The Erdős-Hajnal conjecture for paths and cycles.

Marthe Bonamy, Nicolas Bousquet, Stéphan Thomassé

LIRMM, Montpellier, France

Laboratoire Informatique Robotique Microélectronique Montpellier

Two complementary invariants

largest clique.

largest independent set.

 χ : Minimum number of colors to ensure that

$$\bigcirc^{\mathsf{a}} \bigcirc^{\mathsf{b}} \Rightarrow a \neq b.$$

 χ : Minimum number of colors to ensure that

$$\bigcirc^{\mathsf{a}} \bigcirc^{\mathsf{b}} \Rightarrow a \neq b.$$

S(G): set of all stable sets. $w: S(G) \rightarrow \{0; 1\}.$

$$\forall v \in V, \sum_{S \mid v \in S} w(S) = 1.$$

 χ : Minimum number of colors to ensure that

$$\overset{\mathsf{a}}{\bigcirc} \overset{\mathsf{b}}{\bigcirc} \Rightarrow a \neq b.$$

S(G): set of all stable sets. $w : S(G) \to \{0; 1\}.$ Minimise $\sum w(S) \text{ s.t.}$ $\forall v \in V, \sum_{S|v \in S} w(S) = 1.$ w' optimal solution \Leftrightarrow

$$\sum_{S} w'(S) = \chi(G).$$

 χ : Minimum number of colors to ensure that

$$\overset{\mathsf{a}}{\bigcirc} \overset{\mathsf{b}}{\bigcirc} \Rightarrow a \neq b.$$

S(G): set of all stable sets. $w : S(G) \to [0; 1].$ $Minimise <math>\sum w(S) \text{ s.t.}$ $\forall v \in V, \sum_{S|v \in S} w(S) = 1.$ w' optimal solution \Leftrightarrow

$$\sum_{S} w'(S) = \chi_f(G).$$

 χ : Minimum number of colors to ensure that

$$\overset{\mathsf{a}}{\bigcirc} \overset{\mathsf{b}}{\bigcirc} \Rightarrow a \neq b.$$

$$\begin{split} S(G): & \text{set of all stable sets.} \\ & w: S(G) \to [0; 1]. \\ & \text{Minimise } \sum w(S) \text{ s.t.} \\ & \forall v \in V, \sum_{S \mid v \in S} w(S) = 1. \end{split}$$

w' optimal solution \Leftrightarrow

$$\sum_{S} w'(S) = \chi_f(G).$$

 χ_p : Minimum number of colors to ensure that

 χ : Minimum number of colors to ensure that

$$\overset{\mathsf{a}}{\bigcirc}\overset{\mathsf{b}}{\frown}\Rightarrow a\neq b.$$

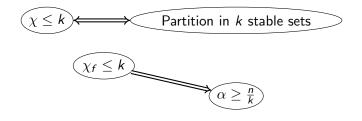
$$\begin{split} S(G): & \text{set of all stable sets.} \\ & w: S(G) \to [0;1]. \\ & \text{Minimise } \sum w(S) \text{ s.t.} \\ & \forall v \in V, \sum_{S \mid v \in S} w(S) = 1. \end{split}$$

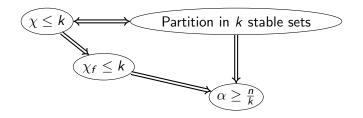
w' optimal solution \Leftrightarrow

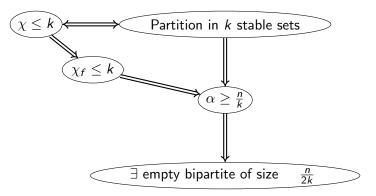
$$\sum_{S} w'(S) = \chi_f(G).$$

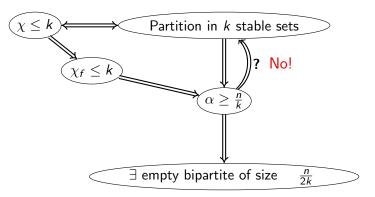
 χ_p : Minimum number of colors to ensure that

$$\begin{array}{c} {}^{\{a_1, a_2, \dots, a_p\}} \quad \{b_1, b_2, \dots, b_p\} \\ \bigcirc \qquad \bigcirc \qquad \qquad \bigcirc \qquad \qquad \Rightarrow \forall i, j, a_i \neq b_j. \\ \hline \chi_f(G) = inf_p \frac{\chi_p(G)}{p} \end{array}$$











$\chi(G) \ge \omega(G)$

 $\chi(G) \ge \omega(G)$? $\chi(G) \le f(\omega(G))$

$$\chi(G) \ge \omega(G)$$

?
 $\chi(G) \le f(\omega(G))$

Not in general

(Erdős 1963, triangle-free graphs with arbitrarily large chromatic number)

$$\chi(G) \ge \omega(G)$$

?
 $\chi(G) \le f(\omega(G))$
Not in general

(Erdős 1963, triangle-free graphs with arbitrarily large chromatic number)

Definition

 \mathcal{C} is χ -bounded $\Leftrightarrow \exists f, \chi(G) \leq f(\omega(G))$ for all $G \in \mathcal{C}$.

$$\chi(G) \ge \omega(G)$$

?
 $\chi(G) \le f(\omega(G))$
Not in general

(Erdős 1963, triangle-free graphs with arbitrarily large chromatic number)

Definition

 \mathcal{C} is χ -bounded $\Leftrightarrow \exists f, \chi(G) \leq f(\omega(G))$ for all $G \in \mathcal{C}$.

For which C do we have a polynomial f?

Conjecture (Gyarfás '87)

Graphs with no induced path of length k satisfy $\chi \leq P(k, \omega)$.

$$\chi(G) \ge \omega(G)$$

?
 $\chi(G) \le f(\omega(G))$
Not in general

(Erdős 1963, triangle-free graphs with arbitrarily large chromatic number)

Definition

 \mathcal{C} is χ -bounded $\Leftrightarrow \exists f, \chi(G) \leq f(\omega(G))$ for all $G \in \mathcal{C}$.

For which C do we have a polynomial f?

Conjecture (Gyarfás '87)

Graphs with no induced path of length k satisfy $\chi \leq P(k, \omega)$.

Conjecture (Erdős Hajnal '89)

Graphs with no induced path of length k contain a clique or a stable set of size n^{ϵ_k} .

Conjecture (Erdős Hajnal '89)

H-free graphs contain a clique or a stable set of size n^{ϵ_H} .

Н	$lpha,\omega$
O	$\alpha = n$
	$\alpha \geq \sqrt{\textit{nlogn}}$
000	$\max(lpha, \omega) \geq \sqrt{n}$
0-0-0-0	$\max(lpha, \omega) \geq \sqrt{n}$

Conjecture (Erdős Hajnal '89)

H-free graphs contain a clique or a stable set of size n^{ϵ_H} .

Н	α, ω
O	$\alpha = n$
	$\alpha \geq \sqrt{\textit{nlogn}}$
0-0-0	$\max(lpha, \omega) \geq \sqrt{n}$
000	$\max(lpha, \omega) \geq \sqrt{n}$

Theorem (Grimmet, McDiarmid '75)

The H-free hypothesis is necessary. (Random graphs satisfy w.h.p. $\alpha, \omega = O(logn)$)

Lemma

E-H true for *H*-free graphs \Leftrightarrow **E-H** true for \overline{H} -free graphs.

Lemma

E-H true for *H*-free graphs \Leftrightarrow **E-H** true for \overline{H} -free graphs.

Theorem (Alon, Pach, Solymosi '01)

Looking at prime H is enough.

Interesting graphs on 4 vertices: $\bigcirc \bigcirc \bigcirc \frown \bigcirc \checkmark \checkmark$.

Lemma

E-H true for *H*-free graphs \Leftrightarrow **E-H** true for \overline{H} -free graphs.

Theorem (Alon, Pach, Solymosi '01)

Looking at prime H is enough.

Interesting graphs on 4 vertices: $\bigcirc \bigcirc \bigcirc \bigcirc \frown \bigcirc \checkmark$. Interesting graphs on 5 vertices:

• o→o→o √ (Chudnovsky Safra '08).

A more tractable rewording

Conjecture (Erdős Hajnal)
Graphs in a non-trivial class C contain a clique or a stable set of
Closed under induced subgraphs Size $n^{\epsilon_{\mathcal{C}}}$.

True for any polynomially χ -bounded C.

A more tractable rewording

Graphs in a non-trivial class C contain a clique or a stable set of Closed under induced subgraphs size $n^{\epsilon_{C}}$.	Conjecture (Erdős Hajnal)
	Closed under induced subgraphs

True for any polynomially χ -bounded C.

Theorem (Chudnovsky, Seymour '12)

True for graphs with no induced P_5 or $\overline{P_7}$.

A more tractable rewording

Conjecture (Erdős Hajnal) Graphs in <u>a non-trivial class</u> <u>C</u> contain a clique or a stable set of Closed under induced subgraphssize n^{ϵ_c} .

True for any polynomially χ -bounded C.

Theorem (Chudnovsky, Seymour '12)

True for graphs with no induced P_5 or $\overline{P_7}$.

Theorem (Bousquet Lagoutte Thomassé '13)

For any k, true for graphs with no induced P_k or $\overline{P_k}$.

Theorem (B. Bousquet Thomassé '13)

For any k, true for graphs with no induced $C_{\geq k}$ or $\overline{C_{\geq k}}$.

Sketch of the proof for paths

- Extract a linear sparse or dense subgraph. (sparse = every vertex of degree ≤ εn, dense = every vertex of degree ≥ (1 − ε)n)
- Extract a linear empty or complete bipartite graph.
- Onclude.

Sketch of the proof for paths

- Extract a linear sparse or dense subgraph. (sparse = every vertex of degree ≤ εn, dense = every vertex of degree ≥ (1 − ε)n)
- **2** Extract a linear empty or complete bipartite graph.
- Onclude.

Theorem (Rödl '86)

Every graph satisfies one of the following:

- It contains all graphs on k vertices.
- It has a linear subset with average degree $\leq \epsilon n$.
- It has a linear subset with average degree $\geq (1 \epsilon)n$.

Theorem (Alon et al. '05, Fox and Pach '08)

Every graph with an empty or complete linear bipartite graph contains a polynomial cograph.

Sketch of the proof for cycles

- Extract a sparse or dense linear subgraph. (sparse = every vertex of degree ≤ εn, dense = every vertex of degree ≥ (1 − ε)n)
- 2 Extract an empty or complete linear bipartite graph.
- Onclude.

Sketch of the proof for cycles

- Extract a sparse or dense linear subgraph. (sparse = every vertex of degree ≤ εn, dense = every vertex of degree ≥ (1 − ε)n)
- 2 Extract an empty or complete linear bipartite graph.
- Onclude.

Assume wlog there is a sparse linear subgraph.

Lemma

Every graph G contains a dominating tree T such that:

- there is a linear empty bipartite graph, or
- there is a path of T that dominates $\frac{1}{4}$ of the vertices.

Lemma

A sparse $C_{\geq k}$ -free graph that admits a dominating path contains a linear empty bipartite graph.

E-H for C_5 or P_5 ?

 χ -boundedness of graphs with no long cycle? (Gyarfás)

Existence of a graph with

- in every subgraph, a linear empty bipartite
- no linear stable set?

E-H for C_5 or P_5 ?

 χ -boundedness of graphs with no long cycle? (Gyarfás)

Existence of a graph with

- in every subgraph, a linear empty bipartite
- no linear stable set?

Thanks!