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Map enumeration
In combinatorics, and in statistical physics

e T he original question: how many maps with a given number of edges?
— Tutte and his descendents (1960 — 2011)
— Brézin-Itzykson-Parisi-Zuber and their descendents (1978 — 2011)

e Key object: the generating function of planar maps, counted by edges:
M(t) =Yt = 1 4 2t + O(t?)
M

where e(M) is the number of edges of M.

e Refinement: maps counted by edges and vertex degrees:

Mt z1,22,23...) 1= Zte(M):z:Q{l(M):c"Q’Q(M)xg?’(M) .
M

where v;(M) is the number of vertices of degree i



Maps equipped with an additional structure

In combinatorics, but mostly in statistical physics

How many maps equipped with... | What is the expected
partition function of...

— a spanning tree? — the Ising model?

[Mullin 67] [Boulatov, Kazakov, MBM, Schaeffer,
Bouttier et al.]
— a spanning forest?

[Bouttier et al., Sportiello et al.] — the hard-particle model?
[IMBM, Schaeffer, Jehanne,
— a self-avoiding walk? Bouttier et al. 02, 07]

[Duplantier-Kostov 88]
— the Potts model?
— a proper g-colouring? [Eynard-Bonnet 99, Baxter 01,

[Tutte 74, Bouttier et al. 02] MBM-Bernardi 09, Guionnet et al. 1C




The Potts model on planar maps

e [ he partition function of the ¢-state Potts model on a planar map M:
Zy(q,v) = > )
c:V(M)—{1,2,..,q}

where m(c) of the number of monochromatic edges in the colouring c. In fact,
Zyr(q,v) is a polynomial in ¢ (and v).

Example: When M has one edge and two vertices, Zy;(q,v) = qv+q(¢g—1)
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The Potts model on planar maps (cont’d)

e Generating function:

M(q,v,t) = 3 Zp(q,v)teM)
M

— Z te(M)l/m(C)
M, c
g+ (qv+ qv+q(qg— 1))t + O(t?)

“The Potts generating function of planar maps”

= Enumeration of g-coloured planar maps,
counted by edges and monochromatic edges.



I. Uncoloured planar maps:
the recursive approach



Recursive description of planar maps: deleting the root-edge

Let

F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0

where e(M) is the number of edges and df(M) the degree of the outer face.
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Recursive description of planar maps: deleting the root-edge

Let
F(t;z) = F(z) = 3 t8WM)gdf(M) — 5™ B (1) 24
M d>0
where e(M) is the number of edges and df(M) the degree of the outer face.

. y ”

F(x) = 1 -+ te2F(2)? + t Y Fy(t) (:cd+1 + 2.+ :13)
d>0
N xF(x) — F(1)

r—1
[Tutte 68] A quadratic equation with one catalytic variable, x

= 1 + te?F ()2 +




Recursive description of planar maps: contracting the root-edge

Let

F(t;y) = Fy) =Y My VM) — 5™ B (1)y4
M d>0

where e(M) is the number of edges and dv(M) the degree of the root vertex.

®
Fiy) = 1 4+  #2F@y)? + tY" Fa(t) (v 4yt +y)
d>0
— 1 + tyQF(y)Q i ty yF(y) — F(1)

y—1

The same equation... (duality)



Polynomial equations with one catalytic variable

Examples:
F(z) = 1+ ta?F(z)° 4tz wF(a;)_—lFu)
F(z) = 14 tzF(2)3 +tz(2F(z) + F(1)) F(:c; : 11:(1)
pipF@ - FQ) = @@= DF'(1)

(z —1)2

Solution:
e Guess and check [Tutte 60's]
e Brown’s quadratic method [Brown 65]

e A generalization to all polynomial equations with one catalytic variable
[mbm-Jehanne 06]



Polynomial equations with one catalytic variable

e General framework: A polynomial equation:
P(F(m),F]_,...,Fm,t,fC):O (1)

where F(x) = F(t;x) is a series in t with polynomial coefficients in x, and
F; = F;(t) does not depend on =z.

e Results

1. The solution of every proper equation of this type is algebraic: There exists
P such that P(t,z, F(t;x)) = O.

2. A practical (but heavy) strategy allows to solve specific examples (that is,
to derive from (1) an algebraic equation for F(x), or Fi,...,Fm).

[MBM-Jehanne 06]



Example

F(t;z) = F(z) = 1 + ta?F(2)? + ta wF(?_—lF(l)
i
(1-120)%2 —1 +181¢ 2.3"  on
Y H412 nzzjo (”+1)(n+2)(n>

with two lines of Maple.

Equivalently,

F(t;1) = A(t) —tA@)3  where  A(t) = 1+ 3tA(t)?

= Many map families have an algebraic generating function



II. The Potts model on planar maps
A recursive approach

M(Q) v, t) — Z te(M>Vm(C)
M, c

e Other approaches: [Eynard-Bonnet 99], [Guionnet et al. 10]



Forget algebraicity!
One specialization of the Potts generating function M(q,v,t) counts planar
maps equipped with a spanning tree, and...

Theorem [Mullin 67]: The number of planar maps of size n equipped with a
spanning tree is

1 2 2 2
Sn = ( n)( " _I_ ) ~ K 16nn_3,
(n+1)(n+2)\n’/‘n+1
and this asymptotic behaviour prevents the series S(t) := > spt™ from being

algebraic.

However, it satisfies a linear differential equation.



Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot
be described with one catalytic variable
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Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot
be described with one catalytic variable

HOWEVER
it can be described with two catalytic variables
WHY IS THAT SO~

e [ he recursive description of the Potts partition function

Zg(q,v) =Zen(q,v) + (v — 1) Zg)(q,v)

calls for a recursive description of maps by contraction and deletion of edges.

e [his is possible if one keeps track of the degree of the outer face, and the
degree of the root-vertex.



Equations with two catalytic variables

o Let
1
M(z,y) = M(q,v,t;2,y) = = > Zpy(q, v)teMgV M) drin),
9 M
where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

e T he Potts generating function of planar maps satisfies:

M(z,y) = 1+zyt((v —1)(y — 1) +qy) M(z,y)M(1,y)
+zyt(xv — )M (x,y)M(x,1)

+azyt(v — 1) — + x —

[Tutte 68]

This equation has been sleeping for 40 years



In the footsteps of W. Tutte

e For the GF T'(q,t;x,y) = T (x,y) of properly g-coloured triangulations:

T(z,y) —y?*To(x) o T(zy) = T(1,y)

/
T(z,y) = waQ(q—l)-l-x—T(l, y)T (x,y)+at
yq Yy r—1

where Th(z) is the coefficient of y2 in T(z,v).

Tutte 73
Tutte 73

[ ] Chromatic sums for rooted planar triangulations: the cases A=1 and A\ =2
[ ] Chromatic sums for rooted planar triangulations, II : the case A=7+41
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case A = 3

[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case A = oo
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest

[Tutte 82] Chromatic solutions

[Tutte 82] Chromatic solutions II

[Tutte 84] Map-colourings and differential equations

IO D> D

[Tutte 95]: Chromatic sums revisited
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equation with one catalytic variable y.



In the footsteps of W. Tutte

e For the GF T'(q,t;x,y) = T (x,y) of properly g-coloured triangulations:

T(z,y) — yQTz(:v)_xzytT(x,y) —T(1,y)

t
T(z,y) = 2y2q(q— 1)+ T (1, )T (z, y)+at
yq Yy r—1

where Th(z) is the coefficient of y2 in T(z,v).

Theorem [Tutte]
e For g = 2+42cos QW” qg = 4, the series T'(1,y) = T'(¢; 1,y) satisfies a polynomial
equation with one catalytic variable y.

e \When ¢ is generic, the generating function of properly g-coloured planar
triangulations is differentially algebraic:

2¢%(1 — )t + (gt + 10H — 6tHYH" + q(4 — q)(20H — 18tH' + 9t°H") =0
with H(t) = t*T>(q,vt; 1)/q.



Adapt this to other equations!

Tutte 73
Tutte 73

[ | Chromatic sums for rooted planar triangulations: the cases A =1 and A =2
[ ] Chromatic sums for rooted planar triangulations, II : the case A=7+41
[Tutte 73] Chromatic sums for rooted planar triangulations, III : the case A =3

[Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case A = oo
[Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations
[Tutte 78] On a pair of functional equations of combinatorial interest

[Tutte 82] Chromatic solutions

[Tutte 82] Chromatic solutions II

[Tutte 84] Map-colourings and differential equations
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Our results

e Let M(q,v,t;x,y) be the Potts generating function of planar maps:
1
M (z,y) = M(q,v,t;2,9) = = Zy(g, vt VM), df (M)
9 pm

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

Theorem

o For q = 2 + 2COS%T, g = 0,4, the series M(q,v,t;1,y) = M(1,y) satisfies
a polynomial equation with one catalytic variable y, and the complete Potts
generating function M(q,v,t; x,y) is algebraic.

e When ¢ is generic, M(q,v,t;1,1) is differentially algebraic:

(an explicit system of differential equations)

[mbm-Bernardi 09] Counting colored planar maps: algebraicity results. Arxiv:0909:1695
[mbm-Bernardi 12] Counting colored planar maps: differential equations



Algebraicity via Tutte’s invariants method:
From two to one catalytic variables

e The equation is linear in M (x,y):

M(z,y) = 14azyt((v —1)(y — 1) + qy) M(z,y)M(1,y)
+ayzt(xv — )M (x,y)M(xz, 1)
tayt(y — 1):6M(1:,y) — M(1,y) n xyztyM(x,y) — M(z,1)

x—1 y—1
Write it

K(z,y)M(z,y) = R(z,y)
where K (the kernel) and R involve x,y, M(xz,1), M(1,y) (and q,v,t).



Algebraicity via Tutte’s invariants method:
From two to one catalytic variables

e The equation is linear in M (x,y):

M(z,y) = 14+ayt (v —1)(y — 1) + qy) M(z,y)M(1,y)
+ayzt(xv — )M (x,y)M(xz, 1)
+zyt(v — 1)xM($’ ?i)__lM(l’ ) + :I:yztyM(m’ yy)__lM(x’ 1).

Write it

K(z,y)M(z,y) = R(z,y)
where K (the kernel) and R involve x,y, M(xz,1), M(1,y) (and q,v,t).

e Cancel the kernel by specializing y: There exists two (non-explicit) series
Y1(x) and Yo(x) such that

K(z,Y;) =0 (which implies R(x,Y;) = 0)
We have 4 equations relating =z, M(x,1), the Y; and M(1,Y;).



Algebraicity via Tutte’s invariants method (cont’d)

e From these 4 equations, eliminate z and M(x,1): this leaves 2 equations
between the Y; and M(1,Y;), which (when ¢ =24 2cos(jn/m)) can be written

I(Y1) = I1(Y2) with I(y) = tygM(1,y) 4 L= 4 224

J(Y7) = J(Yo) where J involves the Chebyshev polynomial Ty,

The series I(y) and J(y) are invariants.
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I(Y1) = I1(Y2) with I(y) = tygM(1,y) 4 L= 4 224

J(Y7) = J(Yo) where J involves the Chebyshev polynomial Ty,
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e [ he theorem of invariants: every invariant is a polynomial in the elementary
invariant I(y). Hence there exists series Fy,..., F, (depending on ¢,v and t
only) such that

J(y) = FI(y) (2)
1=0



Algebraicity via Tutte’s invariants method (cont’d)

e From these 4 equations, eliminate z and M(x,1): this leaves 2 equations
between the Y; and M(1,Y;), which (when ¢ =24 2cos(jn/m)) can be written

I(Y1) = I1(Y2) with I(y) = tygM(1,y) 4 L= 4 224

J(Y7) = J(Yo) where J involves the Chebyshev polynomial Ty,

The series I(y) and J(y) are invariants.

e [ he theorem of invariants: every invariant is a polynomial in the elementary
invariant I(y). Hence there exists series Fy,..., F, (depending on ¢,v and t
only) such that

J(y) = FI(y) (3)
1=0

e The series I(y) and J(y) involve y and M(1,y), while the (unknown) series F;
are independent from y. Hence (3) is an equation with one catalytic variable
(y) satisfied by M(1,vy).



Algebraicity via Tutte’s invariants method: Examples

e For ¢g=1 and M(y) = M(1,y), one obtains

yM(y)—M(l).

M(y) =14 y*trM(y)* + vty 1

e For ¢ = 2 (the Ising model),

4t2y% (y — 1)2(v + 1M (y)> + 4 (y — Dy*v (v + 1)t2M (y)?

+ -2 (VPy—y—rv?—6v—1)t M)+ vyt (v + DM (y)
+1vP(w—1) (VPy+3vy—1?—6v—-1)tMy) — y—1)> vy -y—v—1) M(y)
—2t%y%v (y — (v + DM(D)M(y) — 2t°y%v (v + 1) (y — 1) M (1)?
v Ry - D+ DEMQA) —yly—1) (~y+ vy —2vy —v—2?)t M(1)

— vty v+ D)y - 1M 1)+ (y-1)? vy —y-v—1)=0

e For ¢ = 3, one obtains a big equation involving M (y), M (1), M’(1) and M"(1).

Equations with one catalytic variable = algebraic solutions



Example: The Ising model on planar maps (g = 2)

Let A be the series in ¢, with polynomial coefficients in v, defined by
(1 +3vA—-3vA2— V2A3)2
1-2A+ 20243 — 1244
Then the Ising generating function of planar maps is
1 —|—3VA—3VA2 — 1243
(1-2A4+421243 - V2A4>2

A=t

M@2,v,t;1,1) = P(v, A)

where

P(v,A) = 13A% +2.,2(1 —)AS+ v (1 —61)A%
— v (1-5)A3+ (1 +2v)4%2 - 3+ v)A+ 1.

~ Asymptotics: Phase transition at v, = % critical exponents...



Example: properly 3-coloured planar maps (¢ = 3,v = 0)

Let A be the quartic series in t defined by
14 2A4)3
A= (1+2A) |
(1 —2A3)
Then the generating function of properly 3-coloured planar maps is
(1+2A)(1 — 242 — 443 — 44%)
(1 —2A43)2

M(3,0,t;1,1) =

~ Asymptotics: A random loopless planar map with n edges has approximately
(1.42...)™ proper 3-colourings



Our results: when ¢ is generic

e Let M(q,v,t;x,y) be the Potts generating function of planar maps:
1
M(z,y) = M(q, v, t;m,y) = =Y Zyy(q, )t gy dtM),
9 pm

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

Theorem

e For q = 2 + QCOS%, qg = 4, the series M(q,v,t;1,y) = M(1,y) satisfies
a polynomial equation with one catalytic variable y, and the complete Potts
generating function M(q,v,t; x,y) is algebraic.

e When ¢ is generic, M(q,v,t;1,1) is differentially algebraic:

(an explicit system of differential equations)



An explicit system of differential equations

Let D(t,v) = (@ + (v = 1)?) v — q(v + Dv + (g + t(v = 1)(g — (g +v — 1)),

e There exists a unique 8-tuple (Py(t),...,P3(t),Qo(t),Q1(t), Ro(t), R1(t)) of
series in t with polynomial coefficients in ¢ and v such that

10 ( R? 410 Q2 0
R dv \ PD?2 Q ot \PD2) 7’

where
P(t,v) = v*+ P3(t)v> 4+ Po(t)v? + Pi(t)v + Po(t),
Q(t,v) = v2 4+ Q1(t)v + Qo(t),
R(t,v) = (q¢+v—3)v2+ R1(t)v+ Ro(t),

with the initial conditions (at t = 0):

P(0,v) =v2(v—1)2 and Q(0,v) = v(v—1).



An explicit system of differential equations (cont’d)

e The Potts generating function of planar maps, M(1,1) = M(q,v,t;1,1), sat-
isfies

12¢2 (qy + (v — 1)2) M(q,v,t:1,1) =
8t(q+v—3)Q1(t) —Q1(t)°+ Po(t) —2Qa(t) —4t (2 — 3v — q)— 12t (¢ + v — 3)2.

Questions
1. Use the structure of

10 ( R? L 19 Q7 _ 0
ROv \ PD?2 Qot \PD2) 7’

to obtain a single differential equation (or an expression?) for M(q,v,t;1,1).

2. Relate this to elliptic functions, and to the papers of Bonnet & Eynard, and
Guionnet, Jones, Shlyakhtenko & Zinn-Justin



An analogous system for triangulations
Let D(t,v) = ¢?v? + (v — 1) (4(v - D) + ) v+ (qv(v — (g - )t + (v — 1)?).

e There exists a unique 7-tuple (FPy(t),...,P>(t),Qo(t),Q1(t), Ro(t), R1(t)) of
series in t with polynomial coefficients in ¢ and v such that

10 ( R? 410 Q2 5
R dv \ PD?2 Q ot \PD2) 7’

where
P(t,v) = v>+ Pa(t)v? + P1(t)v + Po(t),
Q(t,v) = 2vv? + Q1(t)v + Qo(t),
R(t,v) = Ri(t)v+ Ro(t),

with the initial conditions (at t = 0):

P(0,v) =v?(v+1/4) and Q(0,v) = v(2vv + 1).

e EXxpression of the Potts GF of triangulations in terms of the P, and @;



Special cases for triangulations

e Properly coloured triangulations (v = 0): Tutte's DE of order 2

e The Potts model with 4 states (¢ = 4): DE of order 2

e Spanning forests on (near-)cubic maps (¢ = 0): DE of order 2



Many questions are left...

A. Equations with two catalytic variables
e Elimination in the systems of differential equations

e Connections with elliptic functions, and with [Eynard-Bonnet 99] and [Guion-
net et al. 10]



Many questions are left...

A. Equations with two catalytic variables
e Elimination in the systems of differential equations

e Connections with elliptic functions, and with [Eynard-Bonnet 99] and [Guion-
net et al. 10]

B. More combinatorics
e Understand algebraic series, e.g., for 3-coloured planar maps:

. 2 3 4 3
(14+2A)(1 —-2A 4 A 4A) with A:t(l—l—QA)
(1 —2A43)2 (1 —2A43)
e Understand differential equations, e.g., for properly g-coloured triangulations:

M(3,0,t:1,1) =

2¢°(1 — )t + (qt + 10H — 6tHYH" + q(4 — q)(20H — 18tH' 4+ 9t°H") =0
(with J. Courtiel: maps with a spanning forest (¢ = 0))



Many questions are left...

A. Equations with two catalytic variables

e Elimination in the systems of differential equations

e Connections with elliptic functions, and with [Eynard-Bonnet 99] and [Guion-
net et al. 10]

B. More combinatorics
e Understand algebraic series, e.g., for 3-coloured planar maps:

. 2 3 a4 3
(14+2A)(1 —-2A 4 A 4A7) with A:t(l—l—QA)
(1 —2A43)2 (1 —2A43)
e Understand differential equations, e.g., for properly g-coloured triangulations:

M(3,0,t:1,1) =

2¢°(1 — ¢)t + (qt + 10H — 6tH'YH" + q(4 — q)(20H — 18tH' + 9t°H") = 0
(with J. Courtiel: maps with a spanning forest (¢ = 0))

C. Asymptotics

e Asymptotic number of properly g-coloured maps?

(done for triangulations g € (28/11,4) U [5,00) [Odlyzko-Richmond 83])

e More generally, phase transitions and critical exponents of the Potts model



Special cases for triangulations

e Properly coloured triangulations (v = 0): Tutte's differential equation of
order 2

2¢°(1 — ¢)t + (qt + 10H — 6tHYH" 4+ q(4 — q)(20H — 18tH' + 9t°H") =0

e The Potts model with 4 states (¢ = 4): differential equation of order 2

e Spanning forests on (near-)cubic maps (¢ = 0): differential equation of order
2
(38T — B3 (t— Bt+58T)T"° + 4v (t — Bt +55T)) 1"

— 48182 (14 8) T +88v(t— Bt+58T) T
+4(B°-1)(@t—-Bt+58T)T' =0
with s =v -1



