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Reconfiguring Colourings

Consider the following decision problem:

Input: Two proper k-colourings f and g of a graph G.

Question: Can f be ‘transformed’ into g by recolouring one
vertex at a time such that every intermediate colouring is a
proper k-colouring?

Definition: If so, then we say that f reconfigures to g.

f g

Our Focus: In this talk, we are interested in the complexity
of problems of this type.
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Complexity of k-Recolouring

# of Colours Complexity Reference

2 P Trivial Exercise

3 P Cereceda, van den Heuvel

and Johnson (2011)

≥ 4 PSPACE-complete Bonsma and Cereceda (2009)

PSPACE is the class of decision problems that can be solved
using a Turing machine with a polynomial amount of space.

It is known that NP ⊆ PSPACE and believed that the inclusion
is strict.
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Reconfiguring 3-Colourings

Let us look more closely at the 3-colouring case.

Let f and g be 3-colourings of a graph G using colours 0, 1, 2.

What are the necessary conditions which must be satisfied if f
can be reconfigured to g?

0

v

1

2

2

1

0

Definition: A vertex is said to be frozen under
f if its colour cannot be changed by any
sequence of recolourings.

Necessary Condition 1: f and g must agree
on their frozen vertices.
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Reconfiguring 3-Colourings

Necessary Condition 1: f and g must agree on their frozen
vertices.

There is another (more subtle) necessary condition:

0

1

20

1

−

+

+

+

+

0

1

20

2

+

+

+

+

−

Necessary Condition 2: For every (oriented) cycle C in G,
the colourings f and g must induce edge labellings of C with
the same number of +’s and −’s.

Theorem (CvdHJ (2011)). These two conditions are also
sufficient and can be checked in polynomial time.
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The Bigger Picture: Graph Homomorphisms

Definition: A homomorphism from a graph G to a graph H
is a mapping f : V (G)→ V (H) such that f(u)f(v) ∈ E(H) for
every uv ∈ E(G).

Homomorphisms generalise colourings; i.e. a proper k-colouring
is equivalent to a homomorphism to Kk.

For a fixed graph H, the H-Recolouring problem is described
as follows:

Input: A graph G and homomorphisms f and g from G to H.

Question: Can f be transformed into g by recolouring one
vertex at a time such that every intermediate mapping is a
homomorphism from G to H?
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Complexity of H-Recolouring

H Complexity Reference

K2 P Trivial Exercise

K3 P CvdHJ (2011)

C4-free H P Wrochna (2015)

Gp,q, P BMMN (2016+)

2 ≤ p/q < 4

Kk, k ≥ 4 PSPACE-complete BC (2009)

Gp,q, PSPACE-complete BMMN (2016+)

p/q > 4

odd wheels, etc PSPACE-complete BMMN (2016+++)
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Circular Colourings

Definition: Given positive integers p, q with p/q ≥ 2, let Gp,q

be the graph with vertex set {0, . . . , p− 1} where two vertices
i, j are adjacent if q ≤ |i− j| ≤ p− q.

The graph Gp,q is referred to as a circular clique.

G5,2 G4,1 G8,3

Circular cliques include complete graphs and odd cycles.

Definition: A (p, q)-colouring of G is a homomorphism from G
to Gp,q.

Circular colourings were introduced by Vince (1988).
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Our Results

Theorem (BMMN (2016+)). For fixed integers p, q, the
reconfiguration problem for (p, q)-colourings is

solvable in polynomial time for 2 ≤ p/q < 4 and is

PSPACE-complete for p/q ≥ 4.

Proof Ideas:

For 2 ≤ p/q < 4, we generalise the two necessary and sufficient
conditions from the 3-colouring result of CvdHJ (2011).

For p/q ≥ 4, we reduce the reconfiguration problem for
bp/qc-colourings to the reconfiguration problem for
(p, q)-colourings and apply the result of BC (2009).
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Complexity of H-Recolouring

H Complexity Reference

K2 P Trivial Exercise

K3 P CvdHJ (2011)

C4-free H P Wrochna (2015)

Gp,q, P BMMN (2016+)

2 ≤ p/q < 4

Kk, k ≥ 4 PSPACE-complete BC (2009)

Gp,q, PSPACE-complete BMMN (2016+)

p/q ≥ 4

odd wheels, etc PSPACE-complete BMMN (2016+++)
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A Sea of Open Problems

It would be interesting to determine the complexity of
H-Recolouring for any class of graphs for which it is not
already known!

Some specific open problems are as follows:

Question: Is the H-Recolouring problem
PSPACE-complete for every graph H containing a K4?

Question: Is it true that the H-Recolouring problem is
always either in P or PSPACE-complete? (That is, is there a
dichotomy?)
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