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Context and motivation

• Receptive fields of neurons in early visual cortex
resemble the sparse components of natural image
patches [Olshausen et al. 1996].

• Can neural selectivity in higher visual areas also be
understood in terms of sparse coding?

• Here we examine the sparse components of 2D
shapes to make predictions about neural tuning in
intermediate and higher areas of the object pathway.

What is sparse coding?

• Sparse coding is a type of linear coding method in which a signal is approximated by a
weighted sum of basis functions.

• In principal components analysis (PCA), these functions are selected to minimize the
squared error with the training signals.

• In sparse coding, an additional requirement is to minimize the average magnitude of the
weights.This results in only a few basis functions being used for any signal.

2D shape stimuli

Hemera dataset: 136 259 shapes of various objects from binary masks:

• Polygons are sampled at m = 32 discrete points, then coordinates are concatenated into
a real vector xi ∈ R2m.

• 2D shapes can also be represented in the Fourier descriptor domain. Note that natural
shapes are mostly lowpass.
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Methods: Sparse coding of shapes

• Components: We seek to learn a dictionary Φ ∈ R2m×k such that any shape xi can be
encoded by a linear combination of its k columns.

• Sparsity: We want to enforce that only few components of this dictionary are used to
encode a given shape.

For a set of n shapes, this leads to the following optimization problem:

min
Φ,αi

1

n

n∑
i=1

(
‖xi −Φαi‖22︸ ︷︷ ︸

reconstruction error

+ λ ‖αi‖1︸ ︷︷ ︸
sparsity

)

where λ ∈ R is a regularization parameter and αi ∈ Rk are coefficients applied to the
components for each training shape.

• Here we set the number of components to k = 64 (complete code).

• We use the optimization strategy proposed by [Mairal et al. 2010].

Results: Principal components of 2D shapes

• The principal components are determined by
setting the regularization parameter to λ = 0.

• In the spatial domain, the principal components
are not readily interpretable.

• In the Fourier domain, it is clear that they are
bandpass, like shapelets [Dubinskiy et al. 2003],
and advancing monotonically in peak frequency:

Components in the Fourier domain
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Results: Sparse components of 2D shapes

• Regularization parameter fixed to λ = 0.1 (this
could be learned by cross validation).

• In contrast to PCA, the sparse components are
readily interpretable in the spatial domain.

• The sparse components are all lowpass, similar
to naturalistic shapes:

Components in the Fourier domain
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Analysis: Frequency domain

Peak frequency for each component
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Analysis: Reconstruction error
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• PCA is optimal at minimizing the recon-
struction error for a fixed number of com-
ponents.

• Sparse coding allows shapes to be accu-
rately represented with fewer active com-
ponents.

Example reconstruction
PCA

Coefficient = -1.07

Error = 0.60

Coefficient = 0.54

Error = 0.31

Coefficient = 0.02

Error = 0.31

Coefficient = -0.02

Error = 0.31

Coefficient = 0.08

Error = 0.30

Coefficient = 0.26

Error = 0.23

Sparse coding
Coefficient = 1.76

Error = 0.48

Coefficient = 0.84

Error = 0.39

Coefficient = 0.46

Error = 0.24

Coefficient = -0.23

Error = 0.16

Coefficient = -0.22

Error = 0.07

Coefficient = -0.16

Error = 0.05

Open questions and future work

• To what degree do these sparse shape components predict shape selectivity of neurons
in V4 [Carlson et al. 2011] or posterior IT [Connor et al. 2007]?

• Does sparse coding of shape facilitate object recognition?
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