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GenèveLyon

Train network.

 Any constraint representation.

Marthe Bonamy Global discharging methods for coloring problems in graphs 4/23



Graphs

Paris

Rouen

Montpellier

GenèveLyon

Train network.  Any constraint representation.

Marthe Bonamy Global discharging methods for coloring problems in graphs 4/23



Coloring problems

Question (Guthrie 1852)

Are all maps 4-colorable?

χ: Minimum number of colors to ensure that

a b ⇒ a 6= b.
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The Four Color Theorem

A graph is planar if it can be drawn in a plane without crossing

edges ( ).

Theorem (Appel, Haken, Koch 1976)

Four colors suffice to color any planar graph.

(i.e. every planar graph G satisfies χ(G ) ≤ 4.)

Two characteristics:

Requires a computer check.

Relies upon a discharging argument.
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Discharging methods

Introduced by Wernicke in 1904.

Just a counting argument...

1 2 3 4 5 6+ + + + +

Euler’s formula for planar graphs
|V | − |E |+ |F |
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Discharging methods for coloring problems

1 Every planar graph contains some C ∈ {C1,C2, . . . ,Cp}.
(Unavoidable configurations)

Euler’s formula:

ω(v) := d(v)− 6, ω(f ) := 2d(f )− 6.

1
. . .

⇒ ∀v , f , ω′(v) ≥ 0, ω′(f ) ≥ 0 Contradiction!

2 For the [4-coloring] of planar graphs, a graph that contains a
Ci can be reduced to a smaller graph.
(Reducible configuration)

3 Thus every planar graph is [4-colorable].
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Square coloring

1 2 3 4 5 6

1 2 3 4 5 6

1 2

1 2

χ2: Minimum number of colors to ensure that

a b or a b ⇒ a 6= b.

∆ + 1 ≤ χ2 ≤ ∆2 + 1

∆: maximum number of neighbors
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Motivation

Historical motivation: Radio frequencies assignment.

Conjecture (Wegner 1977)

If G is a planar graph, then:

χ2 ≤ 7 if ∆ = 3

χ2 ≤ ∆ + 5 if 4 ≤ ∆ ≤ 7

χ2 ≤ b3∆
2 c+ 1 if ∆ ≥ 8

Theorem (Havet, van den Heuvel, McDiarmid, Reed ’07)

Wegner’s conjecture is asymptotically true.
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Square coloring with few colors

g : girth = minimum length of a cycle.

Question (Wang, Lih ’01)

What is the minimum k | ∃ d,

For planar graphs, g ≥ k, ∆ ≥ d ⇒ χ2 = ∆ + 1.

χ2
`

Answer: k = 7. (Borodin, Ivanova, Noestroeva ’08)

For planar graphs, ∃d , g ≥ 7, ∆ ≥ d ⇒ χ2 = ∆ + 1.

χ2
`

∃ (Gn)n∈N, planar, g = 6, ∆↗, χ2 > ∆ + 1.

χ2
`
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Another measure of sparsity

ad: average degree =
∑

d(v)
|V | = 2|E |

|V | .

mad: maximum average degree = maxH⊆G
2|E(H)|
|V (H)| .

Lemma (Derived from Euler’s Formula)

For any planar graph, (mad−2)(g − 2) < 4

For planar graphs:

g ≥ 7⇒ mad < 14
5 .

g ≥ 6⇒ mad < 3.

g(G ) ≥ 3 4 5 6 7 8 9 10 11 12 13 . . . +∞
mad(G ) < 6 4 10

3 3 14
5

8
3

18
7

5
2

22
9

12
5

26
11 . . . 2
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Mad and square coloring

Question

What is the maximum/supremum m | ∃ d,

For any graph, mad < m, ∆ ≥ d ⇒ χ2 = ∆ + 1.

Answer: m = 14
5 ? True for any m < 3.

Theorem (B., Lévêque, Pinlou ’13)

∀ε > 0, mad < 3− ε, ∆ ≥ O( 1
ε2 ) ⇒ χ2 = ∆ + 1.

Also, ∃ (Gn)n∈N, mad < 3, ∆↗, χ2 > ∆ + 1 (Gn planar).

Optimal!

⇒ What about ∆(G ) +O(1) colors?
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Glimpse of the proof

Minimally not square k-colorable graph G with ∆(G ) ≤ k − 1.

Goal: ad(G ) ≥ 3− ε.

Reducible configurations:

⇒ Global discharging argument.
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List Coloring

1 2 a b

2 b1 21 21 a

χ: Minimum number of colors to ensure that

a b ⇒ a 6= b.

a
x

b
y
⇒


a 6= b

a ∈ L(x)

b ∈ L(y)

χ`: Minimum size of every L(v) such that

χ` − χ can be arbitrarily large!
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Edge coloring

1 2

1 2

1 2

1 2

χ′: Minimum number of colors to ensure that
a b ⇒ a 6= b.

χ′`: Minimum size of every L(e) such that

u v w

a b ⇒


a 6= b

a ∈ L(u, v)

b ∈ L(v ,w)

∆ ≤ χ′ ≤ χ′` ≤ 2∆− 1.
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Edge Coloring (2)

Vertex coloring of Line graphs.

Conjecture (List Coloring Conjecture ’85)

For any graph, χ′` = χ′.

Theorem (Vizing ’64)

For any graph, χ′ ≤ ∆ + 1.

Theorem (Kahn 1996)

The weak List Coloring Conjecture is asymptotically true.
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Edge coloring planar graphs

Theorem (Borodin ’90)

For any planar graph with ∆ ≥ 9, χ′` ≤ ∆ + 1.

Simplified in 2008 by Cohen and Havet.

Theorem (B. ’13)

For any planar graph with ∆ ≥ 8, χ′` ≤ ∆ + 1.

Conjecture still open for planar graphs with ∆(G ) ∈ {5, 6, 7}.
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Key idea

1 2

1 2

1 2
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Key idea

u

v1

v2

5−
v3

c1

e1

f1

c2

e2

f2

a1

b1

a2

b2

g

h

Goal: recolor any of {e1, f1, e2, f2}.

Consider the digraph of constraints
on {e1, f1, e2, f2, g , h}.

Find a good cycle or maximal path.
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Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods

(clever counting arguments)

to answer positively to coloring problems. Used for the Four
Color Theorem! Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods

(clever counting arguments)

to answer positively to coloring problems. Used for the Four
Color Theorem! Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods

(clever counting arguments)

to answer positively to coloring problems.

Used for the Four
Color Theorem! Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods (clever counting arguments)
to answer positively to coloring problems.

Used for the Four
Color Theorem! Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods (clever counting arguments)
to answer positively to coloring problems. Used for the Four
Color Theorem!

Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods (clever counting arguments)
to answer positively to coloring problems. Used for the Four
Color Theorem! Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods (clever counting arguments)
to answer positively to coloring problems. Used for the Four
Color Theorem! Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods (clever counting arguments)
to answer positively to coloring problems. Used for the Four
Color Theorem! Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Conclusion

Sum-up:

Graphs are a natural way to represent relations.

Many problems can be translated in terms of coloring.

We can use discharging methods (clever counting arguments)
to answer positively to coloring problems. Used for the Four
Color Theorem! Here:

List edge coloring
Square coloring

Two (broad) directions:

Discharging methods for algorithmic purpose.

Any hope of partial automatization?

Marthe Bonamy Global discharging methods for coloring problems in graphs 22/23



Not in this talk

Other contributions online:

More on discharging methods for coloring problems (with
Bousquet, Hocquard, Lévêque, Pinlou, Przyby lo).

Graph recoloring (and related problems) (with Bousquet,
Johnson, Lignos, Patel, Paulusma).

Graphs with large chromatic number induce a 3k-cycle (with
Charbit, Thomassé).

Erdos-Hajnal conjecture for graphs with no large induced cycle
or anti-cycle (with Bousquet, Thomassé).

Improved kernel for Feedback Vertex Set in planar graphs
(with Kowalik).

Thanks!

Marthe Bonamy Global discharging methods for coloring problems in graphs 23/23



Not in this talk

Other contributions online:

More on discharging methods for coloring problems (with
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