
CHAPTER 7

CONTRACTION CRITERIA

I N the previous chapter, we have seen how we could use algebraic correct-
ness criteria for NL3R. In this chapter, I will present a graph theoretic

correctness criterion, in the line of Danos’ contraction criterion for Multi-
plicative Linear Logic, discussed in Section 4.5.

This chapter is based on joint research with Quintijn Puite, and parts of it
have appeared before in (Puite & Moot 1999), (Moot & Puite 1999) and (Moot
& Puite 2001).

7.1 Two Sided Proof Nets

Proof nets, as we have seen them in the previous chapters, having their roots
in the one sided sequent calculus, have a certain asymmetry in that they are
allowed to have conclusions, i.e. formulas which are not the premiss of a
link, but not hypotheses, i.e. formulas which are not the conclusion of a link.
Puite (1998) proposes a proof net calculus based on the two sided sequent
calculus, where a proof net is can have both hypotheses and conclusions.

In this calculus every link has a dual link. So, in addition to a normal
right tensor link, we have a left tensor link as shown in Table 7.1 on the next
page, which is by symmetry a par link and which has A⊗B as a premiss and
A and B as conclusions.

In the two sided calculus, this new link is a primitive link, but we can
see it as a defined link in the one sided calculus as shown in Figure 7.1 on the
following page.

If we compare the [L⊗] link with the defined link above, it is easy to verify
that for any proof structure S with the primitive [L⊗] link we can generate
a proof structure S′ where the primitive link is replaced by the defined link

100 Contraction Criteria

A B

A ⊗ B

[L⊗]

A B

A ⊗ B

[R⊗]

Table 7.1: Two sided tensor links

A ⊗ B

A⊥ B⊥

A⊥

&

B⊥

A B

Figure 7.1: One sided representation of the [L⊗] link

above. Now for everyy switching ω the correction graph ωS will be acyclic
and connected if and only if ωS′ is acyclic and connected.

We also have a left and right par link, which look as shown in Table 7.2.
One of the advantages of a two sided calculus is that we can now have

explicit negation links as shown in Table 7.3 on the facing page, a left nega-
tion link, which looks very much like an axiom link, and a right negation
link, which looks very much like a cut link.

The elimination of double negation and the De Morgan equalities, which
were ‘compiled away’ in the one sided calculus, now become explicitly rep-
resentable in the two sided calculus.

Example 7.1 As an example, we construct the proof net for the De Morgan equiv-
alence below.

a ⊗ b ⊢ (a⊥

&

b⊥)⊥

A B

A

&

B

[L

&

]

A B

A

&

B

[R

&

]

Table 7.2: Two sided par links

7.1 Two Sided Proof Nets 101

A A⊥

[L⊥]
A A⊥

[R⊥]

Table 7.3: Negation links

a b

a ⊗ b

[L⊗]

a b a⊥ b⊥

a⊥

&

b⊥

[L

&

]

(a⊥

&

b⊥)⊥

[L⊥]

[L⊥]

[R⊥]

Figure 7.2: Example formula unfolding

We first unfold the formulas as before, which produces the result shown in Fig-
ure 7.2.

We can see from the example above that axiom links in the one sided proof net
calculus are, from the two sided point of view, a combination of a left negation link
and the identification of two syntactically identical formulas. Therefore, in the two
sided calculus the axiom rule corresponds only to the unification of two formulas.

For the proof structure of Figure 7.2 there is a unique way to produce a proof net,
which is shown as Figure 7.3.

a b

a ⊗ b

[L⊗]

a⊥ b⊥

a⊥

&

b⊥

[L

&

]

(a⊥

&

b⊥)⊥

[L⊥]

[L⊥]

[R⊥]

Figure 7.3: Proof net for the formula unfolding of Figure 7.2

102 Contraction Criteria

A⊥ B

A⊥

&

B

[L

&

]

[L⊥]

A

A A−◦B

B

[L−◦]
;

A⊥ B

A⊥

&

B

[R

&

]

[R⊥]

A

A A−◦B

B

[R−◦]

;

Table 7.4: Links for implication, defined and primitive

Now, given that linear implication A−◦B is defined as A⊥

&

B, we can
abbreviate a combined par and negation link as shown in Table 7.4.

Example 7.2 The sequent below

a−◦b, b−◦c ⊢ a−◦c

generates the proof structure shown in Figure 7.4 on the next page after connecting
the b and c atomic formulas.

Note that we now want to connect the a atomic formulas, but it is difficult to
portray this on a flat plane. When we imagine the plane we draw on is cylindrical,
i.e. if we move up far enough we reenter the plane from below, we can see how moving
upward from the top a formula we would reach the bottom a formula. However, we
will choose to portray these sitatuations by using curved connections, as shown in
Figure 7.5 on the facing page.

Observe that the above representation is very close to the corresponding
natural deduction proof, shown in Figure 7.6 on the next page, with the dif-
ference that instead of coindexing the [R−◦] rule with the discharged hypo-
thesis a, we represent the discharge by a link which removes the hypothesis
a from the hypotheses of the proof structure.

7.2 Sequent Calculus 103

a a−◦b

b

[L−◦]

b−◦c

c

[L−◦]

a a−◦c

[R−◦]

Figure 7.4: Proof structure for a, a−◦b, b−◦c ⊢ a, a−◦c

a a−◦b

b

[L−◦]

b−◦c

c

[L−◦]

a−◦c

[R−◦]

Figure 7.5: Proof net for a−◦b, b−◦c ⊢ a−◦c

7.2 Sequent Calculus

Though we have seen in the previous section how to extend proof nets for
multiplicative linear logic to a two sided calculus, unless we modify our cor-

[a ⊢ a]1
b ⊢ b c ⊢ c
b, b−◦c ⊢ c

[L−◦]

a, a−◦b, b−◦c ⊢ c
[L−◦]

a−◦b, b−◦c ⊢ a−◦c
[R−◦]1

Figure 7.6: Natural deduction proof of a−◦b, b−◦c ⊢ a−◦c

104 Contraction Criteria

rectness criterion, we will still be stuck in the multiplicative fragment of li-
near logic, albeit in the two sided formulation of it.

The rest of this chapter will be devoted to giving a correctness criterion
for NL3R by stating a contraction criterion which is a special case of Danos’
contraction criterion as discussed in Section 4.5. Moreover, this criterion will
be modular in that it generates a correctness criterion from the structural rule
component R of specific grammars, as long as they are linear according to
Definition 3.4. In Section 7.8, we will give a specialized contraction criterion
for the original Lambek calculus L.

For ease of reference, we repeat the language and the sequent calculus of
NL3R here.

Definition 7.3 The language L(NL3R) consists of the following.

[Formulas] Given a set of atomic formulas A, a set I of binary indices and a set J
of unary indices, the set of formulas is defined inductively as follows

F ::= A |3jF |2↓
jF |F/iF |F •i F |F\iF

We will use A, B, C, . . . to denote arbitrary formulas.

[Antecedent Terms] Over the set of formulas F , we define the set of antecedent
terms T as follows

T ::= F | 〈T 〉j | T ◦i T

We will use Γ, ∆, Ξ, . . . to denote arbitrary antecedent terms. When we want
to refer to a specific subtree occurrence ∆ of an antecedent term Γ we will
write this as Γ[∆]

[Sequents] A sequent is written as Γ ⊢ C, where Γ is an antecedent term we will
call the antecedent of the sequent and C is a formula we will call the succedent
of the sequent.

The sequent calculus for NL3 is given by the rules in Table 7.5 on the
facing page. The set of structural rules R is an additional set of sequent
rules, which is dependent on the application of the system. Each rule of
R is schematically of the form shown on the last line of Figure 7.5 on the
next page, where Ξ and Ξ′ are fixed trees built from the structural operators
(− ◦i −) and 〈−〉j with n distinct structural variables as leaves, and where π
is a permutation of these leaves. As a consequence, each structural variable
occurs once in the premiss and once in the conclusion of a structural rule.

This restriction guarantees the structural rules of contraction and weake-
ning will never be derivable in our logic and as a consequence all our con-
nectives are multiplicatives in the sense of Danos & Regnier (1989).

Illustration: wh extraction in English

As our running example throughout this chapter we will look at what is often
called wh extraction.

7.2 Sequent Calculus 105

A ⊢ A
[Ax]

Γ[A] ⊢ C ∆ ⊢ A

Γ[∆] ⊢ C
[Cut]

Γ[〈A〉j] ⊢ C

Γ[3jA] ⊢ C
[L3j]

Γ ⊢ C

〈Γ〉j ⊢ 3jC
[R3j]

Γ[A] ⊢ C

Γ[〈2↓
jA〉j] ⊢ C

[L2
↓
j]

〈Γ〉j ⊢ C

Γ ⊢ 2
↓
jC

[R2
↓
j]

Γ[(A ◦i B)] ⊢ C

Γ[A •i B] ⊢ C
[L•i]

Γ ⊢ A ∆ ⊢ B

(Γ ◦i ∆) ⊢ A •i B
[R•i]

Γ[A] ⊢ C ∆ ⊢ B

Γ[(A/iB ◦i ∆)] ⊢ C
[L/i]

(Γ ◦i B) ⊢ A

Γ ⊢ A/iB
[R/i]

Γ[A] ⊢ C ∆ ⊢ B

Γ[(∆ ◦i B\iA)] ⊢ C
[L\i]

(B ◦i Γ) ⊢ A

Γ ⊢ B\iA
[R\i]

Γ[Ξ′[∆1, . . . , ∆n]] ⊢ C

Γ[Ξ[∆π1
, . . . , ∆πn]] ⊢ C

[SR]

Table 7.5: The sequent calculus NL3R

To keep the current discussion simple we will only look at the wh word
‘whom’, which we analyze as a noun modifier selecting a sentence from
which a noun phrase is missing. The restriction ‘whom’ imposes is that this
missing noun phrase cannot occur in subject position, as indicated by the
following examples.

(7.1) ∗ agent whom [[]np interrogated Neo]s

(7.2) agent whom [Trinity escaped []np]s

(7.3) agent whom [Morpheus considered []np dangerous]s

To model this behavior, we give a very simple grammar fragment with

only one binary and one unary mode. An extracted np is marked as 302
↓
0np.

As 3j2
↓
jA ⊢ A is a theorem of the base logic for all j and A, this allows

these constituents to function as an np. Crucial for this application is that the

[L2
↓
j] rule, read top down, introduces unary brackets, which produces the

proper configuration for the structural rules shown in Table 7.6.
It should be noted, however, that these rules allow a 〈∆〉0 constituent to

move only from a right branch of a structure to another right branch. As
a subject would appear on a left branch, this prevents subject extraction as
desired.

106 Contraction Criteria

Γ[∆1 ◦0 (∆2 ◦0 〈∆3〉
0)] ⊢ C

Γ[(∆1 ◦0 ∆2) ◦0 〈∆3〉
0] ⊢ C

[P1]

Γ[(∆1 ◦0 〈∆3〉
0) ◦0 ∆2] ⊢ C

Γ[(∆1 ◦0 ∆2) ◦0 〈∆3〉
0] ⊢ C

[P2]

Table 7.6: Structural rules for wh extraction

n ⊢ n
[Ax]

n ⊢ n
[Ax]

n ◦0 n\0n ⊢ n
[L\0]

s ⊢ s
[Ax]

np ⊢ np
[Ax]

np ◦0 np\0s ⊢ s
[L\0]

np ⊢ np
[Ax]

np ◦0 ((np\0s)/0np ◦0 np) ⊢ s
[L/0]

np ◦0 ((np\0s)/0np ◦0 〈2
↓
0np〉0) ⊢ s

[L2
↓
0]

(np ◦0 (np\0s)/0np) ◦0 〈2
↓
0np〉0 ⊢ s

[P1]

(np ◦0 (np\0s)/0np) ◦0 302
↓
0np ⊢ s

[L30]

np ◦0 (np\0s)/0np ⊢ s/0302
↓
0np

[R/0]

n ◦0 ((n\0n)/0(s/0302
↓
0np) ◦0 (np ◦0 (np\0s)/0np)) ⊢ n

[L/0]

Figure 7.7: Sequent derivation for ‘agent whom Trinity escaped’

The lexicon, with which we can derive the well-formed expressions given
above is shown in Table 7.7.

lex(agent) =n

lex(dangerous) =n/0n

lex(Neo) =np

lex(Trinity) =np

lex(Morpheus) =np

lex(escaped) =(np\0s)/0np

lex(interrogated) =(np\0s)/0np

lex(considered) =((np\0s)/0(n/0n))/0np

lex(whom) =(n\0n)/0(s/0302
↓
0np)

Table 7.7: Example lexicon

Example 7.4 Given the above structural rules and the lexicon of Figure 7.7, we
can give a derivation of expression 7.2, ‘agent whom Trinity escaped’, as shown in
Figure 7.7.

7.3 Proof Structures 107

7.3 Proof Structures

We will now present proof structures for NL3R.

Definition 7.5 A link L is a tuple 〈τ, ν, P, Q, p, q〉, where τ is either ‘⊗’ or ‘

&

’, ν is
a label indicating the name of the link, P is a sequence of formulas which we call the
premisses of L, Q is a sequence of formulas which we call the conclusions of L, p is
a subsequence of P and q is a subsequence of Q such that length(p)+length(q) ≤ 1.

If τ = ‘⊗’, we will call the link a tensor link. If τ = ‘

&

’, we will call the link a
par link.

If length(p) = 1, we will call the link a left link, the element A of p the output
or main formula and the other elements of P and the elements of Q the input or
active formulas.

If length(q) = 1, we will call the link a right link, the element B of q the output
or main formula and the elements of P and the other elements of Q the input or
active formulas.

If length(p) = length(q) = 0 we will call the link a neutral link.

We will display our links a bit different from the way we did in Section 7.1
and portray them, following Puite (1998),as shown below, with the premisses
above the horizontal line and the conclusions below it, both numbered ac-
cording to their linear order (when no confusion is possible we will often
omit the numbering and order the premisses and conclusions from left to
right). For left and right links, we indicate the main formula of the link by
an arrow moving to that formula, while the active formulas have an arrow
moving from them. Neutral links are displayed without arrows. We attach
the label ν to the horizontal line.

p1 · · · pn

1 n

1 k m

c1 · · · ck

R

· · · cm

p1 · · · pk

L

· · · pn

1 k n

1 m

c1 · · · cm

p1 · · · pn

1 n

1 k m

c1 · · · ck

N

· · · cm

We distinguish tensor links and par links graphically by drawing a solid
horizontal line for a tensor link and a dashed horizontal line for a par link.

Definition 7.6 A proof structure 〈S,L〉 consists of a finite set S of formulas to-
gether with a set L of links in S of the forms shown in Table 7.8, for each binary
mode i and unary mode j.

such that the following holds.

– every formula of S is at most once a conclusion of a link,

– every formula of S is at most once a premiss of a link.

Formulas which are not the conclusion of any link are the hypotheses H
of the proof structure, while those that are not the premiss of any link are its
conclusions Q.

108 Contraction Criteria

3jA

L3j

A

A

3jA

R3j

A •i B

L•i
1 2

A B

A B
1 2

A •i B

R•i

2
↓
jB

L2
↓
j

B

B

2
↓
jB

R2
↓
j

A A \i B

L\i

1 2

B

B

1 2

A A \i B

R\i

B /i A

L/i

A
1 2

B

B

1 2

B /i A

R/i

A

Table 7.8: Links for NL3R

Note that there are no links corresponding to the axiom or cut rule in
the sequent calculus. Instead we will have axiomatic and cut formulas. An
axiomatic formula is a formula which is not the main formula of any link,
whereas a cut formula is a formula which is the main formula of two links.
We will call all formulas which are neither cut nor axiomatic formulas flow
formulas.

We can determine which formulas are axiomatic and cut formulas in the
graphical representation of a proof structure as follows. An axiomatic for-
mula has no arrows pointing to it; depending on whether it is a hypothesis
or a conclusion of the proof structure, there are four possibilities. A cut for-
mula has two arrows pointing to it.

A

(Axiom)

hypothesis

conclusion

A

(Axiom)

hypothesis

¬conclusion

A

(Axiom)

¬hypothesis

conclusion

A

(Axiom)

¬hypothesis

¬conclusion

A

(Cut)

Example 7.7 The proof structure corresponding to the sequent proof of Figure 7.7
is show in Figure 7.8 on the facing page.

There are five axiomatic formulas in this proof structure: both n formulas, both
np formulas and the s formula, each corresponding to one instance of the axiom rule
in the sequent proof.

7.4 Abstract Proof Structures 109

(n\0n)/0(s/0302
↓
0np)

L/0

s/0302
↓
0np

n\0nn

L\0

n

s
R/0

np np\0s

L\0

(np\0s)/0np

L/0

np

2
↓
0np

L2
↓
0

302
↓
0np

L30

Figure 7.8: Proof structure corresponding to the derivation of Figure 7.7

Note that the antecedent formulas of the end-sequent correspond to the hypothe-
ses of the proof structure and the succedent formula to its conclusion, and that every
logical rule of the sequent proof corresponds to a link of the same name in the proof
structure.

We can show by simple induction on the length of the sequent proof that
for any given sequent proof we can construct a proof structure having the
properties mentioned in the example above.

However, the converse does not hold: there are proof structures which do
not correspond to any derivable sequent. A correctness criterion allows us to
distinguish proof structures which do correspond to derivable sequents, proof
nets, from other proof structures.

7.4 Abstract Proof Structures

To formulate our correctness criterion we need to convert our proof struc-
tures into slightly more abstract graphs. We will call these graphs abstract
proof structures (aps’s).

Definition 7.8 An abstract proof structure 〈V,L〉 consists of a finite set V of
vertices, where each vertex is assigned a sequence of premisses and a sequence of
conclusions, together with a set L of links in V of the following forms.

110 Contraction Criteria

�

�

〈 〉j

� �

1 2

�

◦i

�

L3j
�

�

L•i
1 2

� �

�

�

R2
↓
j

�

1 2

� �

R\i

�

1 2

�

R/i

�

such that the following holds.

– every vertex of V is at most once a conclusion of a link,

– every vertex of V is at most once a premiss of a link.

Furthermore, we assign to each vertex a sequence of premisses and a sequence
of conclusions, where we require that each vertex which is a hypothesis (resp. con-
clusion) of the structure has a single formula in its sequence of premisses (resp.
conclusions) and for all other vertices this sequence is empty.

From a proof structure S we obtain an abstract proof structure A by re-

placing all [L/i], [L\i] and [R•i] links by [◦i] links and all [L2
↓
j] and [R3j] links

by [〈 〉j] links. That is, we forget about the inputs and outputs of all tensor
links.

In addition, we replace every formula F of S by a vertex v, which is as-
signed [F] as its sequence of premisses if F is a hypothesis of S and [] oth-
erwise, and which is assigned [F] as its sequence of conclusions if F is a
conclusion of S and [] otherwise.

Graphically, we will display premisses above and conclusions below their
vertex, as shown below. The premisses and conclusion play no active role
in our correctness criterion, they merely allow us to keep track of which
formula occurrences are assigned to the hypotheses and conclusions of the
proof structure.

�

¬hypothesis

¬conclusion

�

F

hypothesis

¬conclusion

�

F

¬hypothesis

conclusion

�

F

F

hypothesis

conclusion

We will write S 7→ A to indicate that the aps A is obtained from the

proof structure S in this fashion. We will often write Ŝ for the abstract proof
structure A obtained from S.

Definition 7.9 A hypothesis tree is an acyclic, connected abstract proof structure
containing only [◦i] and [〈 〉j] links.

A hypothesis tree A with hypotheses A1, . . . , An and conclusion C cor-
responds to a sequent with antecedent formulas A1, . . . , An and succedent
formula C in the obvious way.

7.4 Abstract Proof Structures 111

(n\0n)/0(s/0302
↓
0
np)

� �

�

◦0

n
�

�

n

◦0

�

R/0

np
� �

◦0

(np\0s)/0np
� �

◦0

�

〈 〉0

�

L30

Figure 7.9: Abstract proof structure corresponding to Figure 7.8

We will write ΓC for the hypothesis tree corresponding to the sequent
Γ ⊢ C.

Example 7.10 The abstract proof structure computed for the proof structure of Fig-
ure 7.8 from Example 7.7 is shown in Figure 7.9.

The abstract proof structure of the example above is not a hypothesis tree.
This does not mean the original proof structure is not a proof net, of course.
We will define a number of conversions on abstract proof structures: con-
tractions, which are valid in the base logic, and structural conversions, which
correspond to the structural rules in the sequent calculus.

By a contraction we will mean the replacement of one of the pairs of links
shown in Table 7.9 on the following page by a single node. Contractions will
be named after the par link. We require that all vertices shown in the redices
of Table 7.9 are distinct. σH and σQ represent the sequence of hypotheses and
the sequence of conclusions of the displayed vertex respectively.

Note that all contractions are a variation on the same theme: in every re-
dex the ‘active vertices’ of a par link are connected to a single, neutral tensor
link in a way which respects the left to right ordering and the reduct is a
single node.

In addition to these contraction steps a grammar fragment can have a
set R of structural conversions. These conversions operate on trees of neutral
tensor links only, with the condition that both trees in the conversion have
the same set of leaves. This is a reflection of the same restriction on structural
rules in the sequent calculus.

112 Contraction Criteria

σH
�

L3j
��

[L3j]
→

σH
�

σQ

�

σQ

〈 〉j

σH
�

L•i
1 2

� �
[L•i]
→

σH
�

σQ1 2

�

σQ

◦i

σH
�

�

〈 〉j

[R2
↓
j]

→
σH
�

σQ

�

σQ

R2
↓
j

�

1 2

�

σQ

R\i

�
σH
�

1 2

�

◦i

[R\i]
→

σH
�

σQ

�

1 2

�

σQ

R/i

σH
� �

1 2

�

◦i

[R/i]
→

σH
�

σQ

Table 7.9: The contractions for NL3

Example 7.11 The following structural conversion corresponds to sequent rule [P1]
of our examples.

x1
�

1 2

z

◦0

x2
�

1 2

�

◦0

x3

�

〈 〉0

[P1]
→R

�

1 2

z

◦0

x1 x2
1 2

�

◦0

x3

�

〈 〉0

7.5 Proof Nets

Definition 7.12 A proof structure is a proof net if and only if its abstract proof
structure converts to a hypothesis tree.

Example 7.13 The abstract proof structure of Example 7.10 converts to a tree given
the structural conversion [P1], making this proof structure a proof net for any gram-
mar fragment with this structural rule.

After applying the [P1] conversion, the abstract proof structure looks as follows.

7.5 Proof Nets 113

n
� �

�

n

◦0

(n\0n)/0(s/0302
↓
0
np)

� �

◦0

�

R/0

�

L30

�

�

〈〉0

np
�

(np\0s)/0np
�

�

◦0

�

�

◦0

Now we can apply the [L30] contraction, which results in the following abstract
proof structure.

n
� �

�

n

◦0

(n\0n)/0(s/0302
↓
0
np)

� �

◦0

�

R/0

np
�

(np\0s)/0np
�

�

◦0

� �

�

◦0

Finally, we can apply the [R/0] contraction and the result will be the following
hypothesis tree

(n\0n)/0(s/0302
↓
0
np)
� �

�

◦0

n
�

�

n

◦0

np
�

(np\0s)/0np
�

◦0

which corresponds to the end-sequent

114 Contraction Criteria

n ◦0 ((n\0n)/0(s/0302
↓
0np) ◦0 (np ◦0 (np\0s)/0np)) ⊢ n

of Example 7.4.
Note that we have computed the structure of the antecedent instead of assuming

it as given and that we have performed the conversions in the exact same order as the
corresponding rules in the sequent proof when read from axioms to end-sequent.

Before we prove our main theorem, we will first prove the following short
lemma.

Lemma 7.14 If S is a non-trivial proof structure such that the underlying abstract

proof structure Ŝ is actually a hypothesis tree, then at least one of the leaves (conclu-
sion and hypotheses) of S is the main formula of its link.

Proof To prove: if every hypothesis is an active formula of its link, then
the conclusion is the main formula of its link. We proceed by induction on
the hypothesis tree Γ.

The trivial case Γ =
A
� cannot occur.

In case Γ = Γ1 ◦i Γ2, assume every hypothesis is an active formula of its
link. We write L for the final ◦i link, connecting Γ1 and Γ2. If Γ1 is trivial, the
assumption entails that the corresponding formula in S is an active formula
of L. If Γ1 is non-trivial, by induction hypothesis we know that its conclusion
is the main formula of the link above, whence of the form 3jA or A•i B. This
implies that it is not the main formula of L, which would be 2

↓
jB, A \i B

or B /i A. Hence it is an active formula of L. The same holds for the second
premiss of L. As both premisses are active, the conclusion of L must be main,
as desired.

The case Γ = 〈Γ1〉
j is proved analogously. 2

Theorem 7.15 A sequent Γ ⊢ C is derivable in NL3R if and only if there is a
proof structure S which converts to the hypothesis tree ΓC , using only the contrac-
tions and the structural conversions in R.

Proof
[⇒] From sequents to proof nets, we proceed by induction on the length of
the sequent proof. We extend the conversion sequence with a contraction or a
structural conversion whenever we encounter the corresponding rule in the
sequent proof. By ‘applying a conversion step to a proof structure’ we will
mean ‘applying a conversion step to its underlying abstract proof structure’.

For a [L•i] rule

Γ[(A ◦i B)] ⊢ C

Γ[A •i B] ⊢ C
[L•i]

we know the following by induction hypothesis.

7.5 Proof Nets 115

A B

S1 ։R

C

A
�

B
�

1 2

�

◦i

Γ[]
�

C

We can keep the original conversion sequence, where we attach a [L•i]
link to the abstract proof structure and we extend the conversion sequence
with a [L•i] contraction as follows.

A •i B

L•i
1 2

A B

S1 ։R

C

A•iB
�

L•i
1 2

� �

1 2

�

◦i

[L•i]
→

Γ[]
�

C

A•iB
�

Γ[]
�

C

[⇐] The sequentialization part of the proof proceeds in a way analogous to
the ‘splitting par’ sequentialization proof of Danos (1990). We proceed by
induction on the length l of the conversion sequence.

[l = 0] If there are no conversions in the sequence, our proof structure
corresponds to an abstract proof structure which is already a hypothesis tree.
We proceed by induction on the number of tensor links in the proof structure.

If there are no tensor links, our proof structure looks as follows

A 7→
A
�

A

and the corresponding sequent proof is A ⊢ A
[Ax]

.
If there are tensor links, then by Lemma 7.14 we know the proof structure

has at least one main leaf, call it D.
In the sub-case where D is the main formula of a [L/i] link, D is of the

form A/iB and must be the first premiss of this link. Now the proof structure
S and the underlying hypothesis tree ΓC are of the form

S2

A /i B

L/i

B
1 2

7→

A

S1

C

Γ2
A/iB
� �

1 2

�

◦i

Γ1[]
�

C

116 Contraction Criteria

By induction hypothesis there are derivations D2 of Γ2 ⊢ B and D1 of
Γ1[A] ⊢ C, which may be combined into

.... D2

Γ2 ⊢ B

.... D1

Γ1[A] ⊢ C

Γ1[(A/iB ◦i Γ2)] ⊢ C
[L/i]

which is a derivation of Γ ⊢ C.
The remaining sub-cases, where D is the main formula of a [R3j], [R•i],

[L2
↓
j] or [L\i] link, are proved similarly.

[l > 0] We look at the last conversion in the sequence.

If it is a structural conversion Ξ[x1, . . . , xn]
[P]
→R Ξ′[xπ1

, . . . , xπn], we are
in the following situation.

∆1 · · · ∆n

� � � � �

S։R Ξ[. . .]
[P]
→R

�

Γ[]
�

C

∆π1
· · · ∆πn

� � � � �

Ξ′[. . .]
�

Γ[]
�

C

The induction hypothesis gives us a derivation D1 of

Γ[Ξ[∆1, . . . , ∆n]] ⊢ C

which we can extend as follows

.... D1

Γ[Ξ[∆1, . . . , ∆n]] ⊢ C

Γ[Ξ′[∆π1
, . . . , ∆πn]] ⊢ C

[P]

to give us a derivation of Γ ⊢ C.
If the last conversion is a [L•i] contraction we are schematically in the

following situation.

A •i B

L•i
1 2

A B

�

L•i
1 2

� �

1 2

�

◦i

�

ρ
։R

[L•i]
→

S1

S2

Γ1[]

Γ2

Γ1[]

Γ2

�

C

�

CC

7.5 Proof Nets 117

Reasoning backwards from the hypothesis tree, we can see that the [L•i]
link serves as a boundary and that every conversion in the sequence is either
applied strictly above or strictly below it. So we can split our initial conver-
sion sequence ρ into a conversion sequence ρ1 which converts S1 to a hypo-
thesis tree and a conversion sequence ρ2 which converts S2 into a hypothesis
tree as follows

A
�

B
�

1 2

�

◦i

�

A•iB
A •i B

�

CC

A B

ρ1

։R

ρ2

։R

S1

S2

Γ1[]

Γ2

As both conversion sequences are strictly smaller than our initial conver-
sion sequence, the induction hypothesis gives us a derivation D2 ending in
Γ2 ⊢ A •i B and a derivation D1 ending in Γ1[(A ◦i B)] ⊢ C. We can
combine these derivations as shown below

.... D2

Γ2 ⊢ A •i B

.... D1

Γ1[(A ◦i B)] ⊢ C

Γ1[A •i B] ⊢ C
[L•i]

Γ1[Γ2] ⊢ C
[Cut]

The other contractions are similar. 2

The sequentialization part of our proof has the somewhat inelegant prop-
erty that it produces sequents proofs which use the [Cut] rule even for proof
nets without cut formulas. However, we can refine the proof of Theorem 7.15
in such a way that the sequent proofs we produce have exactly one [Cut] rule
application for each cut formula. For this purpose we first state the following
lemma.

Lemma 7.16 (Substitution) Let D1 be a derivation of Γ1 ⊢ C1 and D2 be a
derivation of Γ2[C1] ⊢ C2.

(i) If C1 ⊢ C1 is an axiom of D1, the succedent formula of which coincides with
the succedent formula of Γ1 ⊢ C1, then we can substitute D2 into D1 in
order to get a derivation D1[D2] of Γ2[Γ1] ⊢ C2.

118 Contraction Criteria

C1 ⊢ C1C1C1.... D1

Γ1 ⊢ C1C1C1

.... D2

Γ2[C1] ⊢ C2

Γ2[Γ1] ⊢ C2
[Cut]

becomes

.... D2

Γ2[Γ2[Γ2[C1]]] ⊢ C2C2C2.... D1

Γ2[Γ2[Γ2[Γ1]]] ⊢ C2C2C2

(ii) If C1 ⊢ C1 is an axiom of D2, the antecedent formula of which coincides
with the occurrence in Γ2[C1] ⊢ C2, then we can substitute D1 into D2 in
order to get a derivation D2[D1] of Γ2[Γ1] ⊢ C2.

.... D1

Γ1 ⊢ C1

C1C1C1 ⊢ C1.... D2

Γ2[C1C1C1] ⊢ C2

Γ2[Γ1] ⊢ C2
[Cut]

becomes

.... D1

Γ1Γ1Γ1 ⊢ C1.... D2

Γ2[Γ1Γ1Γ1] ⊢ C2

Proof In general every leaf of a tree determines a path to the root. In par-
ticular every axiom rule of a derivation determines a path of sequents from
that axiom to the conclusion of the derivation. Let Γ ⊢ ∆ and Γ′ ⊢ ∆′ be
two successive sequents in a certain path β, i.e. Γ′ ⊢ ∆′ is the conclusion of
an inference rule with Γ ⊢ ∆ among its hypotheses.

For a binary inference rule R we say that β passes R via the left (right)
hypothesis if Γ ⊢ ∆ is the first (second) hypothesis of R with respect to the
formulation of Figure 7.5.

(i) As the occurrence C1C1C1 is preserved along the path β in D1 between C1 ⊢
C1C1C1 and Γ1 ⊢ C1C1C1, the possible inference rules β passes are [Cut] (via
the left hypothesis), the left logical rules (if binary, then via the left
hypothesis), or a structural rule. Each of these rules has the property
that if

Γ1 ⊢ C1C1C1

(
Γ0 ⊢ C0

)

Γ3 ⊢ C1C1C1

is an instance, then so is

Γ2[Γ2[Γ2[Γ1]]] ⊢ C2C2C2

(
Γ0 ⊢ C0

)

Γ2[Γ2[Γ2[Γ3]]] ⊢ C2C2C2

(ii) As the occurrence C1C1C1 is preserved along the path β in D2 between C1C1C1 ⊢
C1 and Γ2[C1C1C1] ⊢ C2, it will never be an active formula in any inference
rule β passes. Hence if

Γ2[C1C1C1] ⊢ C2

(
Γ0 ⊢ C0

)

Γ3[C1C1C1] ⊢ C3

is an instance of a rule, then so is

7.6 Cut Elimination 119

Γ2[Γ1Γ1Γ1] ⊢ C2

(
Γ0 ⊢ C0

)

Γ3[Γ1Γ1Γ1] ⊢ C3

2

Now extend the proof of Theorem 7.15 by simultaniously showing that
every axiomatic formula corresponds to an [Ax] rule, and moreover that ev-
ery axiomatic conclusion corresponds to an axiom as in Lemma 7.16.1 and
every axiomatic hypothesis corresponds to an axiom as in Lemma 7.16.2. We
adapt the proof in the case that l > 0 and the last conversion step is a con-
traction: if the main formula of L (say: D) is a cut formula of S we proceed
as described earlier. However, if D is not a cut formula, then D is an ax-
iomatic leaf of one of the two substructures, whence we can apply the par
rule followed by the appropriate substitution.

7.6 Cut Elimination

One important property of proof net calculi and logics in general is cut elim-
ination. Given a proof net with a number of cut formulas, we want to find a
proof net without cut formulas which converts to the same hypothesis tree.
In investigating cut elimination, we will give our notion of conversion se-
quence slightly more structure, touching upon reordering the conversions in
such a way that the sequence satisfies certain properties necessary for cut
elimination.

Recall that a cut formula is a formula which is the main formula of two
dual links. A cut reduction step, S S′, is defined as deleting these links
and the cut formula, while pairwise identifying the active formulas in case
they are different (as occurrence of the same formula), or deleting them if
they are identical.

B

1 2

A A A \i B

R\i

L\i

 A B
1 2

B

Let D be a cut formula and L the corresponding par link. We will show
that if (S, ρ) is a conversion sequence ending in hypothesis tree ΓC , then so
is (S′, ρ′), where S S′, and ρ′ consists of the same set of conversion steps
as ρ, except the contraction α of L, in a sense to be made precise shortly.

Before proving the cut elimination theorem, we first introduce the auxil-
iary notations of component and block and make some observations about
their properties.

120 Contraction Criteria

Γ′
6

Γ′
5

Γ′
4

Γ′
3

ρ6

։R

ρ5

։R

ρ4

։R

ρ3

։R

Γ6

Γ5

Γ4

Γ3

α2→

α1→

Γ′
2

Γ′
1

ρ2

։R

ρ1

։R

Γ2

Γ1

α
→ Γ′ ρ0

։R
ΓC

Figure 7.10: The components of a certain conversion sequence with three
contractions

Definition 7.17 Let A = 〈V,L〉 be an abstract proof structure. A′ = 〈V ′,L′〉 is a
component of A if A′ is a substructure of A, where L′ contains only tensor links
and A′ is maximally connected with respect to the tensor links of L.

For a proof structure S, a substructure S′ is a component iff Ŝ′ is a component

of Ŝ.

When we delete all p par links (but not their vertices) from an abstract
proof structure A the notion of component as defined above coincides with
the definition of component from graph theory. Observe that a component
may consist of one vertex only.

For a proof net, its components are p + 1 hypothesis trees. This even holds
for all intermediate abstract proof structures between S and ΓC : reason-
ing backwards from the final hypothesis tree, we start with one component
(p = 0). After a number of structural conversions, a contraction α splits this
component Γ′ into two parts and replaces one node by a redex. The par link
L of this redex now serves as a boundary between the two new components
Γ1, which is attached to the active formulas A and B of L, and Γ2, which is
attached to the main formula D of L. At this moment Γ1 is a nice hypothesis
tree w.r.t. L, i.e. attaching L enables its contraction α.

All next structural conversions take place completely within one of the
two components, and the next contraction takes place in exactly one of the
two components as well. In this way every par contraction replaces one com-
ponent by two new components, yielding p + 1 components in each abstract
proof structure.

Figure 7.10 gives an illustration of how we can factor the different conver-
sions of ρ into components. Another way of seeing this is that ρ determines
a rooted, ordered tree of hypothesis trees, with the initial components as the
leaves and the final hypothesis tree as the root, where, reasoning backwards

7.6 Cut Elimination 121

S

D

L•i
1 2 L

A B

SL

ρL

։R

F

S
�

L•i
1 2 L
� �

1 2

�

◦i

∆[]
�

Figure 7.11: The block of a [L•i] link L

from the final hypothesis tree, every structural conversion produces a unary
branch and every contraction a binary branch.

Definition 7.18 (Block) Let (S, ρ) be a conversion sequence ending in ΓC . Let L
be a par link of S and α be the contraction in ρ corresponding to L.

The conversion sequence ρ looks as follows.

S
ρ1

։R S1
α
→ S2

ρ2

։R ΓC

We define a subnet (SL, ρL) called the block of L by induction on the length of ρ1

as follows. As before, when we talk about applying a conversion to a proof structure
we will mean applying the conversion to the underlying abstract proof structure.

If ‖ρ1‖ = 0 then SL is the component of the active formulas of L and ρL is
empty.

If ‖ρ1‖ > 0 then we are in the following situation.

S
δ0→ S′

ρ′
1

։R S1

Induction hypothesis gives us (S′
L, ρ′L), which is the block for the shorter con-

version sequence starting with S′. If the reduct of δ0 is not in S′
L then (SL, ρL) =

(S′
L, ρ′L). If the reduct of δ0 is in S′

L then ρL is ρ′L with the conversion δ0 prefixed
and SL is S′

L with the reduct of δ0 replaced by its redex.

Figure 7.11 gives an illustration what the block of the [L•i] looks like
schematically with respect to the full proof net S. By construction, we can
replace the conversion sequence ρ for S by the following, where ρ̃L is the
conversion sequence which contains all conversions of ρ not in ρL with the
exception of α.

S
ρL

։R A
α
→ B

ρ̃L

։R ΓC

⊂ ⊂

SL

ρL

։R ∆F

122 Contraction Criteria

Example 7.19 In Figure 7.10, assuming Γ1 is the component containing the active
formulas of L, the block of L is (SL, ρL), where SL consists of the components Γ′

3

and Γ′
4 connected by the par link contracted in step α1 and where the sequence ρL

consists of the conversions in the gray area of the figure.

Theorem 7.20 (Cut elimination) If S is a proof net converting to ΓC , and S
S′ by a cut reduction step, then S′ is a proof net converting to ΓC as well.

Proof Let α be the contraction corresponding to the par link L which is
removed by the cut reduction step. As observed above, we can replace the
conversion sequence ρ by

Ŝ
ρL

։R A
α
→ B

ρ̃L

։R ΓC

that is, we are schematically in the following situation, where L1 remains
untouched during ρL.

� �

1 2

L1

�

◦i

L•i
1 2 L
� �

ρL

։R

� �

1 2

L1

�

◦i

L•i
1 2 L
� �

1 2

L2

�

◦i

α
→

� �

1 2

L1

�

◦i

ρ̃L

։R ΓC

Executing a cut reduction step yields the situation pictured below.

� �

ρL

։R

� �

1 2

L2

�

◦i ∼=

� �

1 2

L1

�

◦i
ρ̃L

։R ΓC

which proves the result. 2

7.7 Abstract Proof Structures and Labels

We will now briefly sketch the relationship between the structural labels of
the previous chapter and the abstract proof structures of the current chapter.

The basic idea is that for a given structural label every sublabel corre-
sponds to a vertex in the corresponding abstract proof structure and every

7.7 Abstract Proof Structures and Labels 123

+

X :A
+

Y :B

+

X ◦i Y :A •i B

�^

X Y
1 2

X ◦i Y

◦i

−

X ◦i Y :A
+

Y :B

−

X :A/iB

]

�
X Y

1 2

X ◦i Y

◦i

Table 7.10: Structural labels and abstract proof structures: tensor cases

−

X⊳i :A
−

X⊲i :B

−

X :A •i B

�]
X

L•i
1 2

X⊳i X⊲i

−

x :B
+

X :A

+

X/ix :A/iB

�

X

1 2

X/ix

R/i

x

Table 7.11: Structural labels and abstract proof structures: par cases

auxiliary constructor corresponds to a par link in the abstract proof structure
and the other constructors correspond to tensor links.

First, note that the dynamic graphs for the axiom and the cut link, shown
in Table 6.3 on page 94 have no reflex of this link in the structural label. Sim-
ilarly, axiom and cut do not correspond to a link in the abstract proof struc-
tures.

Now compare the dynamic graphs for the tensor links of ‘•’ and ‘/’ to
the corresponding abstract proof structures. Table 7.10 shows this relation.
To make the relation more clear we label the vertices of the aps with the
corresponding term label. The formula which is labeled with the complex
label is always the conclusion of the link in the abstract proof structure.

Finally, compare the labels for the par links for ‘•’ and ‘/’ with the corre-
sponding abstract proof structure. Table 7.11 shows them next to eachother.

As shown in the table, the single [L•i] link corresponds two auxiliary con-
structors: the X⊳i and the X⊲i constructor. Because the structural labels are

124 Contraction Criteria

X ◦i x

1 2

(X ◦i x)/ix

R/i

X x
1 2◦i

[R/i]
→ X

Figure 7.12: Contraction for a [R/i] link with labeling

A ⊢ A
[Ax]

Γ, A, Γ′ ⊢ C ∆ ⊢ A

Γ, ∆, Γ′ ⊢ C
[Cut]

Γ, A, B, Γ′ ⊢ C

Γ, A • B, Γ′ ⊢ C
[L•]

Γ ⊢ A ∆ ⊢ B

Γ, ∆ ⊢ A • B
[R•]

Γ, A, Γ′ ⊢ C ∆ ⊢ B

Γ, A/B, ∆, Γ′ ⊢ C
[L/]

C, Γ, B ⊢ A

C, Γ ⊢ A/B
[R/]

Γ, A, Γ′ ⊢ C ∆ ⊢ B

Γ, ∆, B\A, Γ′ ⊢ C
[L\]

B, Γ, C ⊢ A

Γ, C ⊢ B\A
[R\]

Table 7.12: The sequent calculus L

essentially trees, the par link for [L•i] cannot be expressed by a single con-
structor. In the abstract proof structure, we treat the two occurrences of the
X label as the same vertex. For the [R/i] link the x label will also occur twice
in the structural label and we will treat both occurrences as the same vertex
in the abstract proof structure.

When we compare the label conversions of Table 6.6 on page 97 to the
graph contractions of Table 7.9 on page 112 we note that they express the
same restrictions. Figure 7.12 shows the [R/i] contraction on an abstract proof
structure, again with the structural labels on the vertices to make the corre-
spondence more clear.

7.8 Lambek Calculus

In this section a contraction criterion for the Lambek calculus will be for-
mulated and proved. This criterion is a combination of Danos’ contraction
criterion for one sided MLL (Danos 1990) and Lafont’s criterion for parsing
boxes (Lafont 1995). The contraction relation is terminating, though not con-
fluent. However, we achieve confluence on a restricted domain, leading us
to the main contraction theorem, Theorem 7.28. Our contraction criterion
has the special property that a priori there is no order on the leaves of the

7.8 Lambek Calculus 125

proof structure; if the proof structure is correct (in the sense that it contracts
properly), our criterion a posteriori provides the unique order of the leaves.

The Lambek calculus (L), as introduced by Lambek (1958), is defined by
the inference rules of Table 7.12 on the facing page, where the antecedent
part of each sequent is a non-empty sequence rather than a structure tree. In
our formulation of the calculus, preservation of non-empty antecedent parts
during applications of the rules [R/] and [R\] is forced by the presence of the
extra formula C.

The Lambek calculus is equivalent to the special case of NL3R with zero
unary modes, one binary mode and no structural rules but associativity. The
latter mimics the fact that each sequent has a sequence instead of a structure
tree as antecedent part. In this way Theorem 7.15 provides us with a correct-
ness criterion for L, since L derives C1, . . . , Cn ⊢ C precisely if this special
instance of NL3R derives C1 ◦ (C2 ◦ (. . . (Cn−1 ◦ Cn) . . .)) ⊢ C.

However, we can obtain a more attractive correctness criterion when by
adapting our theory in such a way that the structural rules become part of
the theory and are not present explicitly anymore. This is done by a general-
ization of the links in the definition of abstract proof structure.

Definition 7.21 An L-proof structure 〈S,L〉 consists of a finite set S of (3- and
2

↓-free and unimodal) formulas together with a set L of links in S of the following
forms.

A • B

L•1 2

A B

A B
1 2

A • B

R•

A A \ B

L\

1 2

B

B

1 2

A A \ B

R\

B / A

L/

A
1 2

B

B

1 2

B / A

R/

A

such that the following holds.

– every formula of S is at most once a conclusion of a link,

– every formula of S is at most once a premiss of a link.

Definition 7.22 An abstract L-proof structure 〈V,L〉 consists of a finite set V of
nodes together with a set L of links in V of the following forms (where n ≥ 2).

126 Contraction Criteria

� � · · · � �

1 2 n−1 n

�

�

L•1 2

� �

�

1 2

� �

R\

�

1 2

�

R/

�

such that the following holds.

– every node of V is at most once a conclusion of a link,

– every node of V is at most once a premiss of a link.

Furthermore, we assign to each node a sequence of premisses and a sequence of con-
clusions, as in Definition 7.8.

The generalized tensor link will be called an n-comb (n ≥ 2). For practical
reasons, we define a 1-comb to be a single node; notice that thus a 1-comb is
not a link, contrary to n-combs with n ≥ 2.

The redex of a contraction consists of a par link and an (n + 1)-comb (n +
1 ≥ 2), as depicted below (where we require — as usual — all nodes to be
distinct). Observe that in every case the par link is attached to two successive
formulas of the (n + 1)-comb, when we order them in a cyclic way. It is
replaced by an n-comb (which is a single node if n = 1), and all nodes keep
their labels. The contraction will be named after the par link ([L•], [R\], [R/]).

xk

L•1 2

x1 · · · � � · · · xn
1 k k+1 n+1

x0

[L•]
→

x1 · · · xk · · · xn
1 k n

x0

� x1 x2 . . . xn
1 2 3 n+1

�

1 2

x0

R\

[R\]
→

x1 x2 . . . xn
1 2 n

x0

x1 x2 · · · xn
�

1 2 n n+1

�

1 2

x0

R/

[R/]
→

x1 x2 · · · xn
1 2 n

x0

7.8 Lambek Calculus 127

By a structural conversion we mean the following composition of combs
(n + 1, m ≥ 2).

xk · · · xk+m−1
1 m

x1 · · · � · · · xn+m
1 k n+1

x0

→
x1 · · · xk · · · xk+m−1 · · · xn+m
1 k k+m−1 n+m

x0

Now, starting with a proof structure S, we can form the underlying ab-

stract proof structure Ŝ in the usual way (which — besides nodes — consists
of par links and 2-combs only).

For any non-empty sequence Γ and formula C, let ||Γ|| be the multiset of
elements in Γ; let ΓC be the obvious abstract proof structure (consisting of
one n-comb, n ≥ 1) with conclusion node (lower) labeled by C. Any abstract
proof structure of this form will be called a hypothesis comb. Let ։ be the
transitive, reflexive closure of →, by which we mean the contractions as well
as the structural conversions.

It is easy to see that this conversion relation is terminating; in each con-
version step at least one link disappears.

Theorem 7.23 Γ ⊢ C is derivable in L if and only if there is a proof structure S

such that Ŝ ։ ΓC .

Proof The proof is similar to that of Theorem 7.15: it can be shown that
for any derivation D of Γ ⊢ C the corresponding proof structure converts
to the hypothesis comb ΓC .

The other way around, we can prove that a proof structure S that converts
to a hypothesis comb ΓC is actually the proof structure of a derivation D of
Γ ⊢ C. 2

Given a proof structure S with p par links, we define a switching ω for S
to be a choice, for each par link L, of one of the active ends of L. The correction
graph ωS of S under the switching ω is obtained by replacing each par link
by the chosen active end. Let PS′ denote the collection of those elements S
of PS, the set of all proof structures, for which all 2p correction graphs ωS
are trees.

Lemma 7.24 Let S1,S2 ∈ PS and suppose S1 → S2. Then S1 ∈ PS′ if and
only if S2 ∈ PS′.

In particular, the conversion steps are well defined on PS′ (i.e. they do
yield an element of PS′ when applied on an element of PS′).

Since hypothesis combs belong to PS′, we immediately obtain the next
result.

128 Contraction Criteria

Corollary 7.25 If a proof structure S converts to a hypothesis comb ΓC , then S ∈
PS′.

So proof nets (the proof structures that convert to a hypothesis comb) will
only be found in PS′. Now confluence of this conversion relation on PS′ is
easily proved. This is a consequence of firstly the absence of cycles in the
correction graphs, and secondly the absence of the unary connectives which
already destroy confluence on general NL3R.

Lemma 7.26 If S ∈ PS′ converts in one step to S1 and S2, then both S1 and S2

convert in at most one step to a common S3 ∈ PS′.

By means of Lemma 7.26 and termination, we can sharpen Theorem 7.23
into the following.

Theorem 7.27 Let Γ ⊢ C be a sequent. Then the following are equivalent.

(i) Γ ⊢ C is derivable in L;

(ii) There is a proof structure S such that all conversion sequences S ։ S′

(where S′ is a hypothesis comb) satisfy S′ = ΓC .

Theorem 7.28 Let S be a proof structure and S ։ S′ be an arbitrary conversion
sequence to a normal form. Then S is the proof structure of a derivation if and only
if S′ is a hypothesis comb.

Again the following holds.

Theorem 7.29 (Cut elimination) If S is a proof net converting to ΓC , and S
S′ by a cut reduction step, then S′ is a proof net converting to ΓC as well.

7.9 Discussion

We have presented a proof net calculus for the multimodal Lambek calculus
which is new, elegant and very general. By giving a correctness criterion
for L, we have also shown how our correctness criterion can function as a
sort of meta correctness criterion which can be used to produce a correctness
criterion for special instances of NL3R.

The formalism we have presented here is related to a number of other
proposals, notably to Danos’s (1990) graph contractions, of which our con-
tractions are a special case. As a result, acyclicity and connectedness of the
underlying correction graphs are a consequence of our correctness criterion.

We have also sketched the relation between abstract proof structures and
the structural labels of the labeled proof nets of Moortgat (1997) we discussed
in Chapter 6. Advantages of our formalism are that we have a very direct
correspondence between proof structures and abstract proof structures and

7.9 Discussion 129

that cyclic or disconnected proof structures are unproblematically disquali-
fied by our correctness criterion. The algebraic correctness criterion will fail
to compute a meaningful label for cyclic or disconnected proof structures.

It is possible to overcome the formal difference between proof structures
and abstract proof structures. Puite (2001) introduces the notion of link graph
for this purpose. Link graphs comprise both proof structures and hypothesis
trees, which also play a role as sequents for the calculus. By means of this
new notion Puite proves a correctness criterion for CNL, the classical non-
associative Lambek calculus (de Groote & Lamarche 2001), along the lines of
the proof of Theorem 7.15.

