Procédures de déchargement global pour des problèmes de coloration de graphes

Marthe Bonamy

Encadrants : Benjamin Lévêque et Alexandre Pinlou

9 février 2015

Global discharging methods for coloring problems in graphs

Marthe Bonamy

Advisors: Benjamin Lévêque and Alexandre Pinlou

February 9, 2015

2 Square coloring

3 Edge coloring

Graphs

Graphs

Train network.

Train network.

Question (Guthrie 1852)

Question (Guthrie 1852)

Question (Guthrie 1852)

Question (Guthrie 1852)

Question (Guthrie 1852)

Are all maps 4-colorable?

 χ : Minimum number of colors to ensure that

 $\textcircled{a} \longrightarrow b \Rightarrow a \neq b.$

Theorem (Appel, Haken, Koch 1976)

Four colors suffice to color any planar graph.

Theorem (Appel, Haken, Koch 1976)

Four colors suffice to color any planar graph. (i.e. every planar graph G satisfies $\chi(G) \leq 4$.)

Theorem (Appel, Haken, Koch 1976)

Four colors suffice to color any planar graph. (i.e. every planar graph G satisfies $\chi(G) \leq 4$.)

Two characteristics:

Theorem (Appel, Haken, Koch 1976)

Four colors suffice to color any planar graph. (i.e. every planar graph G satisfies $\chi(G) \leq 4$.)

Two characteristics:

• Requires a computer check.

Theorem (Appel, Haken, Koch 1976)

Four colors suffice to color any planar graph. (i.e. every planar graph G satisfies $\chi(G) \leq 4$.)

Two characteristics:

- Requires a **computer check**.
- Relies upon a discharging argument.

Introduced by Wernicke in 1904.

Introduced by **Wernicke** in **1904**. Just a counting argument...

 $1\!+\!2\!+\!3\!+\!4\!+\!5\!+\!6$

Introduced by **Wernicke** in **1904**. Just a counting argument...

 $0\!+\!0\!+\!0\!+\!7\!+\!7\!+\!7$

Euler's formula for planar graphs |V| - |E| + |F|

Euler's formula for planar graphs |V| - |E| + |F|

Discharging methods for coloring problems

• Every planar graph contains some $C \in \{C_1, C_2, ..., C_p\}$. (Unavoidable configurations)

Discharging methods for coloring problems

• Every planar graph contains some $C \in \{C_1, C_2, ..., C_p\}$. (Unavoidable configurations)

For the [4-coloring] of planar graphs, a graph that contains a C_i can be reduced to a smaller graph.
 (Reducible configuration)

Discharging methods for coloring problems

• Every planar graph contains some $C \in \{C_1, C_2, ..., C_p\}$. (Unavoidable configurations)

- For the [4-coloring] of planar graphs, a graph that contains a C_i can be reduced to a smaller graph.
 (Reducible configuration)
- Thus every planar graph is [4-colorable].
Every planar graph contains some C ∈ {C₁, C₂,..., C_p}. (Unavoidable configurations) Euler's formula: |E| - |V| - |F| < 0

- For the [4-coloring] of planar graphs, a graph that contains a C_i can be reduced to a smaller graph.
 (Reducible configuration)
- Thus every planar graph is [4-colorable].

• Every planar graph contains some $C \in \{C_1, C_2, ..., C_p\}$. (Unavoidable configurations) Euler's formula: $\sum_{v} (d(v) - 6) + \sum_{f} (2d(f) - 6) < 0$

- For the [4-coloring] of planar graphs, a graph that contains a C_i can be reduced to a smaller graph.
 (Reducible configuration)
- Thus every planar graph is [4-colorable].

 Every planar graph contains some C ∈ {C₁, C₂,..., C_p}. (Unavoidable configurations) Euler's formula: Σ_ν ω(ν) + Σ_f ω(f) < 0 ω(ν) := d(ν) - 6, ω(f) := 2d(f) - 6.

- For the [4-coloring] of planar graphs, a graph that contains a C_i can be reduced to a smaller graph.
 (Reducible configuration)
- Thus every planar graph is [4-colorable].

- Every planar graph contains some $C \in \{C_1, C_2, ..., C_p\}$. (Unavoidable configurations) Euler's formula: $\sum_{v} \omega(v) + \sum_{f} \omega(f) < 0$ $\omega(v) := d(v) - 6, \omega(f) := 2d(f) - 6.$
- For the [4-coloring] of planar graphs, a graph that contains a C_i can be reduced to a smaller graph.
 (Reducible configuration)
- Thus every planar graph is [4-colorable].

• Every planar graph contains some $C \in \{C_1, C_2, ..., C_p\}$. (Unavoidable configurations) Euler's formula: $\sum_{v} \omega(v) + \sum_{f} \omega(f) < 0$ $\omega(v) := d(v) - 6, \omega(f) := 2d(f) - 6.$

 $\Rightarrow \forall v, f, \ \omega'(v) \ge 0, \omega'(f) \ge 0$ Contradiction!

- For the [4-coloring] of planar graphs, a graph that contains a C_i can be reduced to a smaller graph.
 (Reducible configuration)
- Thus every planar graph is [4-colorable].

3 Edge coloring

$$\textcircled{algor}{b} \text{ or } \textcircled{algor}{b} \Rightarrow a \neq b.$$

(a) b or (a) b
$$\Rightarrow a \neq b$$
.
$$\Delta + 1 \leq \chi^2 \leq \Delta^2 + 1$$

 Δ : maximum number of neighbors

Historical motivation: Radio frequencies assignment.

Historical motivation: Radio frequencies assignment.

Conjecture (Wegner 1977)

If G is a planar graph, then:

- $\chi^2 \leq 7$ if $\Delta = 3$
- $\chi^2 \leq \Delta + 5$ if $4 \leq \Delta \leq 7$
- $\chi^2 \leq \lfloor \frac{3\Delta}{2} \rfloor + 1$ if $\Delta \geq 8$

Historical motivation: Radio frequencies assignment.

Conjecture (Wegner 1977)

If G is a planar graph, then:

•
$$\chi^2 \leq 7$$
 if $\Delta = 3$

•
$$\chi^2 \leq \Delta + 5$$
 if $4 \leq \Delta \leq 7$

• $\chi^2 \leq \lfloor \frac{3\Delta}{2} \rfloor + 1$ if $\Delta \geq 8$

Theorem (Havet, van den Heuvel, McDiarmid, Reed '07)

Wegner's conjecture is asymptotically true.

Question (Wang, Lih '01)

For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Question (Wang, Lih '01)

What is the <u>minimum</u> $k \mid \exists d$, For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Question (Wang, Lih '01)

What is the <u>minimum</u> $k \mid \exists d$,

For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: k = 7. (Borodin, Ivanova, Noestroeva '08)

Question (Wang, Lih '01)

What is the <u>minimum</u> $k \mid \exists d$, For planar graphs, $g \ge k$, $\Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: k = 7. (Borodin, Ivanova, Noestroeva '08)

- For planar graphs, $\exists d, g \geq 7, \Delta \geq d \Rightarrow \chi^2 = \Delta + 1$.
- $\exists (G_n)_{n \in \mathbb{N}}$, planar, g = 6, $\Delta \nearrow$, $\chi^2 > \Delta + 1$.

ad: average degree =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

ad: average degree =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad: maximum average degree = $\max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$.

ad: average degree =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad: maximum average degree = $\max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$.

Lemma (Derived from Euler's Formula)

For any planar graph, (mad - 2)(g - 2) < 4

ad: average degree =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad: maximum average degree = $\max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$.

Lemma (Derived from Euler's Formula)

For any planar graph, (mad - 2)(g - 2) < 4

For planar graphs:

- $g \ge 7 \Rightarrow mad < \frac{14}{5}$.
- $g \ge 6 \Rightarrow mad < 3$.

ad: average degree =
$$\frac{\sum d(v)}{|V|} = \frac{2|E|}{|V|}$$
.

mad: maximum average degree = $\max_{H \subseteq G} \frac{2|E(H)|}{|V(H)|}$.

Lemma (Derived from Euler's Formula)

For any planar graph, (mad - 2)(g - 2) < 4

For planar graphs:

- $g \ge 7 \Rightarrow mad < \frac{14}{5}$.
- $g \ge 6 \Rightarrow mad < 3$.

$g(G) \ge$	3	4	5	6	7	8	9	10	11	12	13	 $+\infty$
mad(G) <	6	4	$\frac{10}{3}$	3	$\frac{14}{5}$	83	$\frac{18}{7}$	<u>5</u> 2	<u>22</u> 9	$\frac{12}{5}$	$\frac{26}{11}$	 2

Mad and square coloring

Question

What is the maximum/supremum $m \mid \exists d$, For any graph, mad $< m, \Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Mad and square coloring

Question

What is the maximum/supremum $m \mid \exists d$, For any graph, mad $< m, \Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: $m = \frac{14}{5}$?

Mad and square coloring

Question

What is the maximum/supremum $m \mid \exists d$, For any graph, mad $< m, \Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: True for any m < 3.

Theorem (B., Lévêque, Pinlou '13)

 $\forall \epsilon > 0, \ mad < 3 - \epsilon, \ \Delta \ge \mathcal{O}(\frac{1}{\epsilon^2}) \Rightarrow \chi^2 = \Delta + 1.$

Question

What is the maximum/supremum $m \mid \exists d$, For any graph, mad $< m, \Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: True for any m < 3.

Theorem (B., Lévêque, Pinlou '13)

 $\forall \epsilon > 0, \ mad < 3 - \epsilon, \ \Delta \ge \mathcal{O}(\frac{1}{\epsilon^2}) \Rightarrow \chi^2 = \Delta + 1.$

Also, $\exists (G_n)_{n \in \mathbb{N}}$, mad < 3, $\Delta \nearrow$, $\chi^2 > \Delta + 1$ (G_n planar).

Optimal!

Question

What is the maximum/supremum $m \mid \exists d$, For any graph, mad $< m, \Delta \ge d \Rightarrow \chi^2 = \Delta + 1$.

Answer: True for any m < 3.

Theorem (B., Lévêque, Pinlou '13)

 $\forall \epsilon > 0, \ mad < 3 - \epsilon, \ \Delta \ge \mathcal{O}(\frac{1}{\epsilon^2}) \Rightarrow \chi^2 = \Delta + 1.$

Also, $\exists (G_n)_{n \in \mathbb{N}}$, mad < 3, $\Delta \nearrow$, $\chi^2 > \Delta + 1$ (G_n planar).

Optimal!

 \Rightarrow What about $\Delta(G) + \mathcal{O}(1)$ colors?

Minimally not square k-colorable graph G with $\Delta(G) \leq k - 1$.

Glimpse of the proof

Minimally not square k-colorable graph G with $\Delta(G) \le k - 1$. Goal: $\operatorname{ad}(G) \ge 3 - \epsilon$.

Glimpse of the proof

Minimally not square k-colorable graph G with $\Delta(G) \le k - 1$. Goal: $\operatorname{ad}(G) \ge 3 - \epsilon$.

Reducible configurations:

\Rightarrow **Global** discharging argument.

1 Introduction

2 Square coloring

3 Edge coloring

4 Conclusion
List Coloring

 χ : Minimum number of colors to ensure that

$$a - b \Rightarrow a \neq b.$$

List Coloring

 χ : Minimum number of colors to ensure that

$$a - b \Rightarrow a \neq b.$$

 χ_{ℓ} : Minimum size of every L(v) such that

List Coloring

 χ : Minimum number of colors to ensure that

$$a - b \Rightarrow a \neq b.$$

 χ_{ℓ} : Minimum size of every L(v) such that

$$\begin{array}{c} \textcircled{a} \longrightarrow & \textcircled{b} \\ x & y \\ \chi_{\ell} - \chi \end{array} \begin{array}{c} a \neq b \\ a \in L(x) \\ b \in L(y) \\ \chi_{\ell} - \chi \end{array} \begin{array}{c} a \neq b \\ a \in L(x) \\ b \in L(y) \\ a \in L(y) \end{array} \end{array}$$

Edge coloring

 χ' : Minimum number of colors to ensure that $\bigcirc a \bigcirc b \bigcirc \Rightarrow a \neq b.$

Edge coloring

 χ' : Minimum number of colors to ensure that $\bigcirc a \bigcirc b \bigcirc \Rightarrow a \neq b.$

 χ'_{ℓ} : Minimum size of every L(e) such that

$$\bigcirc \begin{array}{c} a \\ u \\ v \\ u \\ v \\ v \\ w \\ \end{array} \Rightarrow \begin{cases} a \neq b \\ a \in L(u, v) \\ b \in L(v, w) \end{cases}$$

Edge coloring

 χ' : Minimum number of colors to ensure that $\bigcirc a \bigcirc b \bigcirc \Rightarrow a \neq b.$

 χ'_{ℓ} : Minimum size of every L(e) such that

$$\bigcirc \begin{array}{c} a \\ u \\ v \\ \end{array} \begin{array}{c} b \\ v \\ w \end{array} \end{array} \Rightarrow \begin{cases} a \neq b \\ a \in L(u, v) \\ b \in L(v, w) \end{cases}$$
$$\Delta \leq \chi' \leq \chi'_{\ell} \leq 2\Delta - 1.$$

Vertex coloring of Line graphs.

Conjecture (List Coloring Conjecture '85)

For any graph, $\chi'_{\ell} = \chi'$.

Vertex coloring of Line graphs.

Conjecture (List Coloring Conjecture '85)

For any graph, $\chi'_{\ell} = \chi'$.

Theorem (Vizing '64)

For any graph, $\chi' \leq \Delta + 1$.

Vertex coloring of Line graphs.

Conjecture (List Coloring Conjecture '85)

For any graph, $\chi'_{\ell} = \chi'$.

Conjecture (weak List Coloring Conjecture)

For any graph, $\chi'_{\ell} \leq \Delta + 1$.

Vertex coloring of Line graphs.

Conjecture (List Coloring Conjecture '85)

For any graph, $\chi'_{\ell} = \chi'$.

Conjecture (weak List Coloring Conjecture)

For any graph, $\chi'_{\ell} \leq \Delta + 1$.

Theorem (Kahn 1996)

The weak List Coloring Conjecture is asymptotically true.

Marthe Bonamy Global discharging methods for coloring problems in graphs

For any planar graph with $\Delta \ge 9$, $\chi'_{\ell} \le \Delta + 1$.

For any planar graph with $\Delta \ge 9$, $\chi'_{\ell} \le \Delta + 1$.

Simplified in 2008 by Cohen and Havet.

For any planar graph with $\Delta \ge 9$, $\chi'_{\ell} \le \Delta + 1$.

Simplified in 2008 by Cohen and Havet.

Theorem (B. '13)

For any planar graph with $\Delta \geq 8$, $\chi'_{\ell} \leq \Delta + 1$.

For any planar graph with $\Delta \ge 9$, $\chi'_{\ell} \le \Delta + 1$.

Simplified in 2008 by Cohen and Havet.

Theorem (B. '13)

For any planar graph with $\Delta \geq 8$, $\chi'_{\ell} \leq \Delta + 1$.

Conjecture still open for planar graphs with $\Delta(G) \in \{5, 6, 7\}$.

Key idea

Goal: recolor any of $\{e_1, f_1, e_2, f_2\}$.

Consider the digraph of constraints on $\{e_1, f_1, e_2, f_2, g, h\}$.

• Graphs are a natural way to represent relations.

- Graphs are a natural way to represent relations.
- Many problems can be translated in terms of coloring.

- Graphs are a natural way to represent relations.
- Many problems can be translated in terms of coloring.
- We can use discharging methods to answer positively to coloring problems.

- Graphs are a natural way to represent relations.
- Many problems can be translated in terms of coloring.
- We can use discharging methods (clever counting arguments) to answer positively to coloring problems.

- Graphs are a natural way to represent relations.
- Many problems can be translated in terms of coloring.
- We can use discharging methods (clever counting arguments) to answer positively to coloring problems. Used for the Four Color Theorem!

- Graphs are a natural way to represent relations.
- Many problems can be translated in terms of coloring.
- We can use discharging methods (clever counting arguments) to answer positively to coloring problems. Used for the Four Color Theorem! Here:
 - List edge coloring
 - Square coloring

- Graphs are a natural way to represent relations.
- Many problems can be translated in terms of coloring.
- We can use discharging methods (clever counting arguments) to answer positively to coloring problems. Used for the Four Color Theorem! Here:
 - List edge coloring
 - Square coloring

Two (broad) directions:

- Graphs are a natural way to represent relations.
- Many problems can be translated in terms of coloring.
- We can use discharging methods (clever counting arguments) to answer positively to coloring problems. Used for the Four Color Theorem! Here:
 - List edge coloring
 - Square coloring
- Two (broad) directions:
 - Discharging methods for algorithmic purpose.

- Graphs are a natural way to represent relations.
- Many problems can be translated in terms of coloring.
- We can use discharging methods (clever counting arguments) to answer positively to coloring problems. Used for the Four Color Theorem! Here:
 - List edge coloring
 - Square coloring
- Two (broad) directions:
 - Discharging methods for algorithmic purpose.
 - Any hope of partial automatization?

Other contributions online:

- More on discharging methods for coloring problems (with Bousquet, Hocquard, Lévêque, Pinlou, Przybyło).
- Graph recoloring (and related problems) (with Bousquet, Johnson, Lignos, Patel, Paulusma).
- Graphs with large chromatic number induce a 3k-cycle (with Charbit, Thomassé).
- Erdos-Hajnal conjecture for graphs with no large induced cycle or anti-cycle (*with Bousquet, Thomassé*).
- Improved kernel for Feedback Vertex Set in planar graphs (with Kowalik).

Thanks!