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Abstract

A Bernoulli random walk is a random trajectory starting from 0 and having i.i.d. incre-

ments, each of them being +1 or −1, equally likely. The other families quoted in the title are

Bernoulli random walks under various conditions. A peak in a trajectory is a local maximum.

In this paper, we condition the families of trajectories to have a given number of peaks. We

show that, asymptotically, the main effect of setting the number of peaks is to change the

order of magnitude of the trajectories. The counting process of the peaks, that encodes the

repartition of the peaks in the trajectories, is also studied. It is shown that suitably nor-

malized, it converges to a Brownian bridge which is independent of the limiting trajectory.

Applications in terms of plane trees and parallelogram polyominoes are provided, as well as

an application to the “comparison” between runs and Kolmogorov-Smirnov statistics.

1 Introduction

Let N = {0, 1, 2, 3, . . . } be the set of non-negative integers. For any n ∈ N, we denote by Wn

the set of Bernoulli chains with n steps :

Wn = {S = (S(i))0≤i≤n : S(0) = 0, S(i + 1) = S(i) ± 1 for any i ∈ J0, n − 1K}.

The sets of Bernoulli bridges Bn, Bernoulli excursions En, Bernoulli meanders Mn with n steps

are defined by

Bn = {S : S ∈ Wn, S(n) = 0},
En = {S : S ∈ Wn, S(n) = 0, S(i) ≥ 0 for any i ∈ J0, nK},

Mn = {S : S ∈ Wn, S(i) ≥ 0 for any i ∈ J0, nK}.

The cardinalities of these sets are given by

#Wn = 2n, #B2n =

(
2n

n

)
, #E2n =

1

n + 1

(
2n

n

)
, #Mn =

(
n

⌊n/2⌋

)
, (1)
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and for every odd number n, Bn = En = ∅. The two first formulas are obvious, the third can be

proved for instance thanks to the cyclical lemma (see also the 66 examples of the appearance of

the Catalan numbers #E2n in combinatorics in Stanley [23, ex. 6.19 p.219]), and the last one,

may be proved iteratively or thanks to a bijection with Bernoulli bridges (see Section 4.4).

Let n ∈ N. For every S ∈ Wn, the set of peaks of S, denoted by S∧, is defined by

S∧ = {x : x ∈ J1, n − 1K, S(x − 1) = S(x + 1) = S(x) − 1}.

The set (−S)∧ is called the set of valleys of S : it is easy to check that for any S, #S∧−#(−S)∧
belongs to {+1, 0,−1}. The value of this difference depends only on the signs of the first and

last steps of S. In this paper, we focus only on the number of peaks and we denote by W(k)
n

(resp. B(k)
n , E(k)

n and M(k)
n ) the subset of Wn, (resp. Bn, En, Mn) of trajectories having exactly

k peaks (for any k > ⌊n/2⌋ these sets are empty). We have

Proposition 1 For any k ≥ 0 and any n ≥ 0,

#W(k)
n =

(
n + 1

n − 2k

)
, #B(k)

2n =

(
n

k

)2

, #E(k)
2n =

1

n

(
n

k

)(
n

k − 1

)
, #M(k)

n =

(⌊n/2⌋
k

)(⌈n/2⌉
k

)
,

where, by convention

(
m

p

)
=





m!

p!(m − p)!
if p and m are non negative integers and p ∈ J0,mK,

0 in any other cases.

Figure 1: Trajectories from W(3)
12 , B(2)

12 , E(3)
12 , and M(4)

12 . Black dots correspond to peaks.

The formula giving #E(k)
2n is due to Narayana [18] computed in relation with pairs of k-compositions

of n satisfying some constraints (see also Stanley [23, ex. 6.36 p.237] and Theorem 3.4.3 in Krat-

tenthaler [14], with µ = 1, e1 = e2 = n). The formula giving #B(k)
2n can be also found in [14,

Formula (3.6)]. The survey [14] of Krattenthaler is very related to the present work and we

refer the interested reader to this work and references therein. Among other things, he investi-

gates the link between the number of peaks in some Bernoulli trajectories and the trajectories

themselves [14, Theorem 3.4.4] (see also Section 1.3). His results concern also the enumerations
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of trajectories with a prescribed number of peaks staying above a given line, as well as some

multidimensional case (the number of non intersecting Bernoulli trajectories with a total number

of turns).

Let Pw
n , Pb

n, Pe
n and Pm

n be the uniform law on Wn, Bn, En, and Mn and P
w,(k)
n , P

b,(k)
n , P

e,(k)
n

and P
m,(k)
n be the uniform law on W(k)

n , B(k)
n , E(k)

n and M(k)
n . For x ∈ {w, b, e,m}, a random

variable under P
x,(k)
n is then simply a random variable under Px

n conditioned to have k peaks.

We are interested in the asymptotic behavior of random chains under the distributions P
x,(k)
n ,

when n and k = Kn go to infinity.

Let C[0, 1] be the set of continuous functions defined on [0, 1] with real values. For any

S ∈ Wn, denote un the function in C[0, 1] obtained from S by the following rescaling:

un(t) =
1√
n

(
S(⌊nt⌋) + {nt}(S(⌈nt⌉) − S(⌊nt⌋))

)
for any t ∈ [0, 1]. (2)

We call Brownian bridge b, Brownian excursion e and Brownian meander m the (normalized)

processes characterized as follows : let w be a 1-dimensional standard Brownian motion. Let

d = inf{t : t ≥ 1,wt = 0} and g = sup{t : t ≤ 1,wt = 0}. Almost surely, we have d − g > 0,

g ∈ (0, 1). The processes b, e and m have the following representations :

(bt)t∈[0,1]
(d)
=
(wgt√

g

)
t∈[0,1]

, (et)t∈[0,1]
(d)
=
( |wd+(g−d)t|√

d − g

)
t∈[0,1]

, (mt)t∈[0,1]
(d)
=
( |w(1−g)t|√

1 − g

)
t∈[0,1]

.

As a consequence of the Donsker [6] theorem (for x = w), Kaigh [13] (for x = e), Iglehart [11] or

Belkin [2] (for x = m), and Liggett [15] (for x = b),

Theorem 2 For any x ∈ {w, b, e,m}, under P x
n, un

(d)−−→
n

x in C[0, 1] endowed with the topology

of the uniform convergence.

In the case x ∈ {b, e}, even if not specified, it is understood that n → +∞ in 2N.

In fact, Theorem 2 can be proved directly, thanks to the elementary enumeration of paths

passing via some prescribed positions in the model of Bernoulli paths. The method used to show

the tightnesses in our Theorem 4 may be used to prove the tightness in Theorem 2; thanks to

some probability tricks, this reduces to show the tightness under Pw
n , which is simple.

The finite dimensional distributions of w, e, b and m are recalled in Section 3.1. Numerous

relations exist between these processes, and their trajectories, and a lot of parameters have

been computed. We refer to Bertoin & Pitman [4], Biane & Yor [5], Pitman [20] to have an

overview of the subject. These convergences have also provided some discrete approaches to the

computation of values attached to these Brownian processes, and the literature about that is

considerable, see e.g. Csáki & Y. Hu [7], and references therein.

We introduce the counting process of the number of peaks : for any S ∈ Wn, denote by

Λ(S) = (Λl(S))l∈J0,nK the process :

Λl(S) = #S∧ ∩ J0, lK for any l ∈ J0, nK. (3)
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For S ∈ Wn, Λn(S) = #S∧ is simply the total number of peaks in S. We have

Proposition 3 For any x ∈ {w, b, e,m}, under Px
n,

Λn − n/4√
n

(d)−−→
n

N (0, 1/16),

where N (0, 1/16) denotes the centered Gaussian distribution with variance 1/16.

We will now describe the main result of this paper. Its aim is to describe the influence of

the number of peaks on the shape of the families of trajectories introduced above. We will then

condition the different families by #S∧ = Kn for a general sequence (Kn) satisfying the following

constraints :

(H) =
(
For any n, Kn ∈ N, lim

n
Kn = +∞, lim

n
n/2 −Kn = +∞

)
.

Notice that for every S ∈ Wn, #S∧ ∈ J0, ⌊n/2⌋K and then (H) is as large as possible to avoid

that the sequences Kn and n/2 −Kn have a finite accumulation point.

We set pn := 2Kn/n and

βn :=
√

n(1 − pn)/pn, and γn :=
√

npn(1 − pn) = pnβn. (4)

Each peak can be viewed to be made by two consecutive steps; hence, if you pick at random one

step of a trajectory under P
x,(Kn)
n , the probability that this step belongs to a peak is pn.

We consider S and Λ(S) as two continuous processes on [0, n], the values between inte-

ger points being defined by linear interpolation. The normalized versions of S and Λ(S) are

respectively denoted by sn and λn :

sn(t) :=
S(nt)

βn
and λn(t) := 2

Λnt − tKn

γn
. (5)

Theorem 4 If (H) is satisfied, for any x ∈ {w, b, e,m}, under P
x,(Kn)
n ,

(sn, λn)
(d)−−→
n

(x, b̂) (6)

where b̂ is a Brownian bridge independent of x and where the weak convergence holds in C([0, 1])2

endowed with the topology of uniform convergence.

Hence, under P
x,(Kn)
n , up to the scaling constant, the process sn behaves as under P x

n. The

normalizing factor βn, that will be explained later in the paper, indicates the order of magnitude

of the process S under P
x,(Kn)
n (βn is a decreasing function of Kn). The normalizing constant γn

is smaller than
√

n/4 whatever is pn; γn gives the asymptotic order of the “linearity defect” of

t 7→ Λnt. The fact that (λn) converges to a Brownian bridge independent of the limit trajectory

is quite puzzling. For example, under P e
n, one would expect that only few peaks appear in a

neighborhood of 0, this resulting in a negative bias in λn near 0. This must be true, but this

bias is not important enough to change the asymptotic behavior of λn.

A second direct corollary of Theorem 4 is stated below:
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Corollary 5 For any x ∈ {w, b, e,m}, under P x
n, we have

(
S(nt)√

n
, 4

Λnt − tn/4√
n

)

t∈[0,1]

(d)−−→
n

(xt, ŵt)t∈[0,1] (7)

and (
S(nt)√

n
, 4

Λnt − tΛn√
n

)

t∈[0,1]

(d)−−→
n

(xt, b̂t)t∈[0,1] (8)

where ŵ is a Brownian motion independent of x, b̂ is a Brownian bridge independent of x and

where the weak convergences hold in C([0, 1])2 endowed with the topology of uniform convergence.

Theorem 2 is of course a consequence of Corollary 5.

Proof. For any S ∈ Wn, set qn(S) = 2Λn(S)/n, β̃n(S) =
√

n(1 − qn(S))/qn(S), and γ̃n(S) :=√
nqn(S)(1 − qn(S)). We have

(
S(nt)√

n
, 4

Λnt − tn/4√
n

)
=

(
S(nt)

β̃n

β̃n√
n

, 2
γ̃n√
n

(
2

Λnt − tΛn

γ̃n

)
+ 4t

Λn − n/4√
n

)
. (9)

By Proposition 3 and Theorem 4, under Px
n, the five-tuple

(
4

Λn − n/4√
n

,

(
S(nt)

β̃n

)

t∈[0,1]

, 2

(
Λnt − tΛn

γ̃n

)

t∈[0,1]

, 2
γ̃n√
n

,
β̃n√
n

)

converges in distribution to

(N, (st)t∈[0,1], (λt)t∈[0,1], A,B)

where N is a centered Gaussian random variable with variance 1 and where conditionally on

N , (s, λ)
(d)
= (x, b̂) where x and b̂ are independent, b̂ is a Brownian bridge, and A and B are

two random variables equal to 1 a.s.. By (9),
(

S(nt)√
n

, 4 Λnt−tn/4√
n

)
converges to (x, (̂bt + tN)t∈[0,1])

where N is independent of x and b̂, and then the result follows, since (̂bt + tN)t∈[0,1] is a standard

Brownian motion. �

1.1 Consequences in terms of plane trees

Consider the set Tn of plane trees (rooted ordered trees) with n edges (we refer to [1, 16]

for more information on these objects). There exists a well known bijection between Tn and

E2n which may be informally described as follows. Consider a plane tree τ ∈ Tn (see Figure 2),

and a fly walking around the tree τ clockwise, starting from the root, at the speed 1 edge per

unit of time. Let V (t) be the distance from the root to the fly at time t. The process V (t) is

called in the literature, the contour process or the Harris’ walk associated with τ . The contour

process is the very important tool for the study of plane trees and their asymptotics and we

refer to Aldous [1], Pitman [21, Section 6], Duquesne & Le Gall [10], Marckert & Mokkadem [16]

for considerations on the asymptotics of normalized trees. It is straightforward that the set of
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Figure 2: A plane tree and its contour process

trees encoded by E(k)
2n is the subset of Tn of trees having exactly k leaves (say T

(k)
n ), a leaf being

a node without any child. A corollary of Theorem 4, is that random plane tree with n edges

and K2n leaves, converges, normalized by β2n/2, to the continuum random tree introduced by

Aldous [1], which is encoded by 2e. The variable Λ2nt gives the number of leaves visited at time

2nt. By Theorem 4, supt∈[0,1] |(Λ2nt − tK2n)/n| proba.−→ 0. This translates the fact that the leaves

are asymptotically uniformly distributed on a random tree chosen equally likely in T
(K2n)
n .

1.2 Consequences in terms of parallelogram polyominoes

We refer to Delest & Viennot [8] for more information on parallelogram polyominoes. Unit

squares having their vertices at integer points in the Cartesian plane are called cells. A polyomino

is a finite union of cells with connected interior. The number of cells is the area and the length

of the border is called the perimeter (see Figure 3). A polyomino P is said to be convex if

the intersection of P with any horizontal or vertical line is a convex segment. For any convex

polyomino P there exists a minimal rectangle R(P) (that can be seen as a convex polyomino)

containing P. Then P touches the border of R(P) along four connected segments. A convex

polyomino P is said to be a parallelogram polyomino if the south-west point and the north-east

point of R(P) belong to P (see Figure 3). Let denote by H(P) and V (P) the horizontal and

Figure 3: The first convex polyomino is not parallelogram, the second is. Their areas are 9

and 11, their perimeters equal that of their minimal rectangles, here 18. For both polyominoes

H(P) = 4 and V (P) = 5. The last picture represents the Bernoulli excursion associated by ρ

with the parallelogram polyomino.

vertical length of the border of R(P), and let Poln be the set of parallelogram polyominoes with
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perimeter n.

Proposition 6 (Delest & Viennot [8, Section 4]) For any integer N ≥ 1, there is a bijection ρ

between E2N and Pol2N+2, such that if P = ρ(S), the area of P is equal to the sum of the heights

of peaks of S, moreover #S∧ = H(P), and V (P) = 2N + 2 − 2#S∧ (where 2N − 2#S∧ is the

number of steps of S that do not belong to a peak).

By symmetry with respect to the first diagonal, the random variables V (P) and H(P) have the

same distribution when P is taken equally likely in Pol2N+2. Hence, the proposition says that

under Pe

2N , 2N + 2 − 2#S∧ and #S∧ have the same distribution.

We describe in a few words Delest & Viennot’s bijection: the successive lengths of the columns

of the polyomino P give the successive heights of the peaks of S. The difference between the

heights of the floor-cells of the ith and i+1th columns of P plus one gives the number of down

steps between the ith and i + 1th peaks of S.

For i ∈ {1, . . . ,H(P)}, let vi(P) be the number of cells in the ith column of P. The values

(vi(P))i∈J1,H(P)K coincide with the ordered sequence (Si)i∈S∧
. Let P

(Kn)
Pol(2n+2) be the uniform law

on the set of parallelogram polyominos with perimeter 2n + 2 and width Kn (that is such that

H(P) = Kn). Assume that v is interpolated between integer points, and v(0) = 0. We have

Proposition 7 If (Kn) satisfies (H), under P
(Kn)
Pol(2n+2)

(
v(Knt)

βn

)

t∈[0,1]

(d)−→ (et)t∈[0,1]

in C[0, 1] endowed with the topology of uniform convergence.

Proof. Let (Vi)i∈{1,...,Kn} be the successive height of the peaks in S. Assume also that

V (0) = 0 and that V is interpolated between integer points. By Delest & Viennot’s bijec-

tion, β−1
n v(Kn.) under P

(Kn)
Pol(2n+2) has the same distribution as β−1

n V (Kn.) under P
e,(Kn)
n . Since

(β−1
n S(nt))t∈[0,1]

(d)−→ (et)t∈[0,1], to conclude, it suffices to show that

sup
t∈[0,1]

∣∣∣∣
V (Knt) − S(nt)

βn

∣∣∣∣
proba.−→ 0. (10)

Let J(i) be (abscissa of) the ith peak in S. We have, for any t ∈ {0, 1/Kn, . . . ,Kn/Kn},

V (Knt) − S(nt) = S(J(Knt)) − S(nt). (11)

As one can see using the convergence of λn to b̂,

sup
t

∣∣∣∣
J(Knt) − nt

n

∣∣∣∣
proba.−→ 0. (12)

Indeed, supt |J(Knt) − nt|/n ≤ supt |Λnt − tKn|/n proba.−→ 0. Since (sn) converges in C[0, 1] under

P
e,(Kn)
n , by a simple argument about its modulus of continuity, using (11) and (12), formula (10)

holds true. �
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We would like to point out the work of de Sainte Catherine & Viennot [9], who exhibit a quite

unexpected link between the cardinalities of excursions having their peaks in a given subset of

N and the famous Tchebichev polynomials.

1.3 Consequences in terms of Kolmogorov-Smirnov statistics

We refer again to Krattenthaler [14, Example 3.3.2 and Theorem 3.4.4].

Let X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) be two independent sets of independent random

variables, where the Xi (resp. the Yi) are identically distributed. Assume that the cumulative

distributions FX and FY of the Xi’s and Yi’s are continuous, and that we want to test the

hypothesis H that FX = FY in view of X and Y .

Let Z = (Z1, . . . , Z2n) be the order statistics of (X1, . . . ,Xn, Y1, . . . , Yn); in other words Zi

is the ith smallest element in (X1, . . . ,Xn, Y1, . . . , Yn). We may associate almost surely to Z a

Bernoulli bridge S ∈ B2n saying that S(i) − S(i − 1) = 1 or S(i) − S(i − 1) = −1 whether Zi is

in X or in Y .

It is easy to see that S is uniform in B2n (for any n) when FX = FY and that it is not the case

when FX 6= FY : assume that FX(x) 6= FY (x) for some x and denote by NX(x) = #{i,Xi ≤ x}
and NY (x) = #{i, Yi ≤ x}. By the law of large numbers

NX(x)

n

(a.s.)−−−→
n

FX(x) and
NY (x)

n

(a.s.)−−−→
n

FY (x)

which implies that S(NX(x)+NY (x)) is at the first order n(FX(x)−FY (x)), that is much bigger

than the
√

n order expected by Theorem 2. We examine now, as in [14] the run statistics

Rn(S) = #{i ∈ J1, 2n − 1K, S(i + 1) 6= S(i)}

that counts the number of runs in S (up to at most 1, twice the number of peaks) and

D+
n,n(S) =

1

n
max

i
S(i) and Dn,n(S) =

1

n
max

i
|S(i)|,

the one-sided and two-sided Kolmogorov-Smirnov statistics.

The run statistics Rn has been introduced by Wald and Wolfowitz [24]. It is shown to be

independent of FX when FX = FY . It is well adapted in many cases since no assumption on FX

(but its continuity) is needed. Theorem 3.4.4 of Krattenthaler [14] (see also the consideration

just above Example 13.3.3) provides the exact enumeration of Bernoulli walks S for which

Dn,n ≤ t/n and Rn = j.

The random variable Rn satisfies obviously

|Rn − 2Λ2n| ≤ 1. (13)

A simple consequence of assertion (7) and (13) is the following result
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Corollary 8 If FX = FY then

(√
n√
2

D+
n,n,

√
n√
2

Dn,n,
Rn − n/2√

n

)
(d)−−→
n

(sup b, sup |b|,N)

where b is a Brownian bridge independent of N , a centered Gaussian random variable with

variance 1/2.

This means that asymptotically the run statistics and the Kolmogorov statistics are independent.

Comments 1 Notice that the process t 7→ Λnt can also be used to build a test H based on the

runs of S (using Corollary 5). It is clearly much more precise than Rn alone.

2 Combinatorial facts : decomposition of trajectories

The decomposition of the trajectories is determinant in our approach, since we will prove

directly the convergence of finite dimensional distributions under P x
n. An important difference

with the case where the peaks are not considered is that under P
x,(k)
n , S is not a Markov chain.

Indeed, the law of (S(j))l≤j≤n depends on S(l), on the number of peaks in J0, lK, and also on the

step (S(l − 1), S(l)). The computation of the distributions of vector (S(t1), . . . , S(tk)) in these

various cases admits the complication that S may own a peak in some of the positions t1, . . . , tk.

In order to handle the contribution of these peaks, we have to specify what the types u or d (+1

or −1) of the first and last steps of the studied parts (S(ti), . . . , S(ti+1)) are.

We set the following notation : ∆Sl = S(l) − S(l − 1), and write for convenience, ∆Sl = u

when ∆Sl = 1, and ∆Sl = d when ∆Sl = −1. In this paper, we deal only with discrete

trajectories S such that ∆Sk ∈ {+1,−1} for any k. We will not recall this condition.

For a and b in {d, u}, and l, x, y, j in Z, set

T j
ab(l, x, y) = {S : S = (S(i))0≤i≤l, #S∧ = j, ∆S1 = a, ∆Sl = b, S(0) = x, S(l) = y}

T j,≥
ab (l, x, y) = {S : S ∈ T j

ab(l, x, y), S(i) ≥ 0 for any i ∈ J0, lK}.

For any l, j1, j2, x, y ∈ Z, set

[
l, j1, j2, x, y

]
=

( l + y − x

2
− 1

j1

)( l − y + x

2
− 1

j2

)
.

We have

Proposition 9 For any y ∈ Z, l ≥ 0, j ≥ 0,

#T j
ab(l, 0, y) =

[
l, j − 1b=d, j − 1a=u, 0, y

]
. (14)
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For any x ≥ 0, y ≥ 1, l ≥ 0, j ≥ 0,

#T j,≥
uu (l, x, y) =

[
l, j, j − 1, x, y

]
−
[
l, j − 1, j, −x, y

]
,

#T j,≥
ud (l, x, y) =

[
l, j − 1, j − 1, x, y

]
−
[
l, j − 2, j, −x, y

]
,

For any x ≥ 1, y ≥ 1, l ≥ 0, j ≥ 0,

#T j,≥
du (l, x, y) =

[
l, j, j, x, y

]
−
[
l, j, j, −x, y

]
,

#T j,≥
dd (l, x, y) =

[
l, j − 1, j, x, y

]
−
[
l, j − 1, j, −x, y

]

(notice that #T j,≥
db (l, 0, y) = 0 and #T j,≥

au (l, x, 0) = 0). In other words

#T j,≥
ab (l, x, y) =

[
l, j − 1b=d, j − 1a=u, x, y

]
−
[
l, j − 1a=u − 1b=d, j, −x, y

]
. (15)

Proof. Let n, k ∈ N. A composition of n in k parts is an ordered sequence x1, . . . , xk of non

negative integers, such that x1 + · · · + xk = n. The number of compositions of n in k parts (or

of compositions of n + k in k positive integer parts) is
(n+k−1

k−1

)
.

We call run of the chain S = (S(i))0≤i≤l, a maximal non-empty interval I of J1, lK such that

(∆Si)i∈I is constant. The trajectories S of T j
ab(l, y) are composed by j + 1b=u runs of u and

j +1a=d runs of d. The u-runs form a composition of (l+y)/2 (this is the number of steps u) in

positive integer parts, and the d-runs form a composition of (l − y)/2 in positive integer parts.

Hence,

#T j
ab(l, y) =

(
(l + y)/2 − 1

j + 1b=u − 1

)(
(l − y)/2 − 1

j + 1a=d − 1

)
,

and Formula (14) holds true.

The proofs of the other formulas are more tricky; the main reason for it is that the reflexion

principle does not conserve the number of peaks. What still holds is, for any x ≥ 0, y ≥ 0,

j ≥ 0, l ≥ 0

#T j,≥
ab (l, x, y) = #T j

ab(l, x, y) − #T j,�
ab (l, x, y)

where T j,�
ab (l, x, y) is the set of trajectories belonging to T j

ab(l, x, y) that reach the level −1. Since

#T j
ab(l, x, y) = #T j

ab(l, 0, y − x) is known, it remains to determine T j,�
ab (l, x, y).

We define two actions on the set of chains :

� let S = (S(i))i∈J0,lK ∈ Wl. For any t ∈ J0, lK we denote by S′ = Ref(S, t) the path S′ = (S′
i)0≤i≤l

obtained from S by a reflexion from the abscissa t; formally :

{
S′(i) = S(i) for any 0 ≤ i ≤ t,

S′(i + t) = 2S(i) − S(i + t) for any 0 ≤ i ≤ l − t
.

When g is a function from Wl taking its values in J0, lK, we write simply Ref(., g) for the reflexion

at abscissa g(S).
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� let S = (S(i))i∈J0,lK ∈ Wl. For any c and d in N, 0 ≤ c ≤ d ≤ l, we denote by S′ = Cont(S, [c, d])

the path S′ = (S′(i))0≤i≤l−d obtained from S by a contraction of the interval [c, d] :
{

S′(i) = S(i) for any 0 ≤ i ≤ c,

S′(c + i) = S(d + i) − S(d) + S(c) for any 0 ≤ i ≤ l − (d − c)
.

As before, we write Cont(., [g1, g2]) for the contraction of the interval [g1(S), g2(S)].

We denote by T−1(S) = inf{j : S(j) = −1} the hitting time of −1 by S. We proceed to a

t

t

c

c d l

l − (d − c)

Figure 4: On the first column S and Ref(S, t), on the second column S and Cont(S, [c, d])

classification of the paths S from T j,�
ab (l, x, y) according to the two first steps following T−1(S),

that exist since y is taken positive. We encode these two first steps following T−1 above the

symbol T : for any α, β ∈ {u, d}, set

(αβ)

T

j,�

ab (l, x, y) = {S : S ∈ T j,�
ab (l, x, y), ∆ST−1(S)+1 = α, ∆ST−1(S)+2 = β}.

Hence, T j,�
ab (l, x, y) is the union of four elements of that type. Let us compute #

(αβ)

T ab for any

α, β.

For any a ∈ {u, d}, x ≥ 0, y ≥ 1, the following bijections (denoted by ↔) hold

(du)

T

j,�

ad (l, x, y) ↔
(ud)

T

j,�

au (l, x,−2 − y) ↔ T j−1
au (l − 2, x,−2 − y)

(du)

T

j,�

au (l, x, y) ↔
(ud)

T

j+1,�

ad (l, x,−2 − y) ↔ T j
ad(l − 2, x,−2 − y).

On each line, the first bijection is Ref(.,T−1), the second one is Cont(., [T−1,T−1 + 2]). Notice

that this last operation does not create any peak because ∆ST−1(S) = d. The cardinalities of

the sets in the right hand side are known, hence,
(du)

T dd,
(du)

T ud,
(du)

T du,
(du)

T uu are determined. Set
(α)

T

j,�

ab (l, x, y) =
(αu)

T

j,�

ab (l, x, y) ∪
(αd)

T

j,�

ab (l, x, y). We have

(u)

T

j,�

ad (l, x, y) ↔
(d)

T

j−1,�

au (l, x,−y − 2) ↔ T j−1
au (l − 1, x,−y − 1)

(u)

T

j,�

au (l, x, y) ↔
(d)

T

j,�

ad (l, x,−y − 2) ↔ T j
ad(l − 1, x,−y − 1)

11



The first bijection is Ref(.,T−1), the second one Cont(., [T−1,T−1 + 1]). Now,

#
(dd)

T

j,�

ab = #
(ud)

T

j+1,�

ab (l, x, y + 2)

= #
(u)

T

j+1,�

ab (l, x, y + 2) − #
(uu)

T

j+1,�

ab (l, x, y + 2)

= #
(u)

T

j+1,�

ab (l, x, y + 2) − #
(du)

T

j+1,�

ab (l, x, y)

in the first line, we have replaced ∆ST−1 = d by u, in the third line we have replaced uu by

du. �

2.1 Proof of Proposition 1

(i) To build a path with k peaks, dispose k peaks, that is k pairs ud. Take a composition

x1, . . . , x2(k+1) of n− 2k in 2(k + 1) non negative parts. Fill in now the k + 1 intervals between

these peaks : in the lth interval dispose x2l−1 steps d and x2l steps u.

(ii) Assume n = 2N is even. To build a bridge with k peaks, dispose k pairs ud. Take two

compositions x1, . . . , x(k+1) and x′
1, . . . , x

′
(k+1) of N −k in k+1 parts. Fill now the k+1 intervals

between these peaks : in the lth interval dispose xl steps d and x′
l steps u.

(iii) #E(k)
n = #T k,≥

ud (n − 1, 0, 1) + #T k−1,≥
uu (n − 1, 0, 1)

For (iv), one may use the bijections described in Section 4.4, or proceed to a direct computation

as follows; first,

#M(k)
n = #E(k)

n +
∑

y≥1

T k,≥
uu (n, 0, y) + T k,≥

ud (n, 0, y). (16)

Denote by W (n, k) the sum in (16). The integer W (n, k) is the number of meanders with length

n, ending in a positive position. Using that
(
n
k

)
+
(

n
k−1

)
=
(
n+1

k

)
, we have

W (n, k) =
∑

y≥1

[
n, k, k − 1, 0, y

]
−
[
n, k − 1, k, 0, y

]
+
[
n, k − 1, k − 1, 0, y

]
−
[
n, k − 2, k, 0, y

]
.

=
∑

y≥1

(n + y

2
k

)(n − y

2
− 1

k − 1

)
−
(n + y

2
k − 1

)(n − y

2
− 1

k

)
.

Let a, b, c, k be positive integers, the following formula holds

∑

y≥c

(
a + y

k

)(
b − y

k − 1

)
−
∑

y≥c

(
a + y

k − 1

)(
b − y

k

)
=

(
a + c

k

)(
b − c + 1

k

)
. (17)

Indeed: a term in the first sum counts the number of ways to choose 2k items among a + b + 1,

choosing, the a + y + 1th, and k items among the a + y first ones, when, a term in the second

sum counts the number of ways to choose 2k items among a + b + 1, choosing, the a + y + 1th,
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and k− 1 items among the a+ y first ones. The choices counted by the first sum but not by the

second one, are those where exactly k items are chosen among the a + c first ones.

We need to consider the two cases n even and n odd :

• If n is even, using that S(n) = n mod 2 = y mod 2, set N = n/2, Y = y/2 in the sum,

W (2N, k) =
∑

Y ≥1

(
N + Y

k

)(
N − Y − 1

k − 1

)
−
(

N + Y

k − 1

)(
N − Y − 1

k

)
=

(
N + 1

k

)(
N − 1

k

)
.

If n = 2N + 1, take y = 2Y + 1 in the sum

W (2N+1, k) =
∑

Y ≥0

(
N + Y + 1

k

)(
N − Y − 1

k − 1

)
−
(

N + Y + 1

k − 1

)(
N − Y − 1

k

)
=

(
N + 1

k

)(
N

k

)
. �

3 Asymptotic considerations and proofs

We first recall a classical result of probability theory, simple consequence of Billingsley [6,

Theorem 7.8], that allows to prove the weak convergence in Rd using a local limit theorem.

Proposition 10 Let k be a positive integer and for each i ∈ J1, kK, (α
(i)
n ) a sequence of real

numbers such that α
(i)
n −→

n
+∞. For any n, let Xn = (X

(1)
n , . . . ,X

(k)
n ) be a Zk-valued random

variable. If ∀λ = (λ1, . . . , λk) ∈ Rk,

α(1)
n . . . α(k)

n P
(
(X(1)

n , . . . ,X(k)
n ) = (⌊λ1α

(1)
n ⌋, . . . , ⌊λkα

(k)
n ⌋)

)
−→ φ(λ1, . . . , λk)

where φ is a density probability on Rk, then (X
(1)
n /α

(1)
n , . . . ,X

(k)
n /α

(k)
n )

(d)−−→
n

X where X is a

random variable with density φ.

Proposition 3 is a simple consequence of this proposition, since by (1) and Proposition 1, the

application of the Stirling formula simply yields

√
n P x

n(⌊Λn − n/4⌋ = ⌊t√n⌋) −−→
n

1√
2π/16

exp(−8t2),

for any x ∈ {w, b, e,m} and any t ∈ R. Note that under Pw
n , one may also compute the limiting

distribution using that Λn(S) =
∑n−1

i=1 1i∈S∧
, which is a sum of Bernoulli random variables with

an easy to handle dependence.

3.1 Finite dimensional distribution of the Brownian processes

Notation For any sequence (oi)i indexed by integers, the sequence (∆oi) is defined by

∆oi = oi − oi−1 and (∆oi) by ∆oi = oi + oi−1.

For any t > 0 and x, y ∈ R, set

pt(x, y) =
1√
2πt

exp

(
−(y − x)2

2t

)
.
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Let ℓ ≥ 1 and let (t1, . . . , tℓ) ∈ [0, 1]ℓ satisfying 0 < t1 < · · · < tℓ−1 < tℓ := 1. The distributions of

the a.s. continuous processes w, b, e,m are characterized by their finite dimensional distributions.

Let f x
t1,...,tk

be the density of (xt1 , . . . , xtk) with respect to the Lebesgue measure on Rk. We have

fw

t1,...,tℓ
(x1, . . . , xℓ) =

ℓ∏

i=1

p∆ti(xi−1, xi), with x0 = 0 by convention,

fb

t1,...,tℓ−1
(x1, . . . , xℓ−1) =

√
2π fw

t1,...,tℓ−1
(x1, . . . , xℓ−1)p∆tℓ(xℓ−1, 0),

fm

t1,...,tℓ
(x1, . . . , xℓ) =

√
2π

x1

t1
pt1(0, x1)

(
ℓ∏

i=2

p∆ti(xi−1, xi) − p∆ti(xi−1,−xi)

)
1x1,...,xℓ≥0,

f e

t1,...,tℓ−1
(x1, . . . , xℓ−1) = fm

t1,...,tℓ−1
(x1, . . . , xℓ−1)

xℓ−1

∆tℓ
p∆tℓ(xℓ−1, 0).

We end this section with two classical facts: first pt(x, y) = pt(0, y − x) and, for any α > 0,

fαx
t1,...,tk

(x1, . . . , xk) = α−kf x
t1,...,tk

(x1/α, . . . , xk/α).

3.2 Finite dimensional convergence

We will show that for any x ∈ {w, b, e,m}, under Px
n, for any ℓ ∈ {1, 2, 3, . . . } and 0 < t1 <

· · · < tℓ−1 < tℓ := 1

(sn(t1), . . . , sn(tℓ), λn(t1), . . . , λn(tℓ))
(d)−−→
n

(
x(t1), . . . , x(tℓ), b̂(t1), . . . , b̂(tℓ)

)
,

where tℓ := 1 has been chosen for computation convenience, and (x, b̂) has the prescribed distri-

bution (as in Theorem 4). This implies the convergence of the finite dimensional distribution in

Theorem 4.

In order to handle easily the binomial coefficients appearing in
[
l, j1, j2, x, y

]
that involve half in-

tegers, we proceed as follows. Let N = ⌊n/2⌋ and let En = n−2N = n mod 2. For i ∈ J1, ℓ−1K,

let t
(n)
i be defined by

2Nt
(n)
i := 2⌊nti/2⌋,

t
(n)
0 = 0, and t

(n)
ℓ by 2Nt

(n)
ℓ = 2N + En = n (notice that t

(n)
ℓ is in {1, 1 + 1/(n − 1)}).

Using that for any i, |2Nt
(n)
i − nti| ≤ 2, we have clearly under P

x,(Kn)
n ,

S(2Nt
(n)
i ) − S(nti)

βn

proba.−→ 0 and
Λ

2Nt
(n)
i

− Λnti

γn

proba.−→ 0 (18)

since γn and βn goes to +∞. From now on, we focus on the values of the processes on the

discretization points 2Nt
(n)
i . For any i ∈ J1, ℓ − 1K, set

Λ̃i := #S∧ ∩ J2Nt
(n)
i−1 + 1, 2Nt

(n)
i − 1K

the number of peaks lying strictly between 2Nt
(n)
i−1 and 2Nt

(n)
i .

In order to obtain a local limit theorem, we are interested in the number of trajectories

passing via some prescribed positions.
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3.2.1 Case x = w

Let 0 = u0, u1, . . . , uℓ, v1, . . . , vℓ−1 be fixed real numbers. Set

Θ := (t1, . . . , tℓ−1, u1, . . . , uℓ, v1, . . . , vℓ−1)

and for any i ∈ J1, l − 1K, set

K(i)
n = ⌊Kn∆ti⌋ + ⌊viγn⌋,

and

Aw

n (Θ) := {S ∈ W(Kn)
n , S(2Nt

(n)
i ) = 2⌊uiβn⌋, for i ∈ J1, ℓ − 1K, S(n) = 2[uℓβn] + En,

Λ̃i = K(i)
n for i ∈ J1, ℓ − 1K}.

For any i ∈ J1, l − 1K, denote by ai(S) = ∆S2Ntni−1+1 and bi(S) = ∆S2Ntni
the first and last

increments of the ith part of S between the discretization points. Some peaks may appear in

the positions 2Ntni , and then, we must take into account the pairs (bi, ai+1) to compute the

cardinality of Aw
n (Θ). For any S ∈ Aw

n(Θ), the number of peaks in J2Ntℓ−1 + 1, n − 1K is

K(ℓ)
n = Kn −

ℓ−1∑

i=1

K(i)
n −

ℓ−1∑

i=1

1I(bi,ai+1)=(u,d).

We have #Aw
n(Θ) =

∑

c

(
ℓ−1∏

i=1

#TK(i)
n

ai,bi
(2N∆tni , 2⌊ui−1βn⌋, 2⌊uiβn⌋)

)
#TK(l)

n

aℓ,bℓ
(2N∆tnℓ , 2[uℓ−1βn], 2[uℓβn] + En) (19)

where the sum is taken over every c := ((a1, b1), . . . , (aℓ, bℓ)) ∈ {u, d}ℓ.

In order to evaluate the sum (19), we introduce some binomial random variables B(l, pn)

with parameters l and pn and we use the following version of the local limit theorem

Lemma 11 Let (l(n)) be a sequence of integers going to +∞ and σ2
n = l(n)pn(1 − pn). We

have

P(B(l(n), pn) = m) =

(
l(n)

m

)
pm

n (1 − pn)l(n)−m =
1

σn

√
2π

exp

(
−(m − l(n)pn)2

2σ2
n

)
+ o(1/σn).

(20)

This may be proved using Stirling formula. As a consequence, if (an), (a′n), (a′′n) are sequences

of integers such that

an − nt/2 = O(1) for t ∈ (0, 1),
a′n
βn

−→ u,
a′′n − tKn

γn
−→ v,

then

P(B(an + a′n, pn) = a′′n) ∼ 1√
πtγn

exp

(
−(v − u)2

t

)
.
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We then get easily that

#TK(i)
n

ai,bi
(2N∆tni , 2⌊ui−1βn⌋, 2⌊uiβn⌋) (1 − pn)2N∆tni −2

(
pn

1 − pn

)2K(i)
n −1bi=d−1ai=d

is equivalent to 1
π∆tiγ2

n
exp

(
−2

v2
i +∆u2

i

∆ti

)
= 2γ−2

n p∆ti(0, 2vi)p∆ti(0, 2∆ui) and

#TK(ℓ)
n

aℓ,bℓ
(2N∆tnℓ , 2[uℓ−1βn], 2[uℓβn] + En) (1 − pn)n−2Nt

(n)
ℓ−1−2

(
pn

1 − pn

)2K(ℓ)
n −1bℓ=d−1aℓ=d

is equivalent to 1
π∆tℓγ2

n
exp

(
−2

(
Pℓ−1

i=1 vi)2+∆u2
ℓ

∆tℓ

)
= 2γ−2

n p∆tℓ(2
∑ℓ−1

i=1 vi, 0)p∆tℓ(0, 2∆uℓ).

Since p2Kn+1
n (1 − pn)n−2Kn #W(Kn)

n ∼ 1/(γn

√
2π) we obtain

Pw,(Kn)
n (Aw

n (Θ)) =
#Aw

n(Θ)

#W(Kn)
n

∼ cw

nf
w/2
t1,...,tℓ

(u1, . . . , ul)f
b/2
t1,...,tℓ−1

(v1, v1 + v2, . . . , v1 + · · · + vℓ−1)

where

cw

n := 21−ℓγ1−2ℓ
n pn(1 − pn)2ℓ

∑

c

(
pn

1 − pn

)1a1=u+1bℓ=d+
Pℓ−1

i=1 21(bi,ai+1)=(u,d)+1bi=d+1ai+1=u

= γ1−2ℓ
n pℓ

n = γ1−ℓ
n β−ℓ

n

The contribution of the sum over c has been computed as follows:

∑

c

xf(c) =




∑

(a1,bℓ)∈{+1,−1}2

x1a1=u+1bℓ=d




ℓ−1∏

i=1

∑

(bi,ai+1)∈{+1,−1}2

x
1(bi,ai+1)=(u,d)+1bi=d+1ai+1=u

= (1 + 2x + x2)(2x + 2x2)ℓ−1 = 2ℓ−1xℓ−1(1 + x)ℓ+1.

Finally, this says that

βℓ
nγℓ−1

n Pw,(Kn)
n

(
S(2Nti)

2
= ⌊uiβn⌋, i ∈ J1, ℓK, Λ̃i − ⌊Kn∆ti⌋ = ⌊viγn⌋, i ∈ J1, ℓ − 1K

)
→

f
w/2
t1,...,tℓ

(u1, . . . , ul)f
b/2
t1,...,tℓ−1

(v1, v1 + v2, . . . , v1 + · · · + vℓ−1).

Hence by Proposition 10 and (5), and taking into account that for any i, λn(ti)−2
∑i

j=1

eΛi−⌊Kn∆ti
⌋

γn

proba−→
0, this allows to conclude to the finite dimensional convergence in Theorem 4 in the case x = w.

Comments 2 To compute a local limit theorem under the other distributions the numbers

u1, . . . , uℓ, v1, . . . , vℓ and the set Aw
n have to be suitably changed. First, in each case, the set

W(Kn)
n has to be replaced by the right set.

• In the case of excursions and bridges, n is an even number and uℓ is taken equal to 0.

• In the case of excursions a1 = u, bℓ = d

• In the case of excursions and meanders all the reals ui are chosen positive. Moreover, T≥

must replace T in the summation (19).

Up to these changes, the computations are very similar to the case of Bernoulli chains.
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3.2.2 Case x = b

The computation is very similar to the previous case; the only differences are : here n = 2N is

even, #B(Kn)
n =

(N
Kn

)2
, we set uℓ to 0 and we take Θ′ := (t1, . . . , tℓ−1, u1, . . . , uℓ−1, 1, v1, . . . , vℓ−1).

We get

Pb,(Kn)
n (Ab

n(Θ′)) ∼ cb

nf
b/2
t1,...,tℓ−1

(u1, . . . , uℓ−1)f
b/2
t1,...,tℓ−1

(v1, v1 + v2, . . . , v1 + · · · + vℓ−1),

where cb
n := cw

nγnp−1
n = γ1−ℓ

n β1−ℓ
n .

3.2.3 Case x = e

In this case n = 2N is even, uℓ = 0, a1 = u, bℓ = d. In order to avoid some problems with the

formulas provided in Proposition 9 that have to be handled with precautions when x or y are 0,

we will compute the local limit theorem “far” from 0. This will however suffice to conclude. For

i ∈ J1, ℓ−1K we take ui > 0, and βn is assumed large enough so that ⌊uiβn⌋ > 0. For the calculus

in the case of x = e, in formula (19), we replace T by T≥. Finally, #E(Kn)
n = 1

N

( N
Kn

)( N
Kn−1

)
.

We first treat the contribution of the non extreme parts of the trajectories, namely, i ∈
J2, l − 1K,

#TK(i)
n ,≥

ai,bi
(2N∆tni , 2⌊ui−1βn⌋, 2⌊uiβn⌋))(1 − pn)2N∆tni −2

(
pn

1 − pn

)2K(i)
n −1bi=d−1ai=u

is equivalent to 2γ−2
n p∆ti(0, 2vi)

(
p∆ti(0, 2∆ui) − p∆ti(0, 2∆ui)

)
.

Let us consider i = 1. Notice that #T j,≥
uu (l, 0, y) and #T j,≥

ud (l, 0, y) may be very different :

T j,≥
uu (l, 0, y) =

( l+y
2 − 1

j − 1

)( l−y
2 − 1

j − 1

)
y

j
and T j,≥

ud (l, 0, y) =

( l+y
2 − 1

j − 1

)( l−y
2 − 1

j − 1

)
2jy + l − y

j(l + y − 2j + 2)

Ab1(n) := #TK(1)
n ,≥

u,b1
(2N∆tn1 , 0, 2⌊u1βn⌋))(1 − pn)2N∆tn1 −2

(
pn

1 − pn

)2K(1)
n −1b1=d

We notice that under (H)

n = o(Knβn), γn = o(n − 2Kn), γn ≤ βn, γn = o(Kn).

We then get,

Ab1(n) ∼ 1

nγn(1 − pn)2
8u1

t1
p∆t1(0, 2u1)p∆t1(0, 2v1).

The case i = ℓ is treated with the same method. We obtain

Pe,(Kn)
n (Ae

n(Θ′)) =
#Ae

n(Θ′)

#E(Kn)
n

∼ ce

nf
e/2
t1,...,tℓ−1

(u1, . . . , uℓ−1)f
b/2
t1,...,tℓ−1

(v1, v1 + v2, . . . , v1 + · · · + vℓ−1)

where ce
n = γ−ℓ+1

n β−ℓ+1
n .
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3.2.4 Case x = m

The computation is the same as in the case x = e, except that uℓ is taken > 0 (and n large

enough such that ⌊uℓβn⌋ ≥ 1)· The last piece in the decomposition of meanders is of the same

type as a standard excursion piece. We obtain

Pm,(Kn)
n (Am

n (Θ)) =
#Am

n (Θ′)

#M(Kn)
n

∼ cm

n f
m/2
t1,...,tℓ−1

(u1, . . . , uℓ−1)f
b/2
t1,...,tℓ−1

(v1, v1 +v2, . . . , v1 + · · ·+vℓ−1)

where cm
n = γ−ℓ+1

n β−ℓ
n .

4 Tightness

We begin with some recalls of some classical facts regarding tightness in C[0, 1]. First, tight-

ness and relative compactness are equivalent in C[0, 1] (and in any Polish space, by Prohorov).

Consider the function modulus of continuity,

ω : [0, 1] × C[0, 1] −→ R+

(δ, f) 7−→ ωδ(f)

defined by

ωδ(f) := sup
s,t∈[0,1],|s−t|≤δ

|f(t) − f(s)|.

A sequence of processes (xn) such that xn(0) = 0 is tight in C[0, 1], if for any ε > 0, η > 0, there

exists δ > 0, such that for n large enough

P(ωδ(xn) ≥ ε) ≤ η.

If the sequences (xn) and (yn) are tight in C[0, 1] (and if for each n, xn and yn are defined on

the same probability space Ωn), then the sequence (xn, yn) is tight in C([0, 1])2. We will use

this result here, and prove the tightness separately for (sn) and (λn) for every model Px
n.

We say that a sequence (xn) in C[0, 1] is tight on [0, 1/2] if the sequence of restrictions

(xn|[0,1/2]) is tight in C[0, 1/2]. We would like to stress on the fact that we deal only with

processes piecewise interpolated (on intervals [k/n, (k + 1)/n]); for these processes, for n large

enough such that 1/n < δ,
(

sup{|xn(t) − xn(s)|, s, t ∈ {k/n, k ∈ J0, nK}, |s − t| ≤ δ} ≤ ε/3
)
⇒ (ωδ(xn) ≤ ε).

In other words, one may assume that s and t are discretization points, in our proofs of tightness.

We recall a result by Petrov [19, Exercise 2.6.11] :

Lemma 12 Let (Xi)i be i.i.d. centered random variables, such that E(etX1) ≤ egt2/2 for |t| ∈
[0, T ] and g > 0. Let Zk = X1 + · · · + Xk. Then

P( max
1≤k≤N

|Zk| ≥ x) ≤ 2

{
exp(−x2/2Ng) for any x ∈ [0,NgT ]

exp(−Tx) for any x ≥ NgT.
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The tightness of (sn, λn) is proved as follows: first, under P
w,(Kn)
n , the passage via an alter-

native model of “simple random walk” allows to remove the conditioning by Λn = Kn. Then,

the tightness under P
b,(Kn)
n is deduced from that under P

w,(Kn)
n , thanks to the fact that the con-

ditioning by S(n) = 0 does not really change the distribution the first half of the trajectories.

The tightness under P
e,(Kn)
n and P

m,(Kn)
n are then obtained from that under P

b,(Kn)
n by some

usual trajectory transformations that preserve the main properties of the variations and peak

distributions of the trajectories.

4.1 A correspondence between simple chains and Bernoulli chains

We denote by Hn the set of “simple chains”, starting from 0 and having n + 1 steps :

Hn = {H = (Hi)0≤i≤n+1 : H0 = 0,Hi+1 = Hi or Hi+1 = Hi + 1 for any i ∈ J0, nK}.

We consider the map

Φn : Wn −→ Hn

S 7−→ H = Φn(S)

where H is the simple chain with increments: for any i ∈ J1, n + 1K,

{
if ∆Si 6= ∆Si−1 then ∆Hi = 1

if ∆Si = ∆Si−1 then ∆Hi = 0

where by convention ∆S0 = −1 and ∆Sn+1 = 1 (see illustration on Figure 5).

0

S

H
2

4

6

n + 1

Figure 5: Correspondence between simple chains and Bernoulli chains

The mapping Φn is a combinatorial trick. Obviously, the map S 7→ H where H is defined

by ∆Hi = (∆Si + 1)/2 is a bijection from Wn onto Hn−1. The map Φn is then certainly not a

bijection (it is an injection). But, Φn owns some interesting properties that will really simplify

our task.
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Each increasing step in H corresponds to a changing of direction in S. Since ∆S0 = −1, the

first one corresponds then to a valley, and the last one to a valley (which can not be in position

n, since ∆Sn+1 = 1). Hence, for any j ∈ J0, nK,

Λj(S) = #S∧ ∩ J0, jK =

⌊
Hj+1

2

⌋
.

Hence,

S∧ = {T2l(H) − 1, l ∈ N} and (−S)∧ = {T2l+1(H) − 1, l ∈ N},

where (−S)∧ is the set of valleys of S and where Tl(H) = inf{j,Hj = l} is the hitting time by

H of the level l. The process S may then be described with H:

S(k) =

Hk−1∑

i=0

(−1)i+1 (Ti+1(H) − Ti(H)) + (−1)Hk+1(k − THk
(H)). (21)

To end these considerations, consider now the subset of simple chains with k increasing steps,

Hk
n = {H ∈ Hn,Hn+1 = k},

and focus on H2k+1
n . Each element H ∈ H2k+1

n is image by Φn of a unique trajectory S that has

k peaks in J1, n−1K and k+1 valleys in J0, nK (that may be in position 0 and n by construction),

in other words, to a trajectory of W(k)
n .

This may alternatively be viewed as follows: to build a trajectory of W(k)
n choose 2k + 1

integers i1 < i2 < · · · < i2k+1 in the set J0, nK. Then construct a trajectory from Wn in placing

a valley in i1, i3, . . . , i2k+1, a peak in i2, i4, . . . , i2k and fill in the gaps between these points by

straight lines. Hence

Lemma 13 For any k ∈ J0, ⌊n/2⌋K, the restriction of Φn on W(k)
n is a bijection onto H2k+1

n .

For any p ∈ [0, 1], let Qn
p be the distribution on Hn of the Bernoulli random walks with n + 1

i.i.d. increments, Bernoulli B(p) distributed (that is Qn
p (∆Hi = 1) = 1 − Qn

p(∆Hi = 0) = p).

For any H in Hn,

Qn
p({H}) = pHn+1(1 − p)n+1−Hn+1 ,

and then, Qn
p gives the same weight to the trajectories ending at the same level. Hence the

conditional distribution Qn
p( . |H2k+1

n ) is the uniform law on H2k+1
n . On the other hand, since

P
w,(k)
n is the uniform distribution on W(k)

n , by Lemma 13, P
w,(k)
n ◦ Φ−1

n is also the uniform law

on H2k+1
n . Hence

Lemma 14 For any p ∈ (0, 1), n ∈ N, k ∈ J0, ⌊n/2⌋K, Qn
p( . |H2k+1

n ) = P
w,(k)
n ◦ Φ−1

n .

Using simple properties of binomial distribution, the value of p that maximizes Qn
p(H2Kn+1

n )

is p̃n = (2Kn + 1)/(n + 1). This morally explains why in Section 3, pn appears as a suitable

parameter. For sake of simplicity, we will work again with pn = 2Kn/n instead of p̃n. We will
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see that under Qn
pn

, the conditioning by H2k+1
n is a “weak conditioning”, and to bound certain

quantities, this conditioning may be suppressed, leading to easy computations. The archetype

of this remark is the following property

Lemma 15 Assume (H). There exists c > 0 such that for n large enough, for any set An on Hn

depending only on the first half part of the trajectories, (that is σ(H0,H1, . . . ,H⌊n/2⌋)−measurable),

Q̃n(An) := Qn
pn

(An |H2Kn+1
n ) ≤ c Qn

pn
(An). (22)

Proof. The idea is taken from the proof of Lemma 1 in [12] :

Q̃n(An) =
∑

j

Q̃n(An,H⌊n/2⌋ = j)

=
∑

j

Qn
pn

(An |H⌊n/2⌋ = j,Hn+1 = 2Kn + 1) Q̃n(H⌊n/2⌋ = j)

=
∑

j

Qn
pn

(An |H⌊n/2⌋ = j) Q̃n(H⌊n/2⌋ = j).

The latter equality comes from the Markov property of H under Qn
pn

that implies that Qn
pn

(Hn+1 =

2Kn + 1|An,H⌊n/2⌋ = j) = Qn
pn

(Hn+1 = 2Kn + 1|H⌊n/2⌋ = j). It suffices to establish that there

exists c ≥ 0 such that for n large enough, for any j

Q̃n(H⌊n/2⌋ = j) ≤ c Qn
pn

(H⌊n/2⌋ = j).

Write

Q̃n(H⌊n/2⌋ = j) = Qn
pn

(H⌊n/2⌋ = j)
Qn

pn
(H⌊n/2⌋ = 2Kn + 1 − j)

Qn
pn

(Hn+1 = 2Kn + 1)
;

using Lemma 11, the last quotient is bounded, uniformly on j and n ≥ 1. �

A simple consequence of Lemma 15 is the following : let Xn be a positive random variable

that depends only on the first half part of the trajectories, then the expectation of Xn under

Q̃n is bounded by the expectation of cXn under Qn
pn

.

4.2 Tightness under P
w,(Kn)
n

Assume that (Kn) satisfies (H), that S ∈ Wn, and let H = Φn(S). Set

hn(t) =
H(n+1)t

2γn
− tKn

γn
for t ∈ [0, 1], (23)

where H is assumed to be interpolated between integer points. Thanks to formulas (4), (5),

(21),

|λn(t) − λn(s)| ≤ |hn(t) − hn(s)| + 2/γn. (24)

Hence, the tightness of (hn) under Q̃n implies the tightness of (λn) under P
w,(Kn)
n .
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By symmetry of the random walk under these distributions, we may prove the tightness only

on [0, 1/2]. By Lemma 15, the tightness of (hn) on [0, 1/2] under Qn
pn

implies the tightness of

(hn) on [0, 1/2] under Q̃n, and then that of (λn) on [0, 1/2] under P
w,(Kn)
n . Hence, it suffices to

prove the tightness of (hn) on [0, 1/2] under Qn
pn

to prove that of (λn) on [0, 1] under P
w,(Kn)
n .

Comments 3 The conditioning by the number of peaks is a strong conditioning on Wn. Indeed,

W(Kn)
n may have a very small (even exponentially small) probability under Pw

n when Kn is far

away from n/4 : no tight bound can be derived using comparison between Pw
n and P

w,(Kn)
n by just

removing the conditioning by Λn = Kn. The passage by Qn
pn

allows to remove this conditioning.

Tightness of the sequence (λn) under P
w,(Kn)
n

At first sight, under Qn
pn

, (hn) is a random walk with the right normalization, and it should

converge to the Brownian motion (and then the tightness should follow). However, we were

unable to find a reference for this result under the present setting. We will then prove it.

In the sub-case where there exists δ > 0 such that, for n large enough, pn satisfies nδ−1 ≤
pn ≤ 1−nδ−1 then under Qn

pn
, hn

(d)−−→
n

w in C[0, 1] : it is a consequence of Rackauskas, & Suquet

[22, Theorem 2]. In this case the tightness holds in a space of Hölder functions, with exponent

smaller than 1/2· When pn = o(nδ−1) or 1 − pn = o(nδ−1), for any δ, (hn) is not tight in any

Hölder space; this may be checked by considering a single normalized step.

Let ε > 0 and η > 0 be fixed, and let us prove that for any n large enough, Qn
pn

(ωδ(hn) ≥
ε) ≤ η for δ sufficiently small. So take a parameter δ ∈ (0, 1). We have

ωδ(hn) ≤ 2 max
0≤j≤⌊1/(2δ)⌋

(
max
Iδ
j (n)

hn − min
Iδ
j (n)

hn

)
(25)

where

Iδ
j (n) =

[
2j⌊δ(n + 1)⌋

n + 1
∧ 1,

2(j + 1)⌊δ(n + 1)⌋
n + 1

∧ 1

]

(notice that the length of Iδ
j (n) is larger than δ for n large enough, and smaller than 3δ). The

factor 2 in (25) simply comes from the splitting up [0, 1] into parts. Since the extremities of the

Iδ
j (n)’s coincide with the discretization points, by the Markov property of hn,

Qn
pn

(ωδ(hn) ≥ ε) ≤ (1/(2δ) + 1) Qn
pn

(
sup
Iδ
1(n)

|hn| ≥ ε/2
)
. (26)

We need to control the supremum of a random walk, and we then use Lemma 12.

Lemma 16 Let B(pn) be a Bernoulli random variable with parameter pn. There exists K > 0,

such that for any n ≥ 1, any |t| ≤ γn,

E(et(B(pn)−pn)/γn) ≤ exp

(
2K

n

t2

2

)
. (27)
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Proof. There exists K > 0 such that, for any |x| ≤ 1, ex ≤ 1+x+Kx2. Hence, for any |t| ≤ 1,

E(et(B(pn)−pn)) = pnet(1−pn) + (1 − pn)e−tpn ≤ 1 + Kt2(pn(1 − pn)) ≤ e2Kt2pn(1−pn). Hence, for

any |t| ≤ γn, (27) holds (recall that (1 − pn)pn/γ2
n = 1/n). �

Let us end the proof of tightness of (hn). Since, for N ∈ J0, nK, hN/(n+1) is a sum of N i.i.d.

r.v. with the law of (B(pn) − pn)/γn,

Qn
pn

(
sup
j≤N

∣∣hj/(n+1)

∣∣ ≥ ε/2
)

≤ 2 exp
(
−(n + 1)ε2/(16NK)

)
for any ε ≤ 2NγnK/(n + 1).

Hence, for ε > 0, δ > 0 fixed, for n large enough,

Qn
pn

(ωδ(hn) ≥ ε) ≤ (1/(2δ) + 1)Qn
pn

(
sup

0≤t≤3δ

∣∣h⌊(n+1)t⌋
∣∣ ≥ ε/2

)

≤ 2(1/(2δ) + 1) exp

(
− ε2

16K(3δ)

)

and this is smaller than any η for δ small enough, and n large enough. �

Tightness of (sn) under P
w,(Kn)
n

Let δ ∈ (0, 1). First, it suffices to prove the tightness of (sn) under P
w,(Kn)
n on [0, 1/2].

Consider formula (21). Denote by Gi+1(H) = Ti+1(H) − Ti(H). For any s and t such that ns

and nt are integer, and s < t, we have

sn(t) − sn(s) = β−1
n

Hnt−1∑

i=Hns

(−1)i+1Gi+1(H) + (−1)Hns ((ns − THns(H)) − (nt − THnt(H))) . (28)

The range of sn in a subinterval I ⊂ [0, 1/2] is then a function of the values of hn in the same

interval. Denote by yn(s, t) the right hand side of (28). We may control the range of sn under

P
w,(Kn)
n by making some computations on yn(s, t) under Q̃n, and then, by Lemma 15, we may

work with yn(s, t) under Qn
pn

. Under Qn
pn

, the variables Gi(H) are geometrical G(pn) distributed

(P(G1 = k) = pn(1 − pn)k−11k≥1), and then the computations are simplified. By Formula (28),

we have

|yn(s, t)| ≤
∣∣∣∣∣

Hnt−1∑

i=Hns

β−1
n (Gi+2(H) − Gi+1(H))1i≡Hns mod 2

∣∣∣∣∣+ 3β−1
n max

j≤Hn

Gj(H)

where, in the sum, we have packed the variables Gi(H) per 2.

Denote by ỹn(s, t) the sum. Using that maxk≤m Gk is a non decreasing function of m, we

have

Qn
pn

(
supj≤Hn

Gj(H)

βn
≥ ε

)
≤ Qn

pn
(Hn > 4Kn) + Qn

pn

(
supj≤4Kn

Gj(H)

βn
≥ ε

)
. (29)
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Since Hn is a binomial random variable with parameters n and pn = 2Kn/n, by the Bienaymé-

Tchebichev’s inequality, the first term in the right hand side is O(K−1
n ). For the second term,

write Qn
pn

(
supj≤4Kn

Gj(H) ≥ εβn

)
= 1 − (1 − P(G1 ≥ εβn))4Kn . Since P(G1 ≥ εβn) = (1 −

pn)⌈εβn⌉−1, we find that the second term goes to 0 when n → +∞.

It remains to control the variables ỹn(s, t). Using the Markov property of the random walk

zk =
∑k

i=1 β−1
n (G2i(H) − G2i−1(H)), we get that under Qn

pn
,

sup
s,t∈Iδ

j
(n)

|ỹn(s, t)| (d)
= sup

s,t∈Iδ
1(n)

|ỹn(s, t)| ≤ 2 sup
t∈[0,3δ]

|ỹn(0, t)|.

Writing G̃i instead of G2i − G2i−1, we have

{
sup
t≤3δ

|ỹn(0, t)| ≥ ε

2

}
⊂
(
{H3nδ > 12Knδ}

⋃
{

sup
j≤6Knδ

∣∣∣∣∣βn
−1

j∑

i=1

G̃i(H)

∣∣∣∣∣ ≥ ε

})
.

Once again, by Bienaymé-Tchebichev, Qn
pn

({H3nδ > 12Knδ}) = O(1/(δKn)). For the second set

in the union, we have to control the maximum of a random walk with increments the variables

G̃.

Lemma 17 Let G1 and G2 be two independent geometrical random variables with parameter

pn. There exists c > 0, c′ > 0, such that for any |t| ≤ c′γn,

E

(
exp

(
t
G1 − G2

βn

))
≤ exp

(
ct2

npn

)
(30)

Proof. Write E (exp (u(G1 − G2))) = p2
n

(e−u+pn−1)(eu+pn−1)
. The denominator D is equal to

1 + (1 − pn)2 − (1 − pn)(eu + e−u). There exists a constant c > 0, such that for any |u| ≤ 1,

(eu + e−u) ≤ 2 + cu2. And then D ≥ p2
n − c(1− pn)u2 ≥ p2

n(1− c(1−pn)u2

p2
n

) ≥ p2
n exp(− c

2
(1−pn)u2

p2
n

)

this last equality holds when c
2

(1−pn)u2

p2
n

≤ 1. Hence E (exp (u(G1 − G2))) ≤ exp( c
2

(1−pn)u2

p2
n

) for

|u| ≤
√

2
c(1−pn)pn. Hence, (30) holds for |t| ≤ c′βnpn/

√
1 − pn, and then for |t| ≤ c′γn. �

We end now the proof of tightness for the family (sn). According to Lemmas 12 and 17, for

ε > 0, δ > 0 fixed, for a constant c′′ > 0 and n large enough

Qn
pn

(
β−1

n sup
j≤6δKn

G̃j(H) ≥ ε/2
)
≤ exp(−ε2/(c′′δ)).

This allows to conclude as for (hn). �

4.3 Tightness under P
b,(Kn)
n

In this section, n is an even number. Since P
b,(k)
n is the uniform distribution on B(k)

n , it

coincides with the conditional law P
w,(k)
n ( . |S(n) = 0). We first establish a lemma that allows

to control the probability of a set under P
b,(Kn)
n , by the probability of the same set under P

w,(k)
n .
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Lemma 18 Assume (H). There exists a constant c > 0 such that for n large enough, any

An ⊂ Wn,

Pb,(Kn)
n (An) ≤ c βn Pw,(Kn)

n (An).

Proof. Write

Pb,(Kn)
n (An) =

P
w,(Kn)
n (An, S(n) = 0)

P
w,(Kn)
n (S(n) = 0)

≤ P
w,(Kn)
n (An)

P
w,(Kn)
n (S(n) = 0)

.

Now P
w,(Kn)
n (S(n) = 0) = #B(Kn)

n /#W(Kn)
n ∼

√
2/πβ−1

n , by the local limit theorem. �

Since γn → +∞, this lemma is interesting only for sets with probability o(γ−1
n ), e.g. :

Lemma 19 Assume (H). Let (αn) be a sequence such that αn → +∞. There exist c > 0,

c′ > 0, such that for n large enough

Pw,(Kn)
n

(∣∣Λn/2 −Kn/2
∣∣ ≥ αnγn

)
≤ exp(−c′α2

n),

and then

Pb,(Kn)
n

(∣∣Λn/2 −Kn/2
∣∣ ≥ αnγn

)
≤ cβn exp(−c′α2

n).

Proof. Assume again that H = Φn(S). The variable Λn/2−1(S) = ⌊Hn/2/2⌋ depends only on

the first half of the trajectories. By Lemma 15, for any set In,

Pw,(Kn)
n

(
Λn/2−1(S) ∈ In

)
= Q̃n

(
⌊Hn/2/2⌋ ∈ In

)
≤ c′′ Qn

pn

(
⌊Hn/2/2⌋ ∈ In

)
.

Under Qn
pn

, Hn/2 is a binomial random variable with parameters n/2 and pn. Now, using

Lemmas 12 and 16 with In = ∁[Kn/2 − αnγn,Kn/2 + αnγn], we get the first assertion. The

second assertion is a consequence of Lemma 18. �

Consider Wn the set of simple walks satisfying

Wn = {S : S ∈ Wn,
∣∣Λn/2 −Kn/2

∣∣ ≤ γ5/4
n }.

Since by Lemma 19, P
b,(Kn)
n (Wn) → 1, we will from now on concentrate on these trajectories.

We stress on the fact that γ
5/4
n = o(Kn). Assume that the following lemma is proved.

Lemma 20 Assume (H). There exists a constant c > 0 such that for n large enough, for any

subset An ⊂ Wn depending only on the first half of the trajectories,

Pb,(Kn)
n (An) = Pw,(Kn)

n (An |S(n) = 0) ≤ c Pw,(Kn)
n (An). (31)

This lemma, very similar to Lemma 15, allows to obtain the tightness of (sn, λn) under P
b,(Kn)
n

from that under P
w,(Kn)
n ; proceed as follows. By symmetry of bridges under P

b,(Kn)
n , it suffices to

prove the tightness on [0, 1/2]. Since P
b,(Kn)
n (Wn) → 1, we restrict our study to the trajectories
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of Wn. By (31), the tightness of (sn, λn) under P
w,(Kn)
n on [0, 1] (and then on [0, 1/2]) implies

that under P
b,(Kn)
n on [0, 1/2]. It only remains to prove Lemma 20.

Proof of Lemma 20 First, for any An, depending only on the first half of the trajectories,

Pw,(Kn)
n (An|S(n) = 0) =

∑

(l,x,a)

Pw,(Kn)
n (An | (Λn/2, S(n/2),∆Sn/2) = (l, x, a)) (32)

×Pw,(Kn)
n ((Λn/2, S(n/2),∆Sn/2) = (l, x, a) | S(n) = 0) (33)

where the summation is taken on all possible triples (l, x, a). Indeed, under Pw
n , the sequence

Yk = (Λk, S(k),∆Sk) is a Markov chain, and also under P
w,(Kn)
n . Then write P

w,(Kn)
n (An|S(n) =

0) =
∑

(l,x,a) P
w,(Kn)
n (S(n) = 0|An, Yn/2 = (l, x, a))P

w,(Kn)
n (Yn/2 = (l, x, a))/P

w,(Kn)
n (S(n) = 0),

then the first conditioning by An may be deleted, by Markov. A trite computation leads to the

result.

Now, assume that An ⊂ Wn. The summation in (32) can be done on the triples (l, x, a),

such that l ∈ Jn := JKn/2 − γ
5/4
n ,Kn/2 + γ

5/4
n K, x ∈ J−n/2, n/2K, a ∈ {u, d}. To end the proof,

we check that there exists c > 0, valid for any (l, x, a) ∈ Jn × J−n/2, n/2K × {u, d}, and n large

enough, such that

Pw,(Kn)
n

(
Yn/2 = (l, x, a) | S(n) = 0

)
≤ c Pw,(Kn)

n

(
Yn/2 = (l, x, a)

)
. (34)

We choose to condition by the last increment of S in J0, n/2K for computation reasons.

For any a ∈ {u, d}, denote T−a = Tua ∪ Tda and similar notation for Ta− and T−−.

• Case a = d. In this case, the left hand side of (34) equals

#T l
− d(n/2, x, 0)#TKn−l

−− (n/2, x, 0)

#B(Kn)
n

and the right hand side

#T l
− d(n/2, x, 0)#W(Kn−l)

n/2

#W(Kn)
n

.

Since for any c > 0, the map x 7→ Γ(x)/Γ(x − c) is log-concave,

#TKn−l
−− (n/2, x, 0) =

( n/2−x
2

Kn − l

)( n/2+x
2

Kn − l

)
≤
( ⌊n/4⌋
Kn − l

)( ⌈n/4⌉
Kn − l

)
:= gn,l.

Using that

#B(Kn)
n

#W(Kn)
n

=
pn#B(Kn)

n p2Kn
n (1 − pn)n−2Kn

#W(Kn)
n p2Kn+1

n (1 − pn)n−2Kn

∼ pn

√
2πγn

2πγ2
n/2

To prove (34) when a = d it suffices to prove that

lim sup
n

max
l∈Jn

γn

pn

gn,l

#W(Kn−l)
n/2

< +∞
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(notice that ⌊n/4⌋ + ⌈n/4⌉ = n/2 for any even n.) We have

γn

pn

gn,l

#WKn−l
n/2

= γn

(⌊n/4⌋
Kn−l

)(⌈n/4⌉
Kn−l

)

( n/2
2(Kn−l)

)( n/2+1
2Kn−2l+1pn

)

The (second) parenthesis in the denominator is bounded. It remains to prove that lim supn maxl∈Jn
Gn(l)

is bounded, for

Gn(l) :=
γn

(⌊n/4⌋
Kn−l

)(⌈n/4⌉
Kn−l

)
( n/2
2(Kn−l)

) .

We will prove this assertion by showing that for any sequence (ln) of integers, that satisfies

ln ∈ Jn for any n, (Gn(ln)) converges to a constant that does not depend on (ln). This allows

to conclude, since one may take the sequence (ln) s.t. Gn(ln) maximizes Gn(l) on Jn for any n.

Set ρn = 4(Kn − ln)/n. Since ln ∈ Jn, for any n, ρn ∈ (0, 1).Now, one checks easily that

Gn(ln) =
γnP (B(⌊n/4⌋, ρn) = Kn − ln) P (B(⌈n/4⌉, ρn) = Kn − ln)

P (B(n/2, ρn) = 2(Kn − ln))
.

Since Kn − ln ∼ Kn/2, by the central local limit theorem, it converge to 2/
√

π.

• Case a = u. In this case, the left hand side of (34) equals

#T l
−u(n/2, x, 0)(#TKn−l

u − (n/2, x, 0) + #TKn−l−1
d− (n/2, x, 0))

#B(Kn)
n

and the right hand side

#T l
− d(n/2, x, 0)(#W(Kn−l)

n/2,u + #W(Kn−l−1
n/2,d ))

#W(Kn)
n

,

where Wk
n,a is the set of trajectories S with k peaks with ∆S1 = a.

Once again, it suffices to check that the quotient

#TKn−l
u− (n/2, x, 0) + #TKn−l−1

d− (n/2, x, 0) =

(
1 + n/2−x

2

k − l

)( n/2+x
2 − 1

Kn − l − 1

)

divided by

#WKn−l
n/2,u + #W(Kn−l−1)

n/2,d =

(
n/2 + 1

2(Kn − l)

)

is bounded by c#B(Kn)
n /#W(Kn)

n . The same arguments lead to the same conclusion.�

4.4 Tightness under P
m,(Kn)
n

The case n even

Assume first that n = 2N is even. We recall a bijection Ψ2N : B2N → M2N , illustrated on

Figure 6, that maps B(k)
2N on M(k)

2N , and that moreover preserves sufficiently the trajectories, to

prove that the tightness of (s2N , λ2N ) under P
b,(K2N )
2N yields that under P

m,(K2N )
2N .
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The map Ψ2N : B2N → W2N (we will see later that Ψ2N (B2N ) = M2N ) is defined as follows.

Let S ∈ B2N and m = minS ≤ 0 its minimum. For j ∈ {1, . . . ,−m}, let tj = τ−j(S) the

reaching time of −j by S. Write IS = {tj , j ≥ 1}. Notice that when m = 0, IS = ∅.

The trajectory Ψ2N (S) = Z = (Zi)i=0,...,n is defined by Z0 = 0 and :

∆Zi =

{
∆Si if i /∈ IS,

−∆Si = +1 if i ∈ IS.

Proposition 21 For any even 2N , Ψ2N is a bijection from B2N onto M2N ; moreover, for any

k, its restriction to B(k)
2N is a bijection onto M(k)

2N that preserves the peak positions.

Proof. First, it is easy to see that if Z = Ψ2N (S), for any i ≤ 2N ,

Zi = S(i) + 2min
j≤i

S(j). (35)

Hence, Ψ2N (B2N ) ⊂ M2N . Since Ψ2N is clearly an injection, the first assertion of the Proposition

follows #B2N = #M2N . Since Ψ2N neither creates nor destroys any peaks, nor even changes

the position of the peaks, the restriction of Ψ2N onto B(k)
2N is a bijection onto Ψ2N (B(k)

2N ) ⊂ M(k)
2N .

The equality #B(k)
2N = #M(k)

2N suffices then to conclude. �

An excursion-type path

A bridge B

Ψ2N (B)

0 t1 t2

Figure 6: Synthetic description of Ψ2N . The map Ψ2N turns over each increment corresponding

to a reaching time of a negative position. The map Ψ−1

2N
turns over the last increments reaching

each position x ∈ J1, Z2N/2K (Z2N is even).

By Proposition 21, the tightness of (λ2N ) under P
m,(K2N )
2N is a consequence of that under

P
b,(K2N )
2N . For (s2N ), (35) implies that the modulus of continuity of the non normalized trajec-

tories are related by

ωZ(δ) ≤ 3ωS(δ) for any δ ∈ [0, n]

and then, the tightness of (s2N ) under P
m,(K2N )
2N follows that under P

b,(K2N )
2N .

28



The case n odd

The case n = 2N +1 odd is very similar. There exists a bijection Ψ2N+1 between B̃2N+1 and

M2N+1 where B̃2N+1 is the subset of W2N+1 of trajectories ending at position +1. The map

An excursion-type path

A bridge B̃

Ψ2N+1(B̃)

0 t1 t2

Figure 7: Synthetic description of Ψ2N+1. The map Ψ2N+1 turns over each increment cor-

responding to a reaching time of a negative position. The map Ψ−1

2N+1
turns over the last

increments reaching each position x ∈ J1, ⌊Z2N+1/2⌋K (Z2N+1 is odd).

Ψ2N+1 has the same properties as Ψ2N to conserve the peak positions, and the set B̃
(K2N+1)
2N+1 :=

B̃2N+1 ∩W(K2N+1)
2N+1 is sent on M(K2N+1)

2N+1 . To conclude, we need a tightness result for the uniform

distribution on B̃
(K2N+1)
2N+1 . But the result of Section 4.3 regarding B(K2N )

2N may be generalized to

B(K2N+1)
2N+1 .

Hence, (s2N+1, λ2N+1) is tight under P
m,(K2N+1)
2N+1 , and then we may conclude that (sn, λn) is

tight under P
m,(Kn)
n .

4.5 Tightness under P
e,(Kn)
n

Here n = 2N is an even number. Consider

B̌2N+1 = {S,S ∈ W2N+1, S(2N + 1) = −1},
Ě2N+1 = {S,S ∈ W2N+1, S(j) ≥ 0 for any j ∈ J0, 2NK, S(2N + 1) = −1}

and B̌
(K)
2N+1 = B̌2N+1 ∩ W(K)

2N+1, Ě
(K)
2N+1 = Ě2N+1 ∩ W(K)

2N+1. Informally, Ě2N+1 (resp. Ě
(K)
2N+1)

are Bernoulli excursion from E2N (resp. with K peaks) with an additional ending d-step, and

B̌2N+1 and B̌
(K)
2N+1 are trajectories ending at −1 (resp. with K peaks).

Consider the map

R : Ě2N+1 × J0, 2NK −→ B̌2N+1

(S, θ) 7−→ R(S, θ) = S(θ) = (S(θ))i=0,...,2N+1

defined by

∆S
(θ)
k = ∆Sk+θ mod 2N+1
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or equivalently S
(θ)
k = S(k + θ mod 2N+1)−S(θ)−1k+θ>2N+1. Informally, S 7→ S(θ) exchanges

the θ first steps of S with the last 2N + 1 − θ’s ones. The map R is a bijection between

Ě2N+1 × J0, 2NK and B̌2N+1: this is the so-called cyclical lemma attributed to Dvoretzky-

Motzkin, or Kemperman, or Otter see Pitman [21, Chapter 5] and Bertoin & al. [3]. The peaks

positions of S(θ) are obtained from that of S by a shift of −θ mod 2N +1, and #S
(θ)
∧ = #S∧−1

iff θ ∈ S∧ (if θ /∈ S∧ then #S
(θ)
∧ = #S∧).

For any S ∈ W2N+1, set Ξ0(S) = 0, and for any k ≤ 2N − #S∧,

Ξm(S) := min{j, j ≥ Ξm−1(S), j ≤ 2N, j /∈ S∧},

the successive non-peak positions of S in J0, 2NK. Consider the map

R̂ : Ě
(K)
2N+1 × J0, 2N − KK −→ B̌

(K)
2N+1

(S, ℓ) 7−→ R̂(S, ℓ) = S(Ξℓ(S))
.

Proposition 22 For any K ≤ N , any N ≥ 0, the map R̂ is a bijection from Ě
(K)
2N+1×J0, 2N−KK

onto B̌
(K)
2N+1.

Proof. It is a consequence of the two following points: for any S, m 7→ Ξm(S) is a bijection

from J0,#J0, 2NK \ S∧K onto J0, 2NK \ S∧, and R is a bijection. �

Consider (S, θ) in Ě
(K)
2N+1 × J0, 2N − KK; for any u,

sup
|m1−m2|≤u

|S(m1) − S(m2)| ≤ 2 sup
|m1−m2|≤u

|S(θ)(m1) − S(θ)(m2)| (36)

sup
|m1−m2|≤u

∣∣∣∣(Λm1 − Λm2)(S) − m1 − m2

2N
K2N

∣∣∣∣ ≤ 2 sup
|m1−m2|≤u

∣∣∣∣(Λm1 − Λm2)(S
(θ)) − m1 − m2

2N
K2N

∣∣∣∣ .

Endow Ě
(K)
2N+1×J0, 2N −KK with the uniform distribution and consider a random element (S, θ)

under this law (S is then uniform on Ě
(K)
2N+1). By the last proposition, S(θ) is uniform on B̌

(K)
2N+1.

By (36), we have

P
e,(K2N )
2N (ωδ(s2N ) ≥ ε) ≤ P

w,(K2N )
2N+1 (2ωδ(s2N ) ≥ ε|S(2N + 1) = −1)

and the same result holds for λ2N . Once again the result of Section 4.3 concerning P
b,(K2N )
2N =

P
w,(K2N )
2N (.|S(2N = 0)) can be generalized to P

w,(K2N )
2N (.|S(2N + 1) = −1). �
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