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Abstract

The rotation correspondence is a map that sends the set of plane trees onto the set of
binary trees. In this paper, we first show that when n goes to +∞, the image by the rotation
correspondence of a uniformly chosen random plane tree τ with n nodes is close to 2τ (in a
sense to be defined). The second part of the paper is devoted to the right and left depth of
nodes in binary trees. We show that the empiric measure (suitably normalized) associated
with the difference of the right depth and the left depth processes converges to the integrated
super Brownian excursion.

1 Plane trees, binary trees and the rotation correspondence

In this paper, we call plane tree a finite rooted

Figure 1: Two different plane trees.

unlabeled loop-free connected graph in which the
set of children of every vertex is endowed with a
total order. We denote by T n

P the set of plane trees
having n nodes. A plane tree is called a binary
tree if each node has zero or two children; a node
with two children is said to be internal, otherwise
is called a leaf. We denote by T n

B the set of binary
trees having 2n + 1 nodes (hence n internal nodes).
The cardinalities of T n+1

P and T n
B are the nth Catalan number (see [7] p.114 and 226), that is,

#T n+1
P = #T n

B =
(2n)!

n!(n + 1)!
.

1.1 Canonical labeling of a tree

Depth first search on the trees

Let τ be a plane tree and |τ | its number of nodes. We define the depth first search as a
function (see Aldous [1] p.260):

f : {0, · · · , 2|τ | − 2} −→ {nodes of τ},

which we regard as a walk around τ , as follows:
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• The starting point of the walk is the root: f(0) = root.
• Assume f(i) = v. If all children of v have been visited let f(i + 1) be the father of v.

Otherwise let w be the leftmost unvisited child of v and set f(i + 1) = w.

Depth first order on the trees

The depth first procedure induces an order on the set of nodes of τ : if u and v are two nodes
of τ , one says that u is smaller than v for the depth first order if the first visit at u by the depth
first search occurs before the first visit at v.

Lexicographical labeling of a tree

We label the nodes of a plane tree with words on the alphabet N
+ = N\{0}:

• the root is labeled by the empty word ε.
• the d children of a node v are labeled v1, v2, . . . , vd according to their order (the convention
for the children of the root is εa = a).
We denote by U the set of finite words on the alphabet N

+. For u and v in U, denote by uv the
concatenation of the words u and v. Denote by L(τ) the set of labels assigned to the tree τ .
Hence, L(τ) is a subset of U and it satisfies the following two points:
• (i) if uv is in L(τ) for {u, v} ⊂ U then u is in L(τ) (this translates the fact that the ancestors
of a node w are in the tree and are labeled by the prefixes of the label of w).
• (ii) if ua is in L(τ) for u ∈ U and a ∈ N

+ then u1, . . . , ua are in L(τ) (this translates the fact
that the b children of v are labeled from v1 to vb).

Moreover, for any subset L of U containing ε and satisfying (i) and (ii), there exists a unique
tree τ such that L(τ) = L. The classical notions of brother, father, leftmost brother, rightmost
brother of a node v can be easily translated in terms of words. For example, v1 is the leftmost
son of v, and v(a + 1) is the first brother on the right of va. In a binary tree, v1 (resp. v2) is
the right (resp. left) son of v.
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Figure 2: : Lexicographical labeling of a plane tree.

The lexicographical order and the depth first order are equivalent

Consider a tree τ and two of its nodes u and v . The following property is a straightforward
consequence of the labeling procedure: if u is smaller than v for the depth first order then the
label of u is smaller than the label of v for the lexicographical order.
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In the rest of the paper, we identify a node v with its lexicographical label. We will say that
a list of nodes is sorted, if it is sorted according to the depth first order.

1.2 The rotation correspondence

The rotation correspondence Φ is a map from the set of plane trees to the set of binary trees.
It can be described by its action on T n+1

P for n ≥ 0:

Φ : T n+1
P −→ T n

B

τ 7−→ ω.

To each node u of τ (the root excepted), there corresponds an internal node of ω, denoted Φ(u)
and the following three points characterize ω:
a) Let u be the leftmost son of the root of τ (its label is 1). We have Φ(u) = ε.

b)
(

{v, w} ⊂ L(τ), w = v1
)

⇐⇒
(

{Φ(v), Φ(w)} ⊂ L(ω), Φ(w) = Φ(v)1
)

.

c)
(

{v, w} ⊂ L(τ), v = ua,w = u(a + 1)
)

⇐⇒
(

{Φ(v), Φ(w)} ⊂ L(ω), Φ(w) = Φ(v)2
)

.

The binary tree ω is then obtained by adding the leaves to this internal structure.
Remarks and interpretations:
• (b) means that the relation (father – leftmost son) in τ is translated by the relation (father –

left son) in ω. (c) means that if w is the first brother on the right of v in τ then Φ(w) is the
right son of Φ(v) in ω.
• During the construction of ω, no image is assigned to the root of τ .
• In the internal subtree of ω the relation father – son is either a relation father – right son or
a relation father – left son.
• The rotation correspondence has a visual description as one can see on Figure 3. Remove the
root of τ . Keep only the edges [father-leftmost son] and add an edge between each node and
its first brother on its right if any (second step of Figure 3). Make a rotation of π/4 (third
step). This gives the internal structure of the binary tree ω; in the fourth step, add leaves to
this internal structure.

Figure 3: : Geometric rotation

In this paper, we study the relation between τ and ω. We show that, given a plane tree
τ taken uniformly in T n+1

P , the binary tree ω is almost 2τ (when n is large). Obviously, 2τ is
not a well defined quantity; we will use associated processes to give a rigorous meaning to this
multiplication. The proof of this phenomenon relies on the existence of a branching random
walk inside binary trees; a random measure associated with this discrete branching random
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walk will appear to be the right objet to apprehend the distance between τ and ω. The weak
limit of this random measure turns out to be ISE (the integrated super Brownian excursion,
introduced by Aldous [2]). ISE is the limit measure of numerous arborescent random measures
(for applications and further references, see [3, 5, 15]). An archetype of the occurrence of ISE in
combinatorics is the work of Chassaing & Schaeffer [4]; they relate the diameter of planar maps
to the range of ISE.

A first result is that Φ preserves the depth first order:

Lemma 1 (Φ preserves the depth first order) Let τ be a tree in T n+1
P and let (v0, v1, · · · , vn)

be the sorted list of its nodes. Let (w0, . . . , wn−1) be the sorted list of the internal nodes of Φ(τ).
One has

Φ(vi+1) = wi for any i ∈ J0, n − 1K. (1)

Proof: It is clear that the three operations (a, b, c) (of the rotation correspondence) induce the
same depth order between two nodes and between their images by Φ. �
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Figure 4: : Representation of the corresponding nodes under the rotation correspondence.

Conventions

• In the rest of the paper, we denote by vi (resp. wi) the ith node of a tree τ of T
(n+1)
P (resp. the

ith internal node of ω = Φ(τ)). The node wi is the image of vi+1 by the rotation correspondence.
We will also denote by (z0, . . . , z2n) the sorted list of all the nodes of ω (including leaves).
• (A unique probability space) We endow T n

B and T n+1
P with the uniform distribution.

Consider Ψ = Φ−1. The map Ψ is a measure preserving bijection between T n
B and T n+1

P . Hence,
the random variables on T n+1

P can be seen as random variables on T n
B through Ψ. With this

point of view it is then possible to work only on T n
B . This allows us to study joint properties of

ω and τ .
• We denote by bac the integral part of a and {a} its fractional part.
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2 Height processes

2.1 Definitions and recalls

Let T be a plane tree and y be one of its nodes. We denote by h(y) the distance between the
root and y in T . This distance is sometimes called the depth of the node y. Note y0, . . . , y|T |−1

the sorted list of the nodes of T . One calls the height sequence of T , the finite sequence defined
by

H(i) = h(yi) for i ∈ J0, |T | − 1K. (2)

It is quite easy to check that the height sequence characterizes the tree. The height process is
the continuous process with duration 1 that interpolates piecewise the height sequence. In other
words, it is the process

h(yb(|T |−1)tc) + {(|T | − 1)t}
(

h(yb(|T |−1)tc+1) − h(yb(|T |−1)tc)
)

for t ∈ [0, 1].

This process is compound with |T | − 1 pieces with size (|T | − 1)−1 that each corresponds to the
passage from a node to the following one by the depth first procedure.

Let ω and τ be two trees being in T n
B and T n+1

P respectively, and such that Ψ(ω) = τ . The
height processes of ω and τ are respectively given by

Hn(t) = h(zb2ntc) + {2nt}
(

h(zb2ntc+1) − h(zb2ntc)
)

for t ∈ [0, 1]

and
Hn(t) = h(vbntc) + {nt}

(

h(vbntc+1) − h(vbntc)
)

for t ∈ [0, 1].
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Figure 5: : Height processes of the trees of Figure 4

It is shown in Marckert & Mokkadem [12] that the following weak convergences hold in
(C[0, 1], ‖.‖∞):

(Hn(t)√
n

)

t∈[0,1]

weakly−−−−→
n

(

23/2e(t)
)

t∈[0,1]
, (3)

(Hn(t)√
n

)

t∈[0,1]

weakly−−−−→
n

(

21/2e(t)
)

t∈[0,1]
, (4)

where
(

e(t)
)

t∈[0,1]
is the normalized Brownian excursion (NBE). To obtain these results (using

[12]), one has to note that the set T n
B endowed with the uniform law is identical to the set of

Galton-Watson trees with Bernoulli offspring distribution pδ2 + (1 − p)δ0 conditioned to have n
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internal nodes; the set T n+1
P endowed with the uniform law is identical to the set of GW trees

with geometric offspring distribution
∑

k≥0 p(1 − p)kδk conditioned to have n + 1 nodes.
The limit results (3) and (4) do not say anything about some possible links between Hn and

Hn. We fill this gap in the rest of the paper.

2.2 The right and the left (height) processes

Consider a node v of a tree ω in T n
B . Denote by r(v) (resp l(v)) the right depth of v (resp. the

left depth of v), that is, the number of ancestors w of v such that v is in the right descendence
of w (resp. left descendence of w). In other words, r(v) is the number of right turns going from
root to v (on Figure 4, one has l(g) = 0, r(g) = 2, h(g) = 2); for each node, one has:

l(v) + r(v) = h(v). (5)

Lemma 2 Let ω be in T n
B. For any i ∈ J0, n − 1K,

h(vi+1) = l(wi) + 1. (6)

Note that in (6), the left-hand side deals with node vi+1 in τ = Ψ(ω) when the right-hand side
deals with node wi in ω.
Proof : This well-known property of the rotation correspondence is a consequence of the following
fact: “to climb one level” in τ is translated into “to go up by a left step” in ω (operation (b)
that defines Φ). �

For ω in T n
B , the right height process, the right internal height process and the internal height

process are defined by:

Rn(t) = r(zb2ntc) + {2nt}
(

r(zb2ntc+1) − r(zb2ntc)
)

for t ∈ [0, 1], (7)

RI
n(t) = r(wbntc−1) + {nt}

(

r(wbntc) − r(wbntc−1)
)

for t ∈ [0, 1]. (8)

HI
n(t) = h(wbntc−1) + {nt}

(

h(wbntc) − h(wbntc−1)
)

for t ∈ [0, 1]. (9)

We use the convention h(w−1) = r(w−1) = l(w−1) = 0 for the first artificial piece of the
internal processes. The left height process and left internal height process Ln and LI

n are
defined accordingly. By construction, these processes are elements of C([0, 1], R+).
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Figure 6: : RI
n and HI

n. The first piece [0, 1/8] is artificial.

Remark: The time scales in RI
n, LI

n,HI
n are slightly different from the expected ones. The

reason is simple. The internal nodes of ω form a tree that has n nodes. We want to compare
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this tree with τ that has n + 1 nodes. The result is that the corresponding height processes do
not have the same number of pieces. Taking bntc − 1 instead of b(n − 1)tc in the time scale
of the internal processes gives the suitable number of pieces. The price is the addition of a
first null piece in the internal height processes. With this convention, one has for example that
Hn(t) = LI

n(t)+1 for any t which is useful in the proof of Theorem 3 and in the proof of Theorem
6.

2.3 Convergence of the height processes

Theorem 3 Each of the processes n−1/2(2Rn), n−1/2(2RI
n), n−1/2(2Ln), n−1/2(2LI

n), n−1/2HI
n,

n−1/2Hn, and n−1/2(2Hn) converges weakly in (C[0, 1], ‖.‖∞) to 23/2e where e is the NBE. More-

over, the difference between any two of these processes converges weakly to the null process.

Remarks : Theorem 3 ensures that the following limit holds in (C[0, 1]2, ‖.‖∞):

(2Hn(t1)√
n

,
Hn(t2)√

n

)

(t1,t2)∈[0,1]2

weakly−−−−→
n

(

23/2e(t1), 23/2e(t2)
)

(t1,t2)∈[0,1]2
. (10)

This is a refinement of (4). The important point is that the same NBE appears twice in the
right-hand side of (10). In Theorem 6 (stated at the end of this section), we go further by
measuring the distance between Hn and Hn.
Proof of Theorem 3 : We would like first to stress that this theorem can be shown using only
“old results”. First, thanks to (3) and (4), one just has to prove the second assertion of the
theorem. Equation (6) ensures that n−1/2(Hn − LI

n) goes to 0. Equation (5) implies that

Hn = Ln + Rn and that HI
n = LI

n + RI
n. (11)

In [12] (theorem 4), one finds the following result (translated in our notations): for any positive
ν, there exist two constants γ > 0 and N > 0 such that

∀n ≥ N, P(‖Hn − HI
n‖∞ ≥ n1/4+ν) ≤ e−γnν

.

Taking 0 < ν < 1/4, one obtains that n−1/2(Hn−HI
n) converges weakly to 0. Applying Theorem

2 of [14], we obtain that for any β > 0, there exists γ > 0 such that, for n large enough

P
(

sup
j

∣

∣l(zj) − r(zj)
∣

∣ > γn1/4 ln n
)

= o(n−β).

This implies that n−1/2(Ln−Rn) goes to 0 and n−1/2(LI
n−RI

n) also. Plugging these convergences
in (11), one derives that n−1/2(Hn − 2Rn) and n−1/2(HI

n − 2RI
n) goes to 0 (and the same results

hold replacing Rn by Ln). All the other differences can be written in terms of the ones shown
above. �

The convergence of n−1/2Hn and n−1/2(2Hn) to the same NBE can also be proven using the
fact that Sn, the  Lukasiewicz walk (LW) of ω, is equal to the depth first walk of τ (also called
the Harris walk [9] or the tour) (see exercise 5.42 p.262 in [7]). The relations obtained in [12]
between the tour, the LW and the height process allow then to conclude.
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3 The dilatation and ISE

The aim of the rest of the paper is to measure “the difference” between τ and ω. Theorem
5 and Theorem 6 (and particularly Formula (14)) allow to measure more precisely the distance
between Hn and the other processes.

For a tree u and a positive number c, we define cu as the tree having the same branching
structure as u but with edge lengths c (the default length of edges being 1).

Theorem 4 The pair of normalized trees (21/2n−1/2τ, 2−1/2n−1/2ω) converges to (T∞, T∞) where

T∞ is the continuum random tree.

Proof: Aldous [1] shows that 21/2n−1/2τ and 2−1/2n−1/2ω both weakly converge to the contin-
uum random tree (the convergence to the continuum random tree is actually equivalent to the
convergence of the normalized tour to 2e). The fact that the two limit continuum random trees
are the same one comes from (10); indeed, in [12], it is shown that the tour and the height
process have the same limit. �

Note on the title of the paper: Asymptotically, 2τ and ω are very close trees in the sense
given by equation (10) and Theorem 4. This means that the map Φ on T n

P , when n is large, is
a good approximation of the dilatation with factor 2.

Theorem 5 The limit difference between the right and left processes can be described in terms

of the Brownian snake:

1

2n + 1

2n
∑

j=0

δ
(Ln( j

2n) − Rn( j
2n)

21/4n1/4

)

(d)−−→
n

µISE (12)

where δ(x) is the Dirac measure on the point x and where µISE is the integrated super Brownian

excursion. Moreover,

n−1/4‖Ln − Rn‖∞
(d)−−→
n

23/4W (13)

where W is the maximum of the absolute value of the Brownian snake with lifetime the NBE.

Some elements about W and µISE are recalled in Subsection 3.1.

Theorem 6 The limit difference between the processes Hn and HI
n can be described in terms of

the Brownian snake:

n−1/4‖2Hn − HI
n‖∞

(d)−−→
n

23/4W. (14)

Moreover

1

n

n−1
∑

k=0

δ
(2Hn( k

n) − HI
n( k

n)

21/4n1/4

)

(d)−−→
n

µISE. (15)

Interpretation of the results : Formulae (13) and (14) say that the distance between the
processes is about n1/4. Formulae (12) and (15) allow to measure all the distances between
corresponding nodes in ω and Ψ(ω).
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3.1 Finite branching random walks and ISE

Pick a tree ω at random in T n
B . Now, with each node zi of ω (for i ∈ J0, 2nK) associate a

real number y(zi), called the value of zi (we set y(root) = 0)). Suppose now that the values are
random variables that satisfy the following set of conditions:

(i) values associated with non-brothers are independent.
(ii) values are independent of the structure of the tree ω.
(iii) if w and w′ are brothers then

P
((

y(w), y(w′)
)

= (−1, +1)
)

= P
((

y(w), y(w′)
)

= (+1,−1)
)

= 1/2.

One has now a marked tree, say M(ω). The probability space B(n) of such marked trees is

B(n) = T n
B ×

{

(−1, +1), (+1,−1)
}n

.

Indeed, for each of the n internal nodes, one simply has to choose the values of its two children.
This construction induces the uniform distribution on B(n): each marked tree from B(n) has
probability 2−n(#T n

B)−1. Let a in M(ω) be a node. Consider (a0 = root, a1, · · · , ah(a) = a)
the path from the root to a; we associate with a a trajectory of (killed) random walk ξa =
(ξa(j))j∈J0,h(a)K defined by

ξa(j) =

j
∑

i=0

y(ai), for j ∈ J0, h(a)K.

The construction of M(ω) ensures that ξa is a simple random walk (independent increments
with distribution ±1 with probability 1/2). We call branching random walk the multiset of the
union of the trajectories ξa:

Γ =
{

ξa, a ∈ ω
}

.

This multiset Γ can be ordered by using the underlying depth first order on ω. With a suitable
normalization, Γ converges weakly to the Brownian snake with lifetime process the NBE (see
Marckert & Mokkadem [13], Chassaing & Schaeffer [4], Gittenberger [8]). On B(n), one defines
the random variable Wn

Wn = max
a

‖ξa‖∞
n1/4

.

Using the results of the three papers cited above, one has

Wn
(d)−−→
n

23/4W. (16)

Another object of interest is a measure on the multiset Ξn of terminal points of the branching
random walk: x(a) = ξa(h(a)). Set

Ξn = {x(a), a ∈ M(ω)}.

The random measure Jn is defined by

Jn =
1

2n + 1

∑

x(a)∈Ξn

δ
( x(a)

21/4n1/4

)

.
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Aldous [2] shows that the random measure Jn converges weakly in distribution to a random
measure named ISE, the integrated super Brownian excursion,

Jn
(d)−−→
n

µISE. (17)

ISE is also the occupation measure on R of the head of the Brownian snake with lifetime the NBE
(see [13] and the papers of Le Gall & coauthors [6, 11, 10] for all informations on superprocesses).

Let us underline that the proofs of the convergence to the Brownian snake and the one of the
convergence of the random measure (among others the proofs of (16) and (17)) use the fact that
the values are identically distributed and independent for non brothers. In the next subsection,
we prove convergences analogous to (16) and (17) for a tree model that does not satisfy this
property.

3.2 Relationship between Rn, Ln and ISE

Let us build up a second probability space of marked trees: pick a tree ω at random in T n
B .

Now, for the values of the nodes zi we set: if w′ is the right brother of w then
(

y(w), y(w′)
)

=
(+1,−1). This time, let us denote by B?(n) this set of marked trees. It is clear that, given
ω, the marked tree say M ?(ω) is determined. Hence B?(n) and T n

B are isomorphic probability
spaces. On B?(n), the random variable W ?

n , and the random measure J ?
n are defined by

W ?
n = max

a

‖ξa‖∞
n1/4

=
max Ξ?

n

n1/4
, J?

n =
1

2n + 1

∑

x(a)∈Ξ?
n

δ
( x(a)

21/4n1/4

)

,

where Ξ?
n is the multiset of terminal points on B?(n). The displacement distribution does not

allow to use the result of the preceding section (since −1 and +1 are not identically distributed!).
In the present case, the convergence of the ordered multiset of trajectories Γ? to the Brownian
snake is not a consequence of [4] or [13] and besides, is not obvious. However, one has

Proposition 7 (a) The real valued random variables Wn and W ?
n have the same distribution.

(b) The random measures Jn and J?
n have the same distribution.

Proof : Let us define a bijection in B(n): the transposition around an internal node i, denoted
by trai, is the map that exchanges the two marked subtrees of ω rooted in i. Two elements ω1

and ω2 of B(n) are said to be in the same equivalence class iff there exists a finite sequence of
internal nodes i1, . . . , ik such that

trai1(trai2(· · · (traik(ω1)) · · · )) = ω2.

It is clear that, in each equivalence class there exists exactly one marked tree such that each left
son is marked +1 and each right son is marked −1 (that is, a marked tree belonging to B ?(n)).
Moreover, each class contains 2n elements since, starting from an element of B?(n), one can
construct 2n different marked trees from B(n) using transpositions. Proposition 7 holds since
Wn and Jn are invariant by transpositions. �
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3.3 Proof of Theorems 5 and 6

Proof of Theorem 5 : If x(v) = ξv(h(v)) is the displacement of the node v, one has x(v) =
l(v) − r(v). The random measure J ?

n can be expressed in terms of the right and left processes:

J?
n =

1

2n + 1

2n
∑

k=0

δ
(Ln( k

2n) − Rn( k
2n)

21/4n1/4

)

. (18)

Moreover,
max Ξ?

n

n1/4
=

‖Ln − Rn‖∞
n1/4

= W ?
n .

Theorem 5 then follows from the combination of (16), Proposition 7 and (17). �

Proof of Theorem 6 :
Proof of (14) : For any t, one has

Hn(t) = LI
n(t) + 1.

Hence,
2Hn(t) − HI

n(t) = LI
n(t) − RI

n(t) + 2.

Hence (14) is a consequence of (13) since in the marked trees of B?(n) each node is either an
internal node or at distance 1 of an internal node. �

Proof of (15) : Thanks to Proposition 7 and formula (17), J ?
n converges weakly to ISE. Let M

be the set of Borel probability measures on R. A metric on M is given by the bounded Lipschitz
metric (see [16]); denote by F the set of 1-Lipschitz functions on R

+ bounded by 1. For µ and
ν in M , we note

‖ν − µ‖BL = sup
f∈F

∣

∣

∣

∫

fdν −
∫

fdµ
∣

∣

∣
.

The weak convergence for the BL metric implies the usual one, namely if (νn)n is a sequence of
measure in M such that ‖νn − ν‖BL −→ 0 then νn converges weakly to ν.

The left-hand side of (15) can be rewritten as

K?
n =

1

n

∑

a internal node

δ

(

x(a) + 2

21/4n1/4

)

.

To prove (15), it suffices to show that ‖K?
n − J?

n‖BL −→
n

0. Let a be a given node (different from

the root) in ω. The node a is the child of its father say b. Hence,

x(a) = x(b) ± 1.

Then

J?
n =

1

2n + 1
δ0 +

1

2n + 1

∑

v internal node

δ

(

x(v) + 1

(2n)1/4

)

+ δ

(

x(v) − 1

(2n)1/4

)

.

Take f in F , then

∣

∣

∣

∫

fdJ?
n −

∫

fdK?
n

∣

∣

∣
=

∣

∣

∣

f(0)

2n + 1
+

∑

v internal node

f
(

x(v)+1

(2n)1/4

)

2n + 1
+

f
(

x(v)−1

(2n)1/4

)

2n + 1
−

2f
(

x(v)+2

(2n)1/4

)

2n

∣

∣

∣
. (19)
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Writing

2f( x(v)+2

(2n)1/4
)

2n
=

2f
(

x(v)+2

(2n)1/4

)

2n + 1
+

2f
(

x(v)+2

(2n)1/4

)

4n2 + 2n
,

and using the Lipschitz condition on f , we obtain that the right-hand side of (19) is smaller
than

∣

∣

∣

f(0)

2n + 1

∣

∣

∣
+

∣

∣

∣

∑

v internal node

1

2n + 1

(1 + 3)

(2n)1/4

∣

∣

∣
+

∑

v internal node

∣

∣

∣

2f
(

x(v)

(2n)1/4

)

4n2 + 2n

∣

∣

∣
= O(n−1)‖f‖∞+O(n−1/4);

this goes to 0 when n goes to +∞. �
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