
Second order lambda calculus for mean-
ing assembly: on the logical syntax of plu-
rals Richard Moot, Christian Retoré Université de
Bordeaux, Labri-CNRS, INRIA

Overview In order to model a number of phe-
nomena of lexical pragmatics in a compositional
framework, several contributions developed in our
team [1, 4, 6, 5] have used the system F of Jean-
Yves Girard (1971) [2, 3] to compose logical formu-
lae expressing the meaning, while standard Mon-
tague semantics uses the simply typed λ-calculus.
Thereafter we discovered that it is also relevant to
model classical questions of semantics like gener-
alised quantification [7], and in this paper for plu-
rals. We should insist that we deal here with the
syntax of semantics, that is we do no speak of ref-
erence or interpretation in models: an issue which
is quite problematic for sophisticated semantic phe-
nomena.

What is system F ? Instead of the simply
typed λ-calculus we use the second order λ-calculus,
namely Girard system F (1971), see e.g. [3]. Base
types are constant types (the usual ones of TYn, t,
ei, lots of entity types), or variable types, α, β, ...
When T1 and T2 are types, so is T1→T2 and when
T is a type and α is a type variable, Πα. T is a type
as well – α usually appears in T but not necessarily.

As opposed to other type theories e.g. (I)TT,
the system is conceptually and formally extremely
simple, quite powerful,... and paradox free. Term
building operations include the ones of simply
typed λ-calculus:
vc Constants (resp. variables) of a given type T
are terms: c : T (resp. x : T).
eλ If u is a term of type T1→ T2 and v is a term
of type T1, then u(v) is a term of type T2.
iλ If u is a term of type T2 and x a variable of
type T1, then λx. u is a term of type T1→ T2.
These usual operations are completed by quite
similar operations handling quantification over all
types:
eΛ If u is a term of type Πα. U and T is a type,
then u{T} is a (specialized) term of type U [α := T]
iΛ If u is a term of type T and if there is no
occurrence of the type variable α in the type of
any free variable (u works uniformly for every type
α), then Λα.u is a term of type Πα. T (that’s the
universal view of u).

Remember usual beta-reduction is (λxT . u)tT
u[x := t] Here, beta-reduction for types and Λ
works just the same: (Λα. u){T} u[α := T].

Universal quantification over types let you de-
fine internally lots of type constructors, including

the common ones, product, lists of α, existential
quantification over types, lists of objects of type α,
booleans, and here we mainly use:

integers N = ΠX.(X →X)→ (X →X)

F as a glue logic The system F (intuitionistic
second order propositional logic) is used as a glue
language (a.k.a. meta logic), but it glues whichever
formulae one likes e.g. first order formulae, or
higher order formulae. A result in the PhD of
Bruno Mery [4] garantees that when λ-calculus con-
stants are the ones of order n order logic (with
n ∈ N or n = ω), the normal λ-terms of F of type
t are formulae of n order logic. This is close to
usual Montague semantics where simply typed λ-
calculus (intuitionistic propositional logic) with two
base types e and t is used to express and to glue
formulae of a priori ω order logic although one often
only considers first order logic, via reification. Here
because we want to con sider sets, we use second
order logic, i.e. we can have properties of properties
as in the committee met.

The type system we use consists in t, e and type
variables — here we only consider one type of in-
dividual for simplicity but we usually have several
base types, e1, . . . , en like in Tyn.

The logical syntax of plurals within F Using
second order, one can:

• consider a cardinal function who maps prop-
erties to natural numbers: it is a constant ‖.‖
(written as a circumfix) with type (e→ t)→N
where N is defined as above.
• assert that a property is a set so to speak,
λP e→t.house_inhabitants(P)
• say that a property is a set containing several

individuals λP e→t.‖P‖ > 1 ∧ committee(P)1.

We can thus remain quite close to categorial syn-
tax and Montague semantics, as shown in the lex-
icon in Figure 1. This enables us to automatically
compute the logical formula (second order), for sen-
tences like:

(1) The committee met.

(2) The students wrote a paper.

The second-order type for “the” allows us to treat
both “the students” (which will produce a term of
type e → t) and “the student” (a term of type
e, thereby naturally excluding “*the student met”)

1To model that a committee is not necessarily identical to
its members, it would be more appropriate to use an inten-
sional type e→ s→ t as a standard in Montague grammar.
However, we will abstract away from this complication

1

word/phrase syntactic type lambda-term
student n λxe.student(x)

committee n λP e→t.‖P‖ > 1 ∧ committee(P)
-s n\n ΛαλPα→tλQα→t.‖Q‖ > 1 ∧ ∀xα.Q(x)⇒ P (x)
q np/np Λαλxαλyαy = x

and (np\np)/np ΛαλPα→tλQα→tλxα.P (x) ∨Q(x)
the np/n Λα.ι(α→t)→α

each (s/(np\s))/n ΛαλPα→tλQα→t∀xαP (x)⇒ Q(x)
all (s/(np\s))/n ΛαλR(α→t)→tλS(α→t)→t∀Pα→tR(P)⇒ S(P)

met np\s λP e→t.‖P‖ > 1 ∧meet(P)
sneezed np\s λxe.sneeze(x)

wrote_a_paper np\s λP e→t.write_a_paper(P)
* ΛαλPα→tλQα→t∀xα.Q(x)⇒ P (x)
ΛαλR(α→t)→tλS(α→t)→t∀Pα→t.S(P)⇒ R(P)
c ΛαλR(α→t)→tλPα→t∀xα.P (x)⇒ ∃Qα→tQ(x) ∧Q ⊆ P ∧R(Q)

met# np\s λR(e→t)→t∀P e→t.R(P)⇒ ‖P‖ > 1 ∧meet(P)
sneezed∗ np\s λP e→t.∀xe.P (x)⇒ sneeze(x)

wrote_a_paperc np\s λP e→t.∀xe.P (x)⇒ ∃Qe→tQ(x) ∧Q ⊆ P ∧ write_a_paper(Q)

Figure 1: A small lexicon for plurals.

and a similar generalisation holds for the plural suf-
fix “-s” which lifts a set to a set of sets. Standard
notions, like Quine’s “lifting” of individuals to sin-
gleton sets (q) and operations like distributivity (*),
coverings (c) are easily treated as well. A restricted
distributivity (#) from sets of sets to its constituent
subsets allows us to naturally give two readings for
“the committees met” (one total meeting and one
meeting for each of the committees).

The parallelism between the type coercions (*)
and (#) and the lexical entries for “each” and “all”
is remarkable (and could be exploited to give more
compact lexical entries).

In short, a simple second-order lexicon allows us
to give a transparent treatment of at least the basic
facts about plurals without any other ontological
commitments, such a “plural indivuals” or “group
entities”.

References

[1] C. Bassac, B. Mery, and C. Retoré. Towards
a Type-Theoretical Account of Lexical Seman-
tics. Journal of Logic Language and Informa-
tion, 19(2):229–245, April 2010.

[2] J.-Y. Girard. Une extension de l’interprétation
de Gödel à l’analyse et son application:
l’élimination des coupures dans l’analyse et la
théorie des types. In J. E. Fenstad, editor, Pro-
ceedings of the Second Scandinavian Logic Sym-
posium, volume 63 of Studies in Logic and the

Foundations of Mathematics, pages 63–92, Am-
sterdam, 1971. North Holland.

[3] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs
and Types. Number 7 in Cambridge Tracts in
Theoretical Computer Science. Cambridge Uni-
versity Press, 1988.

[4] B. Mery. Modélisation de la sémantique lexicale
dans le cadre de la théorie des types. PhD thesis,
Université de Bordeaux 1, July 2011.

[5] R. Moot, L. Prévot, and C. Retoré. A
discursive analysis of itineraries in an
historical and regional corpus of trav-
els. In Constraints in discourse, page
http://passage.inria.fr/cid2011/doku.php,
Ayay-roches-rouges, France, Sept. 2011. Projet
ITIPY de la région Aquitaine.

[6] R. Moot, L. Prévot, and C. Retoré. Un cal-
cul de termes typés pour la pragmatique lex-
icale. In Traitement Automatique du Langage
Naturel, TALN 2011, pages 161–166, Montpel-
lier, France, June 2011. Projet ITIPY de la
région Aquitaine.

[7] C. Retoré. Specimens: “most of" generic nps in
a contextually flexible type theory. In Genius
III, 2011.

2

