The Potts model on planar maps

Mireille Bousquet-Mélou, CNRS, Bordeaux, France (joint work with Olivier Bernardi, Orsay/MIT)

http://www.labri.fr/~bousquet

Rooted planar maps

- vertices V(M)
- edges
- and faces

Map enumeration In combinatorics, and in statistical physics

- The original question: how many maps with a given number of edges?
 - Tutte and his descendents (1960 \rightarrow 2011)
 - Brézin-Itzykson-Parisi-Zuber and their descendents (1978 \rightarrow 2011)
- Key object: the generating function of planar maps, counted by edges:

$$M(t) := \sum_{M} t^{e(M)} = 1 + 2t + O(t^2)$$

where e(M) is the number of edges of M.

• Refinement: maps counted by edges and vertex degrees:

$$M(t; x_1, x_2, x_3...) := \sum_M t^{e(M)} x_1^{v_1(M)} x_2^{v_2(M)} x_3^{v_3(M)} \cdots$$

where $v_i(M)$ is the number of vertices of degree *i*

Maps equipped with an additional structure

In combinatorics, but mostly in statistical physics

How many maps equipped with	What is the expected partition function of
– a spanning tree? [Mullin 67]	– the Ising model? [Boulatov, Kazakov, MBM, Schaeffer, Bouttier et al.]
– a spanning forest?	
[Bouttier et al., Sportiello et al.]	 the hard-particle model? [MBM, Schaeffer, Jehanne,
– a self-avoiding walk?	Bouttier et al. 02, 07]
[Duplantier-Kostov 88]	
	– the Potts model?
– a proper q-colouring?	[Eynard-Bonnet 99, Baxter 01,
[Tutte 74, Bouttier et al. 02]	MBM-Bernardi 09, Guionnet et al. 10

The Potts model on planar maps

• The partition function of the q-state Potts model on a planar map M:

$$Z_M(q,\nu) = \sum_{c:V(M) \to \{1,2,...,q\}} \nu^{m(c)}$$

where m(c) of the number of monochromatic edges in the colouring c. In fact, $Z_M(q,\nu)$ is a polynomial in q (and ν).

Example: When M has one edge and two vertices, $Z_M(q,\nu) = q\nu + q(q-1)$

The Potts model on planar maps (cont'd)

• Generating function:

$$M(q, \nu, t) = \sum_{M} Z_{M}(q, \nu) t^{e(M)}$$

= $\sum_{M, c} t^{e(M)} \nu^{m(c)}$
= $q + (q\nu + q\nu + q(q - 1))t + O(t^{2})$

"The Potts generating function of planar maps"

 \Rightarrow Enumeration of q-coloured planar maps, counted by edges and monochromatic edges.

I. Uncoloured planar maps: the recursive approach

Let

$$F(t;x) \equiv F(x) = \sum_{M} t^{\mathsf{e}(M)} x^{\mathsf{d}\mathsf{f}(M)} = \sum_{d \ge 0} F_d(t) x^d$$

where e(M) is the number of edges and df(M) the degree of the outer face.

Let

$$F(t;x) \equiv F(x) = \sum_{M} t^{\mathsf{e}(M)} x^{\mathsf{df}(M)} = \sum_{d \ge 0} F_d(t) x^d$$

where e(M) is the number of edges and df(M) the degree of the outer face.

Let

$$F(t;x) \equiv F(x) = \sum_{M} t^{\mathsf{e}(M)} x^{\mathsf{df}(M)} = \sum_{d \ge 0} F_d(t) x^d$$

where e(M) is the number of edges and df(M) the degree of the outer face.

Let

$$F(t;x) \equiv F(x) = \sum_{M} t^{\mathsf{e}(M)} x^{\mathsf{d}\mathsf{f}(M)} = \sum_{d \ge 0} F_d(t) x^d$$

where e(M) is the number of edges and df(M) the degree of the outer face.

[Tutte 68] A quadratic equation with one catalytic variable, \boldsymbol{x}

Let

$$F(t;y) \equiv F(y) = \sum_{M} t^{\mathsf{e}(M)} y^{\mathsf{d}\mathsf{v}(M)} = \sum_{d \ge 0} F_d(t) y^d$$

where e(M) is the number of edges and dv(M) the degree of the root vertex.

The same equation... (duality)

Polynomial equations with one catalytic variable

Examples:

$$F(x) = 1 + tx^{2}F(x)^{2} + tx \frac{xF(x) - F(1)}{x - 1}$$

$$F(x) = 1 + txF(x)^{3} + tx(2F(x) + F(1)) \frac{F(x) - F(1)}{x - 1} + tx \frac{F(x) - F(1) - (x - 1)F'(1)}{(x - 1)^{2}}$$

Solution:

- Guess and check [Tutte 60's]
- Brown's quadratic method [Brown 65]
- A generalization to all polynomial equations with one catalytic variable [mbm-Jehanne 06]

Polynomial equations with one catalytic variable

• General framework: A polynomial equation:

$$P(F(x), F_1, \dots, F_m, t, x) = 0$$
(1)

where $F(x) \equiv F(t;x)$ is a series in t with polynomial coefficients in x, and $F_i \equiv F_i(t)$ does not depend on x.

• Results

- **1.** The solution of every proper equation of this type is algebraic: There exists P such that P(t, x, F(t; x)) = 0.
- 2. A practical (but heavy) strategy allows to solve specific examples (that is, to derive from (1) an algebraic equation for F(x), or F_1, \ldots, F_m).

[MBM-Jehanne 06]

Example

$$F(t;x) \equiv F(x) = 1 + tx^2 F(x)^2 + tx \frac{xF(x) - F(1)}{x - 1}$$

$$\Downarrow$$

$$F(t;1) = \frac{(1 - 12t)^{3/2} - 1 + 18t}{54t^2} = \sum_{n \ge 0} \frac{2 \cdot 3^n}{(n + 1)(n + 2)} {\binom{2n}{n}} t^n$$

with two lines of Maple.

Equivalently,

$$F(t; 1) = A(t) - tA(t)^3$$
 where $A(t) = 1 + 3tA(t)^2$

 \Rightarrow Many map families have an algebraic generating function

II. The Potts model on planar maps A recursive approach

$$M(q,\nu,t) = \sum_{M,c} t^{\mathsf{e}(M)} \nu^{m(c)}$$

• Other approaches: [Eynard-Bonnet 99], [Guionnet et al. 10]

Forget algebraicity!

One specialization of the Potts generating function $M(q, \nu, t)$ counts planar maps equipped with a spanning tree, and...

Theorem [Mullin 67]: The number of planar maps of size n equipped with a spanning tree is

$$s_n = \frac{1}{(n+1)(n+2)} \binom{2n}{n} \binom{2n+2}{n+1} \sim \kappa \, 16^n n^{-3},$$

and this asymptotic behaviour prevents the series $S(t) := \sum s_n t^n$ from being algebraic.

However, it satisfies a linear differential equation.

Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot be described with one catalytic variable

Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot be described with one catalytic variable

HOWEVER

it can be described with two catalytic variables

Catalytic variables

The Potts generating function of planar maps, being transcendental, cannot be described with one catalytic variable

HOWEVER

it can be described with two catalytic variables

WHY IS THAT SO?

• The recursive description of the Potts partition function

 $\mathsf{Z}_G(q,\nu) = \mathsf{Z}_{G\setminus e}(q,\nu) + (\nu-1) \,\mathsf{Z}_{G/e}(q,\nu)$

calls for a recursive description of maps by contraction and deletion of edges.

• This is possible if one keeps track of the degree of the outer face, and the degree of the root-vertex.

Equations with two catalytic variables

• Let

$$M(x,y) \equiv M(q,\nu,t;x,y) = \frac{1}{q} \sum_{M} \mathsf{Z}_{M}(q,\nu) t^{\mathsf{e}(M)} x^{\mathsf{d}\nu(M)} y^{\mathsf{d}f(M)},$$

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

• The Potts generating function of planar maps satisfies:

$$M(x,y) = 1 + xyt((\nu - 1)(y - 1) + qy) M(x,y)M(1,y) + xyt(x\nu - 1)M(x,y)M(x,1) + xyt(\nu - 1)\frac{xM(x,y) - M(1,y)}{x - 1} + xyzt\frac{yM(x,y) - M(x,1)}{y - 1}$$

[Tutte 68]

This equation has been sleeping for 40 years

In the footsteps of W. Tutte

• For the GF $T(q,t;x,y) \equiv T(x,y)$ of properly q-coloured triangulations:

$$T(x,y) = xy^2q(q-1) + \frac{xt}{yq}T(1,y)T(x,y) + xt\frac{T(x,y) - y^2T_2(x)}{y} - x^2yt\frac{T(x,y) - T(1,y)}{x-1}$$

where $T_2(x)$ is the coefficient of y^2 in $T(x,y)$.

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases $\lambda = 1$ and $\lambda = 2$ [Tutte 73] Chromatic sums for rooted planar triangulations, II : the case $\lambda = \tau + 1$ [Tutte 73] Chromatic sums for rooted planar triangulations, III : the case $\lambda = 3$ [Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case $\lambda = \infty$ [Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations [Tutte 78] On a pair of functional equations of combinatorial interest [Tutte 82] Chromatic solutions [Tutte 82] Chromatic solutions II [Tutte 84] Map-colourings and differential equations

$$\triangleleft \ \Diamond \ \triangleright \ \triangleright$$

[Tutte 95]: Chromatic sums revisited

In the footsteps of W. Tutte

• For the GF $T(q,t;x,y) \equiv T(x,y)$ of properly q-coloured triangulations:

$$T(x,y) = xy^2q(q-1) + \frac{xt}{yq}T(1,y)T(x,y) + xt\frac{T(x,y) - y^2T_2(x)}{y} - x^2yt\frac{T(x,y) - T(1,y)}{x-1}$$

where $T_2(x)$ is the coefficient of y^2 in $T(x,y)$.

Theorem [Tutte]

• For $q = 2 + 2\cos\frac{2\pi}{m}$, $q \neq 4$, the series $T(1, y) \equiv T(t; 1, y)$ satisfies a polynomial equation with one catalytic variable y.

In the footsteps of W. Tutte

• For the GF $T(q,t;x,y) \equiv T(x,y)$ of properly q-coloured triangulations:

$$T(x,y) = xy^2q(q-1) + \frac{xt}{yq}T(1,y)T(x,y) + xt\frac{T(x,y) - y^2T_2(x)}{y} - x^2yt\frac{T(x,y) - T(1,y)}{x-1}$$

where $T_2(x)$ is the coefficient of y^2 in $T(x,y)$.

Theorem [Tutte]

• For $q = 2 + 2\cos\frac{2\pi}{m}$, $q \neq 4$, the series $T(1, y) \equiv T(t; 1, y)$ satisfies a polynomial equation with one catalytic variable y.

• When q is generic, the generating function of properly q-coloured planar triangulations is differentially algebraic:

 $2q^{2}(1-q)t + (qt + 10H - 6tH')H'' + q(4-q)(20H - 18tH' + 9t^{2}H'') = 0$ with $H(t) = t^{2}T_{2}(q, \sqrt{t}; 1)/q$.

Adapt this to other equations!

[Tutte 73] Chromatic sums for rooted planar triangulations: the cases $\lambda = 1$ and $\lambda = 2$ [Tutte 73] Chromatic sums for rooted planar triangulations, II : the case $\lambda = \tau + 1$ [Tutte 73] Chromatic sums for rooted planar triangulations, III : the case $\lambda = 3$ [Tutte 73] Chromatic sums for rooted planar triangulations, IV : the case $\lambda = \infty$ [Tutte 74] Chromatic sums for rooted planar triangulations, V : special equations [Tutte 78] On a pair of functional equations of combinatorial interest [Tutte 82] Chromatic solutions [Tutte 82] Chromatic solutions II [Tutte 84] Map-colourings and differential equations

 $\triangleleft \ \vartriangleleft \ \diamond \ \vartriangleright \ \triangleright$

[Tutte 95]: Chromatic sums revisited

Our results

• Let $M(q, \nu, t; x, y)$ be the Potts generating function of planar maps:

$$M(x,y) \equiv M(q,\nu,t;x,y) = \frac{1}{q} \sum_{M} \mathsf{Z}_{M}(q,\nu) t^{\mathsf{e}(M)} x^{\mathsf{d}\mathsf{v}(M)} y^{\mathsf{d}\mathsf{f}(M)},$$

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

Theorem

• For $q = 2 + 2\cos\frac{\eta\pi}{m}$, $q \neq 0,4$, the series $M(q,\nu,t;1,y) \equiv M(1,y)$ satisfies a polynomial equation with one catalytic variable y, and the complete Potts generating function $M(q,\nu,t;x,y)$ is algebraic.

• When q is generic, $M(q, \nu, t; 1, 1)$ is differentially algebraic:

(an explicit system of differential equations)

[mbm-Bernardi 09] Counting colored planar maps: algebraicity results. Arxiv:0909:1695 [mbm-Bernardi 12] Counting colored planar maps: differential equations

Algebraicity via Tutte's invariants method: From two to one catalytic variables

• The equation is linear in M(x,y):

$$M(x,y) = 1 + xyt((\nu - 1)(y - 1) + qy) M(x,y)M(1,y) + xyzt(x\nu - 1)M(x,y)M(x,1) + xyt(\nu - 1)\frac{xM(x,y) - M(1,y)}{x - 1} + xyzt\frac{yM(x,y) - M(x,1)}{y - 1}.$$

Write it

$$K(x,y)M(x,y) = R(x,y)$$

where K (the kernel) and R involve x, y, M(x, 1), M(1, y) (and q, ν, t).

Algebraicity via Tutte's invariants method: From two to one catalytic variables

• The equation is linear in M(x,y):

$$M(x,y) = 1 + xyt((\nu - 1)(y - 1) + qy)M(x,y)M(1,y) + xyzt(x\nu - 1)M(x,y)M(x,1) + xyt(\nu - 1)\frac{xM(x,y) - M(1,y)}{x - 1} + xyzt\frac{yM(x,y) - M(x,1)}{y - 1}.$$

Write it

$$K(x,y)M(x,y) = R(x,y)$$

where K (the kernel) and R involve x, y, M(x, 1), M(1, y) (and q, ν, t).

• Cancel the kernel by specializing y: There exists two (non-explicit) series $Y_1(x)$ and $Y_2(x)$ such that

 $K(x, Y_i) = 0$ (which implies $R(x, Y_i) = 0$)

We have 4 equations relating x, M(x, 1), the Y_i and $M(1, Y_i)$.

Algebraicity via Tutte's invariants method (cont'd)

- From these 4 equations, eliminate x and M(x, 1): this leaves 2 equations between the Y_i and $M(1, Y_i)$, which (when $q = 2 + 2\cos(j\pi/m)$) can be written
 - $I(Y_1) = I(Y_2) \qquad \text{with } I(y) = tyqM(1,y) + \frac{y-1}{y} + \frac{ty}{y-1}$ $J(Y_1) = J(Y_2) \qquad \text{where } J \text{ involves the Chebyshev polynomial } T_m$

The series I(y) and J(y) are invariants.

Algebraicity via Tutte's invariants method (cont'd)

- From these 4 equations, eliminate x and M(x, 1): this leaves 2 equations between the Y_i and $M(1, Y_i)$, which (when $q = 2 + 2\cos(j\pi/m)$) can be written
 - $I(Y_1) = I(Y_2) \qquad \text{with } I(y) = tyqM(1,y) + \frac{y-1}{y} + \frac{ty}{y-1}$ $J(Y_1) = J(Y_2) \qquad \text{where } J \text{ involves the Chebyshev polynomial } T_m$

The series I(y) and J(y) are invariants.

• The theorem of invariants: every invariant is a polynomial in the elementary invariant I(y). Hence there exists series F_0, \ldots, F_m (depending on q, ν and t only) such that

$$J(y) = \sum_{i=0}^{m} F_i I(y)^i$$
 (2)

Algebraicity via Tutte's invariants method (cont'd)

- From these 4 equations, eliminate x and M(x, 1): this leaves 2 equations between the Y_i and $M(1, Y_i)$, which (when $q = 2 + 2\cos(j\pi/m)$) can be written
- $I(Y_1) = I(Y_2) \qquad \text{with } I(y) = tyqM(1,y) + \frac{y-1}{y} + \frac{ty}{y-1}$ $J(Y_1) = J(Y_2) \qquad \text{where } J \text{ involves the Chebyshev polynomial } T_m$ The series I(y) and J(y) are invariants.

• The theorem of invariants: every invariant is a polynomial in the elementary invariant I(y). Hence there exists series F_0, \ldots, F_m (depending on q, ν and t only) such that

$$J(y) = \sum_{i=0}^{m} F_i I(y)^i$$
(3)

• The series I(y) and J(y) involve y and M(1,y), while the (unknown) series F_i are independent from y. Hence (3) is an equation with one catalytic variable (y) satisfied by M(1,y).

Algebraicity via Tutte's invariants method: Examples

• For
$$q = 1$$
 and $M(y) \equiv M(1, y)$, one obtains

$$M(y) = 1 + y^{2} t \nu M(y)^{2} + \nu t y \frac{y M(y) - M(1)}{y - 1}.$$

• For q = 2 (the Ising model),

$$4t^{2}y^{4}\nu(y-1)^{2}(\nu+1)M(y)^{3} + 4(y-1)y^{4}\nu(\nu+1)t^{2}M(y)^{2} + (y-1)^{2}y^{2}(\nu^{2}y-y-\nu^{2}-6\nu-1)tM(y)^{2} + \nu y^{4}(\nu+1)t^{2}M(y) + y^{2}(y-1)(\nu^{2}y+3\nu y-\nu^{2}-6\nu-1)tM(y) - (y-1)^{2}(\nu y-y-\nu-1)M(y) - 2t^{2}y^{3}\nu(y-1)(\nu+1)M(1)M(y) - 2t^{2}y^{2}\nu(\nu+1)(y-1)M(1)^{2} - y^{2}\nu(2y-1)(\nu+1)t^{2}M(1) - y(y-1)(-y+\nu^{2}y-2\nu y-\nu-\nu^{2})tM(1) - \nu t^{2}y^{2}(\nu+1)(y-1)M'(1) + (y-1)^{2}(\nu y-y-\nu-1) = 0$$

• For q = 3, one obtains a big equation involving M(y), M(1), M'(1) and M''(1).

Equations with one catalytic variable \Rightarrow algebraic solutions

Example: The Ising model on planar maps (q = 2)

Let A be the series in t, with polynomial coefficients in ν , defined by

$$A = t \frac{\left(1 + 3\nu A - 3\nu A^2 - \nu^2 A^3\right)^2}{1 - 2A + 2\nu^2 A^3 - \nu^2 A^4}.$$

Then the Ising generating function of planar maps is

$$M(2,\nu,t;1,1) = \frac{1+3\nu A - 3\nu A^2 - \nu^2 A^3}{\left(1-2A+2\nu^2 A^3 - \nu^2 A^4\right)^2} P(\nu,A)$$

where

$$P(\nu, A) = \nu^3 A^6 + 2\nu^2 (1 - \nu) A^5 + \nu (1 - 6\nu) A^4 -\nu (1 - 5\nu) A^3 + (1 + 2\nu) A^2 - (3 + \nu) A + 1.$$

 \rightarrow Asymptotics: Phase transition at $\nu_c = \frac{3+\sqrt{5}}{2}$, critical exponents...

Example: properly 3-coloured planar maps $(q = 3, \nu = 0)$

Let A be the quartic series in t defined by

$$A = t \ \frac{(1+2A)^3}{(1-2A^3)}.$$

Then the generating function of properly 3-coloured planar maps is

$$M(3,0,t;1,1) = \frac{(1+2A)(1-2A^2-4A^3-4A^4)}{(1-2A^3)^2}$$

 \rightarrow Asymptotics: A random loopless planar map with *n* edges has approximately $(1.42...)^n$ proper 3-colourings

Our results: when q is generic

• Let $M(q, \nu, t; x, y)$ be the Potts generating function of planar maps:

$$M(x,y) \equiv M(q,\nu,t;x,y) = \frac{1}{q} \sum_{M} \mathsf{Z}_{M}(q,\nu) t^{\mathsf{e}(M)} x^{\mathsf{d}\mathsf{v}(M)} y^{\mathsf{d}\mathsf{f}(M)},$$

where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-face).

Theorem

• For $q = 2 + 2\cos\frac{j\pi}{m}$, $q \neq 4$, the series $M(q,\nu,t;1,y) \equiv M(1,y)$ satisfies a polynomial equation with one catalytic variable y, and the complete Potts generating function $M(q,\nu,t;x,y)$ is algebraic.

• When q is generic, $M(q, \nu, t; 1, 1)$ is differentially algebraic:

(an explicit system of differential equations)

An explicit system of differential equations

Let
$$D(t,v) = (q\nu + (\nu - 1)^2)v^2 - q(\nu + 1)v + (q + t(\nu - 1)(q - 4)(q + \nu - 1)).$$

• There exists a unique 8-tuple $(P_0(t), \ldots, P_3(t), Q_0(t), Q_1(t), R_0(t), R_1(t))$ of series in t with polynomial coefficients in q and ν such that

$$\frac{1}{R} \frac{\partial}{\partial v} \left(\frac{R^2}{PD^2} \right) + \frac{1}{Q} \frac{\partial}{\partial t} \left(\frac{Q^2}{PD^2} \right) = 0,$$

where

$$P(t,v) = v^{4} + P_{3}(t)v^{3} + P_{2}(t)v^{2} + P_{1}(t)v + P_{0}(t),$$

$$Q(t,v) = v^{2} + Q_{1}(t)v + Q_{0}(t),$$

$$R(t,v) = (q + \nu - 3)v^{2} + R_{1}(t)v + R_{0}(t),$$

with the initial conditions (at t = 0):

$$P(0,v) = v^2(v-1)^2$$
 and $Q(0,v) = v(v-1)$.

An explicit system of differential equations (cont'd)

• The Potts generating function of planar maps, $M(1,1) \equiv M(q,\nu,t;1,1)$, satisfies

$$12t^{2}(q\nu + (\nu - 1)^{2})M(q, \nu, t; 1, 1) =$$

8t(q+\nu-3)Q_{1}(t)-Q_{1}(t)^{2}+P_{2}(t)-2Q_{2}(t)-4t(2-3\nu-q)-12t^{2}(q+\nu-3)^{2}.

Questions

1. Use the structure of

$$\frac{1}{R}\frac{\partial}{\partial v}\left(\frac{R^2}{PD^2}\right) + \frac{1}{Q}\frac{\partial}{\partial t}\left(\frac{Q^2}{PD^2}\right) = 0,$$

to obtain a single differential equation (or an expression?) for $M(q, \nu, t; 1, 1)$.

2. Relate this to elliptic functions, and to the papers of Bonnet & Eynard, and Guionnet, Jones, Shlyakhtenko & Zinn-Justin

An analogous system for triangulations

Let
$$D(t,v) = q\nu^2 v^2 + (\nu - 1) (4(\nu - 1) + q) v + (q\nu(\nu - 1)(q - 4)t + (\nu - 1)^2).$$

• There exists a unique 7-tuple $(P_0(t), \ldots, P_2(t), Q_0(t), Q_1(t), R_0(t), R_1(t))$ of series in t with polynomial coefficients in q and ν such that

$$\frac{1}{R} \frac{\partial}{\partial v} \left(\frac{R^2}{PD^2} \right) + \frac{1}{Q} \frac{\partial}{\partial t} \left(\frac{Q^2}{PD^2} \right) = 0,$$

where

$$P(t,v) = v^{3} + P_{2}(t)v^{2} + P_{1}(t)v + P_{0}(t),$$

$$Q(t,v) = 2\nu v^{2} + Q_{1}(t)v + Q_{0}(t),$$

$$R(t,v) = R_{1}(t)v + R_{0}(t),$$

with the initial conditions (at t = 0):

$$P(0,v) = v^2(v+1/4)$$
 and $Q(0,v) = v(2\nu v+1).$

• Expression of the Potts GF of triangulations in terms of the P_i and Q_i

Special cases for triangulations

- Properly coloured triangulations ($\nu = 0$): Tutte's DE of order 2
- The Potts model with 4 states (q = 4): DE of order 2
- Spanning forests on (near-)cubic maps (q = 0): DE of order 2

Many questions are left...

- A. Equations with two catalytic variables
- Elimination in the systems of differential equations
- Connections with elliptic functions, and with [Eynard-Bonnet 99] and [Guionnet et al. 10]

Many questions are left...

- A. Equations with two catalytic variables
- Elimination in the systems of differential equations
- Connections with elliptic functions, and with [Eynard-Bonnet 99] and [Guionnet et al. 10]
- B. More combinatorics
- Understand algebraic series, e.g., for 3-coloured planar maps:

$$M(3,0,t;1,1) = \frac{(1+2A)(1-2A^2-4A^3-4A^4)}{(1-2A^3)^2} \quad \text{with} \quad A = t\frac{(1+2A)^3}{(1-2A^3)}$$

• Understand differential equations, e.g., for properly *q*-coloured triangulations:

$$2q^{2}(1-q)t + (qt+10H - 6tH')H'' + q(4-q)(20H - 18tH' + 9t^{2}H'') = 0$$

(with J. Courtiel: maps with a spanning forest (q = 0))

Many questions are left...

A. Equations with two catalytic variables

- Elimination in the systems of differential equations
- Connections with elliptic functions, and with [Eynard-Bonnet 99] and [Guionnet et al. 10]
- B. More combinatorics
- Understand algebraic series, e.g., for 3-coloured planar maps:

$$M(3,0,t;1,1) = \frac{(1+2A)(1-2A^2-4A^3-4A^4)}{(1-2A^3)^2} \quad \text{with} \quad A = t \frac{(1+2A)^3}{(1-2A^3)}$$

• Understand differential equations, e.g., for properly *q*-coloured triangulations:

$$2q^{2}(1-q)t + (qt+10H - 6tH')H'' + q(4-q)(20H - 18tH' + 9t^{2}H'') = 0$$

(with J. Courtiel: maps with a spanning forest (q = 0))

C. Asymptotics

- Asymptotic number of properly *q*-coloured maps?
- (done for triangulations $q \in (28/11, 4) \cup [5, \infty)$ [Odlyzko-Richmond 83])
- More generally, phase transitions and critical exponents of the Potts model

Special cases for triangulations

• Properly coloured triangulations ($\nu = 0$): Tutte's differential equation of order 2

 $2q^{2}(1-q)t + (qt + 10H - 6tH')H'' + q(4-q)(20H - 18tH' + 9t^{2}H'') = 0$

- The Potts model with 4 states (q = 4): differential equation of order 2
- Spanning forests on (near-)cubic maps (q = 0): differential equation of order 2

$$(3 t\beta^4 T'^4 - \beta^3 (t - \beta t + 5 \beta T) T'^3 + 4\nu (t - \beta t + 5 \beta T)^2) T'' - 48 t\beta^2 (1 + \beta) T'^3 + 8\beta\nu (t - \beta t + 5 \beta T) T'^2 + 4 (\beta^2 - 1) (t - \beta t + 5 \beta T) T' = 0$$

with $\beta = \nu - 1$