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Vertex coloring
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Vertex coloring

Graph k-colorable if:
atb

@ .i{a,be[u,...,ky]
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Vertex coloring

12 34
13 14 23 24
Graph k-colorable if:
= # b
a,bell,... k|]
Graph k-choosable if:
For every L with |L(v)| > k, a#b
@—® =4 ac L(x)
x ) be L(y)

Marthe Bonamy Bounded spectrum list coloring 2/11



Bounded spectrum list coloring

Graph (k, p)-choosable if:

For every L with |L(v)| > k and |U L(v)| < p,

a#hb
@—®B =4 ac L(x)
Y \bely)

Marthe Bonamy Bounded spectrum list coloring 3/11



Bounded spectrum list coloring

Graph (k, p)-choosable if:

Spectrum

—
For every L with |L(v)| > k and |U L(v)| < p,

a#hb
@—®B =4 ac L(x)
Y \bely)
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Bounded spectrum list coloring

Graph (k, p)-choosable if:

Spectrum

—
For every L with |L(v)| > k and |U L(v)| < p,

a#hb
@—®B =4 ac L(x)
x Y beL(y)

(k, k)-choosable < k-colorable.
(k, p+ 1)-choosable = (k, p)-choosable.
(k, 00)-choosable < k-choosable.
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Bipartite graphs

12 34

13 14 23 24
Not (2,4)-choosable, but (2, 3)-choosable.
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Bipartite graphs
12 34
13 14 23 24
Not (2,4)-choosable, but (2, 3)-choosable.
12 23 13
12 23 13
Not (2, 3)-choosable.
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Bipartite graphs (2)

Lemma (Easy)
Any bipartite graph is (k + 1,2k)-choosable.
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Bipartite graphs (2)

Lemma (Easy)

Any bipartite graph is (k + 1,2k)-choosable.

Lemma (Easy)

Some bipartite graphs are not (k + 1,2k + 1)-choosable.
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Bipartite graphs (2)

Lemma (Easy)

Any bipartite graph is (k + 1,2k)-choosable.

Lemma (Easy)

Some bipartite graphs are not (k + 1,2k + 1)-choosable.

Lemma (Easy)

(2,3)-choosable = 2-choosable.
(2,4)-choosable = 2-choosable.
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Bipartite graphs (2)

Lemma (Easy)

Any x-colorable graph is (k(x — 1) + 1, kx)-choosable.

Lemma (Easy)

Some bipartite graphs are not (k + 1,2k + 1)-choosable.

Lemma (Easy)

(2,3)-choosable = 2-choosable.
(2,4)-choosable = 2-choosable.
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Bipartite graphs (2)

Lemma (Easy)

Any x-colorable graph is (k(x — 1) + 1, kx)-choosable.

Lemma (Easy)

Some x-colorable graphs are not (k(y — 1)+ 1, ky + 1)-choosable.

Lemma (Easy)

(2,3)-choosable = 2-choosable.
(2,4)-choosable = 2-choosable.
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Questions

3? Ck, (k, Cx)-choosable = k-choosable.
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Questions

Question
3? Ck, (k, Cx)-choosable = k-choosable.

k=1V
k=2Vv
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3? Ck, (k, Cx)-choosable = k-choosable.

k=1V
k=2Vv

Theorem (Kral' Sgall 2005)
For k > 3 and any p > k, (k, p)-choosable = k-choosable.
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3? Ck, (k, Cx)-choosable = k-choosable.

k=1V
k=2Vv

Theorem (Kral' Sgall 2005)

For k > 3 and any p > k, there is a graph (k, p)-choosable
and not (k, p + 1)-choosable.
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3? Ck, (k, Cx)-choosable =

k=1V
k=2Vv

Theorem (Kral' Sgall 2005)

For k > 3 and any p > k, there is a graph (k, p)-choosable
and not )

Question (Kral' Sgall 2005)
3? Dy, (k, Di)-choosable =
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3? Ck, (k, Cx)-choosable =

k=1V
k=2Vv

Theorem (Kral' Sgall 2005)

For k > 3 and any p > k, there is a graph (k, p)-choosable
and not )

Question (Kral' Sgall 2005)
3? Dy, (k, Di)-choosable =

True for k = 2 (then D, = 3).
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Questions (2)

3? Ckp, (k, p)-choosable = C, ,-choosable.
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Questions (2)

3? Ckp, (k, p)-choosable = C, ,-choosable.

p<2k—2:NO
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3? Ckp, (k, p)-choosable = C, ,-choosable.

p<2k—2:NO

Theorem (Kral" Sgall 2005)

Crok—1 = O(k - Ink - 24¥).

Sketch of the proof (blackboard).
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3? Ckp, (k, p)-choosable = C, ,-choosable.

p<2k—2:NO

Theorem (Kral" Sgall 2005)

Crok—1 = O(k - Ink - 2%K),

Sketch of the proof (blackboard).

Question (Kral’ Sgall 2005)

Must Cy o1 grow exponentially in k?
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3? Ckp, (k, p)-choosable = ;

p<2k—2:NO

Theorem (Kral" Sgall 2005)

Sketch of the proof (blackboard).
Question (Kral’ Sgall 2005)

Must Cy 21 grow in k?
Theorem (B. Kang 2013)
Yes.

Sketch of the proof (blackboard).
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Properties B and K

Theorem (B. Kang 2013)

(k 1)2)_

Forany p>2k—1, C, , > exp( 5

Only interesting if p = o(k?).
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Properties B and K

Theorem (B. Kang 2013)

Forany p>2k—1, ¢, , > exp(wpl))

Only interesting if p = o(k?).

Definition (Berstein 1908)

A family of sets F C ([’/:]) has property B if there is an intersecting
set S of Fwith F & S VF e F.
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Properties B and K

Theorem (B. Kang 2013)

Forany p>2k—1, ¢, , > exp(wpl))

Only interesting if p = o(k?).

Definition (Berstein 1908)

A family of sets F C ([’/:]) has property B if there is an intersecting
set S of Fwith F & S VF e F.

(2-colorable k-uniform p-hypergraphs).
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Properties B and K

Theorem (B. Kang 2013)

For any p > 2k — 1,

Only interesting if p = o(k?).
Definition (Berstein 1908

~—~~
~—

A family of sets F C ([’,z]) has property B if there is an intersecting
set S of F with VF € F.

(2-colorable k-uniform p-hypergraphs).

—~
~—

Definition (B. Kang 2013

A family of sets F C ([’;]) has property K if there is a set

Se (,0 ) with VF € F.
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Properties B and K

Theorem (B. Kang 2013)

For any p > 2k — 1,

Only interesting if p = o(k?).
Definition (Berstein 1908

~—~~
~—

A family of sets F C ([’,z]) has property B if there is an intersecting
set S of F with VF € F.

(2-colorable k-uniform p-hypergraphs).

—~
~—

Definition (B. Kang 2013

A family of sets F C ([’;]) has property K if there is a set

Se (,0 ) with VF € F.

Hypergraphs?
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Property B

Definition (Berstein 1908)

A family of sets F has property B if there is an intersecting set S
of F with £ £ 5 VF € F.

Definition (Erdos 1963)

My p= size of the smallest F C ([il) that does not have property
B (i.e. every intersecting set of F belongs to /).
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Property B

Definition (Berstein 1908)

A family of sets F has property B if there is an intersecting set S
of F with £ £ 5 VF € F.

Definition (Erdos 1963)

My p= size of the smallest F C ([il) that does not have property
B (i.e. every intersecting set of F belongs to /).

Miok—1= (*1)
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Property B

Definition (Berstein 1908

A family of sets F has property B if there is an intersecting set S
of F with VF e F.

Definition (Erdos 1963

—~
~—

M. ,= size of the smallest 7 C ([il) that does have
(i.e. every intersecting set of F )-

Miok—1 = (1)
Theorem (Kral" Sgall 2005)
§ > 110 - M(k, p)? - In(M(k, p)) = not
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Property B

Definition (Berstein 1908)

A family of sets F has property B if there is an intersecting set S
of F with VF e F.

Definition (Erdos 1963)

M. ,= size of the smallest 7 C ([il) that does have
(i.e. every intersecting set of F )-

Miok—1 = (1)
Theorem (Kral" Sgall 2005)
§ > 110 - M(k, p)? - In(M(k, p)) = not

Kang 2012: generalization to improper choosability.
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Property K

Definition (B. Kang 2013)

A family of sets F C ([Z]) has property K if there is a set

Se (,0 ) with VF € F.

Ry p= size of the smallest 7 C ([Z]) that does have

(i.e. every set S € (pjihl) contains an element of F).
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Property K

Definition (B. Kang 2013)

A family of sets F C ([’;]) has property K if there is a set

Se(,B,) with 7 2 S VFeF.

Riok—1 = (2k,:1)-
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Property K

Definition (B. Kang 2013)

A family of sets F C ([’Z]) has property K if there is a set
Se (, 1) with VF € F.

Riok—1 = (2k,:1)-

Any bipartite graph (A, B) is if |Al < R(k, p).

Theorem (B. Kang 2013)

Sketch of the proof (blackboard).
Rk,2k2 = k
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Conclusion

Question (Kral' Sgall 2005)
3? Dy, (k, Dy)-choosable = (k + 1)-choosable.

o D, = k2.
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Conclusion

Question (Kral' Sgall 2005)
3? Dy, (k, Dy)-choosable = (k + 1)-choosable.

o Dy = k2.
® 6> f(Rkp) ~ not (k, p)-choosable.
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Conclusion

Question (Kral' Sgall 2005)
3? Dy, (k, Dy)-choosable = (k + 1)-choosable.

o Dy = k2.
® 6> f(Rkp) ~ not (k, p)-choosable.
e (k, p)-choosability of complete bipartite graphs?
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Conclusion

Question (Kral' Sgall 2005)
3? Dy, (k, Dy)-choosable = (k + 1)-choosable.

o Dy = k2.
® 6> f(Rkp) ~ not (k, p)-choosable.
e (k, p)-choosability of complete bipartite graphs?

Thanks!
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