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Map enumerationIn ombinatoris, and in statistial physis

• The original question: how many maps with a given number of edges?� Tutte and his desendents (1960 → 2011)� Brézin-Itzykson-Parisi-Zuber and their desendents (1978 → 2011)

• Key objet: the generating funtion of planar maps, ounted by edges:

M(t) :=
∑

M

te(M) = 1+ 2t+O(t2)where e(M) is the number of edges of M .
• Re�nement: maps ounted by edges and vertex degrees:

M(t;x1, x2, x3 . . .) :=
∑

M

te(M)x
v1(M)
1 x

v2(M)
2 x

v3(M)
3 · · ·where vi(M) is the number of verties of degree i



Maps equipped with an additional strutureIn ombinatoris, but mostly in statistial physisHow many maps equipped with... What is the expetedpartition funtion of...� a spanning tree? � the Ising model?[Mullin 67℄ [Boulatov, Kazakov, MBM, Shae�er,Bouttier et al.℄� a spanning forest?[Bouttier et al., Sportiello et al.℄ � the hard-partile model?[MBM, Shae�er, Jehanne,� a self-avoiding walk? Bouttier et al. 02, 07℄[Duplantier-Kostov 88℄ � the Potts model?� a proper q-olouring? [Eynard-Bonnet 99, Baxter 01,[Tutte 74, Bouttier et al. 02℄ MBM-Bernardi 09, Guionnet et al. 10℄



The Potts model on planar maps

• The partition funtion of the q-state Potts model on a planar map M :

ZM(q, ν) =
∑

c:V (M)→{1,2,...,q}
νm(c)

where m(c) of the number of monohromati edges in the olouring c. In fat,

ZM(q, ν) is a polynomial in q (and ν).Example: When M has one edge and two verties, ZM(q, ν) = qν + q(q − 1)

ν i j 6= ii i proper



The Potts model on planar maps (ont'd)

• Generating funtion:
M(q, ν, t) =

∑

M

ZM(q, ν)te(M)

=
∑

M, c

te(M)νm(c)

= q + (qν + qν + q(q − 1))t+O(t2)

�The Potts generating funtion of planar maps�
⇒ Enumeration of q-oloured planar maps,ounted by edges and monohromati edges.



I. Unoloured planar maps:the reursive approah



Reursive desription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0

Fd(t)x
d

where e(M) is the number of edges and df(M) the degree of the outer fae.
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Reursive desription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0

Fd(t)x
d

where e(M) is the number of edges and df(M) the degree of the outer fae.

M M’ 

F(x) = 1 + tx2F(x)2 + t
∑

d≥0

Fd(t)
(

xd+1 + xd + · · ·+ x
)

= 1 + tx2F(x)2 + tx
xF(x)− F(1)

x− 1[Tutte 68℄ A quadrati equation with one atalyti variable, x



Reursive desription of planar maps: ontrating the root-edgeLet
F(t; y) ≡ F(y) =

∑

M

te(M)ydv(M) =
∑

d≥0

Fd(t)y
d

where e(M) is the number of edges and dv(M) the degree of the root vertex.

F(y) = 1 + ty2F(y)2 + t
∑

d≥0

Fd(t)
(

yd+1 + yd + · · ·+ y
)

= 1 + ty2F(y)2 + ty
yF(y)− F(1)

y − 1

The same equation... (duality)



Polynomial equations with one atalyti variableExamples:
F(x) = 1+ tx2F(x)2 + tx

xF(x)− F(1)

x− 1

F(x) = 1+ txF(x)3 + tx(2F(x) + F(1))
F(x)− F(1)

x− 1

+tx
F(x)− F(1)− (x− 1)F ′(1)

(x− 1)2

Solution:

• Guess and hek [Tutte 60's℄
• Brown's quadrati method [Brown 65℄
• A generalization to all polynomial equations with one atalyti variable[mbm-Jehanne 06℄



Polynomial equations with one atalyti variable

• General framework: A polynomial equation:

P(F(x), F1, . . . , Fm, t, x) = 0 (1) (1)where F(x) ≡ F(t; x) is a series in t with polynomial oe�ients in x, and

Fi ≡ Fi(t) does not depend on x.
• Results1. The solution of every proper equation of this type is algebrai: There exists

P suh that P(t, x, F(t; x)) = 0.2. A pratial (but heavy) strategy allows to solve spei� examples (that is,to derive from (1) an algebrai equation for F(x), or F1, . . . , Fm).

[MBM-Jehanne 06℄



Example

F(t; x) ≡ F(x) = 1+ tx2F(x)2 + tx
xF(x)− F(1)

x− 1

⇓

F(t; 1) =
(1− 12t)3/2 − 1 + 18 t

54t2
=

∑

n≥0

2 · 3n
(n+1)(n+2)

(2n

n

)

tnwith two lines of Maple.Equivalently,

F(t; 1) = A(t)− tA(t)3 where A(t) = 1+ 3tA(t)2

⇒ Many map families have an algebrai generating funtion



II. The Potts model on planar mapsA reursive approah

M(q, ν, t) =
∑

M, c

te(M)νm(c)

• Other approahes: [Eynard-Bonnet 99℄, [Guionnet et al. 10℄



Forget algebraiity!

One speialization of the Potts generating funtion M(q, ν, t) ounts planarmaps equipped with a spanning tree, and...Theorem [Mullin 67℄: The number of planar maps of size n equipped with aspanning tree is
sn =

1

(n+1)(n+2)

(2n

n

)(2n+2

n+1

)

∼ κ16nn−3,and this asymptoti behaviour prevents the series S(t) :=
∑

sntn from beingalgebrai.However, it satis�es a linear di�erential equation.



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variable



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variableHOWEVERit an be desribed with two atalyti variables



Catalyti variablesThe Potts generating funtion of planar maps, being transendental, annotbe desribed with one atalyti variableHOWEVERit an be desribed with two atalyti variablesWHY IS THAT SO?

• The reursive desription of the Potts partition funtion

ZG(q, ν) = ZG\e(q, ν) + (ν − 1)ZG/e(q, ν)alls for a reursive desription of maps by ontration and deletion of edges.

• This is possible if one keeps trak of the degree of the outer fae, and thedegree of the root-vertex.



Equations with two atalyti variables

• Let
M(x, y) ≡ M(q, ν, t;x, y) =

1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

• The Potts generating funtion of planar maps satis�es:

M(x, y) = 1+ xyt ((ν − 1)(y − 1) + qy)M(x, y)M(1, y)

+xyt(xν − 1)M(x, y)M(x,1)

+xyt(ν − 1)
xM(x, y)−M(1, y)

x− 1
+ xyzt

yM(x, y)−M(x,1)

y − 1
.[Tutte 68℄ This equation has been sleeping for 40 years



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-oloured triangulations:

T(x, y) = xy2q(q−1)+
xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2yt

T(x, y)− T(1, y)

x− 1where T2(x) is the oe�ient of y2 in T(x, y).

[Tutte 73℄ Chromati sums for rooted planar triangulations: the ases λ = 1 and λ = 2[Tutte 73℄ Chromati sums for rooted planar triangulations, II : the ase λ = τ + 1[Tutte 73℄ Chromati sums for rooted planar triangulations, III : the ase λ = 3[Tutte 73℄ Chromati sums for rooted planar triangulations, IV : the ase λ = ∞[Tutte 74℄ Chromati sums for rooted planar triangulations, V : speial equations[Tutte 78℄ On a pair of funtional equations of ombinatorial interest[Tutte 82℄ Chromati solutions[Tutte 82℄ Chromati solutions II[Tutte 84℄ Map-olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati sums revisited
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In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-oloured triangulations:

T(x, y) = xy2q(q−1)+
xt
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T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2yt

T(x, y)− T(1, y)

x− 1where T2(x) is the oe�ient of y2 in T(x, y).

Theorem [Tutte℄
• For q = 2+2cos 2πm , q 6= 4, the series T(1, y) ≡ T(t; 1, y) satis�es a polynomialequation with one atalyti variable y.
• When q is generi, the generating funtion of properly q-oloured planartriangulations is di�erentially algebrai:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0with H(t) = t2T2(q,
√
t; 1)/q.



Adapt this to other equations!

[Tutte 73℄ Chromati sums for rooted planar triangulations: the ases λ = 1 and λ = 2[Tutte 73℄ Chromati sums for rooted planar triangulations, II : the ase λ = τ + 1[Tutte 73℄ Chromati sums for rooted planar triangulations, III : the ase λ = 3[Tutte 73℄ Chromati sums for rooted planar triangulations, IV : the ase λ = ∞[Tutte 74℄ Chromati sums for rooted planar triangulations, V : speial equations[Tutte 78℄ On a pair of funtional equations of ombinatorial interest[Tutte 82℄ Chromati solutions[Tutte 82℄ Chromati solutions II[Tutte 84℄ Map-olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati sums revisited



Our results

• Let M(q, ν, t;x, y) be the Potts generating funtion of planar maps:

M(x, y) ≡ M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 0,4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one atalyti variable y, and the omplete Pottsgenerating funtion M(q, ν, t;x, y) is algebrai.

• When q is generi, M(q, ν, t; 1,1) is di�erentially algebrai:(an expliit system of di�erential equations)[mbm-Bernardi 09℄ Counting olored planar maps: algebraiity results. Arxiv:0909:1695[mbm-Bernardi 12℄ Counting olored planar maps: di�erential equations



Algebraiity via Tutte's invariants method:From two to one atalyti variables

• The equation is linear in M(x, y):

M(x, y) = 1+ xyt ((ν − 1)(y − 1) + qy)M(x, y)M(1, y)

+xyzt(xν − 1)M(x, y)M(x,1)

+xyt(ν − 1)
xM(x, y)−M(1, y)

x− 1
+ xyzt

yM(x, y)−M(x,1)

y − 1
.Write it

K(x, y)M(x, y) = R(x, y)where K (the kernel) and R involve x, y,M(x,1),M(1, y) (and q, ν, t).
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+xyzt(xν − 1)M(x, y)M(x,1)

+xyt(ν − 1)
xM(x, y)−M(1, y)

x− 1
+ xyzt

yM(x, y)−M(x,1)

y − 1
.Write it

K(x, y)M(x, y) = R(x, y)where K (the kernel) and R involve x, y,M(x,1),M(1, y) (and q, ν, t).

• Canel the kernel by speializing y: There exists two (non-expliit) series

Y1(x) and Y2(x) suh that

K(x, Yi) = 0 (whih implies R(x, Yi) = 0)We have 4 equations relating x, M(x,1), the Yi and M(1, Yi).



Algebraiity via Tutte's invariants method (ont'd)

• From these 4 equations, eliminate x and M(x,1): this leaves 2 equationsbetween the Yi and M(1, Yi), whih (when q = 2+2cos(jπ/m)) an be written

I(Y1) = I(Y2) with I(y) = tyqM(1, y) + y−1
y + ty

y−1

J(Y1) = J(Y2) where J involves the Chebyshev polynomial TmThe series I(y) and J(y) are invariants.
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Algebraiity via Tutte's invariants method (ont'd)

• From these 4 equations, eliminate x and M(x,1): this leaves 2 equationsbetween the Yi and M(1, Yi), whih (when q = 2+2cos(jπ/m)) an be written

I(Y1) = I(Y2) with I(y) = tyqM(1, y) + y−1
y + ty

y−1

J(Y1) = J(Y2) where J involves the Chebyshev polynomial TmThe series I(y) and J(y) are invariants.
• The theorem of invariants: every invariant is a polynomial in the elementaryinvariant I(y). Hene there exists series F0, . . . , Fm (depending on q, ν and tonly) suh that

J(y) =
m
∑

i=0

FiI(y)
i (3)

• The series I(y) and J(y) involve y and M(1, y), while the (unknown) series Fiare independent from y. Hene (3) is an equation with one atalyti variable(y) satis�ed by M(1, y).



Algebraiity via Tutte's invariants method: Examples

• For q = 1 and M(y) ≡ M(1, y), one obtains

M(y) = 1+ y2tνM(y)2 + νty
yM(y)−M(1)

y − 1
.

• For q = 2 (the Ising model),
4 t2y4ν (y − 1)2(ν +1)M(y)3 +4(y − 1)y4ν (ν +1)t2M(y)2

+ (y − 1)2y2
(

ν2y − y − ν2 − 6 ν − 1
)

tM(y)2 + ν y4(ν +1)t2M(y)

+ y2(y − 1)
(

ν2y +3 ν y − ν2 − 6 ν − 1
)

tM(y)− (y − 1)2 (ν y − y − ν − 1)M(y)

− 2 t2y3ν (y − 1)(ν +1)M(1)M(y)− 2 t2y2ν (ν +1)(y − 1)M(1)2

− y2ν (2 y − 1)(ν +1)t2M(1)− y(y − 1)
(

−y + ν2y − 2 ν y − ν − ν2
)

tM(1)

− ν t2y2(ν +1)(y − 1)M ′(1) + (y − 1)2 (ν y − y − ν − 1) = 0

• For q = 3, one obtains a big equation involving M(y),M(1),M ′(1) and M ′′(1).Equations with one atalyti variable ⇒ algebrai solutions



Example: The Ising model on planar maps (q = 2)

Let A be the series in t, with polynomial oe�ients in ν, de�ned by

A = t

(

1+ 3 ν A− 3 ν A2 − ν2A3
)2

1− 2A+2 ν2A3 − ν2A4
.Then the Ising generating funtion of planar maps is

M(2, ν, t; 1,1) =
1+ 3 ν A− 3 ν A2 − ν2A3

(

1− 2A+2 ν2A3 − ν2A4
)2

P(ν, A)where

P(ν, A) = ν3A6 +2 ν2(1− ν)A5 + ν (1− 6 ν)A4

− ν (1− 5 ν)A3 + (1+ 2 ν)A2 − (3 + ν)A+1.

 Asymptotis: Phase transition at νc =
3+

√
5

2 , ritial exponents...



Example: properly 3-oloured planar maps (q = 3, ν = 0)

Let A be the quarti series in t de�ned by

A = t
(1 + 2A)3

(1− 2A3)
.Then the generating funtion of properly 3-oloured planar maps is

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

 Asymptotis: A random loopless planar map with n edges has approximately

(1.42...)n proper 3-olourings



Our results: when q is generi

• Let M(q, ν, t;x, y) be the Potts generating funtion of planar maps:

M(x, y) ≡ M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fae).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one atalyti variable y, and the omplete Pottsgenerating funtion M(q, ν, t;x, y) is algebrai.

• When q is generi, M(q, ν, t; 1,1) is di�erentially algebrai:(an expliit system of di�erential equations)



An expliit system of di�erential equations

Let D(t, v) =
(

qν + (ν − 1)2
)

v2 − q(ν +1)v +
(

q + t(ν − 1)(q − 4)(q + ν − 1)
)

.

• There exists a unique 8-tuple (P0(t), . . . , P3(t), Q0(t), Q1(t), R0(t), R1(t)) ofseries in t with polynomial oe�ients in q and ν suh that

1

R

∂

∂v

(

R2

PD2

)

+
1

Q

∂

∂t

(

Q2

PD2

)

= 0,where

P(t, v) = v4 + P3(t)v
3 + P2(t)v

2 + P1(t)v + P0(t),

Q(t, v) = v2 +Q1(t)v +Q0(t),

R(t, v) = (q + ν − 3)v2 +R1(t)v +R0(t),with the initial onditions (at t = 0):
P(0, v) = v2(v − 1)2 and Q(0, v) = v(v − 1).



An expliit system of di�erential equations (ont'd)

• The Potts generating funtion of planar maps, M(1,1) ≡ M(q, ν, t; 1,1), sat-is�es
12 t2

(

qν + (ν − 1)2
)

M(q, ν, t; 1,1) =

8 t(q+ν−3)Q1(t)−Q1(t)
2+P2(t)−2Q2(t)−4 t (2− 3 ν − q)−12 t2 (q + ν − 3)2 .

Questions1. Use the struture of
1

R

∂

∂v

(

R2

PD2

)

+
1

Q

∂

∂t

(

Q2

PD2

)

= 0,to obtain a single di�erential equation (or an expression?) for M(q, ν, t; 1,1).2. Relate this to ellipti funtions, and to the papers of Bonnet & Eynard, andGuionnet, Jones, Shlyakhtenko & Zinn-Justin



An analogous system for triangulationsLet D(t, v) = qν2v2 + (ν − 1) (4(ν − 1) + q) v +
(

qν(ν − 1)(q − 4)t+ (ν − 1)2
)

.

• There exists a unique 7-tuple (P0(t), . . . , P2(t), Q0(t), Q1(t), R0(t), R1(t)) ofseries in t with polynomial oe�ients in q and ν suh that

1

R

∂

∂v

(

R2

PD2

)

+
1

Q

∂

∂t

(

Q2

PD2

)

= 0,where

P(t, v) = v3 + P2(t)v
2 + P1(t)v + P0(t),

Q(t, v) = 2νv2 +Q1(t)v +Q0(t),

R(t, v) = R1(t)v +R0(t),with the initial onditions (at t = 0):
P(0, v) = v2(v +1/4) and Q(0, v) = v(2νv +1).

• Expression of the Potts GF of triangulations in terms of the Pi and Qi



Speial ases for triangulations

• Properly oloured triangulations (ν = 0): Tutte's DE of order 2

• The Potts model with 4 states (q = 4): DE of order 2

• Spanning forests on (near-)ubi maps (q = 0): DE of order 2



Many questions are left...A. Equations with two atalyti variables

• Elimination in the systems of di�erential equations

• Connetions with ellipti funtions, and with [Eynard-Bonnet 99℄ and [Guion-net et al. 10℄
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• Connetions with ellipti funtions, and with [Eynard-Bonnet 99℄ and [Guion-net et al. 10℄B. More ombinatoris
• Understand algebrai series, e.g., for 3-oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0(with J. Courtiel: maps with a spanning forest (q = 0))



Many questions are left...A. Equations with two atalyti variables

• Elimination in the systems of di�erential equations

• Connetions with ellipti funtions, and with [Eynard-Bonnet 99℄ and [Guion-net et al. 10℄B. More ombinatoris
• Understand algebrai series, e.g., for 3-oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0(with J. Courtiel: maps with a spanning forest (q = 0))C. Asymptotis

• Asymptoti number of properly q-oloured maps?(done for triangulations q ∈ (28/11, 4) ∪ [5,∞) [Odlyzko-Rihmond 83℄)

• More generally, phase transitions and ritial exponents of the Potts model



Speial ases for triangulations

• Properly oloured triangulations (ν = 0): Tutte's di�erential equation oforder 2
2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0

• The Potts model with 4 states (q = 4): di�erential equation of order 2

• Spanning forests on (near-)ubi maps (q = 0): di�erential equation of order2

(

3 tβ4T ′4 − β3 (t− β t+5 β T)T ′3 +4ν (t− β t+5 β T)2
)

T ′′

− 48 tβ2 (1 + β)T ′3 +8βν (t− β t+5β T)T ′2

+4(β2 − 1) (t− β t+5 β T) T ′ = 0with β = ν − 1


