Bounded spectrum list coloring

Marthe Bonamy 19/09/2013

Joint work with Ross Kang

Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier

Vertex coloring

Vertex coloring

Graph *k*-colorable if: (a)—(b) $\Rightarrow \begin{cases} a \neq b \\ a, b \in [|1, ..., k|] \end{cases}$

Vertex coloring

Graph *k*-colorable if:
(a)—(b)
$$\Rightarrow \begin{cases} a \neq b \\ a, b \in [|1, ..., k|] \end{cases}$$

Graph k-choosable if:

For every *L* with $|L(v)| \ge k$, (a)—(b) x = y $b \in L(x)$ $b \in L(y)$ Graph (k, p)-choosable if:

For every *L* with $|L(v)| \ge k$ and $|\bigcup L(v)| \le p$,

$$(a) \longrightarrow y \\ x y \\ x y \\ b \in L(y) \\ b \in L(y)$$

Graph (k, p)-choosable if: For every L with $|L(v)| \ge k$ and $\overbrace{\bigcup L(v)}^{\text{Spectrum}} \le p$, $(a \ne b)$ x = y $(b) \Rightarrow \begin{cases} a \ne b \\ a \in L(x) \\ b \in L(y) \end{cases}$ Graph (k, p)-choosable if: For every L with $|L(v)| \ge k$ and $\overbrace{|\cup L(v)|}^{\text{Spectrum}} \le p$, $(a \ne b)$ $a \in L(x)$ $b \in L(v)$

> (k, k)-choosable \Leftrightarrow k-colorable. (k, p + 1)-choosable \Rightarrow (k, p)-choosable. (k, ∞) -choosable \Leftrightarrow k-choosable.

Bipartite graphs

Not (2, 4)-choosable, but (2, 3)-choosable.

Bipartite graphs

Not (2, 4)-choosable, but (2, 3)-choosable.

Not (2, 3)-choosable.

Any bipartite graph is (k + 1, 2k)-choosable.

Any bipartite graph is (k + 1, 2k)-choosable.

Lemma (Easy)

Some bipartite graphs are not (k + 1, 2k + 1)-choosable.

Any bipartite graph is (k + 1, 2k)-choosable.

Lemma (Easy)

Some bipartite graphs are not (k + 1, 2k + 1)-choosable.

Lemma (Easy)

(2,3)-choosable $\not\Rightarrow$ 2-choosable. (2,4)-choosable \Rightarrow 2-choosable.

Any χ -colorable graph is $(k(\chi - 1) + 1, k\chi)$ -choosable.

Lemma (Easy)

Some bipartite graphs are not (k + 1, 2k + 1)-choosable.

Lemma (Easy)

(2,3)-choosable $\not\Rightarrow$ 2-choosable. (2,4)-choosable \Rightarrow 2-choosable.

Any χ -colorable graph is $(k(\chi - 1) + 1, k\chi)$ -choosable.

Lemma (Easy)

Some χ -colorable graphs are not $(k(\chi - 1) + 1, k\chi + 1)$ -choosable.

Lemma (Easy)

(2,3)-choosable $\not\Rightarrow$ 2-choosable. (2,4)-choosable \Rightarrow 2-choosable.

 \exists ? C_k , (k, C_k) -choosable \Rightarrow k-choosable.

Question

 \exists ? C_k , (k, C_k) -choosable \Rightarrow k-choosable.

 $k = 1 \checkmark k = 2 \checkmark$

 \exists ? C_k , (k, C_k) -choosable \Rightarrow k-choosable.

 $k = 1 \checkmark$ $k = 2 \checkmark$

Theorem (Král' Sgall 2005)

For $k \ge 3$ and any $p \ge k$, (k, p)-choosable $\not\Rightarrow$ k-choosable.

 $\exists ? C_k, (k, C_k) \text{-choosable} \Rightarrow k \text{-choosable}.$

 $k = 1 \checkmark$ $k = 2 \checkmark$

Theorem (Král' Sgall 2005)

For $k \ge 3$ and any $p \ge k$, there is a graph (k, p)-choosable and not (k, p + 1)-choosable.

 $\exists ? C_k, (k, C_k) \text{-choosable} \Rightarrow k \text{-choosable}.$

 $k = 1 \checkmark$ $k = 2 \checkmark$

Theorem (Král' Sgall 2005)

For $k \ge 3$ and any $p \ge k$, there is a graph (k, p)-choosable and not (k, p + 1)-choosable.

Question (Král' Sgall 2005)

 $\exists ? D_k, (k, D_k)$ -choosable $\Rightarrow (k + 1)$ -choosable.

 \exists ? C_k , (k, C_k) -choosable \Rightarrow k-choosable.

 $k = 1 \checkmark$ $k = 2 \checkmark$

Theorem (Král' Sgall 2005)

For $k \ge 3$ and any $p \ge k$, there is a graph (k, p)-choosable and not (k, p + 1)-choosable.

Question (Král' Sgall 2005)

 $\exists ? D_k, (k, D_k)$ -choosable $\Rightarrow (k + 1)$ -choosable.

True for k = 2 (then $D_2 = 3$).

Question

 \exists ? $C_{k,p}$, (k, p)-choosable $\Rightarrow C_{k,p}$ -choosable.

Question

 \exists ? $C_{k,p}$, (k, p)-choosable $\Rightarrow C_{k,p}$ -choosable.

 $p \leq 2k - 2$: **NO**

Question

$$\exists ? C_{k,p}, (k,p)-choosable \Rightarrow C_{k,p}-choosable.$$

 $p \leq 2k - 2$: **NO**

Theorem (Král' Sgall 2005)

 $C_{k,2k-1} = \mathcal{O}(k \cdot \ln k \cdot 2^{4k}).$

Sketch of the proof (blackboard).

Question

$$\exists ? C_{k,p}, (k,p)-choosable \Rightarrow C_{k,p}-choosable.$$

 $p \leq 2k-2$: **NO**

Theorem (Král' Sgall 2005)

 $C_{k,2k-1}=\mathcal{O}(k\cdot \ln k\cdot 2^{4k}).$

Sketch of the proof (blackboard).

Question (Král' Sgall 2005)

Must $C_{k,2k-1}$ grow exponentially in k?

Question

$$\exists ? C_{k,p}, (k,p)-choosable \Rightarrow C_{k,p}-choosable.$$

 $p \leq 2k-2$: **NO**

Theorem (Král' Sgall 2005)

 $C_{k,2k-1}=\mathcal{O}(k\cdot \ln k\cdot 2^{4k}).$

Sketch of the proof (blackboard).

Question (Král' Sgall 2005)

Must $C_{k,2k-1}$ grow exponentially in k?

Theorem (B. Kang 2013)

Yes.

Sketch of the proof (blackboard).

Theorem (B. Kang 2013)

For any $p \ge 2k - 1$, $C_{k,p} > exp(\frac{(k-1)^2}{p})$.

Only interesting if $p = o(k^2)$.

Theorem (B. Kang 2013)

For any
$$p \ge 2k - 1$$
, $C_{k,p} > exp(\frac{(k-1)^2}{p})$.

Only interesting if $p = o(k^2)$.

Definition (Berstein 1908)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Theorem (B. Kang 2013)

For any
$$p \ge 2k - 1$$
, $C_{k,p} > exp(\frac{(k-1)^2}{p})$.

Only interesting if $p = o(k^2)$.

Definition (Berstein 1908)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

(2-colorable k-uniform p-hypergraphs).

Theorem (B. Kang 2013)

For any
$$p \ge 2k - 1$$
, $C_{k,p} > exp(\frac{(k-1)^2}{p})$.

Only interesting if $p = o(k^2)$.

Definition (Berstein 1908)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

(2-colorable k-uniform p-hypergraphs).

Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property K if there is a set $S \in {\binom{[p]}{p-k+1}}$ with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Theorem (B. Kang 2013)

For any
$$p \ge 2k - 1$$
, $C_{k,p} > exp(\frac{(k-1)^2}{p})$.

Only interesting if $p = o(k^2)$.

Definition (Berstein 1908)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

(2-colorable k-uniform p-hypergraphs).

Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property K if there is a set $S \in {\binom{[p]}{p-k+1}}$ with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Hypergraphs?

A family of sets \mathcal{F} has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Definition (Erdös 1963)

 $M_{k,p}$ = size of the smallest $\mathcal{F} \subseteq {\binom{[p]}{k}}$ that does not have property B (i.e. every intersecting set of \mathcal{F} belongs to \mathcal{F}).

A family of sets \mathcal{F} has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Definition (Erdös 1963)

 $M_{k,p}$ = size of the smallest $\mathcal{F} \subseteq {\binom{[p]}{k}}$ that does not have property B (i.e. every intersecting set of \mathcal{F} belongs to \mathcal{F}).

 $M_{k,2k-1} = \binom{2k-1}{k}$

A family of sets \mathcal{F} has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Definition (Erdös 1963)

 $M_{k,p}$ = size of the smallest $\mathcal{F} \subseteq {\binom{[p]}{k}}$ that does not have property B (i.e. every intersecting set of \mathcal{F} belongs to \mathcal{F}).

$$M_{k,2k-1} = \binom{2k-1}{k}$$

Theorem (Král' Sgall 2005)

 $\delta \geq 110 \cdot M(k,p)^2 \cdot \ln(M(k,p)) \Rightarrow not (k,p)-choosable.$

A family of sets \mathcal{F} has property B if there is an intersecting set S of \mathcal{F} with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Definition (Erdös 1963)

 $M_{k,p}$ = size of the smallest $\mathcal{F} \subseteq {\binom{[p]}{k}}$ that does not have property B (i.e. every intersecting set of \mathcal{F} belongs to \mathcal{F}).

$$M_{k,2k-1} = \binom{2k-1}{k}$$

Theorem (Král' Sgall 2005)

 $\delta \geq 110 \cdot M(k,p)^2 \cdot \ln(M(k,p)) \Rightarrow not (k,p)-choosable.$

Kang 2012: generalization to improper choosability.

Property K

Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property K if there is a set $S \in {\binom{[p]}{p-k+1}}$ with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

Definition

 $R_{k,p}$ = size of the smallest $\mathcal{F} \subseteq {\binom{[p]}{k}}$ that does not have property K (i.e. every set $S \in {\binom{[p]}{p-k+1}}$ contains an element of \mathcal{F}).

Property K

Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property K if there is a set $S \in {\binom{[p]}{p-k+1}}$ with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

 $R_{k,2k-1} = \binom{2k-1}{k}.$

Property K

Definition (B. Kang 2013)

A family of sets $\mathcal{F} \subseteq {\binom{[p]}{k}}$ has property K if there is a set $S \in {\binom{[p]}{p-k+1}}$ with $F \not\subseteq S \quad \forall F \in \mathcal{F}$.

$$R_{k,2k-1} = \binom{2k-1}{k}.$$

Lemma

Any bipartite graph (A, B) is (k, p)-choosable if |A| < R(k, p).

Theorem (B. Kang 2013)

$$R_{k,p} \geq exp(\frac{(k-1)^2}{p}).$$

Sketch of the proof (blackboard). $R_{k,\geq k^2} = k.$

 $\exists ? D_k, (k, D_k)$ -choosable $\Rightarrow (k + 1)$ -choosable.

•
$$D_k \stackrel{?}{=} k^2$$
.

 $\exists ? D_k, (k, D_k)$ -choosable $\Rightarrow (k + 1)$ -choosable.

•
$$D_k \stackrel{?}{=} k^2$$
.
• $\delta \ge f(R_{k,p}) \stackrel{?}{\Rightarrow} \text{not } (k, p)\text{-choosable}$.

 $\exists ? D_k, (k, D_k)$ -choosable $\Rightarrow (k + 1)$ -choosable.

•
$$D_k \stackrel{?}{=} k^2$$
.

•
$$\delta \geq f(R_{k,p}) \stackrel{?}{\Rightarrow} \text{not } (k,p)\text{-choosable.}$$

• (k, p)-choosability of complete bipartite graphs?

 $\exists ? D_k, (k, D_k)$ -choosable $\Rightarrow (k + 1)$ -choosable.

•
$$D_k \stackrel{?}{=} k^2$$
.

•
$$\delta \geq f(R_{k,p}) \stackrel{?}{\Rightarrow} \text{not } (k,p)\text{-choosable.}$$

• (k, p)-choosability of complete bipartite graphs?

Thanks!