and
all n large. Similarly, (28) follows by applying (30) and (24) to �(F) under P

(i)∞ .
It remains to prove the case i+1= j . To this end, we introduce a transformation

on forests that skips the first generation. For f ∈ F , we let π(f) be the forest with
tree components (fk1, . . . , fkcf(k), k ≥ 1), where these tree components are put in
lexicographical order of the index kl,1 ≤ l ≤ cf(k). For every u ∈ f with |u| ≥ 2,
there is a unique corresponding u′ in π(f), that we denote πf(u)= u′.

If f ∈ Fi , then π(f) is considered as an element of Fi+1, and we let �′
f =

�π(f) ◦ πf, and �′(f) = �′
f(f), so �′ first skips the first generation of a forest, and

then skips all odd generations of the new forest (see Figure 2 where �′ is applied
to a forest with one component). As for �, is is easy to see that if f ∈ Fi , then
�′

f(u
(i+1)(k)) is the (k + 1)st vertex of �′(f) in depth-first order, and has height

satisfying 2|�′
f(u

(i+1)(k))| = |u(i+1)(k)|, which mirrors the first half of (30). More-
over, we have

ϒ�′(f)
(
�′

f
(
u(i+1)(n)

))
(32)

≥ϒf
(
u(i+1)(n)

)− #
{
1≤ k ≤ϒf

(
u(i+1)(n)

)
: cf(k)= 0

}
.

Indeed, some of the tree components of f do not have vertices of type i + 1, and
thus do not count in the construction of �′(f). This gives the second term in the
right-hand side. On the other hand, those tree components which have at least one
vertex of type i + 1 produce at least one tree component in �′(f), which gives the
inequality.

Now, by construction, the law of π(F) under P
(i)∞ is P

(i+1)∞ , so that the law of
�′(F ) under P

(i)∞ is that of a monotype GW forest with offspring distribution µ′,
and Gµ′ = Gµi+1 ◦ Gµi

. We thus obtain (27) by applying Lemma 10 to �′(F )

under P
(i)∞ , just as we did in the case i = j .

Obtaining (28) is slightly more delicate, since the second half of (30) is now re-
placed by (32). Under P

(i)∞ , the random variables cF (k) are identically distributed
with law µi , so that B(m) := #{1≤ k ≤m : cF (k)= 0} is a Binomial random vari-
able with parameters (m,µi(0)). By Hoeffding’s inequality, if B(n,p) is Binomial
with parameters n≥ 1,0 < p < 1, we have

P
(|B(n,p)− np| ≥ y

)≤ 2 exp(−2y2/n).(33)
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Therefore, for any γ > 0

P (i)∞
(

max
1≤k≤n

|B(k)− kµi(0)| ≥ n1/2+γ /2
)
≤ 2n exp(−n2γ /2).(34)

For simplicity, write ϒn =ϒF (u(i+1)(n)) and ϒ ′
n =ϒ�′(F )(�

′
F (u(i+1)(n))). Then,

(32) gives B(ϒn)≥ϒn −ϒ ′
n, and since ϒn ≤ n by definition, (34) yields

P (i)∞ (ϒn −ϒ ′
n ≥ n1/2+η/2)≤ 2n exp(−n2η/2).

Finally,

P (i)∞ (ϒn ≥ n1/2+η)≤ P (i)∞ (ϒn −ϒ ′
n ≥ n1/2+η/2)+ P (i)∞ (ϒ ′

n ≥ n1/2+η/2),

and both terms are ≤ exp(−nε) for some ε > 0 and n large enough, the second
term because of (24) applied to the monotype GW forest �′(F ) under P

(i)∞ . �

4.3. Ancestral decomposition of a GW forest. A key result for our study is
a multitype version of an ancestral decomposition for GW trees, related to the
so-called size-biased GW distribution. It is inspired from [14]. Let (µ0,µ1) be a
nondegenerate critical two-type offspring distribution, and define the associated
size-biased distributions

µ̂0(k)= kµ0(k)

m0
, µ̂1(k)= kµ1(k)

m1
, k ≥ 0.

Notice that these distributions do not charge {0}. The size-biased GW tree is an
infinite tree (an element of T̂ with the notation of Section 2.2) containing a unique
spine, that is, an infinite injective path starting from the root. On some probability
space, let (Xu, X̂u, ju, u ∈ U) be a sequence of i.i.d. random variables such that
Xu has law µ|u| (|u| taken modulo 2), X̂u has law µ̂|u|, and conditionally on X̂u,
ju is uniform in {1,2, . . . , X̂u}. Then, let w0 =∅, and recursively wj+1 =wjjwj

,
j ≥ 0. Let X̃u = X̂u if u ∈ {w0,w1, . . .}, and X̃u =Xu otherwise. Finally, let ξ̂ be
the element of T̂0 defined by

ξ̂ = {u= u1 · · ·uk ∈U :ui ≤ X̃u1···ui−1,1≤ i ≤ k} ∪ {∅}.
We see that ξ̂ is almost a GW tree, except for one distinguished spine which uses
the distributions µ̂0, µ̂1 instead of µ0,µ1. In particular, under the criticality as-
sumption, we see that all fringe subtrees of ξ̂ attached to the spine, that is, of the
form ξ̂wj k for k �= jwj

, are a.s. finite, so the only infinite simple path starting from
the root in ξ̂ is a.s. (w0,w1, . . .). In particular the trees [̂ξ ]wh

are a.s. finite for
h≥ 0. For every h≥ 0, let P̂ (0),h be the law of ([̂ξ ]wh

,wh), where we understand
that [̂ξ ]wh

is an element of T0. It is a law on the set of pointed trees with white root
whose distinguished vertex is a leaf (i.e., has no child)

T ∗
0 = {(t, u) : t ∈ T0, u ∈ t, ct(u)= 0}.
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We let (T ,V ) be the identity mapping on T ∗
0 . Similarly we define P̂ (1),h on T ∗

1 ,
where T ∗

1 is a copy of T ∗
0 , by switching the roles of µ0 and µ1. Finally, for r ∈N,

j ∈ {1, . . . , r}, i ∈ {0,1} and h≥ 0, we let P̂
(i),j,h
r be the law on

F ∗
i = {(f, u) : f ∈Fi , u ∈ f, cf(u)= 0}

of the random variable ( ⋃
1≤k≤r

kξ(k), jw

)
,

where (ξ(k), k �= j) are independent with distribution P (i) and independent of
(ξ(j),w), which has law P̂ (i),h. We let (F,V ) be the identity mapping on F ∗

i .

LEMMA 12 (Ancestral decomposition for GW forests). Let (µ0,µ1) be a crit-
ical nondegenerate offspring distribution. For every r ∈ N and nonnegative mea-
surable functions G1,G2

E(i)
r

[∑
w∈F

G1(w, [F ]w)G2(Fw)

]
(35)

= 1

1+mi+1

r∑
j=1

∑
h≥0

(1+mh+1+i)Ê
(i),j,h
r [G1(V ,F )]E(h+i)[G2(T )],

where as usual i + 1, h+ i(+1) are taken modulo 2.

PROOF. We treat the case i = 0 only. Let f ∈ F0, let u be a leaf of f and let
t ∈ T|u|−1. Then, it is enough to show the result for G1 = 1{(u,f)} and G2 = 1t,
by linearity and monotone convergence. In this case, the left-hand side of (35) is
equal to P

(0)
r (F = [f, u, t]), where [f, u, t] is the only forest f′ ∈ F0 containing u

with [f′]u = f and f′u = t. This probability is∏
v∈f′

µ|v|−1(cf′(v)).

Let j = u1 be the first letter of u. We can redisplay the last expression as∏
v∈t

µ|v|+|u|(ct(v))
∏

1≤l≤r,l �=j

∏
v∈fl

µ|v|(cf(lv))

× ∏
v∈fj ,jv�u

µ|v|(cf(jv))
∏

v∈f,v�u,v �=u

µ|v|−1(cf(v))

(we omit the brackets around the different products for convenience). Let S =
{v ∈ f :¬v � u, v � u} be the set of neighbors of the ancestors of u, which are not
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ancestors of u. We recognize

P (0)
r (F = [f, u, t])= P (|u|−1)(T = t)

∏
l �=j,1≤l≤r

P (0)(T = fl)

×∏
v∈S

P (|v|−1)(T = fv)
∏

v∈f,v�u,v �=u

µ|v|−1(cf(v)).

We can also rewrite the last product as∏
v∈f,v�u,v �=u

µ̂|v|−1(cf(v))
m|v|−1

cf(v)
.

After a moment’s thought, we see that, letting u= ju′,∏
v∈S

P (|v|−1)(T = fv)
∏

v∈f,v�u,v �=u

µ̂|v|−1(cf(v))

cf(v)

= P̂ (0),|u|−1((T ,V )= (fj , u′)
)
.

On the other hand, as one can check from the fact that m0m1 = 1,∏
v∈f,v�u,v �=u

m|v|−1 = 1+m|u|
1+m1

and we finally recognize

P (0)
r (F = [f, u, t])= 1+m|u|

1+m1
P̂ (0),|u|−1((T ,V )= (fj , u′)

)
×
( ∏

l �=j,1≤l≤r

P (0)(T = fl)

)
P (|u|−1)(T = t)

= 1+mh+1

1+m1
Ê(0),j,h

r

[
1{u,f}(V ,F )

]
E(h)[1{t}(T )

]
,

where h= |u| − 1, which is (35). �

The first corollary we infer from this is a control on the maximum vertex degree
in a two-type GW forest.

LEMMA 13. Assume that the pair (µ0,µ1) is nondegenerate, critical and has
some exponential moments. Then for every η > 0 there exists ε > 0 such that for n

large enough, and i, j ∈ {0,1},

P (i)∞
(

max
u�u(j)(n)

cF (u)≥ nη

)
≤ exp(−nε).(36)
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PROOF. Let η > 0. Then by using Lemma 11, the left-hand side of (36) is
equal to

P (i)∞
(

max
u�u(j)(n)

cF (u)≥ nη,

max
u�u(j)(n)

|u| ≤ n1/2+η,ϒF

(
u(j)(n)

)≤ n1/2+η

)
+R(n)(37)

≤ P
(i)

[n1/2+η]
(

max
|u|≤n1/2+η

cF (u)≥ nη

)
+R(n),

where R(n)≤ exp(−nε) for some ε > 0 and n large enough. But then,

P
(i)

[n1/2+η]
(

max
|u|≤n1/2+η

cF (u)≥ nη

)
≤E

(i)

[n1/2+η]

(∑
u∈F

1{|u|≤n1/2+η}1{cF (u)≥nη}
)
,

and applying Lemma 12 to G1(u, f)= 1{|u|≤n1/2+η} and G2(t)= 1{ct(∅)≥nη}, this is
equal to

1

1+mi+1

[n1/2+η]∑
j=1

[n1/2+η]∑
h=0

(1+mh+i+1)µh+i([nη,∞))

(38)
≤ Cn1+2η(µ0([nη,∞))∨µ1([nη,∞))

)
,

for some C > 0. But since µ0,µ1 have some exponential moments, it holds that
µi([nη,∞)) ≤ exp(−anη), for some a > 0, and n large enough. Combined with
(38) and (37), this yields (36). �

4.4. An estimate for the size of GW trees. In order to pass from statements
on forests to statements on conditioned trees, we need to estimate the number of
vertices of either type in two-type GW trees.

LEMMA 14. Let (µ0,µ1) be a critical nondegenerate offspring distribution,
and suppose that µ0 and µ1 have finite variances. Then for i, j ∈ {0,1}, there
exists a finite constant Cij > 0 such that

n3/2P (i)(#T (j) = n
)−→ Cij ,

where it is understood that n goes to infinity along values for which the quantity
on the left-hand side is strictly positive.

PROOF. Suppose i = j = 0. Then P (0)(#T (0) = n) = P (0)(#�(T ) = n),
where � denotes the mapping that skips odd generations, as usual, so �(T ) un-
der P (0) is a (monotype) GW tree whose offspring distribution µ has generating
function Gµ =Gµ0 ◦Gµ1 It results that µ is critical, nondegenerate, and has finite
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variance (by differentiating twice Gµ). The conclusion follows from the Otter–
Dwass formula and the local limit theorem that we used in the proof of Lemma 11:
we have P (0)(#T (0) = n)= n−1P̃ (Wn =−1)∼ C00n

−3/2 where W under P̃ is a
random walk with step distribution µ(· + 1). The case i = j = 1 is similar.

It remains to deal with the case i = 0, j = 1. In that case, we have

P (0)(#T (1) = n
)=∑

r≥1

P (0)(cT (∅)= r
)
P (0)(#T (1) = n|cT (∅)= r

)
=∑

r≥1

P (0)(cT (∅)= r
)
P (1)

r

(
#F (1) = n

)
,

where P
(1)
r is the law of a two-type forest with black roots and r tree components.

Using again the map � on all the tree components, we see that this probability is
the same as the probability that a monotype GW forest with r tree components has
n vertices, where the offspring distribution µ′ has generating function Gµ1 ◦Gµ0 .
The Otter–Dwass formula shows that this is equal to rn−1P̃ (W ′

n =−r), where W ′
under P̃ is a random walk with step distribution µ′ (which has finite variance).
Hence,

n3/2P (0)(#T (1) = n
)=∑

r≥1

rµ0(r) n1/2P̃ (W ′
n =−r).

To conclude, notice that
∑

r rµ0(r)=m0, and that the local limit theorem of [11],
Theorem XV.5.3 shows that n1/2P̃ (W ′

n =−r) converges to a limit C > 0 (a multi-
ple of a Gaussian density evaluated at 0), while remaining uniformly bounded as r

varies. By the dominated convergence theorem, it results that n3/2P (0)(#T (1) = n)

converges to Cm0 = C01. �

This estimate allows to use a conditioning argument similar to that used in [18],
which will be illustrated in the proof of the next lemma. This idea is the following:
if An is a set of trees such that P (i)(An)≤ exp(−nε) for large n, and some ε > 0,
then

P (i)(An|#T (j) = n
)= P

(i)∞ (F1 ∈An,#F
(j)
1 = n)

P
(i)∞ (#F

(j)
1 = n)

,

which by Lemma 14 is less than exp(−nε/2) for all n large. Thus, we can obtain a
similar exponential control of the event An under the law P (i)(·|#T (j) = n).

4.5. The convergence of types lemma. The goal of this section is to give the
asymptotic repartition of vertices of either color in large two-type GW forests. This
is known as the convergence of types theorem in the literature on multitype GW
processes, and we propose a new approach to it.

For t ∈ T0 � T1, let

G
(i)
t (n)= #

{
u ∈ t : u≺ u(i)(n)

}
, 0≤ n≤ #t(i) − 1.
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Notice that u(i)(n) is not counted in the set. We also let by convention G
(i)
t (#t(i))=

#t− 1. The definition of G
(i)
f (k) is similar for a forest f ∈F0 �F1.

LEMMA 15. Assume that (µ0,µ1) are nondegenerate critical offspring dis-
tribution, that admits some exponential moments. Then, for any γ > 0 there exists
ε > 0 such that for any i, j ∈ {0,1}, for every n large enough,

P (i)∞
(

sup
0≤k≤n

∣∣G(j)
F (k)− (1+mj)k

∣∣> n1/2+γ

)
≤ exp(−nε),(39)

and similarly, if besides c ∈ {0,1}, for n large enough,

P (i)

(
sup

0≤k≤#T (j)

∣∣G(j)
T (k)− (1+mj)k

∣∣> n1/2+γ
∣∣∣#T (c) = n

)
≤ exp(−nε)(40)

where we take the convention that the conditional probability on the left-hand side
is 0 if P (i)(#T (c) = n)= 0.

PROOF. Let f ∈F0. Notice that

G
(1)
f (m)=ϒf

(
u(1)(m)

)+ m−1∑
k=0

(
1+ cf

(
u(1)(k)

))
1{u(1)(k)�u(1)(m)}

(41)

+
m−1∑
k=0

(
1+ c′f

(
u(1)(k)

))
1{u(1)(k)�u(1)(m)},

where, for u � u(1)(m) in f(1),

c′f(u)= #
{
v :¬v = u, v ≺ u(1)(m)

}
.

Indeed, in (41), are counted the number of (type 0) roots of the forest f before
attaining u(1)(m), and the terms (1 + cf(u

(1)(k))) come from counting vertices
of f by groups of parents of type 1, and their children of type 0. One should be
careful, however, that if the parent of a group is an ancestor of u(1)(m), then its
children that appear after u(1)(m) in depth-first order should not be counted, hence
the terms c′f. This shows that

max
0≤k≤n

∣∣∣∣∣G(1)
f (k)−

k∑
l=1

(
1+ cf

(
u(1)(l)

))∣∣∣∣∣
≤ϒf

(
u(1)(n)

)+ max
0≤k≤n

k∑
l=0

(
1+ cf

(
u(1)(l)

))
1{u(1)(l)�u(1)(k)}.

Moreover, we claim the variables cF (u(1)(n)), n≥ 0 under P
(0)∞ are i.i.d. with law

µ1. This is due to the fact that the random variables Xu,u ∈U with |u| odd that
are used in the construction of the tree ξ in Section 2.2 are i.i.d. with law µ1, and
that during the exploration of the tree in depth-first order, each vertex is visited
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only after all his ancestors have been. Thus, on an intuitive level, the depth-first
order exploration does not give any information on the number of children of a
vertex before it is visited.

Therefore, for every η > 0,

P (0)∞

(
max

0≤k≤n

∣∣∣∣∣
k∑

l=1

(
1+ cF

(
u(1)(l)

))− (1+m1)k

∣∣∣∣∣≥ n1/2+η

)
≤ exp(−nε),

for some ε > 0 and all n large enough, where we have used a standard moderate
deviation inequality for i.i.d. random variables that admit some exponential mo-
ments (see [21], Theorem 2.6).

Therefore, by further using Lemmas 11 and 13, if we let

An =
{

max
0≤k≤n

∣∣G(1)
F (k)− (1+m1)k

∣∣≥ n1/2+γ

}
and

Bn =
{

max
0≤k≤n

∣∣∣∣∣
k∑

l=0

(
1+ cF

(
u(1)(l)

))− (1+m1)k

∣∣∣∣∣≤ n1/2+η

}
,

it holds that

P (0)∞ (An)= R(n)+ P (0)∞
(
An,Bn, max

u�u(1)(n)
|u| ≤ n1/2+η,

ϒF

(
u(1)(n)

)≤ n1/2+η, max
u�u(1)(n)

cF (u) < nη

)
,

where R(n)≤ exp(−nε) for some ε > 0 and n large enough. But on the event that
maxu�u(1)(n) |u| ≤ n1/2+η and maxu�u(1)(n) cF (u) < nη we have for n large

max
0≤k≤n

k∑
l=0

(
1+ cF

(
u(1)(l)

))
1{u(1)(l)�u(1)(k)} ≤ n1/2+η(1+ nη)≤ n1/2+3η.

If we choose 3η < γ , we finally obtain that for n large, An is disjoint from the
intersection

Bn ∩
{

max
u�u(1)(n)

|u| ≤ n1/2+η

}

∩{ϒF

(
u(1)(n)

)≤ n1/2+η}∩ {
max

u�u(1)(n)
cF (u) < nη

}
,

so that for n large, P
(0)∞ (An)=R(n)≤ exp(−nε).

The case i = j = 0 is similar but easier, as the term ϒf(u
(1)(n)) of (41) does not

appear anymore. Details are left to the reader.
We now pass to the conditioned statements. We apply the conditioning argument

mentioned in Section 4.4. We first treat the case c = j = 0. Using Lemma 14, for
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some constant C > 0

P (i)∞
(

sup
0≤k≤#F (0)

∣∣G(0)
F (k)− (1+m0)k

∣∣> n1/2+γ
∣∣∣#F

(0)
1 = n

)

= P
(i)∞ (sup0≤k≤n |G(0)

F (k)− (1+m0)k|> n1/2+γ ,#F
(0)
1 = n)

P (i)(#T (0) = n)

≤ Cn3/2P (i)∞
(

sup
0≤k≤n

∣∣G(0)
F (k)− (1+m0)k

∣∣> n1/2+γ

)
≤ exp(−nε),

for some ε > 0 and all n large. Notice the little artifact here: rather than considering
a single tree, we have considered a forest whose first component is conditioned.
This yields the wanted result (40) for j = c = 0, by restricting the sup to 0 ≤
k ≤ #F (0) − 1, but it also gives us a little more: namely that P (i)(|G(0)

F (#F
(0)
1 )−

(1+m0)#F
(0)
1 | ≥ n1/2+γ |#F

(0)
1 = n)≤ e−nε

for large n. Since G
(0)
F (#F

(0)
1 − 1)≤

#F1 ≤G
(0)
F (#F

(0)
1 )+ 1, this shows that P (i)(|#T − (1+m0)n| ≥ n1/2+γ |#T (0) =

n)≤ e−nε
for large n. Since #T (0) + #T (1) = #T ,

P (i)(∣∣#T (1) −m0n
∣∣≥ n1/2+γ |#T (0) = n

)≤ e−nε

(42)

for large n. Thanks to this control on the number of vertices of type 1, we obtain
for large n,

P (i)

(
max

0≤k≤#T (1)

∣∣G(1)
T (k)− (1+m1)k

∣∣> n1/2+γ
∣∣∣#T (0) = n

)

≤ P
(i)∞ (max0≤k≤(m0+ε′)n |G(1)

F (k)− (1+m1)k|> n1/2+γ )+ exp(−nε)

P (i)(#T (0) = n)
,

where 0 < ε′, and the exp(−nε) term bounds the probability that #T (1) is larger
than n(m0 + ε′). This expression is less than exp(−nε′′) for some ε′′ and large
n because of the unconditioned control (39) on G

(1)
F (notice that the maximum

is taken over 1 ≤ k ≤ Dn for some constant D > 0 rather than 1, but this does
not matter up to a change in the constant γ ). The remaining cases for j, c are
symmetric. �

PROOF OF LEMMA 9. From Lemma 15, we obtain that (G
(j)
T ([#T (j)t])/#T (j),

0 < t ≤ 1) converges in probability to the function ((1 +mj)t,0 ≤ t ≤ 1) under

P (i)(·|#T (c) = n), for the uniform norm. In fact, it holds that (G
(j)
T ([#T (j)t])/#T ,

0 < t ≤ 1) converges in probability to the identity function, because #T (j)/#T

converges to (1 + mj)
−1 under P (i)(·|#T (c) = n) as was shown in the proof of

the previous lemma. On the other hand, the process J
(c)

T of Lemma 9 is the right-
continuous inverse function of (G

(c)
T ([#T (c)t])/#T ,0 < t ≤ 1) [this motivates our
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convention G
(c)
T (#T (c))= #T − 1], so it also converges in probability to the iden-

tity function for the uniform norm, as claimed. �

4.6. Convergence of the height process. The last ingredient that we need is
the fact that the height process of a monotype GW forest with r components, con-
ditioned by the number of its vertices, converges to a scaled Brownian excursion.
The case r = 1 is known (see [2, 9, 18]). The result for r ≥ 1 is suggested in [22],
Chapter 5. Recall that when µ0 = µ1 = µ, the index i in the probability P (i) be-
comes irrelevant, so we let Pr be the law of a (monotype) GW forest with offspring
distribution µ and r tree components.

THEOREM 16. Let µ be a critical nondegenerate offspring distribution, ad-
mitting small exponential moments, and let σµ be its variance. Then for any r > 0,
the process (n−1/2HF

(n−1)t ,0 ≤ t ≤ 1) under Pr(·|#F = n) converges in distribu-

tion for the uniform topology to 2σ−1
µ e under N

(1).

PROOF. We first note that under P(·|#T = n+1, cT (∅)= r), the forest 1T1∪
· · · ∪ rTr has same distribution as F under Pr(·|#F = n). Thus, under Pr(·|#F =
n), the height process of F has same law as the process obtained by concatena-
tion of HT1, . . . ,HTr under P(·|#T = n+ 1, cT (∅)= r), so the rescaled process
n−1/2HF

(n−1)· under Pr(·|#F = n) has same law as (n−1/2(HT
((n−1)t+1)/n − 1),

0≤ t ≤ 1) under P(·|#T = n+ 1, cT (∅)= r).
Let n1, . . . , nr be positive integers with sum n, and let t1, . . . , tr ∈ T be such

that #tj = nj . Using the branching properties of GW trees, we have

P
(
(T1, . . . , Tr)= (t1, . . . , tr )|cT (∅)= r,#Tj = nj ,1≤ j ≤ r

)
(43)

=
r∏

i=1

P(T = ti |#T = ni),

so that given #Ti = ni,1 ≤ i ≤ r , under P(·|#T = n+ 1, cT (∅)= r) the Ti’s are
independent GW trees, respectively conditioned to have size ni . We next claim
that for every ε > 0, and every r such that µ(r) > 0,

P

(
max

i≤cT (∅)
#Ti/n≤ 1− ε

∣∣∣#T = n+ 1, cT (∅)= r

)
→

n→∞0,(44)

which will be proved later on.
Let T� be the largest tree among the Ti’s under P(·|#T = n + 1, cT (∅) = r)

(or the first largest tree, if several trees have the maximal size). According to (43),
(44), and by the known r = 1 case of the theorem, (n−1/2H

T�

(#T�−1)t ,0 ≤ t ≤ 1)

converges in distribution to 2σ−1
µ e under N

(1). Since the number of individuals of
the r − 1 other subtrees is o(n) in probability, the maximal height of a vertex
of these trees is o(n1/2) in probability, as can be checked from the case r = 1
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of the statement, and using (43). Thus, it easily follows that n−1/2‖HT�

(#T�−1)· −
HT

n·‖∞ goes to 0 in probability under P(·|#T = n+ 1, cT (∅)= r), which yields
the wanted result.

To argue (44), we first observe that the same statement holds without con-
ditioning on cT (∅). Indeed, the known r = 1 case of the theorem shows that
under P(·|#T = n + 1), (n−1/2HT

nt ,0 ≤ t ≤ 1) converges in distribution for the
uniform topology to 2σ−1

µ e. Recall that the Brownian excursion is a.s. strictly
positive on (0,1), and let (ti ,1 ≤ i ≤ cT (∅)) be the ordered list of integers
such that HT

ti
= 1 [and tcT (∅)+1 = #T − 1]. Then the lengths of the intervals

([ti , ti+1],1 ≤ i ≤ cT (∅)), is exactly (#Ti,1 ≤ i ≤ cT (∅)). Now, if fn is a se-
quence of continuous functions converging for the uniform topology to f which
is positive on (0,1), then for any ε > 0, for n large enough, fn is positive on
(ε,1− ε), and it follows that P(∃i : ti/n ∈ (ε,1 − ε)|#T = n+ 1)→ 0, which is
equivalent to the wanted property [observe t1/n→ 0 while tcT (∅)+1/n= 1].

On the other hand, for fixed r ∈ N, P(cT (∅) = r|#T = n + 1) = µ(r) ×
Pr(#F = n)/P (#T = n + 1) → rµ(r) as n →∞, by the Otter–Dwass formula
and the local limit theorem, as in Lemma 14. Since

∑
r rµ(r) = 1, the law of

cT (∅) under P(·|#T = n+ 1) converges weakly. Equation (44) is now an elemen-
tary consequence of this and the previous paragraph. �

We are now ready to prove the first half of Theorem 8, which we state as:

PROPOSITION 17. Let (µ0,µ1) be nondegenerate, critical and admit some
exponential moments. Then the process (n−1/2HT

(#T−1)t ,0 ≤ t ≤ 1) under P (i)(·|
#T (j) = n) converges in distribution to the process 2σ−1

√
1+mj e under N

(1).

PROOF. Suppose first that i = j = 0 and recall the definition of the map-
ping �t, for t ∈ T0. Under P (0), we know that �(T ) is a monotype GW tree with
offspring distribution µ and Gµ =Gµ0 ◦Gµ1 . Moreover, under P (0)(·|#T (0) = n),
�(T ) has the law Pµ(·|#T = n) of a conditioned monotype GW tree, because �T

maps each vertex of T (0) to a vertex of �(T ) in a one-to-one way.
On the other hand, the formula Gµ = Gµ0 ◦ Gµ1 and the fact that µ0 and µ1

admit some exponential moments entail that µ itself admits exponential mo-
ments. Therefore Theorem 16 applies and it holds that under P (0)(·|#T (0) = n),
(n−1/2H

�(T )
(n−1)t ,0 ≤ t ≤ 1) converges in distribution to 2σ−1

µ e under N
(1). We can

compute σµ by differentiating twice Gµ, and we find

σ 2
µ =m0σ

2
1 +m2

1σ
2
0 .(45)

Next, for every t ∈ T0, it is an elementary exercise to check that∣∣H t
k − 2H

�(t)
J

(0)
t (k)−1

∣∣≤ 2
∣∣H�(t)

J
(0)
t (k)−1

−H
�(t)
J

(0)
t (k)

∣∣+ 1(46)
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for every 0≤ k ≤ #t− 1, with the convention that H
�(t)
#t(0) = 0.

Lemma 9 states that the process J
(0)

T = (J
(0)
T ([(#T − 1)t])/#T (0),0 ≤ t ≤ 1)

under P (0)(·|#T (0) = n) converges in probability to the identity (t,0 ≤ t ≤ 1).
This convergence holds jointly with that of (n−1/2H

�(T )
(n−1)t ,0≤ t ≤ 1) to a rescaled

Brownian excursion. Skorokhod’s representation theorem ensures that there ex-
ists a probability space on which random processes (Hn, J n) converge a.s. to
(B, (t,0≤ t ≤ 1)) for the uniform norm, where Hn,J n have same law as(

n−1/2H
�(T )

(#T (0)−1)t
,0≤ t ≤ 1

)
, J

(0)

T

under P (0)(·|#T (0) = n), and B has same law as 2σ−1
µ e under N

(1). Then, the com-
posed function (Hn

(nJn(t)−1)/(n−1),0≤ t ≤ 1) converges a.s. uniformly to B , which

says that n−1/2H
�(T )

(nJ
(0)
T −1)

under P (0)(·|#T (0) = n) converges to 2e/σµ under N
(1).

Also, it holds that sup0≤t≤1 |Hn
(nJn(t)−1)/(n−1) −Hn

nJn(t)/(n−1)| converges to 0 a.s.
This, paired with equation (46), implies that for every ε > 0,

P (0)

(
sup

0≤t≤1

1√
n

∣∣HT
(#T−1)t − 2H

�(T )

nJ
(0)
T (t)−1

∣∣> ε
∣∣∣#T (0) = n

)
−→
n→∞0.

Finally, this entails that (n−1/2HT
(#T−1)t ,0 ≤ t ≤ 1) converges to 4σ−1

µ e un-

der N
(1). The result follows from the fact that 4σ−1

µ = 2σ−1√1+m0, as is easily
checked from (17) and (45).

We next treat the case where i = 0, j = 1. We apply the transformations π,�′
of Lemma 11, that skips the first generation, and then squeezes odd generations.
Recall that π,�′ were defined on forests, and that they take values in the set of
forests (even if the initial forest has only one component). Notice that if t ∈ T0, then
1t= {1u :u ∈ t} ∈F0. Under P (0), the forest π(1T ) is a GW forest with a random
number of components, which is given by cT (∅) and is independent of the compo-
nents of π(1T ), and it holds that the law of π(1T ) under P (0)(·|#T (1) = n) is the
probability measure dµ0(r)P

(1)
r (df) on F0, conditioned on the event #F (1) = n.

Then, �′(1T ) under this law is a monotype GW forest with law dµ0(r)Pr(df)
given #F = n, where Pr is the law of a GW forest with r trees and offspring dis-
tribution µ′ whose generating function is Gµ1 ◦Gµ0 .

Notice that under P (0)(·|#T (1) = n, cT (∅) = r), the forest π(1T ) has law
P

(0)
r (·|#F (1) = n). Therefore, under P (0)(·|cT (∅) = r,#T (1) = n), we obtain

that �′(1T ) has law Pr(·|#F = n). By Theorem 16, under this law, the process

n−1/2H
�′(1T )
(n−1)· converges to a Brownian excursion scaled by 2/σµ′ =

√
1+m1/σ .

One checks that a companion formula to (46) holds, namely that∣∣H t
k − 2H

�′(t)
J

(1)
t (k)−1

∣∣≤ 2
∣∣H�′(1t)

J
(1)
t (k)−1

−H
�′(1t)
J

(1)
t (k)

∣∣+ 2,(47)
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for 0 ≤ k ≤ #t − 1, with the convention that H
�′(1t)
−1 = H

�′(1t)
#t(1) = 0. The same

arguments as in the case i = j = 0 entail that (n−1/2HF
(#F−1)t ,0 ≤ t ≤ 1) under

P
(0)
r (·|#F (1) = n) converges to a Brownian excursion scaled by 2

√
1+m1/σ .

To complete the proof, since we are dealing with a random number of compo-
nents, whose law depends on n, that is, a mixture in r of the laws P (0)(·|cT (∅)= r,

#T (1) = n), it suffices to use that cT (∅) converges in distribution under P (0)(·|
#T (1) = n), as seen in the proof of Theorem 16. �

A remarkable difference between Proposition 17 and Theorem 16 is that in
Proposition 17, we condition only on the total number of a portion of the ver-
tices of T , instead of the total size of the tree. We have seen that this is the right
conditioning to do when considering random maps conditioned on the number of
faces, or vertices, but one may wonder whether the result is still true under the
probability laws P (i)(·|#T = n), with different scaling constants (this would allow
to consider random maps conditioned by the number of edges). We expect this to
be true, but the methods that are used in the present work are powerless to address
this issue.

Let us end this section with a result on the increments of the height processes.

LEMMA 18. Let µ be a (monotype) nondegenerate critical offspring distribu-
tion. Then for every fixed r ≥ 1, for every γ > 0, under Pr(·|#F = n), the quantity
n−γ sup0≤k≤#F−1 |HF

k −HF
k+1| converges to 0 in probability, with the convention

that HF
#F = 0.

PROOF. Using the same argument as in the proof of Theorem 16, we may
prove the statement under P(·|#T = n), that is for a single GW tree conditioned
to have n vertices. The positive jumps of the height process of any tree are +1,
and then, only the negative jumps have to be controlled. For elementary symmetry
reasons, the largest negative jump in HT , plus 1, has the same law as the largest
number of consecutive steps +1 in HT . But, in a nonconditioned GW tree, a run
of steps +1 in the height process has a geometric distribution: the probability that
a run has length k is µ(0)(1−µ(0))k−1, and the different runs are independent.

Denote by G1,G2, . . . ,GK the sizes of successive runs of +1 in the height
process, where K is random and is bounded above by n under P(·|#T = n). Let
γ > 0 be fixed. Thanks to the conditioning argument (the Otter–Dwass formula
and the local limit theorem), since the function max is nondecreasing, we have

P

(
sup

0≤k≤#T−1
|HT

k −HT
k+1| ≥ nγ/2

∣∣∣#T = n

)

=O

(
n3/2P∞

(
sup

1≤k≤n

Gk ≥ nγ/2 + 1
))

=O
(
n5/2P∞(G1 ≥ nγ/2 + 1)

)
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and since µ(0) ∈ (0,1), this is bounded by exp(−nε) for some ε > 0, for n large
enough. �

5. Convergence of the label process. The proof of the convergence of the
second components in Theorem 8 will be done by showing that their finite marginal
distributions converge, combined by a tightness argument.

5.1. Controlling the branching in conditioned trees. The convergence of
finite-marginal distributions first needs some improvements and variations around
Lemma 13. A conditioned version of Lemma 13 holds:

LEMMA 19. Assume that the pair (µ0,µ1) is nondegenerate, critical and has
some exponential moments. Then for every η > 0 there exists ε > 0 such that for n

large enough, and i, j ∈ {0,1},

P (i)

(
max
u∈T

cT (u)≥ nη
∣∣∣#T (j) = n

)
≤ exp(−nε).(48)

PROOF. We have

P (i)∞
(

max
u�u(j)(n)

cF (u)≥ nη
∣∣∣#F

(j)
1 = n

)
≤ P

(i)∞ (maxu�u(j)(n) cF (u)≥ nη)

P (i)(#T (j) = n)

which is smaller than exp(−nε) for all large n, by Lemmas 13 and 14. Since u�
u(j)(n) for every u ∈ F1 given {#F

(j)
1 = n}, this entails (48). �

Let t ∈ Ti , u ∈ t,0≤ h≤ |u|, k ≥ 1,1≤ l ≤ k. We define

A
(j)
t (u, k, l, h)= #

{
v � u : ct(v)= k,u ∈ vltvl, v ∈ t(j), |v|> |u| − h

}
the number of ancestors of u which are at distance at most h from u, with type j ,
k children, and such that u is a descendant of the lth of these children. We let
A

(j)
f (u, k, l, h) be the similar quantity for a forest f ∈F0 �F1 and u ∈ f. Note that

if maxu cf(u)≤K then Af(u, k, l, h)= 0 for any k > K , any l, h and any u ∈ f.

LEMMA 20. Let (µ0,µ1) be a nondegenerate critical offspring distribution
admitting some exponential moments. For every γ > 0, M > 0, and i, j, c ∈ {0,1},
there exists ε > 0 such that, for n large enough

P (i)

(
sup

k≥1,1≤l≤k

sup
u∈T ,nγ≤h≤|u|

|A(j)
T (u, k, l, h)−µj(k)h/(2mj)|

h1/2+γ k−M
≥ 1

∣∣∣#T (c) = n

)
≤ exp(−nε).
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PROOF. Let γ > 0, M > 0 be fixed, and choose η < γ 2/M . By Lem-
mas 19, 15 and the conditioning argument, we know that P (i)(maxu∈T cT (u)≤ nη,

#T ≤ Cn|#T (c) = n) ≥ 1 − exp(−nε) for some constants C,ε, and n large
enough. Since A

(j)
t (u, k + 1, l, h) = 0 whenever maxu∈t ct(u) ≤ k, on the event

{maxu∈T cT (u)≤ nη,#T ≤ Cn} we have

sup
k>nη,1≤j≤k

sup
u∈T ,nγ≤h≤|u|

kMh−1/2−γ

∣∣∣∣A(j)
T (u, k, l, h)− µj(k)

2mj

h

∣∣∣∣
≤ sup

k≥nη,u∈T

|u|1/2−γ µj (k)

2mj

kM.

Since |u| ≤ #T ≤ Cn ≤ Ck1/η for k ≥ nη and since µj has small exponential
moments, this is smaller than 1 when n is large enough.

We now estimate A
(j)
T (u, k, l, h) for k ≤ nη. We start with considering forests.

Let k ≤ nη, and l ∈ {1, . . . , k} be fixed, and C be the same constant as above. By
using Lemma 11,

P (i)∞
(

sup
u�u(j)(Cn),

|u|≥h≥nγ

|A(j)
T (u, k, l, h)−µj(k)h/(2mj)|

h1/2+γ k−M
≥ 1

)

≤ P
(i)

[n1/2+η]
(

sup
u�u(j)(Cn),

nγ≤h≤|u|

|A(j)
T (u, k, l, h)−µj(k)h/(2mj)|

h1/2+γ k−M
≥ 1,Bn

)
(49)

+ exp(−nε)

where Bn = {supu≺u(j)(Cn) |u| ≤ n1/2+η,ϒF (u(j)(Cn)) ≤ n1/2+η}. The probabil-
ity on the right-hand side can be bounded as follows, using Lemma 12:

P
(i)

[n1/2+η]
(

sup
u�u(j)(Cn),

nγ≤h≤|u|≤n1/2+η

|A(j)
T (u, k, l, h)−µj(k)h/(2mj)|

h1/2+γ k−M
≥ 1

)

≤E
(i)

[n1/2+η]

[∑
u∈F

1
{

sup
nγ≤h≤|u|

|A(j)
T (u, k, l, h)−µj(k)h/(2mj)|

h1/2+γ k−M
≥ 1

}

×1{|u|≤n1/2+η}

]
(50)

≤ (1∨mi)n
1/2+η

×
[n1/2+η]∑
h′=nγ

P̂ (i),h′
(

sup
nγ≤h≤h′

|A(j)
T (V , k, l, h)−µj(k)h/(2mj)|

h1/2+γ k−M
≥ 1

)
.



INVARIANCE PRINCIPLES FOR PLANAR MAPS 1685

Then, we argue that A
(j)
T (V , k, l, h) under P̂ (i),h′ is a Binomial random vari-

able B(m,p) with parameters p = µj(k)/mj and either m = [h/2 + 1] or
m= [(h+ 1)/2] depending on the parity of i, j, h,h′. Hoeffding’s inequality (33)
entails that

P̂ (i),h′
(

sup
nγ≤h≤h′

|A(j)
T (V , k, l, h)−µj(k)h/(2mj)|

h1/2+γ k−M
≥ 1

)

≤ ∑
nγ≤h≤h′

P̂ (i),h′
(∣∣∣∣A(j)

T (V , k, l, h)− µj(k)h

2mj

∣∣∣∣≥ k−Mh1/2+γ

)

≤ 2h′ max
nγ≤h≤h′

exp
(−k−2Mh1+2γ /(2m)

)
≤ 2h′ exp(−n−2Mη+2γ 2

/2).

Finally, the expression (50) is bounded by

Kn1/2+η
[n1/2+η]∑
h′=nγ

h′ exp(−n−2Mη+2γ 2
/2)+ exp(−nε),

for some K > 0 and large n, and this is ≤ exp(−nε′), for large n and some ε′ > 0.
This entails that

P (i)∞
(

sup
k≤nγ ,

1≤l≤k

sup
u≺u(j)([Cn]),
|u|≥h≥nγ

|A(j)
T (u, k, l, h)−µj(k)h/(2mj)|

h1/2+γ k−M
≥ 1

)

≤ exp(−nε′′),

for some ε′′ > 0 and n large. To obtain the conditioned statement, we ap-
ply our conditioning argument once again. By definition of C, P (i)(#T > Cn|
#T (c) = n)≤ exp(−nε) for large n. So

P (i)

(
sup

k≤nη,

1≤l≤k

sup
u∈T ,

nγ≤h≤|u|

|A(j)
T (u, k, l, h)−µj(k)h/(2mj)|

k−Mh1/2+γ
≥ 1

∣∣∣#T (c) = n

)

≤ P (i)(T (c) = n
)−1

×
(
P (i)∞

(
sup

k≤nη,

1≤l≤k

sup
u≺u(j)([Cn]),

nγ≤h≤|u|

|A(j)
F (u, k, l, h)−µj(k)h/(2mj)|

k−Mh1/2+γ
≥ 1

)

+ exp(−nε)

)
≤ C′n3/2(exp(−nε′′)+ exp(−nε)

)
,

for some constant C′ > 0, which yields the result. �
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5.2. A bound on the Hölder norm of the height process. The second ingredient
which is required to prove Theorem 8 is the following result, showing that the
α-Hölder norm of the height process under P (i)(·|#T (j) = n) is tight for any α <

1/2.
We start by stating a monotype version of the result we need:

PROPOSITION 21. Let µ be a nondegenerate critical offspring distribution
which admits some exponential moments. Let Pr be the law of a (monotype) GW
forest with offspring distribution µ and r components. Then for every r ≥ 1, ε > 0
and α ∈ (0,1/2), there exists C > 0 such that

sup
n∈N

Pr

(
sup

0≤s �=t≤1

|HF
(n−1)s −HF

(n−1)t |√
n|s − t |α > C

∣∣∣#F = n

)
≤ ε.(51)

PROOF. We claim that it is sufficient to prove the statement for r = 1, by
using an argument similar to that of the proof of Theorem 16 for the more general
r ≥ 1 case. Indeed, under Pr(·|#F = n), recall that n−1/2HF

(n−1)· has same law

as the concatenation of the paths (n−1/2H
Ti

(n−1)t ,0 ≤ t ≤ (#Ti − 1)/n − 1),1 ≤
i ≤ r under P(·|#T = n + 1, cT (∅) = r), under which the trees Ti,1 ≤ i ≤ r ,
are mixtures of independent GW trees conditioned by their sizes, and hence have
α-Hölder norm ≤ C with high probability by the r = 1 case. Now, it is elementary
to check that if (#Ti)

−1/2H
Ti

(#Ti−1)· has α-Hölder norm≤C, then the same is true of

(n−1/2H
Ti

(n−1)t ,0≤ t ≤ (#Ti−1)/(n−1)), because n≥ #Ti , and the concatenation

of the paths still has α-Hölder norm ≤ 21−αC, hence giving the result for r ≥ 1.
Hence, we are down to show that for every ε > 0 and α ∈ (0,1/2), there exists

C > 0 such that

sup
n∈N

P

(
sup

0≤s �=t≤1

|HT
(n−1)s −HT

(n−1)t |√
n|s − t |α > C

∣∣∣#T = n

)
≤ ε.(52)

We define the depth-first traversal, or contour order of a tree t as a function:

Ft : {0, . . . ,2#t− 2}→ { vertices of t},
which we regard as a walk around t, as follows: Ft(0)= ∅, and given Ft(i)= z,
choose, if possible, and according to the depth-first order the smallest child w of
z which has not already been visited, and set Ft(i + 1) = w. If not possible, let
Ft(i + 1) be the father of z.

For any 0 ≤ k ≤ 2#t − 2, set Ĥ t(k) = |Ft(k)|. The contour process (Ĥ t
s ,0 ≤

s ≤ 2#t − 2) is then obtained by interpolating linearly the sequence (Ĥ t(k)) be-
tween integer abscissa. For any tree t ∈ T , H t is a simple function of Ĥ t: let
mt(0)= 0, and for any i ≥ 1, mt(i)=min{j, j > mt(i − 1), Ĥ t(j) > Ĥ t(j − 1)},
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then H t(k) = Ĥ t(mt(k)). In fact, mt(k) = inf{j,Ft(j) = u(k)}. One may check
inductively on k that,

mt(k)+H t(k)= 2k for any k ≥ 0.(53)

We will prove (52), using a similar property for the contour process. The first
arguments can be found in [13], Lemma 1. Gittenberger [12] proved (in a stronger
form) that for all s, t , a > 0

P

(∣∣∣∣Ĥ T
(2n−2)s − Ĥ T

(2n−2)t√
n

∣∣∣∣≥ a
∣∣∣#T = n

)
≤ C1|s − t |−1 exp(−C2a|s − t |−1/2),

which gives, for any p > 0, E(|n−1/2(Ĥ T
(2n−2)s − Ĥ T

(2n−2)t )|p|#T = n) ≤
C(p)|s − t |p/2−1. By applying the uniform version of Kolmogorov’s criterion
given in [24], Theorem 3.4.16, to this estimate for large enough p, this ensures
that for every α < 1/2, the family (n−1/2Ĥ T

(2n−2)·) is uniformly Hölder continuous
under P(·|#T = n) with exponent α (we write α-UHC), that is, for every ε > 0
there exists a finite real number Cε such that, for every n,

P

(∣∣∣∣Ĥ T
(2n−2)s − Ĥ T

(2n−2)t√
n

∣∣∣∣≤Cε|t − s|α for all s, t ∈ [0,1]
∣∣∣#T = n

)
≥ 1− ε.

On the other hand, by a slight adaptation of the second proof of Lemma 1 in [13],
we get that the proposition holds with the hypothesis α < 1/4 instead of α < 1/2.
Indeed, the argument given in [13], which deals with the contour process, entirely
rests on an exponential inequality linking this process to the so-called depth-first
walk, and according to [18], Theorem 2, this inequality is also satisfied for the
height process instead of the contour.

We now argue that if (n−1/2Ĥ T
(2n−2)·) is β-UHC and (n−1/2HT

(n−1)·) is α-UHC

for any β < 1/2, α < 1/4, then (n−1/2HT
(n−1)·) is α-UHC for any α < 1/2, which

will end the proof. Assume that n−1/2|Ĥ T
(2n−2)s − Ĥ T

(2n−2)t | ≤ c1|t − s|1/2−a and

n−1/2|HT
(n−1)s −HT

(n−1)t | ≤ c2|t − s|α−b, for any s, t ∈ [0,1], and for some α <

1/2 (this is true for α = 1/4, and any a, b > 0 with probability close to 1, for some
c1 and c2). Now, let s and t be such that (n− 1)s and (n− 1)t are two different
integers. We have∣∣∣∣HT

(n−1)s −HT
(n−1)t√

n

∣∣∣∣= ∣∣∣∣Ĥ T
mT ((n−1)s) − Ĥ T

mT ((n−1)t)√
n

∣∣∣∣
≤ c1

∣∣∣∣mT ((n− 1)s)−mT ((n− 1)t)

2n− 2

∣∣∣∣1/2−a

.

By (53), this is smaller than

c1

∣∣∣∣s − t + HT
(n−1)t −HT

(n−1)s

2n− 2

∣∣∣∣1/2−a

≤ c1

∣∣∣∣|s − t | + c2
|t − s|α−b

√
n

∣∣∣∣1/2−a

≤ c1
∣∣|t − s| + c2|t − s|α−b+1/2∣∣1/2−a

,
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since n−1/2 ≤ |t − s|1/2. For s, t ∈ [0,1], |t − s| ≤ |t − s|α−b+1/2, and then
(n−1/2HT

(n−1)·) is (α − b + 1/2)(1/2 − a)-UHC. Since this holds for any a > 0
and b > 0, and since φ :α �→ (α + 1/2)1/2 is increasing and contracting,
(n−1/2HT

(n−1)·) is c-UHC for any c smaller than the fixed point of φ which is 1/2.
�

PROPOSITION 22. Let (µ0,µ1) be a critical nondegenerate offspring distri-
bution that admits some exponential moments. Let i, j ∈ {0,1}. Then for every
ε > 0, α ∈ (0,1/2), there exists C > 0 with

sup
n∈N

P (i)

(
sup

0≤s �=t≤1

|HT
(#T−1)s −HT

(#T−1)t |√
n|s − t |α > C

∣∣∣∣#T (j) = n

)
≤ ε.

PROOF. We prove this only for i = 0, j = 1, which is the hardest case of both.
We fix α ∈ (0,1/2). We assume that (#T − 1)s and (#T − 1)t are integer. Recall
the notation J

(1)
T (k),0 ≤ k ≤ #T − 1, and extend this into a function (J

(1)
T (t) =

J
(1)
T ([t]),0≤ t ≤ #T − 1). We bound

∣∣∣∣HT
(#T−1)s −HT

(#T−1)t√
n

∣∣∣∣≤ ∣∣∣∣H
T
(#T−1)s − 2H

�′(1T )

J
(1)
T ((T−1)s)−1√

n

∣∣∣∣
+ 2

∣∣∣∣H
�′(1T )

J
(1)
T ((#T−1)s)−1

−H
�′(1T )

J
(1)
T ((#T−1)t)−1√

n

∣∣∣∣(54)

+
∣∣∣∣H

T
(#T−1)t − 2H

�′(1T )

J
(1)
T ((#T−1)t)−1√

n

∣∣∣∣.
Recall from the proof of Proposition 17 that the law of π(1T ) under P (0)(·|
#T (1) = n) is a mixture of the form dλn(r)P

(1)
r (dt|#F (1) = n), where the laws

λn,n≥ 1 are tight, and that �′(1T ) is a monotype GW forest with a λn-distributed
number of tree components and conditioned to have n vertices. Therefore, by
Proposition 21, with probability > 1 − ε and for some C > 0, the middle term
of (54), is bounded by

C

∣∣∣∣J (1)
T ((#T − 1)s)− J

(1)
T ((#T − 1)t)

n− 1

∣∣∣∣α ≤ C

∣∣∣∣(#T − 1)s − (#T − 1)t

n− 1

∣∣∣∣α,

since J (1) is a counting process. This is ≤ C′|t − s|α with probability 1 − 2ε for
some C′ > 0, valid for all n large (by Lemma 15).

Next, using (47), the two other terms of (54) are bounded above by a constant
multiple of

n−α sup
0≤k≤#T−1

nα−1/2∣∣H�′(1T )
k −H

�′(1T )
k+1

∣∣,
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with the convention that the second term in the absolute value is 0 if k = #T − 1.
By Lemma 18, under P (0)(·|#T (1) = n), the quantity in the supremum converges
to 0 in probability. Thus, for every n large, and s �= t such that (#T −1)s, (#T −1)t

are integers, we have under P (0)(·|#T (1) = n), fixing ε > 0, for all large n and with
probability ≥ 1− ε,∣∣∣∣HT

(#T−1)s −HT
(#T−1)t√

n

∣∣∣∣≤ n−α +C′|s − t |α

≤D−α(#T − 1)−α +C′|s − t |α
≤ C′′|s − t |α,

where we have used that with high probability, #T ≤Dn for some constant D > 0,
see the proof of Lemma 15, and the fact that (#T − 1)−1 ≤ |s − t | for our choice
of s, t . Finally, this shows the result for all s, t in {k(#T − 1)−1, k ∈ Z+} and large
n, and the result follows from the following elementary lemma, and then taking
C′′ even larger to fit to all n≥ 1. The case i = j , which we leave to the reader, is
similar but easier since it makes use only of trees and the mapping �, rather than
forests and the mapping �′. �

LEMMA 23. Let α ∈ (0,1). If f (k/n),0 ≤ k ≤ n satisfies |f (k/n) −
f (k′/n)| ≤ C((k − k′)/n)α for every 0 ≤ k, k′ ≤ n, then the linear interpolation
(f (t),0≤ t ≤ 1) satisfies |f (t)− f (s)| ≤ 3C|s − t |α for every 0≤ s, t ≤ 1.

5.3. Tightness of the label process. The first step of the proof of Theorem 8
is:

PROPOSITION 24. Under the hypotheses of Theorem 8, for i, j ∈ {0,1},
the sequence of laws of the processes (n−1/4S

T,L
(#T−1)s,0 ≤ s ≤ 1) under P

(i)(·|
#T (j) = n) for n≥ 1, is tight in C([0,1]).

PROOF. Our proof follows closely the arguments of [13, 19]. Fix ε > 0. Our
goal is to show that there exists C1, β > 0 such that for n large enough,

P
(i)

(
sup

0≤s,t≤1

|ST,L
(#T−1)s − S

T,L
(#T−1)t |

|t − s|β ≤ C1n
1/4

∣∣∣#T (j) = n

)
≥ 1− ε.(55)

Since the moment condition (20) is satisfied, there are constants η,C2,D > 0 such
that Mk

0 ∨Mk
1 ≤ C2k

D for every k ≥ 1, where Mk
c = 〈νk

c , |x|4+η〉. We first choose
α < 1/2 so that α(4+ η) > 2 and M > D + 2. We know from Proposition 22 that
there exists C3 > 0 such that

P
(i)

(
sup

0≤s,t≤1

|HT
(#T−1)s −HT

(#T−1)s |
n1/2|s − t |α ≤ C3

∣∣∣#T (j) = n

)
≥ 1− ε,(56)
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for all n. Let Bn be the intersection of the corresponding event and of the events{
max
u∈T

cT (u)≤ nγ

}
, {#T ≤ C4n}

and {
max
u∈T

max
k≥1,1≤l≤k

max
h≥nγ

max
c∈{0,1}

|A(c)
T (u, k, l, h)−µc(k)h/(2mc)|

h1/2+γ k−M
≤ 1

}
,

where γ is such that (D+ 3)γ < 1/2− α, and C4 > 0 is chosen so that the proba-
bility P (i)(Bn|#T (j) = n) is ≥ 1− ε for large n, which is possible by Lemmas 13,
15 and Proposition 20.

Notice that by definition of ST,L and Lemma 23, it suffices to show (55) for all n

large and s �= t such that (#T − 1)s and (#T − 1)t are integers, which we suppose
from now on. We let m = (#T − 1)s,m′ = (#T − 1)t , and u = u(m + 1), u′ =
u(m′ + 1).

By definition, ST,L
m − S

T,L
m′ = L(u)−L(u′). If we let Yv = L(v)−L(¬v), and

if ǔ = ǔ(m,m′) denotes the most recent common ancestor to u and u′ (i.e., their
longest common prefix), we have

ST,L
m − S

T,L
m′ = ∑

v�u,|v|>|ǔ|
Yv −

∑
v�u′,|v|>|ǔ|

Yv.

It is then classical that the number RT (m,m′)= |u| + |u′| − 2|ǔ(m,m′)| of terms
involved in these two sums, which informally is the length of the path of edges
going from u to u′ in T , is bounded according to the formula∣∣RT (m,m′)− |HT

m +HT
m′ − 2Ȟ T

m,m′ |∣∣≤ 2,(57)

where Ȟ T
m,m′ is the infimum of HT between the points m and m′. Indeed, if u

is an ancestor of u′ or conversely, then this expression is exactly |HT
m − HT

m′ | =
||u| − |u′||, and otherwise, assuming m < m′, Ȟ T

m,m′ is equal to the height of the
first child v of ǔ such that u′ ∈ vTv , hence is |ǔ| + 1. In particular, it holds that for
large enough n and some C5 > 0, on Bn,

RT (m,m′)≤ 2+C3
√

n(|s − r|α + |r − t |α)≤ C5
√

n|s − t |α,(58)

where in the intermediate step r ∈ {k(#T − 1)−1, k ∈ {0, . . . ,#T − 1}} lies be-
tween s and t and is such that HT

(#T−1)r = Ȟ T
m,m′ . We also used the fact that

2≤√
n|s − t |α for large n, since |s − t | ≥ (#T − 1)−1 ≥ (C4n)−1 under Bn.

Recall that under P
(i), given T , the increments of the label process Yu = L(v)−

L(¬v), v ∈ T (with the convention Y∅ = 0), are such that (Yv1, . . . , YvcT (v)),
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v ∈ T , are independent with respective laws ν
cT (v)
|v|+i . By splitting the involved sums

according to the shape of T , we obtain, whenever u= ǔl(m)w and u′ = ǔl(m′)w′
for l(m), l(m′) ∈N and w,w′ ∈U,

ST,L
m − S

T,L
m′

= (
Yǔl(m) − Yǔl(m′)

)
(59)

+∑
k≥1

∑
1≤l≤k

∑
c∈{0,1}

∑
v�u,v �=u,v∈T (c)

Yvl1{|v|>|ǔ|,cT (v)=k,u∈vlTvl}

−∑
k≥1

∑
1≤l≤k

∑
c∈{0,1}

∑
v�u′,v �=u′,v∈T (c)

Yvl1{|v|>|ǔ|,cT (v)=k,u′∈vlTvl}.

Notice that the last sum of the second line has A
(c)
T (u, k, l, h) terms [resp.

A
(c)
T (u′, k, l, h′) in the third line] where h= |u|− |ǔ|−1 (resp. h′ = |u′|− |ǔ|−1).

Moreover, all the terms involved in the two last lines of (59) are independent and
independent of the terms of the first line, with respective laws the lth marginal
of νk

c . The only two terms that bear some dependence are the ones displayed on
the first line.

We now use an inequality due to Rosenthal [21], Theorem 2.10, which states
that if X1, . . . ,Xn are independent and centered (but not necessarily identically
distributed) under some probability law P̃ , then there exist universal constants
C(p),p ≥ 2, such that

Ẽ[|X1 + · · · +Xn|p] ≤ C(p)np/2−1
n∑

k=1

Ẽ[|Xk|p].(60)

This gives, still denoting h= |u| − |ǔ| − 1, h′ = |u′| − |ǔ| − 1, and for p = 4+ η,

E
(i)[|ST,L

m − S
T,L
m′ |p|T ]

≤ C(p)RT (m,m′)p/2−1

×


E

(i)[∣∣Yǔl(m) − Yǔl(m′)
∣∣p|T ]

+ ∑
1≤k≤maxu∈T cT (u)

∑
1≤l≤k

∑
c∈{0,1}

A
(c)
T (u, k, l, h)〈νk

c , |xl|p〉

+ ∑
1≤k≤maxu∈T cT (u)

∑
1≤l≤k

∑
c∈{0,1}

A
(c)
T (u′, k, l, h′)〈νk

c , |xl|p〉

(61)

≤ C(p)C2RT (m,m′)p/2−1

×


2pcT (ǔ)D

+ ∑
1≤k≤maxu∈T cT (u)

kD
∑

1≤l≤k

∑
c∈{0,1}

A
(c)
T (u, k, l, h)

+ ∑
1≤k≤maxu∈T cT (u)

kD
∑

1≤l≤k

∑
c∈{0,1}

A
(c)
T (u′, k, l, h′)
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which we want to bound on Bn. On the latter event, we have cT (ǔ)D ≤ nDγ , and
by (58) it holds that for n large, and every s, t (satisfying the above constraints)
the quantity 2pC(p)C2RT (m,m′)p/2−1cT (ǔ)D is bounded by

C6n
p/4−1/2+Dγ |s − t |αp/2−α ≤ C6n

p/4|s − t |αp/2nDγ−1/2|s − t |−α,(62)

where C6 = 2pC(p)C2C
p/2−1
5 . On the event Bn, and by the assumption on

s, t , |s − t | ≥ #T −1 ≥ (C4n)−1, so if we combine this with the fact that
Dγ − 1/2 < −α, we obtain that there exists ε′ > 0 with nDγ−1/2|s − t |−α ≤
Cα

4 n−ε′ . Since this quantity converges to 0 uniformly on s, t , this shows that
2pC(p)C2RT (m,m′)p/2−1cT (ǔ)D is bounded by np/4|s − t |αp/2 for every s, t

and n large enough.
We are now facing several possibilities in handling the rest of (61). On the event

that h≤ nγ , the term A(c)(u, k, l, h) is bounded by nγ , and therefore, on Bn,

C(p)C2RT (m,m′)p/2−1
∑

1≤k≤nγ

kD
∑

1≤l≤k

∑
c∈{0,1}

A
(c)
T (u, l, k, h)

≤ 2C(p)C2C
p/2−1
5 np/4−1/2|s − t |αp/2−αn(D+3)γ .

This quantity is analogous to (62), and by our choice of γ , it is bounded by
np/4|s − t |αp/2 for large n, by the same argument as above.

Alternatively, on the event that h≥ nγ and on Bn, we can bound A
(c)
T (u, k, l, h)

above by the quantity hµc(k)/(2mc) + h1/2+γ k−M . Since by definition h ≤
RT (m,m′), since µ0,µ1 have some exponential moments, and since by our choice
of M the sequence kD−M+1, k ≥ 1, is summable, it follows that there exists some
constant C7 ∈ (0,+∞) such that on Bn ∩ {h≥ nγ },∑

k≤nγ

kD
∑

1≤l≤k

∑
c∈{0,1}

A
(c)
T (u, l, k, h)≤ C7RT (m,m′)+C7RT (m,m′)1/2+γ

≤ 2C7RT (m,m′),

because RT (m,m′) is an integer and γ < 1/2. Still on the event h≥ nγ , it follows
that the middle term of (61) is bounded by

2C(p)C2C7RT (m,m′)p/2 ≤ 2C(p)C2C7C5n
p/4|s − t |αp/2.

Putting things together, we obtain the existence of a constant C8 > 0 such that for
every large n, the middle term of (61) is bounded by C8n

p/4|s − t |αp/2 on Bn.
For the same reason, the third term of (61) is bounded by the same quantity, and
from the discussion on the term involving cT (ǔ)D we finally obtain that for some
C9 > 0 and n large, for every s, t ∈ {k(#T − 1)−1, k ∈ {0, . . . ,#T − 1}},

E
(i)

[( |ST,L
m − S

T,L
m′ |

n1/4

)p∣∣∣{#T (j) = n
}∩Bn

]
≤ C9|s − t |αp/2.
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By applying Lemma 23, and since αp/2 > 1, we have obtained that there exists
a finite constant C10 > 0 and η′ > 0 such that for every 0 ≤ s, t ≤ 1 and n large
enough,

E
(i)

[( |ST,L
(#T−1)s − S

T,L
(#T−1)t |

n1/4

)4+η∣∣∣{#T (j) = n
}∩Bn

]
≤ C10|s − t |1+η′ .

By Kolmogorov’s criterion [24], Theorem 3.4.16, this is enough to conclude that
(55) holds with any β ∈ (0, η′/(4 + η)), when replacing the conditioning event
{#T (j) = n} by Bn ∩ {#T (j) = n}. Since P (i)(Bn|#T (j) = n) ≥ 1 − ε for large n,
we thus obtain (55) with lower bound (1 − ε)2 instead of 1 − ε. This ends the
proof. �

5.4. Finite-dimensional convergence. The goal of this section is to prove the
following proposition.

PROPOSITION 25. Let (µ0,µ1) be nondegenerate critical and admitting
some exponential moments. Consider nondegenerate spatial displacement laws
νk

0 , νk
1 , k ≥ 1, that are centered, and suppose that the hypotheses of Theorem 8

hold. Then the convergence of finite-dimensional marginals holds for the label
process, that is, the second component in Theorem 8, jointly with the convergence
in distribution of the height process.

In fact, this statement is true under the slightly weaker hypothesis that the vari-
ance �k

0 ∨�k
1 of the spatial displacement is a O(kD) for some D > 0, and does not

really require the full 4+ η moment hypothesis of Theorem 8. However, this extra
assumption is going to simplify the beginning of the proof, where we use the result
of Proposition 24. Notice that the constant � of Theorem 8 is finite because of the
hypothesis on the growth of the moments of order 4+ η implies that the growth of
�k

i is at most polynomial, and since µ0,µ1 have some exponential moments, the
sums

∑
k≥1(�

k
i )2µi(k) are finite.

The intuition for the proof of one-dimensional convergence is the following.
Given the height process HT , if we take the path from the root to the vertex en-
coded by a given time t , then this path has length of about HT

(#T−1)t which is of

the order of h = Cn1/2Bt , where B is a Brownian excursion and C is a scaling
constant. Among the vertices of this ancestor line, we know from Lemma 20 that a
proportion µj(k)/(2mj) are of type j , have k children, and have the property that
u is a descendant of the lth of these children; these will contribute to a spacial dis-
placement whose distribution is the lth marginal of νk

j . Since the variance of this

is (�
k,l
j )2, it has to be expected that the total spatial displacement, once rescaled

by n1/4 will be asymptotically Gaussian with variance �2CBt , where � is defined
at (19).
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PROOF OF PROPOSITION 25. We make a preliminary remark. Because we
already know that the laws of (n−1/4S

T,L
(#T−1)t ,0 ≤ t ≤ 1) under P (i)(·|#T (j) = n)

form a tight family, the family of laws of ((n−1/2HT
(#T−1)t )0≤t≤1,

(n−1/4S
T,L
(#T−1)t )0≤t≤1) under P (i)(·|#T (j) = n) is also tight. Hence, up to extract-

ing a subsequence, we know that these two processes jointly converge to some
limit, whose first component is a scaled Brownian excursion thanks to Proposi-
tion 17. To prove the proposition, it suffices to show that the only possible limiting
distribution is the (properly scaled) head of the Brownian snake N

(1). So, we take
such a subsequence in the first place, assume convergence in distribution to some
process (B,S′), and our goal is to show that given B , S′ has the law described
around (4) up to scaling constants. Let 0 < t1 < t2 < · · · < tq < 1 be some fixed
real numbers. We will prove that (n−1/2HT

(#T−1)t )0≤t≤1, (n
−1/4S

T,L
[(#T−1)tr ])1≤r≤q)

under P (i)(·|#T (j) = n) converges in distribution to the corresponding marginal
of the head of Brownian snake, which is sufficient to conclude. Throughout the
proof, we will assume q ≥ 2.

Thanks to Skorokhod’s representation theorem, we may assume that the conver-
gence of the processes (n−1/2HT

(#T−1)t ,0≤ t ≤ 1) to a scaled Brownian excursion
is almost sure. That is, we can assume that we are given a sequence (Hn,n ≥ 1)

of processes on some probability space (	,F ,P ), with same respective laws as
(n−1/2HT

(#T−1)t ,0 ≤ t ≤ 1) under P (i)(·|#T (j) = n), and which converges a.s.
for the supremum norm to a process (Bt ,0 ≤ t ≤ 1), which has same law as
2σ−1

√
1+mje under N

(1). For every n≥ 1, the function Hn determines a unique

random tree T n whose height process is
√

nHn((#T n − 1)−1k),0 ≤ k ≤ #T n − 1
[notice that the renormalization constant #T n−1 can be recovered from n and Hn,
as (#T n−1)n−1/2 is the slope of Hn at 0+]. By Lemma 20 and the Borel–Cantelli
lemma, it holds that, a.s., for any γ > 0 and n large enough,

max
c∈{0,1} sup

{k≥1,1≤k≤l}
sup

{u∈T n,nγ≤h≤|u|}
|A(c)

T n(u, k, l, h)−µc(k)h/(2mc)|
h1/2+γ k−M

≤ 1.(63)

Next, the times t1, . . . , tq determine vertices ur
n = u([(#T n − 1)tr ]),1 ≤ r ≤ q ,

in T n. We let ǔn(r, r
′) be the most recent common ancestor to ur

n, u
r ′
n in T n. We re-

index the set Vn = {ur
n,1≤ r ≤ q, ǔn(r, r

′),1≤ r, r ′ ≤ q} as {vw
n ,w ∈ T̃ n}, where

T̃ n ∈ T , and in such a way that the depth-first order and genealogical structure
on T̃ n is compatible with the depth-first order and genealogical structure on Vn.
Specifically, we let v∅

n be the least element of Vn, which is the most recent com-
mon ancestor to all of u1

n, . . . , u
q
n, then recursively, vw1

n , vw2
n , . . . are the descen-

dants of vw
n in Vn, ranked in depth-first order, and such that no ancestor of vwl

n

which is younger than vw
n belongs to Vn. By convention, we let v¬∅

n =∅. Our aim
is now to explain that the sequence (T̃n, n≥ 1) is asymptotically constant a.s., and
equal to some random tree, which has q leaves and is binary, that is, vertices have
either no child or two children. Informally, this implies that for large enough n,
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the “geometry” of the list of random variables involved in the computations of the
labels of the vertices in Vn is eventually fixed.

We define random times sw
n , sw,w ∈ T̃ n recursively as follows (these times will

be defined only for n large enough). Let

s∅
n = inf

{
t ∈ [t1, tq] :Hn

t = min
t1≤s≤tq

Hn
s

}
,

and let s∅
n be the corresponding quantity with a sup in place of the inf. Notice

that, Hn

s
∅

n
converges to mint1≤s≤tq Bs > 0 a.s. Since local minima of a Brown-

ian excursion are a.s. pairwise distinct, it is then elementary to deduce that s∅
n ,

s∅
n → s∅ where by definition s∅ is the only time in [t1, tq] where B attains

mint1≤s≤tq Bs . Moreover, a.s., t1 < · · · < tr < s∅ < tr+1 < · · · < tq for some
1 ≤ r ≤ q − 1, and for n large enough it also holds that t1 < · · · < tr < s∅

n ≤
s∅
n < tr+1 < · · · < tq . We let r = r1, q − r = r2, t1

1 = t1, . . . , t
1
r1
= tr and t2

1 =
tr+1, . . . , t

2
r2
= tq .

Then, given

sw
n , sw

n , sw, (tw1
1 , . . . , tw1

rw1
), (tw2

1 , . . . , tw2
rw2

),

have been defined, where w is a word with letters in {1,2}, we distinguish two
cases. If rw1 > 1, let

sw1
n = inf

{
t ∈ [tw1

1 , tw1
rw1
] :Hn

t = min
tw1
1 ≤s≤tw1

rw1

Hn
s

}
,

and let sw1
n be the corresponding quantity with a sup in place of the inf. For the

same reasons as above it holds that sw1
n , sw1

n → sw1 where sw1 is the only time
in [tw1

1 , tw1
rw1
] where B attains mintw1

1 ≤s≤tw1
rw1

Bs . Moreover, a.s., tw1
1 < · · ·< tw1

r <

sw1 < tw1
r+1 < · · ·< tw1

rw1
for some 1 ≤ r ≤ rw1 − 1, and for n large enough it also

holds that tw1
1 < · · ·< tw1

r < sw1
n ≤ sw1

n < tr+1 < · · ·< tw1
rw1

. We let

rw11 = r, rw12 = rw1 − r, tw11
1 = tw1

1 , . . . , tw11
rw11

= tw1
r

and

tw12
1 = tw1

r+1, . . . , t
w12
rw12

= tw1
rw1

.

Definitions are similar for sw2
n , sw2

n , sw2, (tw21
1 , . . . , tw21

rw21
), (tw22

1 , . . . , tw22
rw22

) when-
ever rw2 > 1. In the case rw1 = 1, we simply let sw1

n = (#T n−1)−1[(#T n−1)tw1
1 ],

and sw1 = tw1
1 , and similarly if rw2 = 1.

By inspection of this recursive construction, notice that the set of w ∈U such
that sw

n is defined is exactly T̃ n, which is therefore independent of n (provided n

is large enough), and equal to some binary tree T̃ . Moreover, it holds that ||vw
n | −√

nHn
sw
n
| ≤ 1 for every w ∈ T̃ , by the same arguments as those leading to (57).
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Now, we reintroduce the labels in T n by assuming that (	,F ,P ) also supports
random variables (Y n

vl,1≤ l ≤ cT n(v)), v ∈ T n, used as spatial displacements, that
are, conditionally on T n, independent and independent of B with respective laws
ν

cT n(v)
i+|v| . We let Ln be the associated label on T n with Ln(∅) = 0, and we use a

truncation procedure, that is we choose C large and write [remembering (59)]

Ln(u)= LC
n (u)+ L̃C

n (u), u ∈ T n,

where

LC
n (u)=∑

v�u

Y n
v 1{|v|>0,cn

T (v)≤C},

and L̃C
n (u) is the similar sum with cn

T (v) > C instead. Then, the random variables
LC

n (vw
n )−LC

n (v¬w
n ),w ∈ T̃ can be written in the form

Yn
v¬w
n l(w)

1{cT n(v¬w
n )≤C} +

∑
v�vw

n ,|v|>|v¬w
n |+1

Yn
v 1{cT n(v)≤C},

whenever l(w) ∈ N is such that vw
n ∈ v¬w

n l(w)T n
v¬w
n l(w)

. Notice that given T n,

all these terms are independent as w ranges in T̃ , except maybe for the first
term which is displayed to the left of the sum. Since we rescale by n−1/4,
this term disappears in the limit (note that its variance is bounded) so that
(n−1/4(LC

n (vw
n )−LC

n (v¬w
n )),w ∈ T̃ ), has same limit as the vector of independent

components (given T n)(
n−1/4

∑
v�vw

n ,|v|>|v¬w
n |+1

Yn
v 1{cT n(v)≤C},w ∈ T̃

)

=
(
n−1/4

C∑
k=1

k∑
l=1

∑
c∈{0,1}

∑
{v�vw

n ,|v|>|v¬w
n |+1}

Yn
v 1{v∈T n(c),cT n (v)=k,vw

n ∈vlT n
vl},(64)

w ∈ T̃

)
.

By definition there are A
(c)
T n(v

w
n , k, l, hw

n ) terms in the last sum, where hw
n = |vw

n |−
|v¬w

n | − 1. Since n−1/2hw
n has same limit as |Hn

sw
n
− Hn

s¬w
n
| as n →∞, which is

given by Bsw −Bs¬w , and which is > 0 a.s., we obtain that asymptotically hw
n > nγ

for any fixed 0 < γ < 1/2. Therefore, by (63) it holds that a.s., for any ε > 0, any
k ≤ C, l ≤ k and for n large

(1− ε)
µc(k)

2mc

(Bsw −Bs¬w)n1/2 ≤A
(c)
T n(v

w
n , k, l, hw

n )

≤ (1+ ε)
µc(k)

2mc

(Bsw −Bs¬w)n1/2.
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It then follows from the central limit theorem applied to (64) that given B (of which
T̃ is a measurable functional), the vector n−1/4(LC

n (vw
n )−LC

n (v¬w
n ),w ∈ T̃ ) con-

verges in distribution to a random vector (NC(w),w ∈ T̃ ), where the components
NC(w) are independent, centered, Gaussian and have variances

VarNC(w) = (Bsw −Bs¬w)
1

2

C∑
k=1

k∑
l=1

∑
c∈{0,1}

(�k,l
c )2 µc(k)

mc

=: (Bsw −Bs¬w)�2
C.

Notice that �2
C ↑ �2 as C ↑∞, so (NC(w),w ∈ T̃ ) in turn converges in distrib-

ution to a random vector which conditionally on B is constituted of independent
Gaussian components (N(w),w ∈ T̃ ), with respective variances �2(Bsw −Bs¬w)

as C →∞.
Assume for a moment that for every ε > 0, a.s.,

lim
C→∞ lim sup

n→∞
P

(
max
w∈T̃

|L̃C
n (vw

n )− L̃C
n (v¬w

n )|> εn1/4
∣∣∣B)= 0.(65)

From the fact that Ln(v
w
n ) − Ln(v

¬w
n ) = LC

n (vw
n ) − LC

n (v¬w
n ) + L̃C

n (vw
n ) −

L̃C
n (v¬w

n ), this implies that conditionally on B , n−1/4(Ln(v
w
n )−Ln(v

¬w
n ),w ∈ T̃ )

converges to (N(w),w ∈ T̃ ). Indeed, it is an elementary exercise that if Xn =
XC

n + YC
n ∈ R

d , where XC
n → XC as n →∞, XC → X as C →∞, both in

distribution, and limC lim supn P (|YC
n |> ε)= 0, then Xn →X as n→∞ in dis-

tribution.
It follows that conditionally on B , the vector n−1/4(Ln(u

r
n),1 ≤ r ≤ q) is as-

ymptotically a Gaussian vector (S(t1), . . . , S(tq)), since

Ln(u
r
n)=

∑
w′�w

(
Ln(v

w′
n )−Ln(v

¬w′
n )

)
,

whenever ur
n = vw

n . Moreover, still given B , we have that if tr = sw, tr ′ = sw′
, then

cov(Str , Str′ )= cov

( ∑
w′′�w

N(w′′),
∑

w′′�w′
N(w′′)

)
.

By independence of the N(w) given B , if w ∧ w′ is the most recent common
ancestor to w,w′, we obtain

cov(Str , Str′ )=Var

( ∑
w′′�w∧w′

N(w′′)
)
=�2B

sw∧w′ =�2B̌(tr , tr ′),

as sw∧w′
is the unique point of [min(sw, sw′

),max(sw, sw′
)] such that B

sw∧w′ =
B̌(sw, sw′

). Since B has same law as 2σ−1
√

1+mje under N
(1), it follows that

B,S has the claimed law.
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To prove (65), notice that since given B , the set T̃ is finite, it suffices to prove
the result for some fixed w ∈ T̃ . Now, conditionally on B,T n, the sequence
(L̃C

n (v), v � vw
n ), where the ancestors of vw

n are ranked in depth-first order, has
independent and centered increments so by Chebyshev’s inequality,

P
(|L̃C

n (vw
n )− L̃C

n (v¬w
n )|> εn1/4|B,T n)

≤ n−1/2ε−2E[|L̃C
n (vw

n )− L̃C
n (v¬w

n )|2|B,T n].
By the independence of increments of the spatial displacement,

E[|L̃C
n (vw

n )− L̃C
n (v¬w

n )|2 |B,T n]
= ∑

k>C

∑
1≤l≤k

∑
c∈{0,1}

A
(c)
T n(v

w
n , k, l, hw

n )(�k,l
c )2,

where hw
n = |vw

n |−|v¬w
n |. Now, we know that n−1/2hn

w converges to Bsw−Bs¬w>0
as n→∞, and therefore, by (63) for γ = 1/8 and n large enough, it holds that the
last expression is bounded by (for any C1 > Bsw )

C1
√

n
∑
k>C

∑
c∈{0,1}

µc(k)

2mc

(�k
c )

2 + n3/8
∑
k>C

∑
c∈{0,1}

k−M(�k
c )

2,

and the second term is bounded by C2n
3/8 for some constant C2 > 0, because µc

has some exponential moments, and �k
c = O(kD) for some D > 0. Finally, we

obtain that

P

(
max
w∈T̃

|L̃C
n (vw

n )− L̃C
n (v¬w

n )|> εn1/4
∣∣∣B)

≤ #T̃ C1ε
−2

∑
k>C

∑
c∈{0,1}

µc(k)

2mc

(�k
c )

2 +C2ε
−2n−1/8.

Letting n→∞, this converges to

#T̃ C1ε
−2

∑
k>C

∑
c∈{0,1}

µc(k)

2mc

(�k
c )2,

which in turn has limit 0 as C →∞, implying (65). �

6. Convergence to the Brownian map. The aim of this section is to discuss
the convergence of bipartite maps to the Brownian map, introduced in [20]. We
refer to this paper to the construction of the notions of abstract maps, and to the
combinatorial considerations leading the authors in a first step to show that any
quadrangulation is a tree D , (the doddering tree of [20]) glued with the help of a
second tree G (the gluer tree of [20]), and to show that this construction passes to
the continuous limit in a certain sense. The major part of the construction in [20]
may be generalized without any problem to bipartite maps; in what follows, we
will mainly point out the differences in the construction.

The first and major difference with the study of quadrangulation, is the use of
the BDFG bijection, instead of Schaeffer’s one.
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FIG. 3. Illustration of �−1. The black vertices of t corresponds to the elements of t(1), the labeled
vertices to the elements of t(0). The two arrows explain how to choose the root of m. It remains to
remove the labels, the black vertices and the dotted lines.

Bipartite maps described by a pair of trees. We first present in a few words the
application �−1 of Bouttier, Di Francesco and Guitter [6] (see also an illustration
Figure 3).

Recall the considerations of Section 2.3, and consider a planar embedding of
some (t, �) ∈ T in the plane, with at least two vertices. We let v and w be the ver-
tices of this embedded graph that correspond to the words ∅,1, and root the graph
at the edge (vw). Until the end of the paper, we slightly improperly keep the no-
tations t, t(0), t(1), � for this embedded (rooted) graph, the vertices at even (resp.
odd) heights, and a label function defined on t(0) [the labels of t(1) are not used in
the construction].

The construction of (m, e, r) = �−1(t, �) is done as follows. First add
−min�+ 1 to the labels of the vertices of t(0). Each vertex u of t(0) with k neigh-
bors determines k corners which are delimited by the k edges emanating from u.
To each such corner C corresponding to a vertex of t(0) with label l ≥ 2, we as-
sociate its successor s(C) defined as the first encountered corner of t(0) with label
l − 1 when going clockwise around the tree (there is always a successor). Then,
we draw a blue edge between each corner of t(0) with label l ≥ 2 and its successor
within the external face of t and in such a way that no two edges intersect, which is
always possible. Finally, we add in complement of the graph in the plane, an extra
vertex r, and add a blue edge between each the corners of t(0) with label 1 and r.
The map (m, e, r) is the map having as set of edges the blue edges, and e is the first
edge of m that starts from v to the left of (vw), oriented so that (m, e, r) ∈M+.

Recall the definition of the depth first traversal Ft introduced in the proof of
Proposition 21, and of the contour process Ĥ t. The durations of Ft and Ĥ t is
2(#t− 1). The vertices of t(0) are visited at times 0,2, . . . ,2(#t− 1). The labels of
the vertices of t(0) are encoded thanks to

Rt,�(k)= �(Ft(2k)) for 0≤ k ≤ #t− 1.
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We extend Rt,� linearly between successive integers. We have

COROLLARY 26. Let q be a regular critical weight sequence, and let (µ0,µ1)

and (νk
0 , νk

1 , k ≥ 0) be the offspring distributions and spatial displacement laws
that are associated with q as in Proposition 7. Then, the conclusion of Theorem 8
still holds with n−1/4RT ,L((#T − 1)t) instead of n−1/4S

T,L
(#T−1)t , with the scaling

constants given in Section 3.2.

This result is a consequence of two classical steps: firstly, let Rt,� be the
linear interpolation of Rt,�(k) = �(Ft(k)), the label process associated with
the depth first traversal [here take again the convention that a vertex of t(1)

has the same label as its father]. The uniform distance between n−1/4S
T,L
(#T−1)t

and n−1/4RT,L(2(#T − 1)t) goes to 0 in probability. Secondly, for any in-
teger k, Rt,�(k) = Rt,�(2k). This shows that the uniform distance between
n−1/4RT ,L((#T − 1)t) and n−1/4RT,L(2(#T − 1)t) goes to 0 in probability.

For θ ∈ {0,2, . . . ,2(#t − 1) − 2}, we denote by t(θ) the element of T ob-
tained from t by rerooting at the edge (Ft(θ),Ft(θ + 1)), and with label function
�− �(Ft(θ)). The label of the root-vertex of t(θ) is 0, and t and t(θ) are equal as
unrooted unlabeled trees. Let ⊕ denote the addition modulo 2(#t − 1). For any
0≤ i ≤ 2(#t− 1),

Ĥ t(θ) (i)= Ĥ t(θ ⊕ i)+ Ĥ t(θ)

− 2 min{Ĥ t(j), (θ ⊕ i)∧ θ ≤ j ≤ (θ ⊕ i)∨ θ},
and for any 0≤ i ≤ #t− 1,

Rt(θ)(i)= �
(
Ft(θ ⊕ 2i)

)− �(Ft(θ))=Rt((θ ⊕ 2i)/2
)−Rt(θ/2).

When exploring t(θ), v is visited at time 2(#t− 1)− θ and w at time 2(#t− 1)−
θ + 1. Hence, the variable X(θ)= 2#t− θ suffices to recover v and w.

We now exhibit the two trees from which the description of bipartite maps can
be done.

FIG. 4. Rerooting on the first minimum of the tree t of Figure 3. To the right of the tree are repre-
sented the corresponding Ĥ t(θ) and Rt(θ) .
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FIG. 5. The tree D .

Let �t = inf{θ, �(Ft(θ)) = min�(Ft)}, be the first visit time of a vertex with
minimum label [this vertex is then a vertex of t(0)]. The labeled tree t(�t) has
nonnegative labels and �−1(t) will be built from (�t, t(�t)) (see Figure 4).

Add in the plane the point u = N#t = (#t,0), and for 1 ≤ i ≤ #t − 1 draw the
vertex Ni = (i,Rt(�)(i)+ 1). Then, for 1 ≤ j ≤ #t− 1, an edge is added between
the vertices Nj and Nj ′ , where j ′ is the successor of j , in t(�t). The edges are
drawn so that they do not cross, and in such a way that the edge (Nj ,Nj ′) sur-
rounds from above the edges that start from abscissas lying between j and j ′. The
set of vertices and edges thus drawn is a tree which we call D , see Figure 5 and
[20] for a proof. Up to a time inversion, the process Rt(�t) + 1 is the height process
of D .

We denote by G the tree t(�t), whose contour process is Ĥ t(�t) . Each vertex of
D (but the root) corresponds to a corner of a vertex in G(0): for j ≥ 1, the vertex
Nj of D corresponds to the vertex visited at time 2j for the contour order in G.
To get m, some vertices of D have to be identified: glue the vertices of D that
correspond to corners of the same vertex of G in such a way that the edges do not
intersect. A nice way to do this is to draw D on the contour process of G as on
Figure 6: place the root of D in the plane (not on the graph of ĤG). Then, for
0≤ i ≤ #t− 2, place the i + 1th vertex of D on the 2#t− 2i − 2 th corner of G(0).
Then, use a deformation of the plane in order to glue together the corners of G,
corresponding to the same vertices. They are specified by horizontal dotted lines
on Figure 6. The variable X(�t) finally allows to find the root of m.

Some changes appear when compared to [20]. Here the maps are both rooted
and pointed instead of being only rooted [the variable X(�t) allows to handle
this], here, the natural traversal for both trees is the clockwise traversal, and here
#D = #G instead of #D = 2#G for quadrangulations. Also, when conditioning by
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FIG. 6. Drawing D on G.

the number of faces (or vertices), the size of D and G are random, whereas they
are deterministic in the case of quadrangulations. Last, only half of the vertices of
G are used here instead of all of them.

It is then possible to adapt the notion of abstract maps introduced in [20] in
order to handle these differences: a component encoding the distinguished point
is added, the contour processes can be taken in the space of continuous function
with compact support instead of C[0,1], and the convention on the traversal order
on trees can be adapted to the present setting. Apart from these technicalities, it
remains to get the asymptotics of the two trees D and G under the considered
distributions P F=n

q or P S=n
q .

Let H be the states space of the tour of the Brownian snake (it is the states space
of (e, r) as defined around formula (4), see [19, 20] for more details). We recall the
operation of rerooting of a normalized labeled tree (see [20, 16]) defined for any
θ ∈ [0,1] by

J (θ) : H �−→H,

(ζ, f ) �−→ J (θ)(ζ, f )= (
ζ (θ), f (θ)),

where for any x ∈ [0,1],
f (θ)(x)= f (θ + x)− f (θ),

(66)
ζ (θ)(x)= ζ(θ + x)+ ζ(θ)− 2ζ̌ (θ ⊕ x, θ),
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where the additions in the arguments are modulo 1. This may be understood as
follows. Suppose (ζ, f ) is the encoding of a labeled tree (t, �): ζ is the (renormal-
ized) contour process of t, and f is the (renormalized) label process associated
with (t, �). Then (ζ (θ), f (θ)) is the encoding of the labeled tree (t′, �′) which is ob-
tained from (t, �) by rerooting t on the corner that is visited at time θ , and adding
−f (θ) to all labels [this fixes �′(root(t′)) = 0]. We are particularly interested by
the rerooting on I (f )= inf Arg minf , the first minimum of the label process:

� : H �−→ [0,1] ×H,

(ζ, f ) �−→ (I (f ), (ζ+, f+)) := (
I (f ),

(
ζ (I (f )), f I (f ))).

The application � is invertible. Note that it would not be without the first coordi-
nate I (f ). The pair (e+, r+) corresponds to the head of the Brownian snake (e, r)
under N

(1). We refer to [17] and [16] for properties of (e+, r+) and its occurrence
as a limit of conditioned spatial trees.

LEMMA 27. Under N
(1), I (r) is uniform on [0,1] and independent of

(e+, r+).

PROOF. First, according to Lemma 16 in [20] (see also [17], Proposition 2.5),
# Arg min r = 1 a.s. The law of (e, r) is preserved by rerooting (see [20]) and
I (r(θ)) = I (r) − θ mod 1. Then I (r) is uniform in [0,1]. Now, let us check the
independence. Suppose that r reaches its minimum once. For any x ∈ [0,1),
�(e(x), r(x)) = (θ − x mod 1, (e+, r+)). Hence, in each class stable by rerooting,
the positive representative (e+, r+) is independent of I (r). �

The asymptotics of the trees D and G, that are sufficient to get a generalization
of the convergence of rescaled bipartite maps to the Brownian maps, are given by
the following proposition.

PROPOSITION 28. Let q be a regular critical weight sequence. Under P F=n
q

(resp. P S=n
q ), the process ( �T

2(#T−1)
, Ĥ

T(�T ) (2(#T−1)·)
n1/2 , R

T(�T ) ((#T−1)·)
n1/4 ) converges in

distribution to(
U,

4√
(Zq − 1)ρq

e+,

(
4ρq

9(Zq − 1)

)1/4

r+
)

under N
(1)

[
resp.

(
U, 4√

ρq
e+,

(
4ρq

9

)1/4

r+
)

under N
(1)

]
,

where U is an uniform random variable independent of (e+, r+), with the constants
given in Section 3.2.
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PROOF. First, under P F=n
q (resp. P S=n

q ), the process �(ĤT (2(#T−1)·)
n1/2 ,

R̂T (2(#T−1)·)
n1/4 ) converges in distribution to

�

(
4√

(Zq − 1)ρq

e,
(

4ρq

9(Zq − 1)

)1/4

r
)

under N
(1)

[
resp. �

(
4√
ρq

e,
(

4ρq

9

)1/4

r
)

under N
(1)

]
.

Indeed, the applications Arg min and then � are continuous on the space of con-
tinuous functions that reach their minimum once, and r reaches a.s. its minimum
once (see [17, 20]). The conclusion follows from Theorem 8 and Lemma 27. �
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