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Abstract

In this paper, we consider Galton-Watson trees conditioned by the size. We show that the
number of k-ancestors (ancestors that have k children) of a node u is (almost) proportional to its
depth. The k, j-ancestors are also studied. The methods rely on the study of ladder variables on
an associated random walk. We also give application to finite branching random walks.

1 Introduction and main results

We consider Galton-Watson branching process with offspring N , starting with 1 individual in
generation 0. N is a non-negative, integer-valued random variable that satisfies:

{

E(N) = 1, 0 < Var(N) = σ2 < +∞
there exists a constant α > 0 s.t. E

(

eαN
)

< +∞.
(1)

Following Petrov [16] p. 56, there exist two positive constants g and T (that depend only on the
distribution of N) such that:

E
(

exp(t(N − 1))
)

≤ exp(gt2/2) for |t| ≤ T.

The constant g will play an important role in the sequel of the paper.
We write ζ for the family tree of this branching process and Ω the probability space of all trees

with the law induced by N .
In the present paper, we study some properties of Galton-Watson trees conditioned by their total

progeny. We note Ωn the space of size n trees endowed by the conditional law given |ζ| = n. The law
on Ωn will be denoted by Pn. It is now well known that each family of simply generated trees (in the
sense of Meir & Moon [14]) can be viewed as critical Galton-Watson trees conditioned by the size
(we refer to Kolchin [8]) and that considering only critical offspring distribution is not a restrictive
assumption (when we condition by |ζ| = n), see Kennedy [7].
We note (pi)i≥0 = (P(N = i))i≥0 the offspring distribution. Let u be a node of ζ (we note u ∈ ζ).
We consider the following random variables:
ak(u), the number of ancestors of u (u excluded) that have k children (we call these nodes k-ancestors
of u).
ak,j(u), the number of ancestors of u (u excluded) that have k children, and from which u is a
descendant of the jth one (thus j goes from 1 to k and the children are ordered from the leftmost
one to the rightmost one). We call these ancestors, k, j-ancestors of u.
h(u), the depth of the node u (that is h(u) = d(u, root)).
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1.1 Internal structure of finite Galton-Watson trees

A first aim of this paper is to show that ak(u) is roughly speaking proportional to h(u), and this
“uniformally” in u:

Theorem 1 Let β be a positive real number. For any γ >
√

(β + 4)
√

(β + 7/2)g/2,

Pn

(

sup
u∈ζ, k

∣

∣ak(u) − kpkh(u)
∣

∣ > γn1/4 lnn
)

= o(n−β).

Note that this result is not trivial since h(u) � n1/4 lnn for “almost” all the nodes. A partial
explanation of this theorem follows: it is known that the number of nodes having k children in a tree
of Ωn is about pkn. This implies, that about kpkn nodes have a father with k children. Taking one
ancestor at random (that is a node having some children) will provide a node with k children with
probability (asymptotically) kpk.

This distribution (kpk)k arises also in the size-biased trees (GW tree conditioned to survive
forever). In this size-biased trees, when m = 1, the condition “survive forever” gives a tree with one
infinite branch; on this branch, each node has k children with probability kpk (we refer to Lyons &
Peres [12]). Our Theorem 1 is quite similar since it “describes” the offspring distribution in large
branches.

One can refine this theorem:

Theorem 2 Let β be a positive real number. For any γ >
√

(β + 5)
√

(β + 9/2)g/2,

Pn

(

sup
u∈ζ, k, j

∣

∣ak,j(u) − pkh(u)
∣

∣ > γn1/4 lnn
)

= o(n−β).

These two theorems imply that ak,j behaves as ak/k.

As an interesting application of Theorem 2, one can generalize a remark of Flajolet & Odlyzko
[4] about the right-height and left-height in binary trees (p0 = p2 = 1/2). The right height Rn (resp.
the left height Ln) is defined as the maximal number of right steps (resp. of left steps) in all the
branches of ζ:

Rn = max
u∈ζ

a2,1(u) and Ln = max
u∈ζ

a2,2(u)

(the maxima are taken on all the nodes but they are reached on leaves). Flajolet & Odlyzko [4]
note that in size n binary trees, the height Hn of the tree is “almost” the sum of Rn and Ln, more
precisely,

Hn√
n
− Rn√

n
− Ln√

n

proba−→ 0 and
Ln√

n
− Rn√

n

proba−→ 0. (2)

This remark says that the highest branch(es) in ζ contains as many right steps than left ones (up to
o(
√

n)); this says also that the highest branch(es) contains more left-steps (and right steps) than the
other ones.

Theorem 2 is more precise and says that in each branch the number of right steps (or left steps)
is “proportional” to the height of the branch (the ratio being the same one in all the branches); in
particular the highest branch contains the maximum number of right steps (and left ones).

In fact, Theorem 2 applies to any kind of simple trees and provides some extensions to (2). Set

Ak = max
u∈ζ

ak(u) and Ak,j = max
u∈ζ

ak,j(u).

Ak is the maximal number of nodes of type k contained in a branch, Ak,j is the maximal number of
nodes of type k, j contained in a branch.
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Proposition 1 Let β be a positive real number. Set m =
∑

k≥1

k
√

pk;

for any γ > m
√

(β + 5)
√

(β + 9/2)g/2,

Pn

(

∣

∣Hn −
∑

k,j

Ak,j

∣

∣ > γn1/4 lnn
)

= o(n−β).

In other words, the highest branch in the tree contains (up to some crumbs) the maximum number
of nodes of each type (among all the branches). This proposition implies (2).
Since

∑

k,j Ak,j ≥
∑

k Ak ≥ Hn, Proposition 1 also yields:

Pn

(

∣

∣Hn −
∑

k

Ak

∣

∣ > γn1/4 lnn
)

= o(n−β). (3)

Remark : Other results of this kind can be derived. For example, for any β > 0, if γ is large enough,

Pn

(

∣

∣pkHn − Ak,j

∣

∣ > γn1/4 lnn
)

= o(n−β). (4)

The limit of Hn is known (see [1, 2, 4, 13]):

lim
n

Hn√
n

(law)−−−→
n

2

σ
max{e(t), 0 ≤ t ≤ 1},

where
(

e(t)
)

t∈[0,1]
is the Brownian excursion. One obtains as a corollary of (4):

Ak,j√
n

(law)−−−→
n

2pk

σ
max{e(t), 0 ≤ t ≤ 1}.

Theorem 1 says that the number of k-ancestors of u is roughly speaking kpkh(u). One can go further.
Choose a node u. Note u0 = root, u1, . . . , uh(u) = u the path from the root to u. A natural question
is the following one: what is the depth of the jth k-ancestor of u in the sequence u0, . . . , uh(u)? For
j ∈ J1, ak(u)K, the depth of the jth k-ancestor of u is:

β
(u)
k (j) = min{i|ak(ui+1) = j}.

The following proposition gives informations on the distribution of the depths of k-ancestors.

Proposition 2 Let β be a positive real number. For any γ >
√

(β + 4)
√

(β + 7/2)g/2,

Pn

(

sup
{

∣

∣kpkβ
(u)
k (j) − j

∣

∣, u ∈ ζ, k ≥ 1, 1 ≤ j ≤ ak(u)
}

> γn1/4 lnn
)

= o(n−β). (5)

Proof : One has ak(uβ
(u)
k (j)

) = j − 1 and h(u
β

(u)
k (j)

) = β
(u)
k (j). The left hand side of (5) is equal to:

Pn

(

sup
{

∣

∣kpkh
(

u
β

(u)
k (j)

)

− ak

(

u
β

(u)
k (j)

)

− 1
∣

∣, u ∈ ζ, k ≥ 1, 1 ≤ j ≤ ak(u)
}

> γn1/4 lnn
)

.

Then Proposition 2 is a consequence of Theorem 1. �
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Remark

Our theorems can be stated as follows: For any ν > 0, there exists a constant C > 0 such that if
n is large enough

Pn

(

sup
u∈ζ, k

∣

∣ak(u) − kpkh(u)
∣

∣ ≥ n1/4+ν
)

≤ exp(−Cnν).

In order to obtain the results given above, we use some connections between trees and discrete
excursions. Such relations are well known and go back to Harris [5] and Kendall [6]. In particular,
Kendall has shown a relationship between branching processes and the theory of queues. The discrete
excursion that we consider is the depth first queue process (see section 2.1) that can be interpreted
as the process of the remaining clients in a queue. It turns out that the ak and ak,j can be viewed
as functionals of the right minima of the depth first queue process.

A conditioning argument (section 2.3) allows to transfer the study of right-minima on this ex-
cursion to the study of right-minima on (non-conditioned) random walk. After a symmetry of the
path, the right minima become ladder variables (in section 2.4). This leads us to prove new results
on ladder variables that are among the key tools in our proofs of the previous theorems. Since these
results seem to be unknown, we present them in the following subsection.

1.2 Ladder variables

Consider a random walk (W •(i))i≥0 defined as

W •(0) = 0, W •(k) =
k
∑

j=1

w(j), for k ≥ 1,

where the random variables (w(j))j≥1 are i.i.d., with mean 0. Moreover, we assume that the distri-
bution of w(1) is supported by {−1, 0, 1, . . . } and is given by

P(w(1) = i) = p̃i for i ≥ −1.

Note 0 = τ0 < τ1 < τ2 < · · · the weak ladder epochs for W •:

τk = inf
{

j > τk−1,W
•(j) ≥ W •(τk−1)

}

, for k ≥ 1. (6)

We consider the r.v. w(τm), for m ≥ 1. This is the increment of the mth ladder epoch; we call these
variables the ladder increments. The distribution of w(τm) does not depend on m. Note also that
w(τ1) is not the standard weak ladder height W •(τ1).

Lemma 1 The distribution of w(τ1) is given by

qk
def
= P(w(τ1) = k) = (k + 1)p̃k for k ≥ 0.

Note that if E
(

wm+1(1)
)

exists, then E
(

wm(τ1)
)

= E
(

wm+1(1)
)

+E
(

wm(1)
)

for m > 0; in particular
E
(

w(τ1)
)

= Var
(

w(1)
)

.
The following lemma gives the conditional distribution of W •(τ1) with respect to w(τ1).

Lemma 2 For 0 ≤ r ≤ k, if p̃k > 0,

P(W •(τ1) = r|w(τ1) = k) =
1

k + 1
.
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This is an interesting result for ruin problem or gambling problem. When we play at a fair game
with the constant bet 1 but random win, the probability that our fortune becomes nonnegative in
winning k is k + 1 times the probability to win k. Lemma 2 specifies that at this time, our fortune
is a random variable uniformally distributed on J0, kK.

1.3 Application to finite branching random walks

We superimpose a random walk on each path from the root down in the tree of Ω. We associate
with each node u a real random variable y(u), called the value of u; the value of the root is 0. If u has
k(u) children, then the joint distribution of the values associated to these k(u) (ordered) individuals
vu
1 , . . . , vu

k(u) is given by:

(

k(u),
(

y(vu
1 ), . . . , y(vu

k(u))
)

)

(law)
=

(

N,
(

X
(N)
1 , · · · , X

(N)
N

)

)

, (7)

where the distribution of
(

N, (X
(N)
1 , · · · , X

(N)
N )

)

is quite general. Notice that the law of X
(N)
i depends

on i but also on N . As usual, we assume that the values attached to the children of different parents
are independent.

Let u be a node and (u0 = root, u1, · · · , uh(u) = u) be the path from the root to u. We associate
to u a trajectory of killed random walk Wu = (Wu(j))j∈J0,h(u)K defined by:

Wu(0) = 0, Wu(j) =

j
∑

i=1

y(ui), for 1 ≤ j ≤ h(u).

We call branching random walk the tree-shape process which is the union of the trajectories Wu:

B =
{

Wu, u ∈ ζ
}

.

In this paper we consider the case where the underlying tree is from Ωn. In this case the set of
trajectories is denoted by Bn and called finite branching random walk. The set of the points of the
trajectories of Bn is:

B′
n =

{

(

h(u),Wu(h(u))
)

, u ∈ ζ
}

.

We note Bn the probability space of branching random walks on Ωn endowed by the probability
induced by the offspring-displacement distribution (7). The law on Bn will be denoted again by Pn.

We suppose that N satisfies (1). Moreover, we assume that























(i) There exist a > 0, b > 0 such that, for any (j, k) ∈ N
? 2, j ≤ k,

E
(

exp(a|X(k)
j − E(X

(k)
j )|)

)

< b.

(ii)
∑

k

k
∑

j=1

√
pk |E

(

X
(k)
j

)

| < +∞.

(8)

Denote by Λ the “drift”

Λ =
∑

k≥1

k
∑

j=1

pk E(X
(k)
j ).

The following proposition reveals that Wu(h(u)) is concentrated around Λh(u).
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Proposition 3 Let β be a positive real number. Under condition (8), there exists a constant γ0 > 0
such that for any γ > γ0,

Pn

(

sup
u∈ζ

∣

∣Wu(h(u)) − Λh(u)
∣

∣ > γn1/4 lnn
)

= o(n−β).

Remarks :
1) (8, ii) is a weak condition: since by (1) N has exponential moments, the sequence (pk)k goes to 0

at least geometrically fast. Hence, the sequence of expectations E(X
(k)
j ) can goes to +∞.

2) Proposition 3 also holds when the r.v. X
(N)
i take their values in R

d even if the coordinates are
dependent.
3) The error term n1/4 lnn is natural. Wu(h(u)) is the sum of h(u) r.v. and h(u) is about n1/2.

2 Proofs

2.1 The depth first queue process and the height process

The depth first order: Let ζ be an ordered tree with n nodes. We define a function (see Aldous
[1] p.260):

f̃ : {0, · · · , 2n − 2} −→ {nodes of ζ},
which we regard as a walk around ζ, as follows:

f̃(0) = root.

Given f̃(i) = v, choose, if possible, the leftmost child w of v which has not already been visited, and
let f̃(i + 1) = w. If it is not possible, let f̃(i + 1) be the parent of v. For i from 0 to n − 1, let vi be
the ith new node visited by the depth first procedure on ζ ∈ Ωn (v0 = root) and

ξi = the outdegree of vi = the number of children of vi.

The depth first queue process (DFQP): For a tree ζ ∈ Ωn, the DFQP, Sn is defined by Sn(0) = 0
and:

Sn(j) =

j−1
∑

i=0

(ξi − 1) for any 1 ≤ j ≤ n. (9)

The height process: The height process of ζ ∈ Ωn, hn, is defined by

hn(i) = h(vi) for 0 ≤ i ≤ n − 1.

The DFQP as well as the height process characterizes the associated tree.

2.2 Study of the ancestors via the DFQP

Ancestors

It is proved in several papers [9, 10, 11, 13] that for any l ∈ J0, n − 1K,

hn(l) =
l
∑

j=1

�][{
min

0≤k≤l−j
{Sn(j + k) − Sn(j − 1)} ≥ 0

}

= #
{

j|0 ≤ j ≤ l − 1, min
0≤k≤l−j

{Sn(j + k)} = Sn(j)
}

. (10)
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Figure 1 : A tree and its associated DFQP and height process.

We say that Sn(j) is a right minimum of Sn on J0, l − 1K if

min
0≤k≤l−j

{Sn(j + k)} = Sn(j).

(10) means that hn(l) is the number of “right” minima of (Sn(i))i∈J0,lK on the interval J0, l−1K. This
connection between the height process and the DFQP is essential. We state and prove it in a slightly
different way.

Lemma 3 For any l ∈ J0, n − 1K and j ∈ J0, l − 1K, Sn(j) is a right minimum of Sn on J0, l − 1K if
and only if vj is an ancestor of vl.

For commodity, when Sn(j) is a right minimum of Sn on J0, l − 1K, we will say that vj is a right
minimum on J0, l − 1K.
Proof : Our proof is based on a queue interpretation. We consider a queue with one server where
the rule service is: last in, first out; the server serves one client per unit time. Now, consider a tree
t ∈ Ωn with nodes (v0, · · · , vn−1) (sorted according to their first visit time during the depth first
procedure). The nodes are the clients. The root, v0, arrives at time 0. The sons of vi arrive at time
i+1 from the rightmost one, to the leftmost one (the leftmost one arrives the last, so it will be served
the first). At time i, the client who is at the head of the queue gets its service and disappears from
the queue at time i + 1.

The queue size in function of time is
(

Sn(i) + 1
)

i=0,··· ,n
, where Sn is the DFQP; actually, when

the client i is served (−1), he is replaced by its sons (+ξi), and the queue size at time 0 is 1.
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Figure 2 : The LIFO queue associated to a tree

As an illustration, consider on Figure 2 the node v5. It it is served at time 5 (which is natural,
by construction). In the tree, its depth is three since he has three ancestors v4, v1 and v0. The times
when its ancestors are served are the times of right minima before time v5.

Let us come back to the proof. First, note that by the queue procedure, the parents are served
before their children. Consider vk. By construction, vk is served at time k. Note t(vk) the subtree of
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t with root vk. After vk, the next |t(vk)|−1 clients that are served are exactly the nodes of t(vk); but
these nodes were not in the queue at time k. So, Sn(k) ≤ Sn(k + i), for all i ∈ {1, · · · , |t(vk)| − 1}.
Moreover, Sn(k) > Sn(k + |t(vk)|). As a matter-of-fact, at time k + |t(vk)|, all the descendants of
vk have left the queue. The queue contains the same elements than at time k except vk that has
disappeared. It follows that Sn(k) is a right minimum in the set J1, k + |t(vk)| − 1K but not in
J1, k + |t(vk)|K.
Consider now vj a node of t. All the ancestors of vj are served before vj and are right minima in
J0, l − 1K. Moreover, a node vi that is served before time l and that is not an ancestor of vl is not a
right minima in J0, l− 1K since Sn(i+ |t(vi)|) < Sn(i) and i+ |t(vi)| < l (because in this case vl is not
in t(vi) and all the nodes of t(vi) are served before vl; thus l > i + |t(vi)|). Hence, the right minima
of Sn in J0, l − 1K are exactly the ancestors of vl. �

Type of ancestors

Lemma 3 allows to give a good description of who are the ancestors of vl. Note A(l) the set of
indices j for which Sn(j) is a right minimum for Sn in the interval J0, l − 1K.

A(l) =
{

j|0 ≤ j ≤ l − 1, min
0≤k≤l−j

{Sn(j + k)} = Sn(j)
}

.

For the largest j in A(l), set j? = l; for the other j in A(l), set j? = inf{k > j|k ∈ A(l)}.

Lemma 4 For any 0 ≤ l ≤ n − 1,

ak(vl) = #{j ∈ A(l) s.t. Sn(j + 1) − Sn(j) = k − 1}
ak,i(vl) = #{j ∈ A(l) s.t. Sn(j + 1) − Sn(j) = k − 1, Sn(j?) − Sn(j) = k − i}. (11)

Proof : The first equality follows from the fact that: the assertion
{

Sn(j) is a right minimum and
Sn(j+1)−Sn(j) = k−1

}

is equivalent to the assertion
{

vj is an ancestor of vl and vj has k children
}

.
Proof of the second equality: Let vj be a k, i-ancestor of vl. The next right minimum (vj?) after vj

is the ith son of vj. In the queue, when vj is served, the queue size increases by k − 1, Sn(j + 1) =
Sn(j) + k − 1. Then the sons of vj (and their progenies) are served with respect to their order.
When the first son of vj is served, the queue size is Sn(j + 1) − 1. When the second son of vj is
served, the queue size is Sn(j + 1) − 2... When the (i − 1)-th son of vj is served, the queue size
is Sn(j?) = Sn(j + 1) − (i − 1) = Sn(j) + k − i. Conversely, by the same arguments, the relation
Sn(j?) = Sn(j) + k − i implies that vj? is the ith son of vj . �

2.3 Conditioning arguments

Consider a random walk (Zi)i≥0 with increments (zi)i≥0, i.i.d. such that Z0 = 0, E(z1) = 0 and
0 < Var(z1) < +∞. Assume moreover that zi takes its values on the set {−1, 0, 1, 2, · · · }.
We denote by WZ(n) the set of n length random walks (Zi)0≤i≤n with the law induced by the law
of zi and EZ(n) the set of corresponding “excursions”:

{ω ∈ EZ(n)} ⇔ {ω ∈ WZ(n), Z1(ω) ≥ 0, · · · , Zn−2(ω) ≥ 0, Zn−1(ω) = 0, Zn(ω) = −1}.

We have (Otter’s formula [15]):

P(EZ(n)) =
1

n
P(Zn = −1).

Since zi may have a lattice distribution, P(Zn = −1) may be zero for some n. Assume that zi takes
its values on the lattice −1 + kh, where h is the maximal span. Note (a(n))n a sequence of indices
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such that a(n) −→
n

+∞ and P(Za(n) = −1) 6= 0. The local central limit theorem (see Port [17] p.706)
says

√

a(n)

h
P(Za(n) = −1) − 1√

2πσ
exp

(

− 1

2Var(z1)a(n)

)

−→ 0, as n → +∞,

and then

P
(

EZ(a(n))
)

∼ h√
2πσa(n)3/2

.

When ξ is lattice distributed, the total progeny in the GW process with offspring ξ is also lattice
distributed and then the length of the height process and the length of the DFQP are also lattice
distributed. The appearance of the set of indices a(n) is necessary. Each of our theorems should be
stated using Pa(n) instead of Pn. For seek of simplicity we have removed the subsequence indices.
From random walk to excursion (the conditioning argument)
Let An be a subset of WZ(n) and n such that P(Zn = −1) 6= 0. One has

P(An|EZ(n)) ≤ P(An)

P(EZ(n))
.

Thus,
P(An|EZ(n)) = O(n−3/2)P(An). (12)

Hence, if there exists a moderate deviations principle (or a large deviations principle) for a functional
of a centered random walk, there exists an upper bound for the analogous principle on the associated
excursion. The interest is that almost all r.v. are much more difficult to handle on EZ(n) than on
WZ(n).

2.4 Right minima and ladder variables on an associated random walk

We first work on a random walk (W (i))i≥0 (with W (0) = 0) that has i.i.d. increments with
distribution (p̃j)j≥−1 = (pj+1)j≥−1. We note RM(l) the number of right minima of (W (i))i on
J0, l − 1K:

RM(l) = #
{

j|0 ≤ j ≤ l − 1, min
0≤k≤l−j

{W (j + k)} = W (j)
}

. (13)

We define the analogous variables of A(l), ak, ak,j.

B(l) =
{

j|0 ≤ j ≤ l − 1, min
0≤k≤l−j

{W (j + k)} = W (j)
}

.

For the largest j in B(l), set j ′ = l; for the other j in B(l), set j ′ = inf{k > j|k ∈ B(l)}.

bk(l) = #
{

j ∈ B(l) s.t. W (j + 1) − W (j) = k − 1
}

, (14)

bk,i(l) = #
{

j ∈ B(l) s.t. W (j + 1) − W (j) = k − 1,W (j
′

) − W (j) = k − i
}

.

With the random walk (W (j))j∈J0,lK, we associate the random walk (W •(j))j∈J0,lK defined by:

W •(j) = W (l) − W (l − j) for any j ∈ J0, lK. (15)

The graph of the trajectory W • is the symmetric of the graph of W according to the center
(l/2,W (l)/2). The increments of (W •(i))i≥0 are also (p̃j)j≥−1 distributed.

Set R•(l) the number of records (in the large sense) of the sample path (W •(j))j∈J0,lK:

R•(l) = #
{

j, 1 ≤ j ≤ l, max
0≤k≤j

{W •(k)} = W •(j)
}

.

9
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By (15), we obtain:

R•(l) = RM(l), (16)

max
0≤i≤l

W •(i) = W (l) − min
0≤i≤l

W (i). (17)

∣

∣ max
0≤j≤l

{W •(j)} − R•(l)
σ2

2

∣

∣ =
∣

∣W (l) − min
0≤i≤l

{W (i)} − RM(l)
σ2

2

∣

∣. (18)

The random variables bk and bk,j can be also translated on W •. Note 0 = τ0 < τ1 < · · · < τR•(l) < · · ·
the weak ladder epochs for W • as in (6), and set

ck(l) = #
{

τj , 0 < τj ≤ l, w(τj) = k − 1
}

, (19)

ck,i(l) = #
{

τj , 0 < τj ≤ l, w(τj) = k − 1,W •(τj) − W •(τj−1) = k − i
}

.

One has:
ck(l) = bk(l), ck,j(l) = bk,j(l). (20)

Summary table

In this table, we summarize the correspondences between the studied r.v..

Sn W W •

hn(l) RM(l) R•(l)

Sn(l) W (l) − minj≤l W (j) maxj≤l W
•(j)

ak bk ck

ak,j bk,j ck,j

Even if the r.v. in the second and third columns are very similar functionals of the path, the ones in
the third column are easier to handle. As a matter of fact, since ladder epochs are stopping times,
they can be studied using Markov properties of the path. This is the reason why the path W • is
introduced.

2.5 Ladder variables distributions: proof of Lemmas 1 and 2

We note λr = P(W •(τ1) = r); for any r ≥ 0,

λr = p̃r +
p̃−1

1 − λ0
λr+1. (21)

10



A straightforward computation gives λ0 = 1 − p̃−1 and

λr = p̃r + λr+1 = P(W •(1) ≥ r) for r ≥ 1, (22)

see Feller [3], chap. XII and p. 425-426.
We decompose qk as follows:

qk =

0
∑

i=−k

P (W •(τ1 − 1) = i ∩ w(τ1) = k) .

W •(τ1 − 1) = 0 implies that τ1 = 1; so

P (W •(τ1 − 1) = 0 ∩ w(τ1) = k) = p̃k.

For i in J1, kK consider the event Ei,k = {W •(τ1 − 1) = −i ∩ w(τ1) = k}.
Let W • be a trajectory in Ei,k. During the times J1, τ1 − 1K, W • has visited the sites −1, · · · ,−i

(and maybe other negative sites).

We note r
(1)
1 < · · · < r

(κ1)
1 the visit times of −1,

r
(1)
2 < · · · < r

(κ2)
2 the visit times of −2 after the last visit time of −1 (we have r

(κ1)
1 < r

(1)
2 ) and so

on.
r
(1)
i < · · · < r

(κi)
i the visit times of −i after the last visit time of −i + 1 (we have r

(κi−1)
i−1 < r

(1)
i ).

Note that for all l ≥ 1, κl ≥ 1.
Between the time 0 and τ1 − 1, the trajectory W • can be decomposed into i pieces V1, . . . , Vi in the
following way:

V1(m) = W •(m) for m ∈ J0, r
(κ1)
1 K

Vj(m) = W •(m) for m ∈ Jr
(κj−1)
j−1 , r

(κj)
j K.

For j ∈ J1, iK, define V ′
j as:

V ′
1 = V1

V ′
j (m) = Vj

(

m + r
(κj−1)
j−1

)

+ j − 1 for m ∈ J0, r
(κj)
j − r

(κj−1)
j−1 K and j ∈ J2, iK.

Using the strong Markov property of the path, the V ′
j s are independent and have the same distri-

bution. The probability of W • is the product of the probabilities of the V ′
j s multiplied by p̃k (the

probability of the last jump).
The probability of a trajectory V ′

j with κj = kj is the probability to realize a random walk which

starts by a step −1, followed by kj passages in −1. Thus the restricted trajectory V ′
j (m) + 1

∣

∣

m≥1
is identical to a trajectory of a random walk starting from 0 and having its kj − 1 first weak ladder
heights equal to 0. Hence,

P(V ′
j , κj = kj) = p̃−1 λ

kj−1
0 .

So

P(Ei,k) = p̃k

∑

(k1,··· ,ki)∈N?i

p̃i
−1

i
∏

j=1

λ
kj−1
0 = p̃k.

This implies Lemma 1 and also Lemma 2. �
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2.6 Proof of Theorems 1 and 2

We recall two lemmas about random walk properties that are straightforward corollaries of The-
orems 2.2, 2.4, and 2.6 from Petrov [16].

Lemma 5 Let (Zi)i≥0 be a random walk with increment zi, i.i.d., centered, with E(z2
i ) < +∞. Then,

for every x:

P
(

max
0≤k≤n

{Zk} ≥ x
)

≤ 2 P
(

Zn ≥ x −
√

2(n − 1)E(z2
i )
)

.

Lemma 6 Moreover, if there exist two positive constants gz and Tz such that

E(exp(tz1)) ≤ exp
(gzt

2

2

)

for |t| ≤ Tz,

then

P(Zn ≥ x) ≤ exp(− x2

2ngz
) if 0 ≤ x ≤ ngzTz

P(Zn ≥ x) ≤ exp(−Tzx
2 ) if x ≥ ngzTz.

To prove Theorems 1 and 2, we begin with two technical lemmas about “deviations” of the number
of ladder epochs.

Lemma 7 Let β be a positive real number. For any γ >
√

2gβ,

sup
0≤l≤n

P(R•(l) ≥ γn1/2 lnn) = o(n−β).

Proof: For any 0 ≤ l ≤ n,

P(R•(l) ≥ γn1/2 lnn) ≤ P(R•(n) ≥ γn1/2 lnn).

In order to simplify the notations, throughout this proof the indices γn1/2 lnn have to be read
bγn1/2 lnnc.

P(R•(n) ≥ γn1/2 lnn)) ≤ P(τγn1/2 ln n ≤ n)

≤ P
(

max
0≤j≤τ

γn1/2 lnn

W •(j) ≤ max
0≤j≤n

W •(j)
)

≤ P(W •(τγn1/2 lnn) ≤ γn1/2
√

lnn) + P( max
0≤j≤n

W •(j) > γn1/2
√

lnn). (23)

12



By Lemmas 5 and 6 and for n large enough, we have

P( max
0≤j≤n

W •(j) > γn1/2
√

lnn) ≤ 2P(W •(n) ≥ γn1/2
√

lnn −
√

2σ2(n − 1))

≤ 2 exp
(

− (γn1/2
√

lnn −
√

2σ2(n − 1))2

2ng

)

.

The condition γ >
√

2gβ implies that the second term in the right hand side of (23) is o(n−β).
Now, for the first term in the right hand side of (23), we use the fact that W •(τγn1/2 lnn

)

is

the sum of the bγn1/2 lnnc first ladder heights. These ladder heights are i.i.d. random variables,
distributed as W •(τ(1)); thanks to Lemmas 1 and 2, one has:

P(W •(τ(1)) = k) = P(w(1) ≥ k) for k ≥ 0.

Thus, W •(τ(1)) has exponential moments and its mean is σ2/2. We write

P
(

W •(τγn1/2 lnn

)

≤ γn
1
2

√
lnn) ≤ P

(

W •(τ
γn

1
2 ln n

)

− σ2

2
bγn

1
2 lnnc ≤ γn

1
2

√
lnn − σ2

2
bγn

1
2 lnnc

)

.

Using Lemma 6, one sees that this term is exponentially small. �

Lemma 8 Let β be a positive real number. For any γ >
√

(β + 1/2)
√

βg/2,

sup
k>0

sup
0≤l≤n

P
(

|ck(l) − qk−1R
•(l)| > γ

√
qk−1n

1/4 lnn
)

= o(n−β)

sup
k>0

sup
1≤j≤k

sup
0≤l≤n

P
(

|ck,j(l) − p̃k−1R
•(l)| > γ

√

p̃k−1n
1/4 lnn

)

= o(n−β).

Proof: For r > 0, set

dk(r) = #
{

τj, 0 < j ≤ r, w(τj) = k − 1
}

,

dk,i(r) = #
{

j, 0 < j ≤ r, w(τj) = k − 1,W •(τj) − W •(τj−1) = k − i
}

.

Hence, ck(l) deals with the ladder variables before time l and dk(r) with the r first ladder variables.
By the strong Markov property and Lemma 1 and 2,

P(w(τj) = k − 1) = qk−1 = kp̃k−1,

P(w(τj) = k − 1,W •(τj) − W •(τj−1) = k − i) = p̃k−1,

dk(r) is binomial B(r, qk−1) distributed and dk,i(r) binomial B(r, p̃k−1) distributed.
We go on the proof of the first assertion of Lemma 8, the proof of the second one being similar. We
write

P(|ck(l) − qk−1R
•(l)| > γ

√
qk−1n

1/4 lnn) ≤ P(|ck(l) − qk−1R
•(l)| > γ

√
qk−1n

1/4 lnn,R•(l) ≤ γ2n
1/2 lnn)

+ P(R•(l) > γ2n
1/2 lnn).

Choosing a number γ2 >
√

2βg, the second term in the right hand side is o(n−β) by Lemma 7. For
the first one, we have

13



P(|ck(l) − qk−1R
•(l)| > γ

√
qk−1n

1/4 lnn,R•(l) ≤ γ2n
1/2 lnn)

≤
γ2n1/2 ln n
∑

r=1

P
(

|ck(l) − qk−1R
•(l)| > γ

√
qk−1n

1/4 lnn,R•(l) = r
)

≤
γ2n1/2 ln n
∑

r=1

P
(

|dk(r) − qk−1r| > γ
√

qk−1n
1/4 lnn,R•(l) = r

)

≤
γ2n1/2 ln n
∑

r=1

P
(

|dk(r) − qk−1r| > γ
√

qk−1n
1/4 lnn

)

. (24)

Hoeffding inequalities [16] p.78 allow to handle each term of the sum (24); if b(m, p) is a binomial
B(m, p) r.v.:

P(|b(m, p) − mp| >
√

py) ≤ 2 exp(−2y2/m).

One obtains that each term in the sum (24) is smaller than 2n−2γ2/γ2 . Since the number of terms in
the sum is smaller than γ2n

1/2 lnn, the sum (24) is o(n−β) if γ >
√

(1/2 + β)γ2/2. �

Lemma 9 Let β be a positive real number. For any γ >
√

(β + 2)
√

(β + 3/2)g/2,

sup
k>0

sup
0≤l≤n

Pn

(

|ak(l) − qk−1h(l)| > γ
√

qk−1n
1/4 lnn

)

= o(n−β) (25)

sup
k>0

sup
1≤j≤k

sup
0≤l≤n

Pn

(

|ak,j(l) − pkh(l)| > γ
√

pkn
1/4 lnn

)

= o(n−β). (26)

Proof : Our proof relies on the conditioning argument. According to (10), (11), (13), (14),

Pn

(

|ak(l) − qk−1h(l)| > γ
√

qk−1n
1/4 lnn

)

= P

(

|bk(l) − qk−1RM(l)| > γ
√

qk−1n
1/4 lnn|W ∈ EW

)

.

Using (16), (19), (20) and the conditioning argument one writes:

Pn

(

|ak(l) − qk−1h(l)| > γ
√

qk−1n
1/4 lnn

)

= O(n3/2)P
(

|bk(l) − qk−1RM(l)| > γ
√

qk−1n
1/4 lnn

)

= O(n3/2)P
(

|ck(l) − qk−1R
•(l)| > γ

√
qk−1n

1/4 lnn
)

.

Application of Lemma 8 (with β replaced by (β + 3/2)) gives (25). The proof of (26) is similar. �.
Proof of Theorems 1 and 2: We just prove Theorem 1, the proof of Theorem 2 being similar.
We write:

Pn

(

sup
u∈ζ, k

∣

∣ak(u) − kpkh(u)
∣

∣ > γn1/4 lnn
)

≤
∑

u∈ζ, k

Pn

(

∣

∣ak(u) − kpkh(u)
∣

∣ > γn1/4 lnn
)

.

For k ≥ n, |ak(u)−kpkh(u)
∣

∣ = kpkh(u) ≤ kpkn ≤ k2pk which is obviously smaller than γn1/4 lnn for
n large enough. So, the sum can be reduced to at most n2 terms each of them being (uniformally)

o(n−β−2) under the condition γ >
√

(β + 4)
√

(β + 7/2)g/2 (we use (25)).

For Theorem 2, there are n3 terms, so we need γ >
√

(β + 5)
√

(β + 9/2)g/2. �

Proof of Proposition 1 We first establish that if γ/m >
√

(β + 3)
√

(β + 5/2)g/2, then for any

(k, j)

Pn

(

|Ak,j − pkHn| > γ

√
pk

m
n1/4 lnn

)

= o(n−β). (27)
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As a matter of fact,

Pn

(

|Ak,j − pkHn| > γ

√
pk

m
n1/4 lnn

)

= Pn

(

| sup
u∈ζ

ak,j(u) − pk sup
u′∈ζ

h(u′)| > γ

√
pk

m
n1/4 lnn

)

≤ Pn

(

sup
u∈ζ

|ak,j(u) − pkh(u)| > γ

√
pk

m
n1/4 lnn

)

≤
∑

u∈ζ

Pn

(

|ak,j(u) − pkh(u)| > γ

√
pk

m
n1/4 lnn

)

.

Each of the terms of the sum is smaller than o(n−(β+1)) under the condition

γ/m >
√

(β + 3)
√

(β + 5/2)g/2. So (27) is proved. Now, we write

Pn

(

∣

∣Hn −
∑

k,j

Ak,j

∣

∣ > γn1/4 lnn
)

≤
∑

k≥1

k
∑

j=1

Pn

(

|Ak,j − pkHn| > γ

√
pk

m
n1/4 lnn

)

.

Each of the (at most n2) terms are o(n−β−2) under the condition γ/m >
√

(β + 5)
√

(β + 9/2)g/2.
Hence Proposition 1 is proved. �

2.7 Sketch of the proof of Proposition 3

The proof of Proposition 3 just relies on the deviations obtained on the random variables ak,j.
We present below a sketch of the proof.
We begin by a simple remark. If we know the values of ak,j(u) for all k and j, we know how many

copies of X
(k)
j have been summed to obtain Wu(h(u)). Moreover, the X

(k)
j s involved are independent

(since two nodes cannot be ancestors of u and brothers). We express Wu(h(u)) and Λh(u) as sums
and we introduce a r.v. B(u):

Wu(h(u)) =
∑

j

j
∑

i=1

aj,i(u)
∑

k=1

X
(j),k
i , B(u) =

∑

j

j
∑

i=1

aj,i(u)E(X
(j)
i ), Λh(u) =

∑

j

j
∑

i=1

pjh(u)E(X
(j)
i ),

where the (X
(j),k
i )k are independent copies of X

(j)
i .

Since the number of nodes is n, Proposition 3 is proved by checking that for any β > 0 there
exists a constant γ0 > 0 such that for any γ > γ0,

sup
u∈ζ

Pn(|Wu(h(u)) − Λh(u)| > γn1/4 lnn) = o(n−β−1). (28)

Proposition 3 is then a consequence of lemmas 10 and 11 below. �

Lemma 10 Let β be a positive real number. There exists a constant γ0 > 0 such that for any γ > γ0,

sup
u∈ζ

Pn

(

|Wu(h(u)) − B(u)| > γ
n1/4 lnn

2

)

= o(n−β−1).
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Proof : Standard computations show that assumption (8, i) ensures the existence of two real numbers
a > 0 and µ > 0 such that, for each i and j,

E

(

exp(t(Xj
i − E(Xj

i ))
)

≤ exp(µ
t2

2
) if |t| ≤ a. (29)

Wu(h(u))−B(u) is in fact a sum involving h(u) independent r.v. X
(j)
i −E(X

(j)
i ) that all satisfy (29).

We then split Pn(|Wu(h(u)) − B(u)| > γn1/4 ln n
2 ) into two parts.

Pn(|Wu(h(u)) − B(u)| >
γn1/4 lnn

2
) ≤ Pn(h(u) ≥ γ2n

1/2 lnn)

+ Pn(|Wu(h(u)) − B(u)| >
γn1/4 lnn

2
, h(u) ≤ γ2n

1/2 lnn).

The first part (in the right hand side) is bounded thanks to Lemma 7. Petrov’s Lemma 6 applies for
the second term, which is smaller than:

γ2n1/2 ln n
∑

k=1

Pn(|Wu(h(u)) − B(u)| >
γn1/4 lnn

2
|h(u) = k) ≤ γ2n

1/2 ln(n) exp(−γ2 lnn/(8γ2)).

for n large enough. Hence, one can choose constants γ and γ2 in order to bound this second part as
required. �

Lemma 11 Let β be a positive real number. There exists a constant γ0 > 0 such that for any γ > γ0,

sup
u∈ζ

Pn(|B(u) − Λh(u)| >
γn1/4 lnn

2
) = o(n−β−1).

Proof :

Pn(|B(u) − Λh(u)| >
γn1/4 lnn

2
) ≤ Pn(∃v, j, i, |aj,i(v) − pjh(v)| >

√
pjn

1/4
√

lnn)

+Pn(|B(u) − Λh(u)| >
γn1/4 lnn

2
∩ ∀v, j, i, |aj,i(v) − pjh(v)| ≤ √

pjn
1/4

√
lnn).

The first term in the right hand side is bounded thanks to (26); for the second one, note that:

{

|B(u) − Λh(u)| >
γn1/4 lnn

2

}

∩
{

∀v, j, i, |aj,i(v) − pjh(v)| ≤ √
pjn

1/4
√

lnn
}

⊂
{

∑

j

j
∑

i=1

|aj,i(v) − pjh(v)|.|E(X
(j)
i )| ≥ γn1/4 lnn

2
∩ ∀v, j, i, |aj,i(v) − pjh(v)| ≤ √

pjn
1/4

√
lnn

}

⊂
{

∑

j

j
∑

i=1

√
pjn

1/4
√

lnn|E(X
(j)
i )| ≥ γn1/4 lnn

2
}.

This set is empty for n large enough according to (8, ii). �
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cesses, monograph, Preliminary version.

[12] R. Lyons, Y. Peres, (2002). Probability on Trees and Network,
http://www.stat.berkeley.edu/∼peres/ chap.10

[13] J.F. Marckert, A. Mokkadem, (2003). The depth first processes of Galton-Watson trees converge
to the same Brownian excursion, Ann. Proba., Vol. 31, No. 3.

[14] A. Meir, J.W. Moon, (1978). On the altitude of nodes in random trees, Canadian Journal of
Math 30, 997-1015.

[15] R. Otter, (1949). The multiplicative process., Ann. Math. Statist., Baltimore Md. 20, 206-224.

[16] V.V. Petrov,(1995). Limit Theorems of Probability Theory, Oxford.

[17] S.C. Port, (1994). Theoretical Probability for Applications, Wiley & Sons.

17


	Introduction and main results
	Internal structure of finite Galton-Watson trees
	Ladder variables
	Application to finite branching random walks

	Proofs
	The depth first queue process and the height process
	Study of the ancestors via the DFQP
	Conditioning arguments
	Right minima and ladder variables on an associated random walk
	Ladder variables distributions: proof of Lemmas 1 and 2
	Proof of Theorems 1 and 2
	Sketch of the proof of Proposition 3


