
The height and width of simple trees
P. Chassaing 1, J.F. Marckert 1, M. Yor 2.

The limit law of the couple height-width for simple trees can be seen as a
consequence of deep results of Aldous, Drmota and Gittenberger, and Jeulin.
We give here an elementary proof in the case of binary trees.

1 Introduction

Let Zi(t) denote the number of nodes at distance i from the root of a rooted tree t.
The pro�le of the tree t is the sequence (Zi(t))i�0. The width w(t) and height h(t) of the
tree t are de�ned by:

w(t) = max
i
fZi(t)g;

h(t) = maxfijZi(t) > 0g:

Let T
(n)
B denote the set of binary trees with n leaves (2n � 1 nodes), endowed with the

uniform probability, and let H
(n)
B (resp. W

(n)
B ) be the restriction of h (resp. w) to T

(n)
B .

One can also see H
(n)
B and W

(n)
B as the height and width of a Galton-Watson tree with

o�spring distribution 0 or 2 with probability 1/2, conditioned to have total progeny 2n�1
(see [1, pp. 27-28]). Then, the limit law of the height [15, 23] and of the width [13, 7, 25]
are given by:

H
(n)
Bp
2n

law��!
n!+1

2V; (1.1)

W
(n)
Bp
2n

law��!
n!+1

V; (1.2)

where:

Pr(V � x) =
X

�1<k<+1
(1� 4k2x2) exp

��2k2x2� : (1.3)

Connections between the distribution of V on one hand, the Brownian motion and
Jacobi's Theta function on the other hand, are discussed in [5, 9, 20]. For instance, let�
e(s)

�
0�s�1 denote a standard normalized Brownian excursion (see Subsection 3.1). Then

the random variables

(H;W ) =
�Z 1

0

ds

e(s)
; max
0�s�1

e(s)
�
;

1Laboratoire de Math�ematiques, Institut Elie Cartan

BP 239 54 506 Vandoeuvre les Nancy Cedex
2Universit�e Paris VI, Laboratoire de Probabilit�es et mod�eles al�eatoires

Tour 56 - 4, place Jussieu - 75252 Paris Cedex 05

1



satisfy

V
law
= W

law
=

H

2
: (1.4)

The �rst identity is due to Chung [9], the second was �rst stressed in [4, p. 69]. The aim
of this paper is to give a simple proof of the following theorem:

Theorem 1.1  
H

(n)
Bp
2n
;
W

(n)
Bp
2n

!
law��!

n!+1
(H;W ):

Note that the obvious negative correlation between height and width of a tree with
given size n, is reected in the dependence between

R 1
0

ds
e(s) and max0�s�1 e(s). Previous

results [15, 23] about height and width of simple trees belongs to the foundations of
computer science. Surprisingly, Theorem 1.1 does not seem to be stated anywhere, though
it can be deduced easily from deep results of Aldous on one hand (about the continuum
random tree [1, 2]) and on the other hand of Drmota & Gittenberger [12], using a clever
idea due to Aldous [3, Th. 3] again. We felt that this consequence of [3, Th. 3] deserved
to be pointed out, and that the reader would welcome an 'elementary' and direct proof.

Let �(�; ; z) denote the conuent hypergeometric function, de�ned, for jzj < +1;  6=
0;�1;�2; � � � , by:

�(�; ; z) =
+1X
k=0

(�)k z
k

()k k!

where (�)k = (�)(� + 1) : : : (� + k � 1). The joint law of (H;W ) has been investigated
recently by Catherine Donati-Martin [11]. With the help of the agreement formula (see
[22]), she obtains the following results:

Theorem 1.2 For � � 0; � � 0,

E
�
W exp

�
� �2

2W 2
� �2H

2W

��
=

r
�

2

exp(2�)

�2(1 + �2=(2�); 2; 2�)
:

As a consequence, for Re(s) > 1; Re(t) < 0 and Re(s+ t) > 1:

E(W sHt) =

r
�

2

2
5+t�s

2

�(�t)�( s+t�12 )

Z +1

0

Z +1

0
�s+t�2��(1+2t)A2(�; �) d� d�:

2 First proof of Theorem 1.1

Aldous [3, Th. 3] proves that, suitably rescaled, the depth-�rst walk and the pro�le
of a random rooted labeled tree with n nodes converges jointly to (2e; l=2), where l is the
local time of the normalized Brownian excursion e, de�ned by:Z a

0
l(x) dx =

Z 1

0
I[0;a]

�
e(s)

�
ds:
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Let H
(n)
L (resp. W

(n)
L ) denote the restriction of h (resp. w) to the set of rooted labeled

trees with n nodes, endowed with the uniform probability. Invariance principle yields at
once that:

1p
n

�
H

(n)
L ;W

(n)
L

� law�!
�
2 max
0�t�1

e(t);
1

2
max
x�0

l(x)
�
:

For a general class of simple trees with n leaves, the proof of [3, Th. 3] is still valid (see

[2, Th. 23], and for binary trees, [17]), the limit being now
�
2e
� ;

�l
2 ). Here �

2 denotes the

variance of the o�spring distribution of the corresponding critical Galton-Watson tree (see
[1, p. 28, formula (8)] for the meaning of � in term of simple trees). In the special case of
binary trees with n� 1 internal nodes and n leaves, it yields:

1p
2n

�
H

(n)
B ;W

(n)
B

� law�!
�
2 max
0�t�1

e(t);
1

2
max
x�0

l(x)
�
: (2.5)

Theorem 1.1 is deduced from (2.5) through Jeulin's description of the local time of
Brownian excursion. Let

�
e(s)

�
0�s�1 be a normalized Brownian excursion with local time�

l(x)
�
x�0. De�ne

L(y) =

Z y

0
l(x) dx

and

 (t) = L�1(t) = sup
n
y
��� Z y

0
l(x)dx < t

o
:

Jeulin [18] proved that the process
�
~e(s)

�
0�s�1 de�ned by:

~e(s) =
1

2
l( (s)) (2.6)

is itself a normalized Brownian excursion (see also [4, p. 70] and interesting heuristic
arguments [1, pp. 47-48]). Taking the derivative in  (t) = L�1(t), we obtain  0 = 1

L0Æ =
1
2 ~e and

 (t) =

Z t

0

du

2 ~e(u)
;

so Jeulin's representation can be rewritten:

l
�Z s

0

du

2 ~e(u)

�
= 2 ~e(s): (2.7)

A direct consequence is the identity:

�
2 max
0�t�1

e(t);
1

2
max
x�0

l(x)
�
=
�Z 1

0

ds

~e(s)
; max
0�s�1

~e(s)
�
: (2.8)
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The equality between �rst components of (2.8) follows from (2.7) because

Z 1

0

ds

2 ~e(s)
=  (1) = max

0�s�1
e(s) ; (2.9)

while the equality between second components follows by taking the maximum on each
side of (2.7). Thus, (2.5) is equivalent to Theorem 1.1. �

Thus Theorem 1.1 is a direct consequence of Jeulin's representation [18], and of [3,
Theorem 3] which relies itself on two deep, but technical, papers [2, 12]. The line of the
second proof of Theorem 1.1 is close to that of [7, 25]: the pro�le of the tree is seen as the
breadth-�rst search random walk, changed of time, giving a discrete converse of Jeulin's
representation. That the change of time has precisely the form given by Jeulin, follows,
in the discrete case, from a counting principle due to Odlyzko [8, 21].

3 Second proof of Theorem 1.1

3.1 Brownian excursion and Bernoulli excursion

Let us callBernoulli excursion of size 2n, any 2n-steps random walk ! =
�
Sk(!)

�
k=0;��� ;2n

that satisfy:

S0(!) = 0 ; S2n(!) = 0; Sk+1(!) = Sk(!)� 1

and

Sk(!) > 0 for k 2 f1; � � � ; 2n� 1g:

Let Es(2n) denote the set of Bernoulli excursions of size 2n, endowed with the uniform
probability. It is well known that

#Es(2n) = #T
(n)
B =

�
2n� 1

n� 1

�
1

2n� 1
;

is the n� 1th Catalan number: Cn�1 (see [24, pp.220-221, and 256-257]). Note that there
is an obvious one-to-one correspondence between Bernoulli excursions and Dyck paths.

Any Bernoulli excursion ! de�nes a random element

en(t) =
Sb2ntcp
2n

; 0 � t � 1;

of the set D([0; 1]) of right continous left limit functions, endowed with the Skorohod
topology. The weak limit of en is called the normalized Brownian excursion (see [16]). The
normalized Brownian excursion e is usually de�ned by the following path transformation
of the standard linear Brownian motion B = (Bt)t�0: let g (resp. d) be the last zero of B
before 1 (resp. after 1), and set

e(t) =
Bg+t(d�g)p
d� g

; 0 � t � 1:
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3.2 Breadth-�rst search correspondence

Let Sk be the height of the queue at the kth step of the breadth-�rst search of a

rooted binary tree t 2 T
(n)
B (see [10, Section 23.2], and Figure (3.1) for an example).

Then ! =
�
Sk
�
k=0;��� ;2n belongs to Es(2n), and this is a one-to-one correspondence (for

instance, one can adapt [24, p. 256, 6.19.d]). We explain below how to obtain an expression
of (h(t); w(t)) in term of functionals of the corresponding Bernoulli excursion !.
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Figure 3.1 : Excursion - Binary tree

The width

As already noted in [7, 19, 25], the pro�le of t can be read on !: assuming Sk(!) = 0
for k � 2n+ 1, we have

Z0(t) = S1(!) = 1

Z1(t) = S1+Z0(t)(!)

Z2(t) = S1+Z0(t)+Z1(t)(!)

: : :

Zk+1(t) = S1+Z0(t)+���+Zk(t)(!):
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Set

�(k) = 1 + Z0(t) + � � � + Zk�1(t);
M2n(!) = max

k
Sk(!):

The triplet (S;Z;�) can be seen as the discrete version of (~e; l; L) appearing in Jeulin's
representation. Since

W
(n)
B (t) = max

k
S�(k)(!);

we obtain:

M2n(!) �W
(n)
B (!);

but, actually, moderate variation of Sk (see Lemma 3.3) yields that:

Lemma 3.1

E
h
jW (n)

B (t)�M2n(!)j
i
= O(n1=4

p
log n):

The height

Set

	(k) =
2k�1X
j=1

1

Sj(!)
;

~	(k) = �1 + inffj j�(j) = 2kg:
We see easily that

H
(n)
B (t) = ~	(n): (3.10)

The following Lemma can be seen as the discrete version of (2.9):

Lemma 3.2

E
h
jH(n)

B (t)�	(n)j
i
= o(

p
n):

Remark. Obviously, if the speed of a traveller at point y of the line is s(y), then the
duration t of the journey from point 0 to point x satis�es:

t =

Z x

0

dy

s(y)
: (3.11)

Lemma 3.2 can be seen as a stochastic analog of relation (3.11), as H
(n)
B (t) is the time

needed to go from point 0 to point 2n, doing one step (from �(k) to by �(k+1)) by time
unit, so the speed at point �(k) is �(k + 1) � �(k) = S�(k). This counting principle was
used in [8, Section 2] and [21] in order to study the average cost of some search algorithms.
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3.3 Proofs of Lemmata 3.1 and 3.2

The proofs of Lemmata 3.1 and 3.2 rely on a property of moderate variation of Bernoulli
excursions, inherited from the simple symmetric random walk. Let ~
c(2n) denote the set
of Bernoulli excursions ! = (Sk(!))k=0;��� ;2n such that for any l; k in the set

�
0; 1; � � � ; 2n	,

jSk(!)� Sl(!)j � c
p
jk � lj log n:

Lemma 3.3 For every � > 0 there exist c > 0 such that, for n suÆciently large:

Pr(~
c(2n)) � 1� n��:

Proof : The lemma is easily proved for a simple symmetric random walk ! = (Sk(!))k=0;��� ;2n,
using Cherno� bounds:

8x � 0; 8k; Pr(jSk(!)j > x) � 2 exp(�x
2

2k
)

(see for instance [8]). But Pr(~
c(2n)) in Lemma 3.3 is just Pr(! 2 ~
c(2n)j! 2 Es(2n)),
and in the other hand the probability that a simple symmetric random walk ! belongs to
Es(2n)) is �(n�

3

2 ). Finally, choose A = {~
c(2n) in:

Pr(! 2 A j! 2 Es(2n)) � Pr(! 2 A)
Pr(! 2 Es(2n)) � c1n

3

2 Pr(! 2 A): �

Proof of Lemma 3.1: We have

0 � E
�
M2n(!)�W

(n)
B (t)

�
= E

�
M2n(!)�max

k
S�(k)(!)

�
:

We consider an index K(!) such that M2n(!) = SK(!)(!). There exists an integer i(!)
such that

�(i) � K � �(i+ 1):

Then,

E(M2n �max
k

Sl(k)) � E(SK � S�(i))

� E
�
I~
c

c
p
(K � �(i)) log(2n) + n I

{~
c

�
� E

�
c
p
M2n log(2n)

�
+ nPr({~
c)

= O
�
n1=4(log n))3=4

�
;

for c large enough. �
Proof of Lemma 3.2. For any positive integers l; k, such that k � l � 2n� k, we have

Pr(Sk = l) =
n l2

k(2n� k)

� k
k�l
2

�� 2n� k
2n�k�l

2

�
�2n�2
n�1

� Ik�l[2]; (3.12)
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since l
k

� k
k�l
2

�
is the number of positive paths from (0; 0) to (k; l), and l

2n�k
� 2n� k

2n�k�l
2

�
is the number of positive paths from (k; l) to (2n; 0). We have

H
(n)
B = ~	(n) =

~	(n)�1X
i=0

�(i+1)�1X
h=�(i)

1

Z(i)
:

Let � be a real number in ]0; 1=2[. Then

���
~	(n)�1X
i=0

�(i+1)�1X
h=�(i)

1

Z(i)
�

2n�1X
h=1

1

Sh

��� � 2n1=2�� +An +Bn

where

An �
~	(n)�1X
i=0

�(i+1)�1X
h=�(i)

��� 1

Z(i)
� 1

Sh

��� IZ(i)�(log1+" n) I[n1=2��;2n�n1=2��](h);

Bn �
~	(n)�1X
i=0

�(i+1)�1X
h=�(i)

��� 1

Z(i)
� 1

Sh

��� IZ(i)�(logn)1+" I[n1=2��;2n�n1=2��](h):

First,

E(Bn) � E
�
#fhjh 2 [n1=2��; 2n� n1=2�a]; Sh � (log n)1+"g�

�
2n�n1=2��X
h=n1=2��

[log1+" n]X
l=1

Pr(Sh = l)

= O(log3+3" n)

where the last equality follows from (3.12), Stirling formula and
�
k
k=2

� � � k
(k�l)=2

�
. Clearly,

I
{~
c(2n)

(!)An � nI
{~
c(2n)

(!):

Finally, using the moderate variation property to bound��� 1

Z(i)
� 1

Sh

���;
we obtain:

I~
c(2n)
(!)An � (log�"=2 n) 	(n):

Lemma 3.2 follows, for c large enough. �

8



3.4 Convergence of
�
	(n);M2n

�

Lemmata 3.1 and 3.2 together yields that:

1p
n

�H(n)
B ;W

(n)
B

�� �	(n);M2n

�
1
= o(1):

Thus, the proof of Theorem 1.1 reduces to the proof of

Proposition 3.4

1p
2n

(	(n);M2n)
law�!

� Z 1

0

1

e(s)
ds; max

0�s�1
e(s)

�
:

We use the following Lemma [6, Th.4.2 p.25]:

Lemma 3.5 Let (Xn)n and (X
(a)
n )n;a be two families of R2 valued r.v., de�ned on the

same probability space, such that:

(X(a)
n )n

law�!
n�!+1 X(a)

and

X(a) law�!
a�!0

X:

Assume that

lim
a�!0

h
lim sup
n�!+1

P (kXn �X(a)
n k1 � �)

i
= 0

for each positive �. Then

Xn
law�! X:

Proof of Proposition 3.4 : We have

M2n=
p
2n = max

0�t�1
en(t)

and

	(n)p
2n

=
1

2n

2n�1X
k=1

1

en(k=2n)
:

De�ne 	(a)(n) by

	(a)(n) =
1

2n

2n�1X
k=1

Ifen�ag
en(k=2n)

:
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Set

Xn =
1p
2n

�
	(n);M2n

�
;

X(a)
n =

1p
2n

�
	(a)(n);M2n

�
;

X =
� Z 1

0

1

e(s)
ds; max

0�s�1
e(s)

�
;

X(a) =
� Z 1

0

Ife(s)�ag
e(s)

ds; max
0�s�1

e(s)
�
:

Proposition 3.4 is equivalent to

Xn
law�! X:

The convergence of X
(a)
n to X(a) when n goes to 1 results from the continuity of the

functional. To conclude, it suÆces to prove the two following lemmas:

Lemma 3.6 There exists a positive constant C1 such that, for any a > 0,

kXn �X(a)
n k1 = 1p

2n
E
� 2n�1X
k=1

ISk�a
p
2n

Sk

�
� C1 a:

Lemma 3.7 There exists a positive constant C2 such that, for any a > 0,

kX �X(a)k1 = E
�Z 1

0

Ie(s)�a
e(s)

ds
�
� C2 a:

Proof of Lemma 3.6 : Using Formula (3.12), we have

1p
2n
E
� 2n�1X
k=1

ISk�a
p
2n

Sk

�
=

1p
2n

2n�1X
k=1

a
p
2nX

l=1

~P(Sk = l)

l

� c1:
np

n
�2n�2
n�1

� nX
k=1

a
p
2nX

l=1

l
� k
k�l
2

��2n�k
2n�k
2

�
k(2n� k)

Ik�l[2]

� c2
1p
n

a
p
2nX

l=1

nX
k=1

l
� k
k�l
2

�
2kk

Ik�l[2]:

Note that

l
� k
k�l
2

�
2kk

Ik�l[2] = P(Sk = l)
l

k

P(Sk = l)
l

k
=

l

k

1

2�

Z 2�

0
cosk(t) cos(lt)dt

=
2

�

Z �=2

0
sin(lt) cosk�1(t) sin t dt for k � 1:
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Thus,

1p
2n
E
� 2n�1X
k=1

ISk�a
p
2n

Sk

�
� c3p

n

a
p
2nX

l=1

Z �=2

0
sin(lt) sin t

1� cosn t

1� cos t
dt

=
c3p
n

a
p
2nX

l=1

Z �=2

0
sin(lt)

(1 + cos t)(1� cosn t)

sin t
dt: (3.13)

Let us expand this sum and bound its terms. Set

Il =

Z �=2

0

sin(lt) cos t

sin t
dt;

Jl =

Z �=2

0

sin(lt)

sin t
dt:

We notice that

Jl = Il�1 +
sin((l � 1)�2 )

l � 1
and Il = Jl�1 +

sin(�l2 )

l
:

So Jl and Il are uniformly bounded. We have

��� Z �=2

0

sin(lt)

sin t
cosn t dt

��� �
Z �=2

0

���sin(lt)
sin t

��� cosn t dt
� l

Z �=2

0
cosn t dt

=

p
�

2

l �
�
n+1
2

�
�(n=2 + 1)

Due to Stirling formula, this last term is uniformly bounded for l 2 f1; � � � ; ap2ng, so the
terms of the sum in (3.13) are uniformly bounded and the proof is complete. �
Proof of Lemma 3.7 : According to [14, Prop. 3.4],

E
� Z 1

0
Ie(s)�a ds

�
= 1� 2e�2a

2

;

we have:

E
�Z 1

0

Ie(s)�a
e(s)

ds
�
=

Z a

0
8e�2a

2

da � 8 a: �
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