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Map enumerationIn 
ombinatori
s, and in statisti
al physi
s

• The original question: how many maps with a given number of edges?� Tutte and his des
endents (1960 → 2011)� Brézin-Itzykson-Parisi-Zuber and their des
endents (1978 → 2011)

• Key obje
t: the generating fun
tion of planar maps, 
ounted by edges:

M(t) :=
∑

M

te(M) = 1+ 2t+O(t2)where e(M) is the number of edges of M .
• Re�nement: maps 
ounted by edges and vertex degrees:

M(t;x1, x2, x3 . . .) :=
∑

M

te(M)x
v1(M)
1 x

v2(M)
2 x

v3(M)
3 · · ·where vi(M) is the number of verti
es of degree i



Maps equipped with an additional stru
tureIn 
ombinatori
s, but mostly in statisti
al physi
sHow many maps equipped with... What is the expe
tedpartition fun
tion of...� a spanning tree? � the Ising model?[Mullin 67℄ [Boulatov, Kazakov, MBM, S
hae�er,Bouttier et al.℄� a spanning forest?[Bouttier et al., Sportiello et al.℄ � the hard-parti
le model?[MBM, S
hae�er, Jehanne,� a self-avoiding walk? Bouttier et al. 02, 07℄[Duplantier-Kostov 88℄ � the Potts model?� a proper q-
olouring? [Eynard-Bonnet 99, Baxter 01,[Tutte 74, Bouttier et al. 02℄ MBM-Bernardi 09, Guionnet et al. 10℄



The Potts model on planar maps

• The partition fun
tion of the q-state Potts model on a planar map M :

ZM(q, ν) =
∑

c:V (M)→{1,2,...,q}
νm(c)

where m(c) of the number of mono
hromati
 edges in the 
olouring c. In fa
t,

ZM(q, ν) is a polynomial in q (and ν).Example: When M has one edge and two verti
es, ZM(q, ν) = qν + q(q − 1)

ν i j 6= ii i proper



The Potts model on planar maps (
ont'd)

• Generating fun
tion:
M(q, ν, t) =

∑

M

ZM(q, ν)te(M)

=
∑

M, c

te(M)νm(c)

= q + (qν + qν + q(q − 1))t+O(t2)

�The Potts generating fun
tion of planar maps�
⇒ Enumeration of q-
oloured planar maps,
ounted by edges and mono
hromati
 edges.



I. Un
oloured planar maps:the re
ursive approa
h



Re
ursive des
ription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0

Fd(t)x
d

where e(M) is the number of edges and df(M) the degree of the outer fa
e.
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Re
ursive des
ription of planar maps: deleting the root-edgeLet
F(t; x) ≡ F(x) =

∑

M

te(M)xdf(M) =
∑

d≥0

Fd(t)x
d

where e(M) is the number of edges and df(M) the degree of the outer fa
e.

M M’ 

F(x) = 1 + tx2F(x)2 + t
∑

d≥0

Fd(t)
(

xd+1 + xd + · · ·+ x
)

= 1 + tx2F(x)2 + tx
xF(x)− F(1)

x− 1[Tutte 68℄ A quadrati
 equation with one 
atalyti
 variable, x



Re
ursive des
ription of planar maps: 
ontra
ting the root-edgeLet
F(t; y) ≡ F(y) =

∑

M

te(M)ydv(M) =
∑

d≥0

Fd(t)y
d

where e(M) is the number of edges and dv(M) the degree of the root vertex.

F(y) = 1 + ty2F(y)2 + t
∑

d≥0

Fd(t)
(

yd+1 + yd + · · ·+ y
)

= 1 + ty2F(y)2 + ty
yF(y)− F(1)

y − 1

The same equation... (duality)



Polynomial equations with one 
atalyti
 variableExamples:
F(x) = 1+ tx2F(x)2 + tx

xF(x)− F(1)

x− 1

F(x) = 1+ txF(x)3 + tx(2F(x) + F(1))
F(x)− F(1)

x− 1

+tx
F(x)− F(1)− (x− 1)F ′(1)

(x− 1)2

Solution:

• Guess and 
he
k [Tutte 60's℄
• Brown's quadrati
 method [Brown 65℄
• A generalization to all polynomial equations with one 
atalyti
 variable[mbm-Jehanne 06℄



Polynomial equations with one 
atalyti
 variable

• General framework: A polynomial equation:

P(F(x), F1, . . . , Fm, t, x) = 0 (1) (1)where F(x) ≡ F(t; x) is a series in t with polynomial 
oe�
ients in x, and

Fi ≡ Fi(t) does not depend on x.
• Results1. The solution of every proper equation of this type is algebrai
: There exists

P su
h that P(t, x, F(t; x)) = 0.2. A pra
ti
al (but heavy) strategy allows to solve spe
i�
 examples (that is,to derive from (1) an algebrai
 equation for F(x), or F1, . . . , Fm).

[MBM-Jehanne 06℄



Example

F(t; x) ≡ F(x) = 1+ tx2F(x)2 + tx
xF(x)− F(1)

x− 1

⇓

F(t; 1) =
(1− 12t)3/2 − 1 + 18 t

54t2
=

∑

n≥0

2 · 3n
(n+1)(n+2)

(2n

n

)

tnwith two lines of Maple.Equivalently,

F(t; 1) = A(t)− tA(t)3 where A(t) = 1+ 3tA(t)2

⇒ Many map families have an algebrai
 generating fun
tion



II. The Potts model on planar mapsA re
ursive approa
h

M(q, ν, t) =
∑

M, c

te(M)νm(c)

• Other approa
hes: [Eynard-Bonnet 99℄, [Guionnet et al. 10℄



Forget algebrai
ity!

One spe
ialization of the Potts generating fun
tion M(q, ν, t) 
ounts planarmaps equipped with a spanning tree, and...Theorem [Mullin 67℄: The number of planar maps of size n equipped with aspanning tree is
sn =

1

(n+1)(n+2)

(2n

n

)(2n+2

n+1

)

∼ κ16nn−3,and this asymptoti
 behaviour prevents the series S(t) :=
∑

sntn from beingalgebrai
.However, it satis�es a linear di�erential equation.
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Catalyti
 variablesThe Potts generating fun
tion of planar maps, being trans
endental, 
annotbe des
ribed with one 
atalyti
 variableHOWEVERit 
an be des
ribed with two 
atalyti
 variablesWHY IS THAT SO?

• The re
ursive des
ription of the Potts partition fun
tion

ZG(q, ν) = ZG\e(q, ν) + (ν − 1)ZG/e(q, ν)
alls for a re
ursive des
ription of maps by 
ontra
tion and deletion of edges.

• This is possible if one keeps tra
k of the degree of the outer fa
e, and thedegree of the root-vertex.



Equations with two 
atalyti
 variables

• Let
M(x, y) ≡ M(q, ν, t;x, y) =

1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fa
e).

• The Potts generating fun
tion of planar maps satis�es:

M(x, y) = 1+ xyt ((ν − 1)(y − 1) + qy)M(x, y)M(1, y)

+xyt(xν − 1)M(x, y)M(x,1)

+xyt(ν − 1)
xM(x, y)−M(1, y)

x− 1
+ xyzt

yM(x, y)−M(x,1)

y − 1
.[Tutte 68℄ This equation has been sleeping for 40 years



In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-
oloured triangulations:

T(x, y) = xy2q(q−1)+
xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2yt

T(x, y)− T(1, y)

x− 1where T2(x) is the 
oe�
ient of y2 in T(x, y).

[Tutte 73℄ Chromati
 sums for rooted planar triangulations: the 
ases λ = 1 and λ = 2[Tutte 73℄ Chromati
 sums for rooted planar triangulations, II : the 
ase λ = τ + 1[Tutte 73℄ Chromati
 sums for rooted planar triangulations, III : the 
ase λ = 3[Tutte 73℄ Chromati
 sums for rooted planar triangulations, IV : the 
ase λ = ∞[Tutte 74℄ Chromati
 sums for rooted planar triangulations, V : spe
ial equations[Tutte 78℄ On a pair of fun
tional equations of 
ombinatorial interest[Tutte 82℄ Chromati
 solutions[Tutte 82℄ Chromati
 solutions II[Tutte 84℄ Map-
olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati
 sums revisited
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In the footsteps of W. Tutte

• For the GF T(q, t;x, y) ≡ T(x, y) of properly q-
oloured triangulations:

T(x, y) = xy2q(q−1)+
xt

yq
T(1, y)T(x, y)+xt

T(x, y)− y2T2(x)

y
−x2yt

T(x, y)− T(1, y)

x− 1where T2(x) is the 
oe�
ient of y2 in T(x, y).

Theorem [Tutte℄
• For q = 2+2cos 2πm , q 6= 4, the series T(1, y) ≡ T(t; 1, y) satis�es a polynomialequation with one 
atalyti
 variable y.
• When q is generi
, the generating fun
tion of properly q-
oloured planartriangulations is di�erentially algebrai
:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0with H(t) = t2T2(q,
√
t; 1)/q.



Adapt this to other equations!

[Tutte 73℄ Chromati
 sums for rooted planar triangulations: the 
ases λ = 1 and λ = 2[Tutte 73℄ Chromati
 sums for rooted planar triangulations, II : the 
ase λ = τ + 1[Tutte 73℄ Chromati
 sums for rooted planar triangulations, III : the 
ase λ = 3[Tutte 73℄ Chromati
 sums for rooted planar triangulations, IV : the 
ase λ = ∞[Tutte 74℄ Chromati
 sums for rooted planar triangulations, V : spe
ial equations[Tutte 78℄ On a pair of fun
tional equations of 
ombinatorial interest[Tutte 82℄ Chromati
 solutions[Tutte 82℄ Chromati
 solutions II[Tutte 84℄ Map-
olourings and di�erential equations
⊳ ⊳ ⋄ ⊲ ⊲[Tutte 95℄: Chromati
 sums revisited



Our results

• Let M(q, ν, t;x, y) be the Potts generating fun
tion of planar maps:

M(x, y) ≡ M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fa
e).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 0,4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one 
atalyti
 variable y, and the 
omplete Pottsgenerating fun
tion M(q, ν, t;x, y) is algebrai
.

• When q is generi
, M(q, ν, t; 1,1) is di�erentially algebrai
:(an expli
it system of di�erential equations)[mbm-Bernardi 09℄ Counting 
olored planar maps: algebrai
ity results. Arxiv:0909:1695[mbm-Bernardi 12℄ Counting 
olored planar maps: di�erential equations



Algebrai
ity via Tutte's invariants method:From two to one 
atalyti
 variables

• The equation is linear in M(x, y):

M(x, y) = 1+ xyt ((ν − 1)(y − 1) + qy)M(x, y)M(1, y)

+xyzt(xν − 1)M(x, y)M(x,1)

+xyt(ν − 1)
xM(x, y)−M(1, y)

x− 1
+ xyzt

yM(x, y)−M(x,1)

y − 1
.Write it

K(x, y)M(x, y) = R(x, y)where K (the kernel) and R involve x, y,M(x,1),M(1, y) (and q, ν, t).
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yM(x, y)−M(x,1)

y − 1
.Write it

K(x, y)M(x, y) = R(x, y)where K (the kernel) and R involve x, y,M(x,1),M(1, y) (and q, ν, t).

• Can
el the kernel by spe
ializing y: There exists two (non-expli
it) series

Y1(x) and Y2(x) su
h that

K(x, Yi) = 0 (whi
h implies R(x, Yi) = 0)We have 4 equations relating x, M(x,1), the Yi and M(1, Yi).



Algebrai
ity via Tutte's invariants method (
ont'd)

• From these 4 equations, eliminate x and M(x,1): this leaves 2 equationsbetween the Yi and M(1, Yi), whi
h (when q = 2+2cos(jπ/m)) 
an be written

I(Y1) = I(Y2) with I(y) = tyqM(1, y) + y−1
y + ty

y−1

J(Y1) = J(Y2) where J involves the Chebyshev polynomial TmThe series I(y) and J(y) are invariants.
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Algebrai
ity via Tutte's invariants method (
ont'd)

• From these 4 equations, eliminate x and M(x,1): this leaves 2 equationsbetween the Yi and M(1, Yi), whi
h (when q = 2+2cos(jπ/m)) 
an be written

I(Y1) = I(Y2) with I(y) = tyqM(1, y) + y−1
y + ty

y−1

J(Y1) = J(Y2) where J involves the Chebyshev polynomial TmThe series I(y) and J(y) are invariants.
• The theorem of invariants: every invariant is a polynomial in the elementaryinvariant I(y). Hen
e there exists series F0, . . . , Fm (depending on q, ν and tonly) su
h that

J(y) =
m
∑

i=0

FiI(y)
i (3)

• The series I(y) and J(y) involve y and M(1, y), while the (unknown) series Fiare independent from y. Hen
e (3) is an equation with one 
atalyti
 variable(y) satis�ed by M(1, y).



Algebrai
ity via Tutte's invariants method: Examples

• For q = 1 and M(y) ≡ M(1, y), one obtains

M(y) = 1+ y2tνM(y)2 + νty
yM(y)−M(1)

y − 1
.

• For q = 2 (the Ising model),
4 t2y4ν (y − 1)2(ν +1)M(y)3 +4(y − 1)y4ν (ν +1)t2M(y)2

+ (y − 1)2y2
(

ν2y − y − ν2 − 6 ν − 1
)

tM(y)2 + ν y4(ν +1)t2M(y)

+ y2(y − 1)
(

ν2y +3 ν y − ν2 − 6 ν − 1
)

tM(y)− (y − 1)2 (ν y − y − ν − 1)M(y)

− 2 t2y3ν (y − 1)(ν +1)M(1)M(y)− 2 t2y2ν (ν +1)(y − 1)M(1)2

− y2ν (2 y − 1)(ν +1)t2M(1)− y(y − 1)
(

−y + ν2y − 2 ν y − ν − ν2
)

tM(1)

− ν t2y2(ν +1)(y − 1)M ′(1) + (y − 1)2 (ν y − y − ν − 1) = 0

• For q = 3, one obtains a big equation involving M(y),M(1),M ′(1) and M ′′(1).Equations with one 
atalyti
 variable ⇒ algebrai
 solutions



Example: The Ising model on planar maps (q = 2)

Let A be the series in t, with polynomial 
oe�
ients in ν, de�ned by

A = t

(

1+ 3 ν A− 3 ν A2 − ν2A3
)2

1− 2A+2 ν2A3 − ν2A4
.Then the Ising generating fun
tion of planar maps is

M(2, ν, t; 1,1) =
1+ 3 ν A− 3 ν A2 − ν2A3

(

1− 2A+2 ν2A3 − ν2A4
)2

P(ν, A)where

P(ν, A) = ν3A6 +2 ν2(1− ν)A5 + ν (1− 6 ν)A4

− ν (1− 5 ν)A3 + (1+ 2 ν)A2 − (3 + ν)A+1.

 Asymptoti
s: Phase transition at νc =
3+

√
5

2 , 
riti
al exponents...



Example: properly 3-
oloured planar maps (q = 3, ν = 0)

Let A be the quarti
 series in t de�ned by

A = t
(1 + 2A)3

(1− 2A3)
.Then the generating fun
tion of properly 3-
oloured planar maps is

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

 Asymptoti
s: A random loopless planar map with n edges has approximately

(1.42...)n proper 3-
olourings



Our results: when q is generi


• Let M(q, ν, t;x, y) be the Potts generating fun
tion of planar maps:

M(x, y) ≡ M(q, ν, t;x, y) =
1

q

∑

M

ZM(q, ν)te(M)xdv(M)ydf(M),where dv(M) (resp. df(M)) is the degree of the root-vertex (resp. root-fa
e).

Theorem

• For q = 2 + 2cos
jπ
m , q 6= 4, the series M(q, ν, t; 1, y) ≡ M(1, y) satis�esa polynomial equation with one 
atalyti
 variable y, and the 
omplete Pottsgenerating fun
tion M(q, ν, t;x, y) is algebrai
.

• When q is generi
, M(q, ν, t; 1,1) is di�erentially algebrai
:(an expli
it system of di�erential equations)



An expli
it system of di�erential equations

Let D(t, v) =
(

qν + (ν − 1)2
)

v2 − q(ν +1)v +
(

q + t(ν − 1)(q − 4)(q + ν − 1)
)

.

• There exists a unique 8-tuple (P0(t), . . . , P3(t), Q0(t), Q1(t), R0(t), R1(t)) ofseries in t with polynomial 
oe�
ients in q and ν su
h that

1

R

∂

∂v

(

R2

PD2

)

+
1

Q

∂

∂t

(

Q2

PD2

)

= 0,where

P(t, v) = v4 + P3(t)v
3 + P2(t)v

2 + P1(t)v + P0(t),

Q(t, v) = v2 +Q1(t)v +Q0(t),

R(t, v) = (q + ν − 3)v2 +R1(t)v +R0(t),with the initial 
onditions (at t = 0):
P(0, v) = v2(v − 1)2 and Q(0, v) = v(v − 1).



An expli
it system of di�erential equations (
ont'd)

• The Potts generating fun
tion of planar maps, M(1,1) ≡ M(q, ν, t; 1,1), sat-is�es
12 t2

(

qν + (ν − 1)2
)

M(q, ν, t; 1,1) =

8 t(q+ν−3)Q1(t)−Q1(t)
2+P2(t)−2Q2(t)−4 t (2− 3 ν − q)−12 t2 (q + ν − 3)2 .

Questions1. Use the stru
ture of
1

R

∂

∂v

(

R2

PD2

)

+
1

Q

∂

∂t

(

Q2

PD2

)

= 0,to obtain a single di�erential equation (or an expression?) for M(q, ν, t; 1,1).2. Relate this to ellipti
 fun
tions, and to the papers of Bonnet & Eynard, andGuionnet, Jones, Shlyakhtenko & Zinn-Justin



An analogous system for triangulationsLet D(t, v) = qν2v2 + (ν − 1) (4(ν − 1) + q) v +
(

qν(ν − 1)(q − 4)t+ (ν − 1)2
)

.

• There exists a unique 7-tuple (P0(t), . . . , P2(t), Q0(t), Q1(t), R0(t), R1(t)) ofseries in t with polynomial 
oe�
ients in q and ν su
h that

1

R

∂

∂v

(

R2

PD2

)

+
1

Q

∂

∂t

(

Q2

PD2

)

= 0,where

P(t, v) = v3 + P2(t)v
2 + P1(t)v + P0(t),

Q(t, v) = 2νv2 +Q1(t)v +Q0(t),

R(t, v) = R1(t)v +R0(t),with the initial 
onditions (at t = 0):
P(0, v) = v2(v +1/4) and Q(0, v) = v(2νv +1).

• Expression of the Potts GF of triangulations in terms of the Pi and Qi



Spe
ial 
ases for triangulations

• Properly 
oloured triangulations (ν = 0): Tutte's DE of order 2

• The Potts model with 4 states (q = 4): DE of order 2

• Spanning forests on (near-)
ubi
 maps (q = 0): DE of order 2



Many questions are left...A. Equations with two 
atalyti
 variables

• Elimination in the systems of di�erential equations

• Conne
tions with ellipti
 fun
tions, and with [Eynard-Bonnet 99℄ and [Guion-net et al. 10℄



Many questions are left...A. Equations with two 
atalyti
 variables

• Elimination in the systems of di�erential equations

• Conne
tions with ellipti
 fun
tions, and with [Eynard-Bonnet 99℄ and [Guion-net et al. 10℄B. More 
ombinatori
s
• Understand algebrai
 series, e.g., for 3-
oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-
oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0(with J. Courtiel: maps with a spanning forest (q = 0))



Many questions are left...A. Equations with two 
atalyti
 variables

• Elimination in the systems of di�erential equations

• Conne
tions with ellipti
 fun
tions, and with [Eynard-Bonnet 99℄ and [Guion-net et al. 10℄B. More 
ombinatori
s
• Understand algebrai
 series, e.g., for 3-
oloured planar maps:

M(3,0, t; 1,1) =
(1+ 2A)(1− 2A2 − 4A3 − 4A4)

(1− 2A3)2

with A = t
(1 + 2A)3

(1− 2A3)

• Understand di�erential equations, e.g., for properly q-
oloured triangulations:

2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0(with J. Courtiel: maps with a spanning forest (q = 0))C. Asymptoti
s

• Asymptoti
 number of properly q-
oloured maps?(done for triangulations q ∈ (28/11, 4) ∪ [5,∞) [Odlyzko-Ri
hmond 83℄)

• More generally, phase transitions and 
riti
al exponents of the Potts model



Spe
ial 
ases for triangulations

• Properly 
oloured triangulations (ν = 0): Tutte's di�erential equation oforder 2
2q2(1− q)t+ (qt+10H − 6tH ′)H ′′ + q(4− q)(20H − 18tH ′ +9t2H ′′) = 0

• The Potts model with 4 states (q = 4): di�erential equation of order 2

• Spanning forests on (near-)
ubi
 maps (q = 0): di�erential equation of order2

(

3 tβ4T ′4 − β3 (t− β t+5 β T)T ′3 +4ν (t− β t+5 β T)2
)

T ′′

− 48 tβ2 (1 + β)T ′3 +8βν (t− β t+5β T)T ′2

+4(β2 − 1) (t− β t+5 β T) T ′ = 0with β = ν − 1


