
CHAPTER 8

AUTOMATED DEDUCTION

One of the attractive aspects of proof nets as discussed in the previous chap-
ter is that they lend themselves well to automated proof search. First of all,
in Section 7.6 we saw that we could eliminate cut formulas from proof nets,
making it unnecessary to consider cut formulas in our proof search. Sec-
ondly, we can restrict ourselves to proof nets where all our axiomatic formu-
las are atomic, as indicated by the following lemma.

Lemma 8.1 Given a proof structure S we can construct a proof structure S ′ with
the same hypotheses and conclusions where all axiomatic formulas are atomic and
where Ŝ′ !∅ Ŝ . We will call such a proof structure eta expanded.

Proof By induction on the total complexity of the axiomatic formulas.
If there are no complex axiomatic formulas in the proof structure,we take

S′ = S and an empty conversion sequence.
If we have a proof structure S0 where the axiomatic formulas have n + 1

total connectives, we can expand a complex axiomatic A •i B formula as
shown in Figure 8.1. The other connectives are treated similarly. The result-
ing proof structure S1 will have two new axiomatic formulas and the total
number of connectives of axiomatic formulas will be n.

By induction hypothesis we know that Ŝ′
1 !∅ Ŝ1, so we can suffix a [L•i]

contraction producing the following conversion sequence.

Ŝ′
1 !∅ Ŝ1

[L•i]→ Ŝ0

As we use only contractions, the theorem holds regardless of the struc-
tural rules. !

The following corollary is an immediate consequence of Theorem 7.20
and Lemma 8.1.
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Figure 8.1: Eta expansion step for a A •i B formula

Corollary 8.2 For every proof net P of Γ " C there exists a proof net P ′, also of
Γ " C, which is cut free and eta expanded.

So we can,without loss of generality, restrict ourselves to proof structures
where all complex formulas are neither axiomatic nor cut formulas. A simple
algorithm for the enumeration of cut free, eta expanded proof nets is shown
in Table 8.1 on the next page.

We assume computation is nondeterministic, i.e. the steps of our algo-
rithm can produce a number of solutions: the lexicon can produce different
formulas for each word, there can be many different ways of identifying the
atomic formulas and we might be able to convert our abstract proof structure
to many different hypothesis trees. When one step in our algorithm fails to
produce a solution, we backtrack to a previous step and try the next solution
there until we have found all solutions.

The set of parameters on the final hypothesis tree can restrict the output
of the algorithm in any of the following ways.

(i) left to right traversal of the hypothesis tree yields the formulas in the
order indicated by the input sequence.

(ii) only binary modes from I′ ⊆ I and unary modes J ′ ⊆ J can occur in
the hypothesis tree.

(iii) return only the shortest conversion sequence(s).

When we use our algorithm for parsing a sentence, we typically want to
satisfy condition (i). However, it can be useful to see all different hypothesis
trees for the current proof structure because this might reveal ungrammatical
sentences which are derivable with the current lexicon and structural rules.

Sometimes it makes sense to disallow certain modes from appearing in
the final hypothesis tree, as indicated by condition (ii). We call a mode i ∈ I ′

or j ∈ J ′ external and a mode i ∈ I \ I ′ or j ∈ J \ J ′ an internal mode.
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Input − sequence w1, . . . , wn of words
− lexicon l, which assigns formulas to words
− set of goal formulas Q
− set R of structural rules
− set P of parameters restricting the shape of the final hy-
pothesis tree

Output set of cut free, eta expanded proof nets with hypotheses
l(w1), . . . , l(wn) and conclusion q ∈ Q

(1) For each of the words wi in the input sequence, select one of the formulas
assigned to this word from the lexicon and select a q ∈ Q as the conclu-
sion.

(2) Decompose the formulas according to the links of Table 7.8 on page 108
until we reach the atomic subformulas. The disjoint union of these proof
structures is itself a proof structure, though it will have several hypothe-
ses in addition to those from the lexicon and several conclusions in addi-
tion to the goal formula.

(3) Identify each atomic premiss with an atomic conclusion to produce a
proof structure with hypotheses l(w1), . . . , l(wn) and conclusion q.

(4) Convert the abstract proof structure corresponding to this proof structure
to a hypothesis tree using only the structural conversions of R and the
contractions.

(5) Check if this hypothesis tree conforms to our parameters P .

Table 8.1: Proof search algorithm for NL#R

Finally, parameter (iii) states that we are sometimes only interested in the
shortest conversion sequence to a hypothesis tree. This should not be taken
as a constraint on the derivability relation in the sense of ‘shortest move’ con-
straints proposed in minimalist frameworks (Chomsky 1995), but as a way of
preferring conversion sequences without redundant structural conversions.

Throughout the next sections we will present some improvements over
the initial, naive algorithm of Table 8.1. These improvements can be catego-
rized as follows.

[Compilation] This is a standard programming technique where predic-
table computation steps are done in advance and the results stored
or where we collapse several simple steps into a single derived step.
In the context of declarative programming languages compilation is
sometimes called partial execution (Pereira & Shieber 1987). We will ap-
ply partial execution to the current problem in Section 8.2, where we
will store abstract proof structures in the lexicon, eliminating step 2
from the algorithm and in Section 8.6 where we compile multiple par
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contractions into a single, derived contraction.

[Divide and Conquer] This refers to the basic technique of solving a prob-
lem by dividing it in several simpler problems in such a way that a
solution to all these simple problems is a solution to the complete prob-
lem as well. We will use this strategy in Sections 8.5 and 8.9 where we
will use components as a natural way of restricting structural rule ap-
plications.

[Early Failure] In constraint programming (Dechter 2000), it is often possi-
ble to get good performance on computationally intractable problems.
This is done by strategies for realizing, as early as possible, that the cur-
rent choices we have made will never lead us to a solution. While early
failure may take the form of simple, deterministic tests, it can some-
times also consist of doing computations as early as possible. We will
see examples of this in Sections 8.1, 8.3, 8.4 and 8.7.

[ParallelComputation]We will develop a way of performing the structural
conversions in parallel in Section 8.8.

A general trade-off we will see is that we can sacrifice generality or com-
pleteness for efficiency. Some of the most powerful heuristics mentioned in
this chapter function only for restricted fragments of NL#R and in the next
chapter we will see that only quite restricted fragments of NL#R are decid-
able in polynomial time.

8.1 Invariants

As connecting the atomic formulas and the structural conversions are com-
putationally expensive, it is desirable to do some static tests on the set of
proof structures we get from the lexical formulas after the unfolding stage of
the algorithm to make sure we at least have a chance of ultimately convert-
ing to a hypothesis tree. The following are two simple tests to reject proof
structures which can never satisfy our correctness criterion.

First, by our definition of hypotheses and conclusions of proof structures,
all atomic formulas other than lexical formulas or the conclusion must be
both a premiss and a conclusion of some link in a proof structure with hy-
potheses l(w1), . . . , l(wn) and conclusion q. So we can count if each of these
atomic formulas occurs as many times as a conclusion as it occurs as a pre-
miss. This is sometimes called the count check (van Benthem 1986).

Secondly, the following lemma, suggested to me by Quintijn Puite, gives
us a condition on the number of binary links occurring in a proof net.

Lemma 8.3 Suppose we have a proof structure S with h hypotheses, t binary tensor
links, p binary par links and a single conclusion. Then the following holds if S is a
proof net.

t + 1 = p + h
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Proof Reasoning backwards from the hypothesis tree to the initial hypo-
thesis structure we see that it holds for the hypothesis tree (with p = 0), that
the structural conversions and the unary contractions preserve t, p and h and
that the contractions for the binary links increase t and p simultaneously. !

We cannot use the same reasoning for unary connectives; though the con-
tractions for the unary connectives remove one unary tensor and one unary
par link, even in the case without structural rules we can state only that
p1 ≤ t1, where p1 is the number of unary par links and t1 the number of
unary tensor links. This is because there can be an arbitrary number of unary
tensor links in the final hypothesis tree. In the presence of structural rules,
which possibly increase the number of unary tensor links, there is little we
can tell simply from counting the unary links.

8.2 Compiling the Lexicon

Instead of have a lexicon which consists of formulas, we can compile the
formulas of the lexicon to proof structures, which we can further compile
to abstract proof structures, where we keep track of the output formulas of
every abstract proof structure. We can denote this by using square brackets,
for example. A formula between square brackets is then a ‘true’ hypothesis
or conclusion of the abstract proof structure, we will call it a bound formula.
The other formulas are atoms which will disappear after they are used for
axiom connections, so they are ‘temporary’ hypotheses and conclusions, we
will call them free formulas.

This is only necessary so we can distinguish between an atomic formula a
used a hypothesis and an atomic formula a used as a conclusion, the former
looking like shown below on the left, the latter looking like shown below on
the right.

[a]"
a

a"
[a]

Alternatively, we can say that the hypotheses and conclusions of a proof
structure or an abstract proof structure are the conclusion of ‘hypothesis’
links or the premiss of ‘conclusion’ links respectively.

Hyp

F

F

Con

In the depiction of the proof structures, this will have the advantage that
all axiomatic formulas are now the active formula of two links, by symmetry
with the cut formulas, which are the main formula of two links. It is often
of mnemonic value to use the word w to which this lexical proof structure is
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assigned instead of ‘Hyp’ as the label of of a hypothesis link. We’ll give an
example of this in Section 8.4.

Identifying two vertices by means of an axiom connection is possible in
an abstract proof structure if one has the formula F as a free premiss and the
other has the formula F as a free conclusion. Both formulas will disappear
after the axiom connection.

8.3 Acyclicity and Connectedness

If we translate formulas and antecedent terms of NL#R to formulas and an-
tecedent terms of multiplicative intuitionistic linear logic as follows

‖a‖ = a
‖#jA‖ = ‖A‖
‖!↓

jA‖ = ‖A‖
‖A/iB‖ = ‖B‖−◦‖A‖
‖B\iA‖ = ‖B‖−◦‖A‖
‖A •i B‖ = ‖A‖ ⊗ ‖B‖

‖〈Γ〉j‖ = ‖Γ‖
‖Γ ◦i ∆‖ = ‖Γ‖, ‖∆‖

then every derivable sequent of NL#R corresponds to a derivable sequent
of MILL.

We define switchings and correction graphs for abstract proof structures
of NL#R analogous to the way we did for L-proof structures in Section 7.8.
As we already noted in Section 4.5,we have linear time algorithms for check-
ing whether all correction graphs of a proof structure are acyclic and con-
nected. Because of this, it seems prudent to make an acyclicity and connect-
edness test before trying to convert the abstract proof structure to a tree.

In many cases, we can already see during the stage where we are con-
necting the axioms that, no matter how we continue, we will never produce
an acyclic and connected abstract proof structure.

If an abstract proof structure A has a substructure with a cyclic correction
graph, then A will have a cyclic correction graph too.

Similarly, if an abstract proof structure A has a correction graph with dis-
connected substructures A1, . . . ,An then every disconnected substructure
must have a free formula at at least one of its vertices, otherwise it will be
impossible to produce a connected correction graph for A even after we per-
form further axiomatic connections.

8.4 Axiomatic Connections

The algorithm, as shown in Table 8.1 does not specify anything about the or-
der in which we perform the axiomatic connections in step 3. From a logical
point of view the order in which we connect the axioms does not matter, but
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Figure 8.2: Lexical aps’s for ‘agent whom Trinity escaped’

from a computational point of view it is useful to keep the principles of early
failure in mind and always connect the axiom which is the most restricted in
its possibilities. This will make the information in the proof structure more
explicit, which in turn can trigger other early failure mechanisms.

Let’s look at an example. Figure 8.2 shows the lexical abstract proof struc-
tures for ‘agent whom Trinity escaped’ according to the lexicon of Table 7.7
on page 106.

We see one s conclusion and one s premiss, two np conclusions and two
np premisses, and two n conclusions and two n premisses. In this case, there
is only one possible way of connecting the s formulas, so this is the preferred
connection, resulting in the abstract proof structure shown in Figure 8.3.

After this connection, some information which was implicit in Figure 8.2
has become explicit, for example that, unless some structural conversion op-
erates on this abstract proof structure, the word ‘whom’ will precede the
word ‘escaped’ in the final hypothesis tree. We’ll see in Section 8.7 how to
exploit this kind of word order information.

At the current stage, superficially, it doesn’t matter if we decide to link
the np’s or the n’s, because in both case we have to consider two possibilities.
However, should we choose to link the n conclusion attached to ‘agent’ to the
n premiss of the goal formula, we would produce a disconnected abstract
proof structure. So, if we take the acyclicity and connectedness criterion dis-
cussed in Section 8.3 into account, we have only one way of connecting the
four n formulas, namely as shown in Figure 8.4.

Finally, we connect the np formulas. We have two possibilities here, de-
pending on where we connect the np conclusion corresponding to ‘Trinity’
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Figure 8.3: Abstract proof structure after the s connection
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Figure 8.4: Abstract proof structure after the n connections

to the left or right premiss. In this case, only the first possibility allows the
resulting abstract proof structure to convert to a hypothesis tree, as shown in
Example 7.13

In the worst case, with n premisses and n conclusions, we might have to
consider all n! different connections, but the strategy of first connecting the
atomic formula with the smallest number of possible candidates for connec-
tion appears to be quite powerful.

Another strategy to perform the axiom links would be to perform them
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incrementally from left to right, starting with the first word of the sentence
and trying to make as many connections as possible after each new word.
This has been independently proposed by Johnson (1998) and by Morrill
(1998) (2000). Both authors present evidence that the number of unconnected
atomic formulas in a proof structure corresponds to the relative difficulty a
human would have when processing the sentence, giving some surprising
psycholinguistic support for the use of proof nets in linguistic analysis. I
want to avoid making any claims about the psychological reality of the cur-
rent, opportunistic literal selection strategy. Connecting the operation of an
automated theorem prover to psychological processes is, in my opinion, nei-
ther necessary nor desirable.

Finally, the axiom connections are related to strategies for resolution-
based theorem provers. Eisinger & Ohlbach (1993) give a good overview
of different literal selection strategies.

8.5 Components

Components, which we introduced in Section 7.6 to prove cut elimination,
have some good properties we can use for automated deduction.

Recall from Definition 7.17 that a component of an abstract proof struc-
ture A is a maximally connected substructure with respect to the tensor links
of A. Structural conversions operate on one component only, and leave all
other components unchanged. Contractions operate on one component, in
which they erase a tensor link, then merge this component with another.

Definition 8.4 If a component C of an abstract proof structure A does not contain
vertices which are the output vertex of a par link, but

(i) either C = A, that is, there are no par links in A

(ii) or both input vertices of a par link are in C

we call the component active. Otherwise, we will call it waiting,
Similarly, if all input vertices of a par link are in the same component, we will

call this link active. Otherwise, we will call it waiting.

Example 8.5 The components in the abstract proof structure of Example 7.10 are
drawn in black in Figure 8.5 on the following page. Note that the top component
consists of only a single vertex.

In this abstract proof structure there is only one active component, the middle
one, and only the [L#0] link is active.

Lemma 8.6 We can restrict ourselves to conversion sequences of the following form.

(1) Apply a number of structural conversions in an active component.

(2) If the abstract proof structure still has par links, contract an active par link of
which the inputs are in the current component, reassess the active components
and continue from 1.
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Figure 8.5: The components of Figure 7.9

Proof As noted before, the different components of an abstract proof
structure are independent until they are united into one component by a
contraction. As the contractions are defined to operate by contracting a par
link of which all active vertices are connected to the same tensor link, this
means the first contraction in any abstract proof structure must be a par link
of which the active vertices are already in the same component.

Because we also prohibit the active component from containing the main
vertex of a par link, no contractions other than the contraction of one of the
active par links from this component will affect the current component. !

Some remarks need to be made. When an abstract proof structure has
multiple active components, we can apply structural rules to them indepen-
dently; we can start with any active component we want or we can even
operate on all active components in parallel.

However, when a component has multiple active par links, it is possible
that we are in the following situation: if we contract one before the other,
we can convert the abstract proof structure to a hypothesis tree, but if we
contract them in the other order, conversion to a hypothesis tree may not be
possible. Figure 8.6 on the next page presents two examples of such situa-
tions, which occur in the base logic NL#.

On the left of the figure, both the [L#0] and the [R!
↓
0] link are active, but

ifwe contract the [L#0] link first, we will be unable to contract the [R!
↓
0] link.

On the other hand, if we contract the [R!
↓
0] link first, we produce a redex for

the [L#0] contraction immediately.
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Figure 8.6: Conflicts between two active par links

On the right of the figure, we have the same active component, with the
same active par links, only now we are in the opposite situation: contract-
ing the [L#0] link is required before contracting the [R!

↓
0] link if we want to

convert to a hypothesis tree.

Definition 8.7 A component is completed if none of its vertices are labeled with
free formulas.

When a component is both completed and active, further axiomatic con-
nections will not be relevant for that component, at least not until one of the
active par links bordering it will be contracted, which may cause the new
component to be incomplete again. Therefore, when we are performing the
axiom connections, we have the possibility of performing conversions on ac-
tive, completed components whenever we produce them. However, it may
not necessarily be the best strategy to contract par links bordering completed
components whenever we encounter them. We have to be careful which
strategy we prefer: do we choose eager evaluation, that is contract par links
as soon as the component it is attached to is completed, or lazy evaluation,
that is wait with contracting par links as much as possible.

The advantage of eager evaluation appears to be that we can detect par
links which are not contractable at an early stage, thereby triggering early
failure mechanisms and possible preventing unnecessary computations.

However, it is possible lazy evaluation gives better performance. Conti-
nuing connecting axioms may fail with respect to other early failure mecha-
nisms which are computationally less expensive. Waiting may also produce
other active, completed components which are smaller or more likely to fail.
Finally, with respect to eager evaluation it is difficult to decide between mul-
tiple, active par links and making the wrong choice can lead to a dead end in
the search space.

The Grail automated theorem prover discussed in Appendix A gives you
the choice of performing eager or lazy evaluation of par links. Section A.3.9
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Figure 8.7: A combined /i#j contraction

gives details on how to set up these parameters.

8.6 Focusing

One of the insights of focusing proofs (Andreoli 2000) is that multiple par
links which are connected in such a way that the active formula of one par
link is the main formula of the other, can be executed at the same time. We
will call such par links consecutive par links. In Figure 8.5 on page 142 the
[L#0] and the [R/0] link are consecutive par links. We can treat these con-
figurations as if they were a single logical operator. In the case of ‘/0#0’ its
logical rules would be the following.

Γ[A] " C ∆ " B

Γ[A/0#0B ◦0 〈∆〉0] " C
[L/0#0]

Γ ◦0 〈B〉0

Γ " A/0#0B
[R/0#0]

The contraction corresponding to this combination is shown in Figure 8.7.
A similar strategy is not possible with a tensor/par combination. For

example, though we can add the following rules for #0!
↓
0 to our sequent

calculus

Γ[A] " C

Γ[#0!
↓
0A] " C

[L#0!
↓
0]

〈Γ〉0 " A

〈Γ〉0 " #0!
↓
0A

[R#0!
↓
0]

these rules will be incomplete, that is, there are valid derivations with for-
mulas of the form #0!

↓
0A which you will not find using the combined rules

above, but which you will find using a separate # and !↓ rule. In the ex-
ample above, applying the [L#0] rule instead of the combined rule would
possibly open up new structural rules. Example 7.4 on page 106 shows such
a situation. If we look at the sequent rules of Table 7.5 on page 105, we see
that from a forward chaining proof search perspective the tensor rules add
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structural information, whereas the par rules remove it under certain condi-
tions.

With respects to the components of an abstract proof structure, consecu-
tive par links will correspond to components consisting of a single vertex, see
for example Figure 8.5. Now, it is possible to extend the definition of active
par links to active consecutive par links.

Definition 8.8 Consecutive par links are active whenever all the inputs to the tree
of par links are in the same component.

Lemma 8.9 We can restrict ourselves to conversion sequences of the following form.

(1) Apply a number of structural conversions in an active component.

(2) If the abstract proof structure still has par links, contract a tree of active con-
secutive par links of which all leaves are in the current component, reassess the
active components and continue from 1.

Proof According to Lemma 8.6 we can restrict ourselves to conversion
sequences where we apply structural conversions in an active component,
then contract an active par link attached to the current component. Now let C
be an active component and L be an active par link which is part of an active
consecutive par link. Performing this par contraction will remove a tensor
link from the active component and if the par link was part of a consecutive
par link, the component will now be attached to a single vertex. This means
any structural conversion which is possible after this contraction was already
possible before this contraction as well, since the new component is a proper
substructure of the component just before the contraction. !

8.7 Word Order

There are cases where we can see from the abstract proof structure we are
constructing that it will never convert to an abstract proof structure where
the words of the input sequence occur in the right order.

For example, the abstract L-proof structures we introduced in Section 7.8
have only a structural rule representing associativity, and no structural rules
which could change the order of the hypotheses to the abstract proof struc-
ture. This means that whenever we make a axiomatic connection which does
not respect the order of the words in the input sentence, we will never be
able to contract the abstract L-proof structure to a single hypothesis comb.
Also, when the second conclusion of [R/] link is connected to anything but
the last hypothesis of a comb, contracting it will never be possible. Similar
arguments can be made for the other par links.

This property is a reflex in our proof net calculus of the planarity con-
dition we discussed in Section 4.7. We call binary modes for which either
no structural rules or one or both of the associativity structural rules apply
continuous.
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A way of enforcing planarity for some modes but not for others is by
first order approximation. In Section 5.1.4 we gave embedding results for
both L and LP into the first order multiplicative fragment of linear logic.
By giving every continuous mode the L translation and every discontinuous
mode the LP translation, we have a simple way of enforcing at least some of
the word order constraints on derivation. We can also imagine giving certain
modes a slightly more sophisticated translation, such as those suggested in
Section 5.2.2 for relative pronouns. Morrill (1999) gives similar suggestions
for using first order constructs to enforce word order constraints.

In some cases, we can also use an eager evaluation strategy for perform-
ing the structural conversions and put the words in the right order with re-
spect to eachother whenever possible; each time we perform an axiom con-
nection between two disjoint abstract proof structures, we merge the words
of the two abstract proof structures until the new aps has all words in the
right order again. Again, eager evaluation can be dangerous because it can
force us to select the wrong alternative or because it can be impossible to put
two words in the right order until they are put in a bigger context.

The Grail automated theorem prover of Appendix A gives you the choice
of how to evaluate the word order constraints, see Section A.3.9 for details
on how to set up these parameters.

8.8 Parallel Computation

Though we have already seen that it is possible to apply structural rules in
parallel in different active components, in this section we will see that if we
represent a component appropriately,we can apply structural rules in paral-
lel in the same component as well.

This is done simply by allowing every vertex to be the conclusion and
the premiss ofmore than one link. We call such a structure a parallel abstract
proof structure. This makes it a quite a bit harder to represent the abstract
proof structures in an orderly way. I will choose to represent parallel aps’s
by just listing the links, in what I will call the distributed representation of a
parallel aps, even though this will mean vertices can occur in multiple places.
I think the alternative, having every vertex fixed and drawing the links be-
tween them, will lead to unnecessarily cluttered figures.

Example 8.10 Let’s look at the abstract proof structure corresponding to the se-
quent a/aa, a/aa, a/aa " a/aa shown in Figure 8.8 on the next page, where we
assume mode a is associative but not commutative.

When we present this abstract proof structure as a parallel aps, it will look as
shown in Figure 8.9 on the facing page. The links are named L1 to L4 for future
reference.

We perform structural conversions on parallel abstract proof structures
as follows.
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Figure 8.9: The aps of Figure 8.8 in a distributed representation

– find all sets of connected tensor links which are the redex of a structural
conversions.

– using fresh internal vertices, add the reduct of the structural conversion
to the parallel aps unless the reduct is equivalent, up to renaming of the
internal vertices, with links which are already present in the parallel
aps.

Example 8.11 Using one application of the associativity rule, we can expand the
parallel aps of Figure 8.9 with the links shown in Figure 8.10 on the next page.
From L1 and L2 associativity gives us L5 and L6, and we can reassociate L2 and L3

into L7 and L8.
For the next generation, we know that at least one of the links to which we apply

a structural rule must have been introduced in the last generation, because this is
the only way we can produce new links.

The third generation tensor links are shown in Figure 8.11 on the following page.
L9 and L10 have been obtained from L3 and L5, whereas L11 and L12 have been
obtained from L1 and L7. The redexes formed by L5 and L6 and by L7 and L8 have
not been triggered, because their reducts would be equivalent up to renaming of the
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x9 x5
a/aa
x2

a/aa
x4

L5 L6

x1

◦a

x9

◦a

x10 x7
a/aa
x4

a/aa
x6

L7 L8

x3

◦a

x10

◦a

Figure 8.10: Second generation tensor links

x11 x7 x9
a/aa
x6

L9 L10

x1

◦a

x11

◦a

x12 x7
a/aa
x2 x10

L11 L12

x1

◦a

x12

◦a

Figure 8.11: Third generation tensor links

internal nodes to L1 and L2 and to L2 and L3 respectively.
We have completed the structural rule applications: no structural conversion

from the current state will produce new links. We are now in a position to apply
the [R/a] contraction, which will identify vertices x8, x11 and x12 and which will
erase all links which have become unreachable from the root vertex x8. The resulting
parallel aps is shown in Figure 8.12.

For the current example, the contraction system described in Section 7.8 is, of
course, much more efficient. However, the setup described here is very general and
works for any set of structural rules

x9
a/aa
x6

a/aa
x2

a/aa
x4

L10 L6

x8

◦a

x9

◦a

a/aa
x2 x10

a/aa
x4

a/aa
x6

L12 L8

x8

◦a

x10

◦a

Figure 8.12: Parallel aps after the [L/a] contraction
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The methodology outlined in this section is very close to finding a canon-
ical model according to the Kripke semantics discussed in Section 3.6. The
two frame constraints for an associative mode a would be the following.

∀x1.x2.x3.x4.x5. x1Rax2x3 ∧ x3Rax4x5 → ∃x6. x1Rax6x5 ∧ x6Rax2x4

∀x1.x2.x3.x4.x5. x1Rax2x5 ∧ x2Rax3x4 → ∃x6. x1Rax3x6 ∧ x6Rax4x5

When we interpret xRiyz as there is a tensor link of mode i with pre-
misses y and z and conclusion z, all we do when applying the structural
rules to a parallel aps is to add tensor links and vertices which must exists
according to the frame constraints.

An interesting possibility to investigate would be to extend parallel com-
putation beyond single components, possibly even extending it to compute
different lexical assignments to words of the input sentence in parallel and
compare the time and space complexity with the sequential version of Ta-
ble 8.1.

8.9 Rule Filtering

In many cases we can see from the shape of the structural conversions that
some structural conversions can never produce a redex for the contraction of
the active par link we are looking at.

Example 8.12 If we want to add features for person, number, gender and case to a
simple English grammar, in the style of Heylen (1999), we might do this as shown
in Table 8.2. The features on the lexical entry for ‘he’ show it is a 3rd person singular
masculine nominative pronoun. For every feature we have a ‘top’ and and a ‘bottom’
element. For example the gender feature has, in addition to valuesm formasculine, f
for feminine and n for neuter a value g which includes any gender feature and a value
G which is included by any gender feature, as stated by the following structural
rules, where i ∈ {m, f, n}.

Γ[〈∆〉G] " C

Γ[〈∆〉i] " C
[i,G]

Γ[〈∆〉i] " C

Γ[〈∆〉g] " C
[g,i]

In the lexicon of Table 8.2, ‘they’ is assigned gender feature G which means it can
satisfy any gender requirement from the verb. On the other hand, ‘smiles’ selects for
a subject with gender feature g which means any marking for gender will satisfy it.
An example derivation of ‘Marla smiles’ is shown in Figure 8.13.

In the example above, we only have structural rules for inclusion and
none for interaction. The abstract proof structure for this derivation, where,
for the sake of simplicity, we abstract over the !

↓
3 and !↓

sg connectives, is
shown in Figure 8.14.
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l(he) = !
↓
3!

↓
sg!

↓
m!↓

nomnp

l(she) = !
↓
3!

↓
sg!

↓
f!↓

nomnp

l(it) = !
↓
3!

↓
sg!

↓
n!

↓
Cnp

l(him) = !
↓
3!

↓
sg!

↓
m!↓

accnp

l(her) = !
↓
3!

↓
sg!

↓
f!↓

accnp

l(they) = !
↓
3!

↓
pl!

↓
G!↓

nomnp

l(them) = !
↓
3!

↓
pl!

↓
G!↓

accnp

l(Marla) = !
↓
3!

↓
sg!

↓
f!

↓
Cnp

l(smiles) = !
↓
3!

↓
sg!

↓
g!

↓
nomnp\s

l(hates) = (!↓
3!

↓
sg!

↓
g!

↓
nomnp\s)/!↓

p!
↓
n!↓

g!
↓
accnp

Table 8.2: A lexicon with feature information

np " np
[Ax]

〈!↓
Cnp〉C " np

[L!
↓
C ]

〈!↓
Cnp〉nom " np

[nom,C]

!
↓
Cnp " !↓

nomnp
[R!↓

nom]

〈!↓
f!

↓
Cnp〉f " !↓

nomnp
[L!

↓
f ]

〈!↓
f!

↓
Cnp〉g " !↓

nomnp
[g,f]

!
↓
f!

↓
Cnp " !↓

g!
↓
nomnp

[R!↓
g]

〈!↓
sg!

↓
f!

↓
C〉sgnp " !↓

g!
↓
nomnp

[L!↓
sg]

!↓
sg!

↓
f!

↓
Cnp " !↓

sg!
↓
g!

↓
nomnp

[R!↓
sg]

〈!↓
3!

↓
sg!

↓
f!

↓
Cnp〉3 " !↓

sg!
↓
g!

↓
nomnp

[L!
↓
3]

!
↓
3!

↓
sg!

↓
f!

↓
Cnp " !

↓
3!

↓
sg!

↓
g!

↓
nomnp

[R!
↓
3]

s " s
[Ax]

!
↓
3!

↓
sg!

↓
f!

↓
Cnp ◦ !

↓
3!

↓
sg!

↓
g!

↓
nomnp\s " s

[L\]

Figure 8.13: Derivation of ‘Marla smiles’ with feature information

Now it is clear that the [R!↓
nom] contraction does not depend in any way

on what happens to the [〈〉f ] link; only the [〈〉C ] link is relevant to this con-
traction and there is only one rule which can produce a [〈〉nom] link, namely
the [nom,C] conversion. Similarly, after the [R!↓

nom] contraction we only the
[g,f] rule can produce a redex for the [R!↓

g] contraction.
The general idea here is: given an active par link which is not a redex

for the corresponding contraction, we look at which structural conversions
could be the last conversion just before the contraction and then, recursively,
we look at which conversions could have produced the redex for the previ-
ous conversion. This strategy is particularly effective when modes have only
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"
↓
f "

↓
Cnp"

"
〈〉f

"
〈〉C

"
R"

↓
nom

"

"
R"

↓
g

" "↓
g"↓

nomnp\s"
1 2

"
s

◦

Figure 8.14: Abstract proof structure for ‘Marla smiles’

structural rules for inclusion, as in the example above, but other grammars
can benefit from this strategy as well. If we look at Figure 8.8 on page 147
again, it is obvious that in order to produce a redex for a [R/a] contraction we
only need to use the [Ass1] structural rule, whereas we would only need to
use the [Ass2] structural rule to produce a [R\a] redex. Either structural rule
could be the last conversion before a [L•a] contraction, however.

8.10 Conclusions

We have seen several ways of improving the efficiency of the initial, naive al-
gorithm by giving heuristics which are applicable in many cases. Though the
complexity results from the next chaptermake it unlikely that we will find an
efficient algorithm for the general problem, it is possible to find algorithms
which work reasonably well for large subclasses of the problem.




