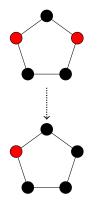
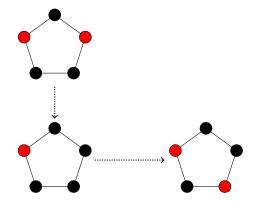
Reconfiguring Independent Sets in Cographs

Marthe Bonamy Nicolas Bousquet

July 3, 2014

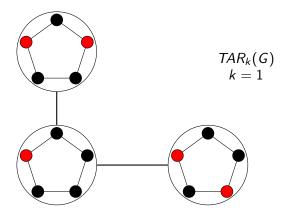
Laboratoire Informatique Robotique Microélectronique Montpellier





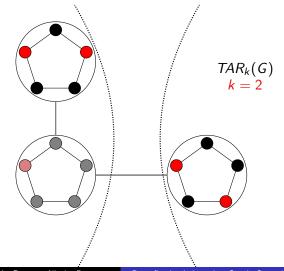
Independent Set Reconfiguration \Rightarrow Reconfiguration Graph

Solutions // Vertices. Closest solutions // Neighbors.



Independent Set Reconfiguration \Rightarrow Reconfiguration Graph

Solutions // Vertices. Closest solutions // Neighbors.



- In the same connected component?
- What distance between them?

- In the same connected component?
- What distance between them?
- Reconfiguration graph:
 - Connected?
 - Maximal diameter of a connected component?

- In the same connected component?
- What distance between them?
- Reconfiguration graph:
 - Connected?
 - Maximal diameter of a connected component?

Colorings, Dominating sets, Vertex covers...

- In the same connected component?
- What distance between them?
- Reconfiguration graph:
 - Connected?
 - Maximal diameter of a connected component?

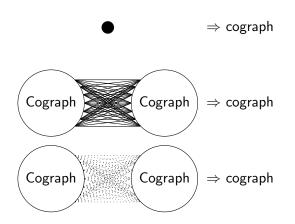
Colorings, Dominating sets, Vertex covers... Token Addition & Removal, Token Jumping, Token Sliding... Theorem (Hearn, Demaine '05, Kamiński, Medvedev, Milanič '12) *G* known to be perfect or subcubic planar: Are α, β in the same connected component of $TAR_k(G)$? **PSPACE-complete**. Theorem (Hearn, Demaine '05, Kamiński, Medvedev, Milanič '12) *G* known to be perfect or subcubic planar: Are α, β in the same connected component of $TAR_k(G)$? **PSPACE-complete**.

Efficient algorithms for:

- claw-free graphs,
- line graphs,
- chordal graphs...

Cographs: *P*₄-free graphs.

Cographs: *P*₄-free graphs.



Theorem (Bonsma '14)

G cograph, $\alpha, \beta \in TAR_k(G) \Rightarrow$ Decide in $\mathcal{O}(n^2)$ whether α and β in the same connected component.

Question (Bonsma '14)

G cograph $\stackrel{?}{\Rightarrow}$ Decide in Poly(n) whether TAR_k(G) is connected.

Theorem (Bonsma '14)

G cograph, $\alpha, \beta \in TAR_k(G) \Rightarrow$ Decide in $\mathcal{O}(n^2)$ whether α and β in the same connected component.

Question (Bonsma '14)

G cograph $\stackrel{?}{\Rightarrow}$ Decide in Poly(n) whether TAR_k(G) is connected.

Theorem (B., Bousquet '14+)

 $G \text{ cograph} \Rightarrow Decide in \mathcal{O}(n^3)$ whether $TAR_k(G)$ is connected.

Theorem (Bonsma '14)

G cograph, $\alpha, \beta \in TAR_k(G) \Rightarrow$ Decide in $\mathcal{O}(n^2)$ whether α and β in the same connected component.

Question (Bonsma '14)

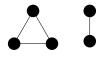
G cograph $\stackrel{?}{\Rightarrow}$ Decide in Poly(n) whether TAR_k(G) is connected.

Theorem (B., Bousquet '14+)

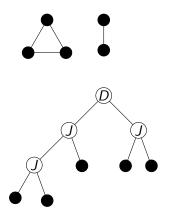
G cograph, $\alpha, \beta \in TAR_k(G) \Rightarrow$ Decide in $\mathcal{O}(n)$ whether α and β in the same connected component.

Theorem (B., Bousquet '14+)

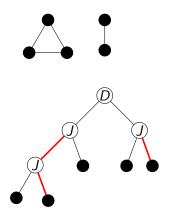
 $G \text{ cograph} \Rightarrow Decide in \mathcal{O}(n^3)$ whether $TAR_k(G)$ is connected.



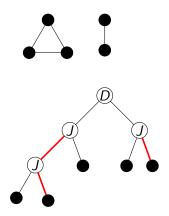
• Take your favorite G and k.



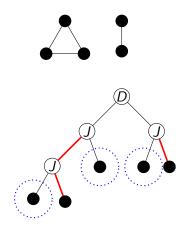
- Take your favorite G and k.
- Build the decomposition tree in $\mathcal{O}(n)$.



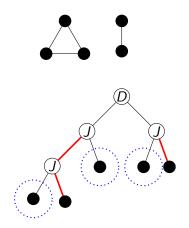
- Take your favorite G and k.
- Build the decomposition tree in O(n).
- Pick good and bad sides.



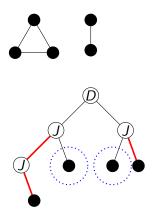
- Take your favorite G and k.
- Build the decomposition tree in O(n).
- Pick good and bad sides.
- Maximal stable sets ⇔
 "Stable-searches".



- Take your favorite G and k.
- Build the decomposition tree in O(n).
- Pick good and bad sides.
- Maximal stable sets ⇔
 "Stable-searches".
- Find bad side B with smallest α(B).



- Take your favorite G and k.
- Build the decomposition tree in O(n).
- Pick good and bad sides.
- Maximal stable sets ⇔
 "Stable-searches".
- Find bad side B with smallest α(B).
- Maximal stable set in $G \setminus (B \cup N(B))$ of size $k-\alpha(B) \leq \cdot \leq k+\alpha(B)-1$?



- Take your favorite G and k.
- Build the decomposition tree in O(n).
- Pick good and bad sides.
- Maximal stable sets ⇔
 "Stable-searches".
- Find bad side B with smallest α(B).
- Maximal stable set in $G \setminus (B \cup N(B))$ of size $k-\alpha(B) \leq \cdot \leq k+\alpha(B)-1$?

Question (Bonsma'14)

G cograph, $\alpha, \beta \in TAR_k(G) \stackrel{?}{\Rightarrow}$ Decide in Poly(n) whether α and β at distance at most ℓ .

Question (Bonsma'14)

G cograph, $\alpha, \beta \in TAR_k(G) \stackrel{?}{\Rightarrow}$ Decide in Poly(n) whether α and β at distance at most ℓ .

Thanks for your attention!