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What are the sparse components of 2D shapes?
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Results: Sparse components of 2D shapes
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e Regularization parameter fixed to A = 0.1 (this
could be learned by cross validation).

e In contrast to PCA, the sparse components are
readily interpretable in the spatial domain.

e [he sparse components are all lowpass, similar
to naturalistic shapes:

Components in the Fourier domain
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Analysis: Frequency domain

g Context and motivation A

e Receptive fields of neurons in early visual cortex
resemble the sparse components of natural image E
patches [Olshausen et al. 1996]. H

e Can neural selectivity in higher visual areas also be I]
understood in terms of sparse coding? r-
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e Here we examine the sparse components of 2D —
shapes to make predictions about neural tuning In L
iIntermediate and higher areas of the object pathway. 1
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g What is sparse coding? )

e Sparse coding is a type of linear coding method in which a signal is approximated by a
weighted sum of basis functions.

e In principal components analysis (PCA), these functions are selected to minimize the
squared error with the training signals.

e |In sparse coding, an additional requirement is to minimize the average magnitude of the
weights.This results in only a few basis functions being used for any signal.
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g 2D shape stimuli h

Hemera dataset: 136 259 shapes of various objects from binary masks:

e Polygons are sampled at m = 32 discrete points, then coordinates are concatenated into
a real vector x; ¢ R*™,

e 2D shapes can also be represented in the Fourier descriptor domain. Note that natural
shapes are mostly lowpass.
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g Methods: Sparse coding of shapes R

e Components: We seek to learn a dictionary & € R?™** such that any shape x; can be
encoded by a linear combination of its k£ columns.

e Sparsity: We want to enforce that only few components of this dictionary are used to
encode a given shape.

For a set of n shapes, this leads to the following optimization problem:

min f:( Ixi — ®oifl5 + A Ha'Hl>
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reconstruction error sparsity

where A € R is a regularization parameter and o; € R”* are coefficients applied to the

components for each training shape.

e Here we set the number of components to £ = 64 (complete code).

e We use the optimization strategy proposed by [Mairal et al. 2010].
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g Results: Principal components of 2D shapes A
o> % B || || A 7| e The principal components are determined by
setting the regularization parameter to A = 0.
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@ @ ¢ In the spatial domain, the principal components
= o | S ValF=? are not readily interpretable.
0 || = = =| ¢ e In the Fourier domain, it is clear that they are
bandpass, like shapelets [Dubinskiy et al. 2003],
% || f || § | e ¥ & and advancing monotonically in peak frequency:
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Peak frequency for each component

Mean Fourier magnitudes over all components
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g Analysis: Reconstruction error R
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4 Example reconstruction A
PCA
Coefficient = -1.07 Coefficient = 0.54 Coefficient = 0.02 Coefficient = -0.02 Coefficient = 0.08 Coefficient = 0.26
Error = 0.60 Error O 31 Error 0 31 Error ______ O 31 Error 0 30 Error _____ O 23
Sparse coding
Coefficient = 1.76 Coefficient = 0.84 Coefficient = 0.46 Coefficient = -0.23  Coefficient = -0.22  Coefficient = -0.16
Error O 48 Error 0 39 Error = 0.24 Error 0.16 Error = 0.07 Error = 0.05
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4 Open questions and future work )
e [o what degree do these sparse shape components predict shape selectivity of neurons
in V4 [Carlson et al. 2011] or posterior IT [Connor et al. 2007]?
_® Does sparse coding of shape facilitate object recognition? y
4 )
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