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IPSEP-COLA: An Incremental Procedure for

Separation Constraint Layout of Graphs

Tim Dwyer, Yehuda Koren, Member, IEEE, and Kim Marriott

Abstract— We extend the popular force-directed approach to network (or graph) layout to allow separation constraints, which enforce
a minimum horizontal or vertical separation between selected pairs of nodes. This simple class of linear constraints is expressive
enough to satisfy a wide variety of application-specific layout requirements, including: layout of directed graphs to better show
flow; layout with non-overlapping node labels; and layout of graphs with grouped nodes (called clusters). In the stress majorization
force-directed layout process, separation constraints can be treated as a quadratic programming problem. We give an incremental
algorithm based on gradient projection for efficiently solving this problem. The algorithm is considerably faster than using generic
constraint optimization techniques and is comparable in speed to unconstrained stress majorization. We demonstrate the utility of
our technique with sample data from a number of practical applications including gene-activation networks, terrorist networks and
visualization of high-dimensional data.

Index Terms—Graph drawing, constraints, stress majorization, force directed algorithms,multidimensional scaling.

F

Many fields of science, technology and industry require visualiza-
tion of networks. For example, biologists study gene-activation net-
works and metabolic pathways, police study networks of associations
between suspects to uncover organized crime or terrorist cells, and
software and process engineers need to understand the complex net-
works of relationships between system components.

A wide variety of graph layout algorithms have been developed to
aid such visualization. However, many of these algorithms are de-
signed to draw simple, idealized mathematical graphs. This signif-
icantly limits their usefulness since, in many applications, the net-
works have much more complex structure and, consequently, more
constraints on their layout. Such constraints include, for instance, re-
quiring directed connections to be represented by arrows that point
downward, grouping of selected nodes into clusters, large labels on
nodes and edges, alignment of selected nodes, and an ordering on
nodes perhaps reflecting an underlying physical ordering.

Current techniques for handling these application specific layout
requirements are complex and are brittle in the sense that each tech-
nique can only handle a particular kind of layout constraint. Here we
present IPSEP-COLA, an Incremental Procedure for Separation Con-
straint Layout of graphs. This is a new approach to network layout that
provides a generic, robust framework that handles the constraints aris-
ing in a wide variety of applications. Our approach is relatively simple
and is efficient enough to handle large networks with thousands of
nodes.

The key idea behind IPSEP-COLA is to extend force-directed place-
ment approaches for graph layout to allow so-called separation con-
straints. Force-directed placement algorithms are among the most
successful approaches to the layout of simple graphs. They find an
embedding of the graph in 2-D (or 3-D) space that minimizes some
continuous goal function. A popular algorithm in this family has been
that of Kamada and Kawai [16] which attempts to minimize the sum
of squared differences between ideal spacing for pairs of nodes and
their Euclidean distance in the embedding. These approaches are rel-
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atively easy to implement, they can — with appropriate hierarchical
data structures — scale up to large graphs, and they give reasonable
layout for most input graphs. They are the most commonly used tech-
nique for drawing unstructured networks. The starting point for our
approach is Gansner et al. [11] who recently revisited force-directed
placement and suggested using functional or stress majorization —
an optimization technique from the field of multidimensional scaling.
Compared to Kamada and Kawai, stress majorization has been shown
to be faster and exhibit more robust convergence behavior.

We extend stress majorization to allow so-called separation con-
straints in each dimension. These have the form u + d ≤ v where u
and v are variables representing horizontal or vertical position and d
is a constant giving the minimum separation required between u and
v.1 Although seemingly a very restricted kind of linear constraint, sep-
aration constraints are expressive enough to handle a wide variety of
application-specific layout constraints. These include:

Directed edges We can ensure that node v is placed above (or, to the
left of) node u if there is a directed edge from v to u.

Alignment or distribution E.g. placing selected nodes on different
horizontal layers.

Bands By adding dummy variables we can ensure that nodes are
placed in vertical or horizontal bands, as defined in [3].

Fixed position A node’s position can be fixed in any axis.
Containment We can ensure that selected nodes lie in a rectangular

region, for instance within the boundaries of page, window or a
cluster dynamically sized to fit its contents.

Orthogonal ordering between nodes We can ensure that nodes are
to the left/right or above/below other nodes.

Non-overlap of nodes and/or clusters By dynamically generating
separation constraints we can ensure that nodes do not overlap
each other and, in combination with containment constraints,
that clusters do not overlap.

Our approach also handles dynamic layout. When a graph is modified
in an interactive context usually we wish to find a new layout which is
similar to the old layout, so as to preserve the viewer’s “mental map”
of the graph [17]. It is straightforward to add separation constraints to
preserve the orthogonal ordering of the nodes in the layout.

Extending stress majorization to handle separation constraints has
broader application in data visualization than just network layout since
it allows this widely used multi-dimensional scaling technique to take
into account layout constraints from the underlying structure. For in-
stance placing data points in clusters or preserving some underlying
ordering.

1In addition we can also handle equalities of the form u+d = v.
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(a) Unconstrained layout – no uniform edge direction, 1,142 edge cross-
ings, stress=39,954

(b) Drawn as a DAG using a separation constraint for every directed edge
– all edges point downwards, 3,617 edge crossings,stress=49,035

(c) Drawn as a DAG using DIG-COLA style level constraints – all edges
point downwards and nodes are globally ordered according to hierarchical
levels, 7,600 edge crossings, stress=74,894

(d) Drawn as a DAG using Sugiyama style layout, nodes arranged into lev-
els such that all edges point downwards, 6,148 edge crossings, stress=N/A

Fig. 1. Drawings of the bus1138 graph [1] using different sets of con-
straints. Stress is computed using Eq. (1) with a desired edge length of
1. Long edges are highlighted in red.

This paper has two main contributions. The first is identifying the
usefulness of separation constraints for modeling a wide variety of
application specific network layout requirements. The second is an ef-
ficient algorithm for solving the force-directed placement problem in
the presence of separation constraints. Stress majorization iteratively
improves the drawing by minimizing a sequence of quadratic goal
functions. We modify the method to minimize each quadratic goal
function while satisfying the separation constraints. We solve the re-
sulting Quadratic Program (QP) using an iterative gradient-projection
algorithm that relies on a novel, incremental algorithm for projecting
a point on to a set of separation constraints.

1 Related Work

The work presented in this paper significantly extends our recent re-
search on handling band constraints [3, 4, 5] in stress majorization. As
part of this we introduced the DIG-COLA drawing style for directed
graphs in which the nodes are partitioned into an ordered sequence
of bands. We also demonstrated the usefulness of band constraints
for drawing networks such as rail-networks where the placement of
nodes should reflect the underlying geography. Band constraints are
a very restricted kind of separation constraints: for instance they can-
not model containment, non-overlap or arbitrary vertical separation.
Thus, generalizing to separation constraints greatly increases the use-
fulness of constraint-based stress majorization and opens a number of
new applications for constraint-based force-directed layout. In order
to handle this greater generality the algorithm we give for projecting
on to separation constraints is quite different to that proposed for band
constraints [5].

Augmenting force-directed layout with true constraints was first ex-
plored by He and Marriott [13, 14], where a Kamada-Kawai-based
method was extended with an active-set constraint solving technique
to provide separation constraints. However, only small examples of
fewer than 20 nodes were tested and the scalability and potential ap-
plications of the technique were not examined.

Many researchers have suggested changes to classical force-
directed methods to provide some of the functionality of constraints.
For example, Ryall et al. [20] added stiff springs to a standard force-
directed model to keep user-selected parts of the diagram roughly
spaced as desired; various works [12, 22] modified the goal function to
discourage node overlaps; while Wang and Miyamoto [22] and Huang
and Eades [15] augmenting force-directed models to draw clustered
graphs. However, these approaches do not impose strict constraints on
the layout, but rather change the force model so as to avoid overlaps
or emphasize the partition to clusters etc. Thus there is no guarantee
that the constraints are enforced and convergence is often problematic,
requiring complex cooling strategies.

2 Applications

2.1 Directed graph layout

Separation constraints can be applied to the problem of arranging a
directed graph, where we want to convey hierarchy by orienting all
edges (“arrows”) in the same direction. If the digraph is acyclic, we
can simply define a separation constraint for each edge (u,v) to require
that u be positioned above v. If the digraph contains directed cycles
we avoid cyclic constraints by omitting constraints for a — preferably
minimal — number of edges. Many heuristics are available for solving
this largest acyclic subgraph problem [9].

This approach results in at most one constraint per edge. This is
very different from the band-constraints that we used in the previous
DIG-COLA algorithm [3]. The more restrictive band constraints typ-
ically mean that the constrained optimization problem can be solved
more quickly, while per-edge constraints can achieve lower stress as
defined in Eq. (1). As a measure of variation from desired edge length
stress gives an indication of layout quality. Figure 1 compares uncon-
strained layout for a reasonably large graph with layout subject to per-
edge separation constraints, DiG-CoLa band constraints and layout by
the traditional Sugiyama method [21] for arranging directed graphs.
Note that, of the layouts enforcing uniform edge direction DiG-CoLa
keeps edge-length relatively consistent but is unable to “unfold” the
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(a) Directed-edge constraints alone
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(b) Directed-edge constraints and non-overlap constraints

Fig. 2. A gene-activation network arranged with directed edge constraints and non-overlap constraints.

Fig. 3. Illustration of possible separation constraints required to avoid
overlap between nodes and to keep nodes within their cluster boundaries.
Constraints are shown as arrows.

graph. The Sugiyama strategy is a slight improvement in terms of
number of edge crossings but there are a large number of very long
edges (in some cases spanning nearly the entire width of the graph)
making it difficult to see weakly connected components. Arguably,
per-edge separation constraints offer the best available strategy for ar-
ranging large and mixed2 directed graphs, e.g. in Figure 1(b) low stress
is coupled with a clear display of the connectivity of the graph and the
fewest edge crossings of any of the directed graph drawing methods.

It should be noted that the popular Sugiyama framework is currently
significantly faster when applied to large graphs, especially given re-
cent advances [10]. We would argue, however, that run-time scalabil-
ity is not so useful if the output, when applied to large graphs, gives
no insight into the graph structure.

2.2 Graphs with labelled nodes

The nodes in graphs modelling real-world relational data usually cor-
respond to some concept or information that needs to be indicated
through a textual or graphical label. Separation constraints between
the rectangular bounding boxes of labelled nodes give us a way to en-
sure that these labels do not overlap and hence, remain readable. Pre-
viously, overlaps between nodes in graphs arranged by force-directed
layout could only be avoided by one of two methods. The first is the so
called “layout adjustment” approach which involves a post-processing
step that may significantly degrade the quality of the original layout.
The second known approach is to add extra repulsive forces between
node boundaries. This generally requires complex cooling schedules
to achieve a convergent layout and secondly cannot guarantee no over-
laps in all cases. By contrast using separation constraints to avoid
overlaps avoids modifying the goal function, so that the final layout
will still have been optimized subject to the aesthetic criteria of spac-
ing nodes according to the graph path length between them, and guar-
antees that overlaps can never occur. All the labelled graph examples
in this paper are arranged using non-overlap separation constraints.

The layout process is simple. A layout allowing overlaps is first

2For graphs with mixed directed and undirected edges no separation con-
straint needs to be assigned to undirected edges and hence, these can lie hori-
zontally — other layout methods such as Sugiyama force undirected edges to
span layers.

(a) Original layout reproduced with permission from [2]

(b) IPSEP-COLA layout using cluster containment constraints and non-
overlap constraints

Fig. 4. Mutual influence sets in a terrorist network.

obtained. Stress-majorization layout then continues subject to non-
overlap separation constraints generated prior to processing each di-
mension. Thus, nodes can “slide” past or around each other, but
can never overlap. The constraints are generated using a fast scan-
line algorithm [6] which produces at most 2n constraints for a graph
with n nodes, e.g. see Figure 3. Note that after removing overlaps
the stress-majorization process continues to monotonically decrease
stress, meaning that convergence is guaranteed.

Non-overlap constraints can be combined with directed-edge con-
straints. For example Figure 2 shows a gene activation network where
non-overlap constraints and directed edge constraints are combined to
produce a compact layout with near uniform edge length, where the
precedence of gene activation is clearly shown and individual genes
can easily be identified by their labels. A version without non-overlap
constraints is also shown for contrast. Note that the gap required by
the non-overlap constraints is set slightly larger than the actual node
size. This leaves some space through which edges can be routed.
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(a) Conventional force-directed layout (reproduced with the
authors’ permission from [2])

(b) IPSEP-COLA layout using cluster containment constraints and non-overlap constraints

Fig. 5. Mutual influence sets in a larger terrorist network.

2.3 Clustered graphs

Separation constraints can also be used to require containment within
some boundary. One possible application of such constraints is to re-
quire layout within the fixed width and height bounds of a page or
arbitrarily sized window. Another example is layout where arbitrary
groups of nodes — or clusters — are required to be placed within
certain bounds. Combining these containment constraints with non-
overlap constraints (as illustrated in Figure 3) we are able to produce
high-quality drawings of clustered graphs. Specifying constraints be-
tween nodes and cluster boundaries requires the use of dummy vari-
ables for each of left, right, top and bottom positions. We have also
found that it is useful to specify a small attraction between the left and
right, top and bottom pairs of dummy variables by trivial modification
of the A matrix of Eq. (2). This helps to keep clusters compact relative
to the rest of the graph.

Figures 4 and 5 show a possible application of this type of clus-
tered graph layout. The data is a terrorist communication network
studied in detail in Brams et al. [2]. The figures appearing in the orig-
inal paper were arranged using unconstrained force-directed layout.
The authors identified subgraphs within which two-way communica-
tion (mutual influence) was observed between the terrorist suspects.
Two of the original figures of Brams et al. are shown in Figures 4(a)
and 5(a). Note that the mutual influence subgraphs, highlighted pre-
sumably manually, fall within non-convex boundaries that can overlap
other parts of the graph. We would argue that in our rendering of the
same networks (Figures 4(b) and 5(b)) the mutual influence cells are
more easily identifiable. Notice also that in Figure 4(b) separation
constraints have been used to force directed edges to point downwards
while within the mutual influence networks, where the edges are bidi-
rectional, no such constraints are applied. This helps to show the hier-
archy within the terrorist organization.

2.4 Directed and Clustered Multi-dimensional Scaling

Previously we introduced Directed Multidimensional Scaling (DMDS)
as a way of displaying an ordered classification of high-dimensional
data over a multidimensional-scaling plot [3]. Figure 6 shows a DMDS
plot for breakfast cereal data, with separation constraints used to en-

force a total order—based on a dietician’s health rating—over the ce-
reals. Note that for n data points n− 1 constraints are required to
enforce a total ordering. Also new in this figure is the use of separa-
tion constraints to prevent overlapping labels. In our original figure
[3] overlaps had to be removed by hand to make the labels readable.

The non-overlap and containment constraints used above to draw
clustered graphs give us yet another possibility for enriching an MDS
data plot. In Figure 7 we use such constraints to group the cereals
by manufacturer in addition to the directional constraints highlighting
health rating. This Clustered MDS (CMDS) plot allows us to easily see
if manufacturers specialize in certain types of products. For example
we might conclude that Nabisco generally produces healthier cereals
than Post while Kelloggs appears to produce a wide variety of cereals.

Clearly the more constraints that are imposed on an MDS plot the
more difficult it is to achieve a low stress value. The final stress value
for a DMDS or CMDS plot can be used as a quality measure for the
fit of the constraints to the data. Thus, we suggest that constraints can
be imposed on an MDS plot to test a theory about the structure of the
data and the final stress value could be considered a measure of the
accuracy of the theory.

3 Algorithm

3.1 Problem formulation

The general goal or stress function that we seek to minimize is:

stress(X) = ∑
i< j

wi j(||Xi−X j||−di j)2 (1)

where for each pair of nodes i and j, di j gives an ideal separation
between i and j (usually their graph-theoretical distance), wi j = d−2

i j
is used as a normalization constant and X is a n×d matrix of positions
for all nodes, where d is the dimensionality of the drawing and n is the
number of nodes.

Majorization minimizes this stress function by iteratively minimiz-
ing quadratic forms that approximate and bound it from above.

At each iteration we determine the coordinates x of the nodes in
each dimension by minimizing f (x) = 1

2 xT Ax−xT b where there are n
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Fig. 6. Various cereal brands arranged using Directed Multi-Dimensional Scaling, i.e. separation of the cereals is based on the similarity of their
nutritional data while directed edge constraints have been used to require that the healthier cereals (as determined by a dietitian’s ranking) must
be higher than less healthy cereals. Red coloring indicates high sugar content.

Fig. 7. Various cereal brands arranged using Clustered Multi-Dimensional Scaling, clustered by manufacturer.

nodes A ∈Rn×Rn is positive semi-definite matrix and x,b ∈Rn. The
vector x is a column of X such that xi is the coordinate of node i. The
reader is referred to [11] for the definition of A and b.

In this paper we consider the case where we have additional separa-
tion constraints. A separation constraint c is of form u+a≤ v where
u,v are variables and a is the minimum gap between them. We use
the notation le f t(c), right(c) and gap(c) to refer to u, v and a respec-
tively. We require that constraints are axis separable in the sense that
they always constrain variables in the same dimension.

We can treat a set of separation constraints C over variables V as a
weighted directed graph with a node for each v ∈ V and an edge for
each c ∈C from le f t(c) to right(c) with weight gap(c). We call this
the constraint graph. We define out(v) = {c ∈ C | le f t(c) = v} and
in(v) = {c ∈ C | right(c) = v}. Note that edges in this graph are not
the edges in the original graph.

We restrict attention to problems in which the constraint graph is
acyclic, and for which there is at most one edge between any pair of
variables. It is possible to transform any satisfiable set of separation
constraints into an equivalent problem of this form as long as the gaps
are non-negative. Thus, at each iteration step and for each dimension
in the drawing we solve:

min
x

1
2

xT Ax− xT b subject to: C (2)

We call this the Quadratic Programming with Separation Constraints
(QPSC) problem.

Since A is positive semi-definite, the problem has only global min-
ima. Such a QP problem can be solved in polynomial time [19]. How-
ever, our experiments detailed in Section 3.3 show that generic QP
solvers are quite slow at solving this problem. To accelerate computa-
tion we utilize two special characteristics of the problem:
1. During the majorization process, we iteratively solve closely re-
lated QPs: The matrix A is not changed between iterations, only the
vector b is changed, while the constraints either remain unchanged or
are slightly modified. We ensure that changes to the constraints main-
tain feasibility of the current solution. Therefore, the solution of the
previous iteration is still a feasible solution for current iteration. More-
over, this previous solution is probably very close to the new optimal
solution (e.g., consider that in most iterations the coordinates are only
slightly changed). However, such “warm-start” initialization is funda-
mentally not trivial for the barrier (or interior-point) methods used by
most commercial solvers.
2. Standard QP solvers allow general linear constraints. Separation
constraints are very simple as each of them involve only two vari-
ables. Importantly, we can develop a method for solving (2) which
takes advantage of this restricted form of constraint. Consequently, in
the next section we describe a specialized algorithm for solving the
QPSC problem.

3.2 Gradient Projection Algorithm

We give an iterative gradient-projection algorithm [19, pp. 476–
481] for finding a solution to a QPSC Problem. The algorithm,
solve QPSC, is shown in Figure 8. It first decreases f (x), by moving
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x in the direction of steepest descent, i.e. the opposite of the gradi-
ent ∇ f (x) = Ax + b. For the moment ignore the call to the procedure
split blocks. While we are guaranteed that — with appropriate se-
lection of step-size s — the energy is decreased by this first step, the
new positions may violate the constraints. We correct this by call-
ing project, which returns the closest point x̄ to x which satisfies the
separation constraints, i.e. it projects x on to the feasible region. Fi-
nally, we calculate a vector d from our initial position x̂ to x̄ and we
ensure monotonic decrease in stress when moving in this direction by
computing a second stepsize α = argminα∈[0,1] f (x+αd) which min-
imizes stress in this interval.

procedure solve QPSC(A, b, C)
repeat

g← Ax+b

s← gT g
gT Ag

x̂← x
x← x̂− sg
nosplit← split blocks(x)
x̄←project(C)
d← x̄− x̂

α ←max( gT d
dT Ad ,1)

x← x̂+αd
until ‖x̂− x‖ sufficiently small and nosplit
return x

Fig. 8. Algorithm to find an optimal solution to a QPSC problem with
variables x1, . . . ,xn, symmetric positive-semidefinite matrix A, vector b
and separation constraints C over the variables.

While the algorithm given in Figure 8 describes a fairly standard
gradient-projection approach, the procedures project and split blocks
are the part of the algorithm specific to our particular QP. The main
difficulty in implementing gradient-projection methods is the need to
efficiently project on to the feasible region.

The projection operation essentially requires solving a QP of the
form minx ∑

n
i=1(xi− pi)2 subject to the separation constraints C where

p = x̂− sg is defined in the gradient-projection step. The project pro-
cedure (Figure 9) iteratively changes the variable’s positions till all
constraints are satisfied. The algorithm works by merging variables
into larger and larger “blocks” of contiguous variables connected by
a spanning tree of active constraints, where a separation constraint
u+a≤ v is active if for the current position for u and v, u+a = v.

We represent a block Bi using a record with the following fields:
vars, the set of variables in the block; nvars, the number of variables in
the block; active, the set of constraints between variables in the block
which form the spanning tree of active constraints; posn, the position
of the block’s “reference point”.

The algorithm also uses two arrays blocks and offset indexed by
variables where blocki gives the block of variable i and offseti gives the
distance from i to its block’s reference point. We have that the current
position of variable i, posn(i), is given by the expression Bblocki .posn+
offseti.

On each call to solve QPSC we start from the blocks computed
in the previous call to solve QPSC for that dimension and from the
previously computed value for x. At the very start of the process we
put each variable i in its own block and place it at xi.

The project procedure starts with the current set of blocks and
moves them to their new optimal position. An invariant of the algo-
rithm is that the reference point B.posn for each block B is at its opti-
mal position which is simply the average of the variables in the block’s
desired positions appropriately translated to the same reference frame:

∑i∈B.vars xi−offseti
B.nvars

.

Of course moving the blocks may mean that some constraints are
now violated. We repeatedly find the most violated constraint c where

procedure project(C)
c←maxc∈C violation(c)
while violation(c)≥ 0 do

if blockle f t(c) 6= blockright(c) then
merge block(blockle f t(c), blockright(c), c)

else expand block(blockle f t(c),c)
c←maxc∈C violation(c)

for i = 1, ...,n do
xi← Bblocki .posn+o f f seti

return x

procedure merge block(L, R, c)
d← offsetle f t(c) +gap(c)−offsetright(c)

BL.posn← BL .posn×BL .nvars+(BR.posn−d)×BR.nvars
BL .nvars+BR.nvars

BL.active← BL.active∪BR.active∪{c}
for i ∈ BR.vars do

blocki← L
offseti← d +offseti

BL.vars← BL.vars∪BR.vars
BL.nvars← BL.nvars+BR.nvars
BR.nvars← 0
return
procedure expand block(b, c̃)
for each c ∈ Bb.active do lmc← 0 end for
AC← Bb.active
comp dfdv(le f t(c̃),AC,NULL)
[v1, ...,vk] := comp path(le f t(c̃),right(c̃),AC)
ps←{c ∈ AC | ∃ j s.t. le f t(c) = v j and right(c) = v j+1}
sc←minc∈ps lmc
AC← AC \{sc}
for each v ∈ connected(right(c̃),AC) do

o f f setv← o f f setv + violation(c̃)
Bb.active← AC∪{c̃}
Bb.posn← ∑ j∈Bb .vars x j−o f f seti

Bb.nvars
return
function comp dfdv(v,AC,u)
d f dv← posn(v)− xv
for each c ∈ AC s.t. v = le f t(c) and u 6= right(c) do

lmc← comp d f dv(right(c),AC,v)
d f dv← d f dv+ lmc

for each c ∈ AC s.t. v = right(c) and u 6= le f t(c) do
lmc←− comp dfdv(le f t(c),AC,v)
d f dv← d f dv− lmc

return d f dv

procedure split blocks(x)
nosplit← true
for each block Bi s.t. Bi.nvars > 0 do

Bi.posn← ∑ j∈Bi .vars x j−o f f set j
Bi.nvars

AC← Bi.active
for each c ∈ AC do lmc := 0 end for
choose v ∈ Bi.vars
comp dfdv(v,AC,NULL)
sc←minc∈AC lmc
if lmc ≥ 0 then break
nosplit← f alse
AC← AC \{sc}
s← right(sc)
Bs.vars← connected(s,AC)
for each v ∈ Bs.vars do blockv := s end for
Bi.vars← Bi.vars\Bs.vars
Bs.nvars← |Bs.vars| , Bi.nvars← |Bi.vars|
Bs.posn← ∑ j∈Bs .vars x j−o f f set j

Bs.nvars , Bi.posn← ∑ j∈Bi .vars x j−o f f seti
Bi.nvars

Bi.active←{c ∈ AC | le f t(c) ∈ Bs.vars and right(c) ∈ Bs.vars}
Bs.active← AC \Bi.active

return nosplit

Fig. 9. Algorithm to project variables to the closest feasible position.

826



DWYER et al.: IPSEP-COLA: AN INCREMENTAL PROCEDURE FOR SEPARATION CONSTRAINT LAYOUT OF GRAPHS

Fig. 10. An example of the use of expand block. Here, we are drawing a
directed graph horizontally with the separation constraint that u+1≤ v
if there is an edge from u to v. Initially, the nodes A,B,C,D,E,F,G,H, I
form a block connected by the active tree of constraints shown as black
and red arrows. Now the edge from A to B is discovered to be violated.
This is shown in blue in the top diagram. Since A and B are in the same
block expand block is called. The core function of expand block is to
determine where to split the current active tree of constraints to allow
the edge (A,B) to be inserted. Edges which are valid split points shown
in red dashes. Assuming that the valid split point with the smallest
Lagrange multiplier is the edge (F,E), this edge will be removed from
the active constraints being replaced by (A,B) to give the layout shown
in the bottom.

violation(c) = posn(left(c)) + gap(c)− posn(right(c)). If c connects
two different blocks BL and BR then we merge the two blocks con-
nected by c using the function merge block(L,R,c). This function
adds block BR to BL with c as the active connecting constraint. It ap-
propriately computes the new position for the block in terms of the
positions of BR and BL. If c connects two variables in the same block
Bb, then we use expand block(b,c) which pushes the variables in the
block apart by making c active. We repeat this until no constraint is vi-
olated in which case we have (almost) projected on to the constraints.

The procedure expand block(b, c̃) is the most complex part of the
algorithm. An example of its use is shown in Figure 10. It deals with
a case where a previously constructed block now causes a constraint
c̃ between two variables in the block to be violated. To fix this we
must identify where to split the current block and then rejoin the sub-
blocks using c̃. This “expands” the block to remove the violation, by
spanning it using a different spanning tree of active constraints. More,
precisely, we first compute the best constraint sc in the active set on
which to split. To do this we compute the Lagrange multiplier lmc for
each active constraint c in the block using the procedure comp dfdv
introduced in [6]. Lagrange multipliers are a fundamental notion in
constrained optimization, but describing their properties is beyond the
scope of this paper; the interested reader is referred to [19]. Here, it
suffices to understand that the value of lmc gives the rate of increase of
the goal function as a function of right(c)− le f t(c). Thus the smaller
the value of lmc the better it is to split the block at that constraint.
However, not all constraints in the active set are valid points for split-
ting. Clearly we must choose a constraint that is on the path between
the variables le f t(c̃) and right(c̃). The call to function comp path re-
turns the list of variables [v1, ...,vk] on the path from le f t(c̃) to right(c̃)
along the constraints in the active set of constraints AC. Furthermore,
to be a valid split point the constraint c must be oriented in the same
direction as c̃, i.e. for some j, le f t(c) = v j and right(c) = v j+1. The
split constraint sc is simply the valid split constraint with the least La-
grange multiplier. The remainder of expand block splits the block by
removing sc from the active set AC and then moves each variable in
the right block, i.e. those connected to right(c̃), to the right by the
amount required to fix the violation of c̃. The constraint c̃ is added to
the active set for the block to rejoin the two sub-blocks and the block
is placed at its optimal location.

As we have alluded, the call project(C) is not guaranteed to perform
an exact projection of x onto C. It will always return a solution satisfy-
ing C but this may not be the closest feasible point to x. The problem is
that project(C) can perform a merge which is later made unnecessary,
but project never splits blocks even if this leads to a better solution.

In practice it is relatively rare for this to happen. We fix this problem
lazily using the procedure split blocks. This takes the blocks from
the previous iteration and places them at their new position. It then
identifies which previous merges need to be undone by computing the

Lagrange multiplier lmc for all active constraints c. If all of these are
non-negative then no block needs to be split. Otherwise, for each block
Bi with a negative Lagrange multiplier we choose the constraint sc
with the most negative lmc and remove this from the active set AC for
the block. The variables connected to right(sc) are removed from Bi
and placed in a new block Bright(sc). The other fields are appropriately
updated. This ensures that on termination a locally optimal solution is
found.

We have previously defined the problem of adjusting a graph lay-
out so that all overlaps between nodes are removed as the solution to
a QP with separation constraints [6]. In fact that QP was the same
type of sum-of-least-squares problem that is required in the projec-
tion step of a constrained majorization algorithm involving separation
constraints. That is, the problem involved finding a solution that min-
imized the sum of squared displacements of all nodes — in the same
way that in the projection step of gradient projection we need to dis-
place each variable by as little as possible in order to satisfy the con-
straints. However our previous algorithm was non-incremental, slow
if an exact projection was required, and complicated to implement (a
number of special cases must be handled for correct behavior [7]). The
algorithm given above is quite different, incremental, reasonably fast
and asymptotically exact.

It is worth pointing out that the worst case complexity of
solve QPSC is O((n+m)2) where n is the number of variables and m
the number of constraints. Typically the number of constraints is lin-
ear in the number of variables in which case the algorithm is quadratic
in the number of variables. This is the same as the complexity in the
unconstrained case and the complexity of our dedicated solver used
for solving band constraints [5].

The complexity is computed as follows. Since A is an n×n matrix,
the complexity of computing g, s and α is O(n2). The complexity
of split blocks is O(n) since the total number of active constraints is
O(n) as they form a spanning forest for the variables. The complexity
of project is O(m× (n + m) + n). The main while loop can only be
called O(m) times since once a constraint is made active it can never
become violated again. This is because if it is active then it cannot
be violated because of the way blocks are constructed. It can only be
made inactive by a subsequent call to expand block in which case it
will be implied by the other active constraints and so cannot become
violated since these cannot be violated. At each iteration of the main
while loop the most violated constraint must be determined. Currently
we scan through all non-active constraints which has cost O(m). We
plan to investigate more efficient data structures in the future. Both
merge block and expand block are O(n) in the number of variables in
the blocks being merged or expanded. Clearly the last for loop has
O(n) complexity.

3.3 Algorithm Performance

To test the efficiency of the solve QPSC algorithm we used it to ar-
range a set of graphs using directed edge constraints. Our test data is a
set of 52 graphs from the Matrix Market [1], the AT&T Graphs collec-
tion3 and other sources4. The graphs were chosen to be representative
of different application domains (software design diagrams, gene acti-
vation networks, citation networks, etc.) and different types of graph
structure including both dense and sparse graphs, regular meshes and
scale-free networks.

We compared running time for constrained layout using the
solve QPSC algorithm and the commercial Mosek quadratic program
solver [18]. We also compare against unconstrained layout using the
conventional conjugate gradient method to solve the quadratic sub-
problems. The results are shown graphically in Figure 11. The in-
dependent variable is edge count for each sample graph, which corre-
sponds to the number of constraints required and should therefore vary
proportionally to running time and stress.

From the chart it is easy to see that the purpose designed
solve QPSC solver is faster than Mosek in all cases, usually by at least

3ftp://ftp.research.att.com/dist/drawdag/dg.gz
4Our test data is available from www.csse.monash.edu.au/∼tdwyer
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Fig. 11. Running time for unconstrained layout and layout with directed
edge constraints using either solve QPSC or the Mosek solver to solve
the quadratic program.

a factor of 10 (note the log scale). Generally solve QPSC is somewhat
slower than unconstrained layout. The exceptions occur when a con-
strained local minimum is reached in relatively few iterations. The
trade-off is that the constrained solution has higher stress and may
therefore be less readable.

4 Discussion

An obvious limitation of the IPSEP-COLA method is that separation
constraints must be linear and orthogonal to the axes. This is a problem
when nodes have non-rectangular boundaries. Also, clustered graphs
could be arranged more compactly if clusters could be fitted with non-
overlapping convex hulls rather than simple rectangles. It is possible—
though somewhat complicated and computationally expensive—to ap-
proximate arbitrary linear constraints with separation constraints by
modifying the goal function slightly. Non-linear constraints can be
approximated by a sequence of line-segments. We have recently ex-
plored such a process with application to edge routing [8].

Another limitation, as described in Section 2.1, is that constraints
must be satisfiable, for example, care may need to be taken to avoid
generating cyclic constraints. We are working on a modified solver
that can detect cycles and relax the constraints involved until they can
be satisfied. Also, the more constraints that are placed on layout the
greater the problem of local minima. Generally, for highly constrained
graphs we would suggest a preprocessing step such as unconstrained
layout or a method for quickly finding a feasible arrangement.

The greatest advantage of IPSEP-COLA over other graph drawing
algorithms is its flexibility. The mapping of drawing conventions to
constraints is potentially simple enough that users of network visu-
alization and diagramming tools can define constraints interactively.
Such interactivity is further facilitated by the incremental nature of the
method. That is, the constrained stress majorization process can begin
from any input arrangement and the layout process animated to pre-
serve the mental map. Finally, IPSEP-COLA provides a single generic
technique for arranging real-world networks using the most common
drawing conventions. This contrasts strongly with the current state of
affairs in which different drawing conventions and layout constraints
require very different algorithms.
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