
Proof Nets
for

Linguistic Analysis

Bewijsnetten voor Taalkundige Analyse
(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht op gezag van de Rector Mag-
nificus, Prof. dr. W. H. Gispen, ingevolge het
besluit van het College voor Promoties in het
openbaar te verdedigen op vrijdag 1 februari 2002
des middags te 12.45 uur

door

Richard Cornelis Antonius Moot

geboren op 24 december 1972 te Alkmaar



Promotor: Prof. dr. M. J. Moortgat

Utrecht Institute of Linguistics OTS
Utrecht University

Printed by PrintPartners Ipskamp, Enschede

c©2002 Richard Moot



PREFACE

T HIS book concludes five years of research into the linguistic applications
of proof nets. While mostly self-contained, people already familiar with

either linear logic or Lambek calculi will probably have an easier time read-
ing through it, and people familiar with both can probably skip Part I alto-
gether.

Part II contains your recommended daily dose of proof nets. Proof nets
for MLL, MILL, MILL1, Lε, labeled proof nets and proof nets for NL3R.
This last proof net calculus is new, and we will provide a correction criterion
for this calculus and prove soundness and completeness results.

Part III builds on the proof nets for NL3R and contains reflections on
automated deduction using proof nets, an analysis of the complexity of the
logic and results on the relation between proof nets and lexicalized tree ad-
joining grammars.

Chapter 5 consists of joint work with Mario Piazza, which has appeared
before in (Moot & Piazza 2001).

Chapter 7 consists of joint work with Quintijn Puite and contains work
which has appeared before in (Puite & Moot 1999), (Moot & Puite 1999) and
(Moot & Puite 2001).





ACKNOWLEDGMENTS

M ANY chapters of this thesis were difficult to write, but none was as dif-
ficult as the current one, because omissions or mistakes in this chapter

will have more far-reaching consequences than mistakes in any other chap-
ter.

First of all, I would like to thank Michael Moortgat for his support, insight
and enthusiasm.

Secondly, I would like to thank Quintijn Puite. The many meetings we
had discussing linear logic and proof nets helped me a lot and our joint work
resulted in Chapter 7 of this thesis.

I would also like to thank Mario Piazza for our collaboration on Chap-
ter 5.

Many thanks go to Jan van Eijck, Philippe de Groote, François Lamarche,
Glyn Morrill, Christian Retoré, Harold Schellinx and Ed Stabler for their dis-
cussion and comments on several aspects of this thesis during its develop-
ment.

I am grateful to the thesis committee, Johan van Benthem, Jan van Eijck,
Aravind Joshi, François Lamarche and Albert Visser, for taking the time to
study this thesis.

Special thanks go to Raffaella Bernardi, Patrick Brandt, Christophe Costa
Florêncio, Dirk Heylen, Willem-Olaf Huijsen and Esther Kraak, my room-
mates at room 2.05 over the years, for creating a pleasant environment for
me to work in.

I would like to thank my friends and colleagues at UiL-OTS: Olga Borik,
Jenny Doetjes, Herman Hendriks, Ellen Gerrits, Paz Gonzalez, Silke Ha-
mann, Heleen Hoekstra, Maarten Janssen, Oele Koornwinder, Laura Korte,
Steven Krauwer, Anne-Marie Mineur, Anna Mlynarczyk, Paola Monache-
si, Iris Mulders, Øystein Nilsen, Rick Nouwen, Renée Pohlmann, Louis des
Tombe, Sharon Unsworth, Henk Verkuyl, Willemijn Vermaat, Jules van Weer-



iv Acknowledgments

den, Yoad Winter, Ton van der Wouden and Inge Zwitserlood.
Extra special thanks go to the band members of Evisceration and Hori-

zon, Marcel ‘Homi’ Hommes, Robert ‘Hout’ Houtenbos, Peter ‘Pieke’ Kops,
Ronald Kools, Niek Kuijper, John Ruiter, Michel ‘Mick’ Switser and Finus
Tromp, for making my life considerably less quiet and more entertaining.

Furthermore, I would like to thank the D&D crew, Robert Dijkman, Jan
Klinkspoor, Karel Klinkspoor and Wim Pool for keeping my imagination
running.

I would like to thank my parents, my sister and Dave for their care and
for supporting me, even though my research subject has remained very mys-
terious to them.

Finally, I want to thank Adriana for her love and support and under-
standing.

With all these wonderful people supporting me, I have of course only
myself left to blame for any remaining mistakes.



CONTENTS

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

I Logics and Grammars 5

2 Linear Logic 7
2.1 Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Multiplicatives . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Additives . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 Cut Elimination . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Fragments of Linear Logic . . . . . . . . . . . . . . . . . . . . . 13
2.3 One Sided Sequent Calculus . . . . . . . . . . . . . . . . . . . . 14
2.4 Intuitionistic Linear Logic . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Natural Deduction . . . . . . . . . . . . . . . . . . . . . 15
2.4.2 The Curry-Howard Isomorphism . . . . . . . . . . . . 17
2.4.3 Normalisation . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Linguistic Applications . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 Multiplicatives . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Additives . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5.3 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.4 Exponentials . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.5 Quantifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.6 Structural Rules . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.7 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



vi Contents

3 Lambek Calculi 31
3.1 Lambek Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Non-Associative Lambek Calculus . . . . . . . . . . . . . . . . 33
3.3 Multimodal Lambek Calculus . . . . . . . . . . . . . . . . . . . 35
3.4 Unary Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5 Natural Deduction . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Model Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

II Proof Nets and Linguistics 47

4 Proof Nets for Multiplicative Linear Logic 49
4.1 Proof Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Proof Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Soundness and Completeness . . . . . . . . . . . . . . . . . . . 53
4.4 Cut Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.6 The Intuitionistic Fragment . . . . . . . . . . . . . . . . . . . . 63
4.7 Non-commutative Proof Nets . . . . . . . . . . . . . . . . . . . 65
4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Proof Nets for First Order Linear Logic 69
5.1 Proof Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Proof Structures . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Proof Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.4 Embedding the Lambek Calculus . . . . . . . . . . . . 73

5.2 Linguistic Applications . . . . . . . . . . . . . . . . . . . . . . . 80
5.2.1 Quantifier Scope . . . . . . . . . . . . . . . . . . . . . . 81
5.2.2 Relative Pronouns . . . . . . . . . . . . . . . . . . . . . 83
5.2.3 Locality . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Algebraic Criteria 89
6.1 Labeled Sequent Calculus . . . . . . . . . . . . . . . . . . . . . 90
6.2 Labeled Natural Deduction . . . . . . . . . . . . . . . . . . . . 91
6.3 Labeled Proof Nets . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7 Contraction Criteria 99
7.1 Two Sided Proof Nets . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Sequent Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.3 Proof Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.4 Abstract Proof Structures . . . . . . . . . . . . . . . . . . . . . . 109
7.5 Proof Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.6 Cut Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . 119



Contents vii

7.7 Abstract Proof Structures and Labels . . . . . . . . . . . . . . . 122
7.8 Lambek Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

III Relations and Computations 131

8 Automated Deduction 133
8.1 Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.2 Compiling the Lexicon . . . . . . . . . . . . . . . . . . . . . . . 137
8.3 Acyclicity and Connectedness . . . . . . . . . . . . . . . . . . . 138
8.4 Axiomatic Connections . . . . . . . . . . . . . . . . . . . . . . . 138
8.5 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8.6 Focusing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.7 Word Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.8 Parallel Computation . . . . . . . . . . . . . . . . . . . . . . . . 146
8.9 Rule Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
8.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

9 Complexity 153
9.1 NP Complete Fragments . . . . . . . . . . . . . . . . . . . . . . 154
9.2 Restricted Structural Rules . . . . . . . . . . . . . . . . . . . . . 155
9.3 NL3R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
9.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

10 Proof Nets and Tree Adjoining Grammars 173
10.1 Tree Adjoining Grammars . . . . . . . . . . . . . . . . . . . . . 174
10.2 Substitution Only Tree Adjoining Grammars . . . . . . . . . . 178
10.3 Lexicalized Tree Adjoining Grammars . . . . . . . . . . . . . . 182
10.4 Adjoining Constraints . . . . . . . . . . . . . . . . . . . . . . . 193
10.5 Multi Component Tree Adjoining Grammars . . . . . . . . . . 196
10.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

11 Conclusions 201
11.1 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A The Grail Theorem Prover 203
A.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
A.2 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

A.2.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . 204
A.2.2 The Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . 204
A.2.3 The Theorem Prover . . . . . . . . . . . . . . . . . . . . 210
A.2.4 The Structural Postulates . . . . . . . . . . . . . . . . . 217

A.3 Reference Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
A.3.1 The Main Window . . . . . . . . . . . . . . . . . . . . . 221



viii Contents

A.3.2 The Status Window . . . . . . . . . . . . . . . . . . . . . 224
A.3.3 The Proof Net Window . . . . . . . . . . . . . . . . . . 225
A.3.4 The Rewrite Window . . . . . . . . . . . . . . . . . . . . 227
A.3.5 The Lexicon Window . . . . . . . . . . . . . . . . . . . . 229
A.3.6 Editing a Lexical Entry . . . . . . . . . . . . . . . . . . . 230
A.3.7 The Postulate Window . . . . . . . . . . . . . . . . . . . 233
A.3.8 Editing a Postulate . . . . . . . . . . . . . . . . . . . . . 235
A.3.9 The Analysis Window . . . . . . . . . . . . . . . . . . . 236

A.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

Bibliography 239

Index 247

Samenvatting in het Nederlands 251

Curriculum Vitae 253



CHAPTER 1
INTRODUCTION

L OGIC is a powerful set of tools which have found applications in many
areas of artificial intelligence. The Lambek calculus (Lambek 1958) and

its extensions and generalizations (Morrill 1994, van Benthem 1995, Moortgat
1997) have been the principal systems used for giving a logical account of
natural language.

The advantages of a logical view of grammar are manifold.

– we can prove soundness of our system, that is we can show all opera-
tions in our grammar are meaningful and well-defined with respect to
a model.

– we can prove completeness of our system, that is we can show that if
something is valid in our model, it is therefore derivable in our logic as
well.

– we can prove consistency of our system. This means that it is funda-
mentally impossible in our logic that a statement and its negation are
both true.

Of course, we can also prove the correctness of algorithms given a precise
mathematical specification of the preconditions and the postconditions of the
algorithm, as advocated by Dijkstra (1979). However, in this case, changes
in the algorithm will force us to reprove correctness, whereas for a logic we
prove soundness and completeness of the logic itself and if we should choose
to apply this logic to a different domain no new proofs will be necessary.

Figure 1.1 gives an overview of the logical approach to grammar. A
parser for a logical grammar consists of a lexicon, which assigns sets of for-
mulas to words and a theorem prover which proves that statements in the
logic are either provable or unprovable.



2 Introduction

w0 . . . wn

Lexicon

f0 . . . fn ` g

Theorem Prover

{
.... D1

f0,...,fn`g,. . . ,

.... Dk

f0,...,fn`g}

W �

� W

⇓

⇓

Figure 1.1: A schematic overview of the logical approach to grammar

The slogan here is parsing as deduction. This term was introduced by Pe-
reira, Warren and others (Pereira & Warren 1983), (Pereira & Warren 1980),
who used the definite clause grammar facilities of the general purpose logic
programming language Prolog as a logical way of describing grammars. A
good overview of using Prolog for natural language analysis can be found in
(Pereira & Shieber 1987) and (Shieber, Schabes & Pereira 1995).

Our goal here is more ambitious, instead of using a general purpose logic
to give a description of our grammar and run this description as a program,
we want to use a logic which is inherently suitable for linguistic descriptions.
We are interested in what Moortgat calls the ‘constants of grammatical rea-
soning’ (Moortgat 1999); the logical universals when we reason about gram-
mars.

A Lambek calculus theorem prover should return a set of proofs: the set
of different proofs for the given logical statement. A potential problem here
is that we are only interested in proofs which are different for interesting
reasons, as opposed to proofs which differ only because of an overly bureau-
cratic proof system. The introduction of a ‘redundancy free’ formulation of
proofs, proof nets, will solve this problem for us. Different proof nets are
semantically different linguistic objects. In Section 3.5, we will see that there
is a very general way of assigning lambda term semantics to Lambek calcu-
lus proofs, which is an attractive property of Lambek calculi and it is one
we would be a shame to lose this property because of the syntactic peculiari-
ties of our proof system. Finding and analysing proof net calculi suitable for
linguistic analysis will be the central theme of this book.

Though we advocate a lexicalist account of grammar we do not want to
shift too much of the explanatory burden to the lexicon. As shown by Car-
penter (1991), adding recursive lexical rules to even a very simple grammar
results in an undecidable system. Therefore, we will assume that the lexicon



1.1 Overview 3

assigns a finite number of formulas to every word in the lexicon.
We also want to avoid assigning formulas to the empty string, because

this will increase the expressiveness of the system in much the same way
as adding lexical rules does; every logical formula we pass to the theorem
prover is keyed to a word in the input sentence.

1.1 Overview

This book is structured as follows.
Part I is an introduction to the use of logic for grammatical analysis.
Chapter 2 will introduce linear logic as a first approximation and suggest

linguistic applications for the different groups of logical connectives. A clear
limitation of linear logic is the global availability of the structural rule of
commutativity, which incorrectly predicts any permutation of a grammatical
sentence is also grammatical.

In Chapter 3 we will introduce the Lambek calculus, a non-commutative
precursor of linear logic, and show how the addition of multiple families of
connectives and of unary modal connectives increases the linguistic sophis-
tication of the theory.

Part II is the main part of this book and focuses on how to use proof nets
for linguistic analysis.

Chapter 4 introduces proof nets as a redundancy free representation for
proofs in multiplicative linear logic and for proofs in the associative Lambek
calculus.

Chapter 5 consists of joint work with Mario Piazza, which has appeared
before in (Moot & Piazza 2001). We will study proof nets for the first order
fragment of multiplicative linear logic and give an embedding translation
for both the associative and the non-associative Lambek calculus into the
first order fragment. We will also see how to use the first order fragment for
a treatment of linguistic phenomena which have no satisfactory treatment in
the Lambek calculus.

In Chapter 6 we will look at labeled deduction as a way of adding struc-
tural constraints to our logical calculi and to the proof nets for multiplicative
linear logic.

Chapter 7 consists of joint work with Quintijn Puite, and large parts of
it have appeared before in (Puite & Moot 1999, Moot & Puite 1999, Moot &
Puite 2001), contains the main result of this book: by reformulating proof
nets in a more symmetric way, we give a proof net system for the multimo-
dal Lambek calculus and prove it is sound and complete with respect to the
sequent formulation of the same calculus.

In Part III we will discuss some computational implications of the proof
net calculus of Chapter 7 and relate it to other formalisms.

Chapter 8 will be devoted to automated deduction. We will present an al-
gorithm for proof search using proof nets and some heuristics for improving
the performance of this algorithm.



4 Introduction

In Chapter 9 we will establish a PSPACE complexity result for the multi-
modal Lambek calculus with a restriction of the form of the structural rules
and show that without this restriction the logic is undecidable.

Chapter 10 will give an embedding of Lexicalized Tree Adjoining Gram-
mars into multimodal proof nets.

Finally, Chapter 11 contains my concluding remarks and a discussion of
possible future research.

An Appendix gives an introduction to the Grail automated theorem prov-
er for the multimodal Lambek calculus, which was developed as part of this
research project.



PART I

LOGICS AND GRAMMARS





CHAPTER 2
LINEAR LOGIC

L INEAR logic was introduced by Girard (1987) as a resource conscious
logic, that is a logic where the number of occurrences of a formula mat-

ters. This is not true in classical logic. The structural rule of contraction from
classical logic

Γ, A, A ` ∆
Γ, A ` ∆

[LC]
Γ ` A, A, ∆
Γ ` A, ∆

[RC]

tells us that whenever we can prove something using the formula A as a
premiss twice, we can also prove it using A just once. When we interpret
A as, for example, a lemma we use in a proof, it makes sense to say that
reproving the lemma each time we use it is unnecessary. But when we want
to interpret A as a resource, a physical as opposed to an ideal entity, then it
makes sense to reject the rule of contraction, at least globally. The number of
occurrences of our resources generally do matter to us.

Similarly, the rule of weakening

Γ ` ∆
Γ, A ` ∆

[LW ]
Γ ` A, ∆
Γ ` ∆

[RW ]

states that whenever we can prove ∆ with assumptions Γ we can add an
extra assumption A and still have a valid proof. Again, if we interpret A as a
resource we can’t just get it from thin air, we have to justify how we obtained
it. So global availability of weakening is also undesirable from a resource
conscious point of view.

For our intended linguistic applications, the absence of contraction and
weakening seems like a good starting point, since, in general, the number of
occurrences of words in a sentence is quite relevant to the grammaticality of
the sentence.



8 Linear Logic

When we remove contraction and weakening, however, we are faced
with some choices to make when we want to write down the rules for con-
junction. Two possible pairs of sequent rules exist

Γ, A, B ` ∆
Γ, A ∧B ` ∆

[L∧]
Γ ` A, ∆ Γ′ ` B, ∆′

Γ, Γ′ ` A ∧B, ∆, ∆′ [R∧]

Γ, Ai ` ∆
Γ, A0 ∧A1 ` ∆

[L∧′] Γ ` A, ∆ Γ ` B, ∆
Γ ` A ∧B, ∆

[R∧′]

depending on whether in the right rules we take the union of the contexts
of the two premisses or demand the contexts are the same. These choices
force the corresponding left rule upon us if we want our system to satisfy cut
elimination.

We will call the conjunction which takes the union of the contexts the mul-
tiplicative conjunction in linear logic, and write it as ‘⊗’. We will call the con-
junction which demands the context formulas of the premisses to be equal
the additive conjunction, and write it as ‘&’

We face the symmetrical choice for the rules for disjunction, where we
will also have a multiplicative instantiation ‘

&

’ and an additive instantiation
‘⊕’.

2.1 Sequent Calculus

I will now present the sequent calculus for linear logic. The group of identity
rules should contain no surprises. Note that the [Cut] rule is multiplicative.

Identity

A ` A
[Ax]

Γ, A ` ∆ Γ′ ` A, ∆′

Γ, Γ′ ` ∆, ∆′ [Cut]

Linear negation (.)⊥ has the obvious rules.

Negation

Γ ` A, ∆
Γ, A⊥ ` ∆

[L⊥]
Γ, A ` ∆

Γ ` A⊥, ∆
[R⊥]

2.1.1 Multiplicatives

For the multiplicative conjunction ‘⊗’ (tensor) and disjunction ‘

&

’ (par) the
context of the conclusion is the union of the contexts of the premisses of the
rule. A way to look at a formula A ⊗ B is that it gives both an A and a B
resource. It is difficult to come up with a similar intuition for ‘

&

’ except
perhaps by noting it is the De Morgan dual of ‘⊗’.



2.1 Sequent Calculus 9

Linear implication ‘−◦’ is not a primitive connective of classical linear
logic, and is defined as A−◦B =def A⊥ &

B. For completeness, I will present
the rules for linear implication along with the other multiplicatives. In an in-
tuitionistic setting ‘−◦’ will replace ‘

&

’, as par makes essential use of multiple
formulas on the right hand side of the sequent.

Multiplicatives

Γ, A, B ` ∆
Γ, A⊗B ` ∆

[L⊗]
Γ ` A, ∆ Γ′ ` B, ∆′

Γ, Γ′ ` A⊗B, ∆, ∆′ [R⊗]

Γ, A ` ∆ Γ′, B ` ∆′

Γ, Γ′, A

&

B ` ∆, ∆′ [L

&

]
Γ ` A, B,∆

Γ ` A

&

B, ∆
[R

&

]

Γ ` A, ∆ Γ′, B ` ∆′

Γ, Γ′, A−◦B ` ∆, ∆′ [L−◦] Γ, A ` B, ∆
Γ ` A−◦B, ∆

[R−◦]

The multiplicative units 1 and ⊥ are the identities for ⊗ and

&

respec-
tively. A⊗1 a` A, which should remind you of multiplication, and A

&

⊥ a`
A.

Multiplicative Units

Γ ` ∆
Γ,1 ` ∆

[L1] ` 1
[R1]

⊥ ` [L⊥] Γ ` ∆
Γ ` ⊥, ∆

[R⊥]

2.1.2 Additives

For the additives ‘&’ (with) and ‘⊕’ (plus) the contexts of the premisses of the
rule must be the same. A formula A & B represents a choice between A or B
(as opposed to A⊗B, where you will receive both A and B). Similarly A⊕B
means it is unknown whether we have an A or a B resource.

Additives

Γ, Ai ` ∆
Γ, A0 & A1 ` ∆

[L&]
Γ ` A, ∆ Γ ` B, ∆

Γ ` A & B, ∆
[R&]

Γ, A ` ∆ Γ, B ` ∆
Γ, A⊕B ` ∆

[L⊕]
Γ ` Ai, ∆

Γ ` A0 ⊕A1, ∆
[R⊕]

The additive units 0 and > are the identities for ⊕ and & respectively.
A⊕ 0 is equivalent to A, again arithmetic serves as a mnemonic, and A&> is
equivalent to A. Note that there is no [L>] or [R0] rule.

Additive Units

Γ,0 ` ∆
[L0]

Γ ` >, ∆
[R>]



10 Linear Logic

Another equivalence reminiscent of arithmetic, relating the multiplica-
tives and the additives is

A⊗ (B ⊕ C) ` (A⊗B)⊕ (A⊗ C)
(A⊗B)⊕ (A⊗ C) ` A⊗ (B ⊕ C)

whereas we have a similar relation between & and

&

.

A

&

(B & C) ` (A

&

B) & (A

&

C)
(A

&

B) & (A

&

C) ` A

&

(B & C)

2.1.3 Exponentials

The connectives ‘?’ (why not) and ‘!’ (bang) are called the exponentials. The
idea is that on the left hand side !A should be interpreted as an arbitrary
number of occurrences of the formula A (we choose how many), whereas
?A specifies an unknown quantity of occurrences of the formula A. In the
structural rules of the system this will be reflected by licensing the use of the
structural rules of weakening and contraction for resources marked with an
exponential, as shown below.

Under this interpretation, the left rule for ‘!’ specifies that if something is
derivable with a single formula A then it is also derivable if we are allowed
to use an arbitrary number of occurrences of A.

The left rule for ‘?’ would then indicate that we could accommodate for
an unknown quantity of A formulas only if all context formulas can be used
as many times as necessary.

Readers familiar with modal logic will recognize these logical rules as
those of the modal logic S4. We will discuss this connection in more detail in
Section 3.4, where we will introduce more fine-grained structural modalities.

Exponentials

Γ, A ` ∆
Γ, !A ` ∆

[L!]
!Γ ` A, ?∆
!Γ `!A, ?∆

[R!]

!Γ, A `?∆
!Γ, ?A `?∆ [L?]

Γ ` A, ∆
Γ `?A, ∆

[R?]

Structural Rules

Γ, B, A,Γ′ ` ∆
Γ, A, B,Γ′ ` ∆

[LP ]
Γ ` ∆, B, A,∆′

Γ ` ∆, A, B,∆′ [RP ]

Γ, !A, !A ` ∆
Γ, !A ` ∆

[LC]
Γ `?A, ?A, ∆

Γ `?A, ∆
[RC]

Γ ` ∆
Γ, !A ` ∆

[LW ] Γ ` ∆
Γ `?A, ∆

[RW ]



2.1 Sequent Calculus 11

The general theme here is important: we note that certain global struc-
tural rules are too strong for our purposes, and we reintroduce controlled
versions of these structural rules. This theme will return in Chapter 3.

We again have an equivalence relating the multiplicatives, additives and
exponentials, reminding us of the arithmetical 2a+b = 2a · 2b.

!(A & B) ` !A⊗!B
!A⊗!B ` !(A & B)

?(A ⊕B) ` ?A

&

?B
?A

&

?B ` ?(A ⊕B)

2.1.4 Quantifiers

The first order quantifiers, which quantify over entities in our model, and
second order quantifiers, which quantify over formulas in our logic can be
added to propositional linear logic to produce first and second order linear
logic.

First Order Quantifiers

Γ, A[x := v] ` ∆
Γ, ∀x.A ` ∆

[L∀] Γ ` A, ∆
Γ ` ∀x.A, ∆

[R∀]

Γ, A ` ∆
Γ, ∃x.A ` ∆

[L∃]
Γ ` A[x := v], ∆

Γ ` ∃x.A, ∆
[R∃]

Second Order Quantifiers

Γ, A[X := B] ` ∆
Γ, ∀X.A ` ∆

[L∀] Γ ` A, ∆
Γ ` ∀X.A, ∆

[R∀]

Γ, A ` ∆
Γ, ∃X.A ` ∆

[L∃]
Γ ` A[X := B], ∆

Γ ` ∃X.A, ∆
[R∃]

Both the first and the second order rules for [R∀] and [L∃] have the con-
dition that there is no free occurrence of x (resp. X) in Γ or ∆.

2.1.5 Cut Elimination

One of the most important questions to ask of any logical system is the ques-
tion whether it is consistent, or in other words if there are sequents which are
unprovable in the logic.

Suppose, for example, there exists a proofD of the sequent ` 0. We could
extend this proof as follows.

Γ,0 ` ∆
[L0]

.... D
` 0

Γ ` ∆
[Cut]



12 Linear Logic

Therefore, if there exists a proof of ` 0 every sequent would be derivable
in the sequent calculus, and our logic would be inconsistent. But if we look
at the hypothetical proof D, which rule could be the last rule in this proof?
There is no [R0] rule and all other logical rules introduce logical connectives
other than 0. None of the structural rules apply either, as ` 0 is not a valid
conclusion for any of those rules. This means that the last rule must have
been [Cut]. So if we are able to eliminate the [Cut] rule we thereby show the
non-existence of a proof of ` 0.

Another way to look at consistency is to say it is impossible to have both
a proof of a formula A and a proof of the negation A⊥ of that formula. If we
have a proof D1 of A and a proof D2 of A⊥ we can combine them to prove
the empty sequent and finally to conclude `⊥.

.... D1

` A

.... D2

` A⊥
A ` [R⊥]

` [Cut]

`⊥ [R⊥]

Here, again, to prove the sequent `⊥ without using the cut rule, the last
rule must have been [R⊥], but none of the sequent rules except [Cut] can have
the empty sequent as its conclusion. So eliminating the cut rule guarantees
proofs D1 and D2 cannot both exist.

If we can prove that the cut rule is redundant, then we prove our calculus
is consistent as well. Gentzen (1934) introduced the carefully symmetric se-
quent calculus specifically for proving cut elimination and his original proof
can be adapted to linear logic as well, as stated by the following theorem.

Theorem 2.1 The cut rule is redundant in the sequent calculus for linear logic.

We will not prove this theorem here, but refer the reader to Roorda (1991)
or Troelstra (1992) for a proof of the cut elimination theorem, together with a
proof of strong normalization of the cut elimination operation. I will merely
give an example of the important cases.

In the case of a trivial cut, where one of the premisses of the [Cut] rule
was obtained by an axiom, we can eliminate the cut entirely, replacing

A ` A
[Ax]

.... D
Γ ` A, ∆

Γ ` A, ∆
[Cut]

by

.... D
Γ ` A, ∆

and symmetrically if the other premiss was obtained by an axiom.



2.2 Fragments of Linear Logic 13

LL Full Propositional Linear logic
MLL Multiplicative Linear Logic
MALL Multiplicative Additive Linear Logic
MELL Multiplicative Exponential Linear Logic
1 Suffix Indicating the First Order Fragment
2 Suffix Indicating the Second Order Fragment

Table 2.1: The different fragments of linear logic

Many of the cases of proving the theorem involve changing the order in
which rules are applied, but the crucial case occurs when the cut formula is
the main formula of both rules which provide the premisses to the [Cut] rule.
In the case of ‘⊗’ this will look as follows.

.... D1

Γ, A, B ` ∆
Γ, A⊗B ` ∆

[L⊗]

.... D2

Γ′ ` A, ∆′

.... D3

Γ′′ ` B, ∆′′

Γ′, Γ′′ ` A⊗B, ∆′, ∆′′ [R⊗]

Γ, Γ′, Γ′′ ` ∆, ∆′, ∆′′ [Cut]

Now, we can replace the cut on A⊗B by two simpler cuts: one on A and
one on B, as follows.

.... D1

Γ, A, B ` ∆

.... D2

Γ′ ` A, ∆′

Γ, Γ′, B ` ∆, ∆′ [Cut]
.... D3

Γ′′ ` B, ∆′′

Γ, Γ′, Γ′′ ` ∆, ∆′, ∆′′ [Cut]

Corollary 2.2 Linear logic is consistent.

Apart from consistency, another important consequence of cut elimina-
tion is the subformula property, which states that for a sequent proof we only
need to use subformulas of the end-sequent. Observing the sequent rules,
we see that for all rules except [Cut] the premisses of the rules use only sub-
formulas of the conclusion. From a computational point of view, this is very
interesting in that it restricts the sequents we have to consider when trying
the prove a sequent. However, cut elimination alone is insufficient to prove
decidability of the calculus. For the quantifiers, for example, we might have
to consider an infinite number of subformulas. In Section 2.6 we will discuss
the computational complexity of linear logic.

2.2 Fragments of Linear Logic

Often, we will be interested in fragments of linear logic. A number of frag-
ments and their abbreviations are shown in Table 2.1.



14 Linear Logic

Sometimes, the intuitionistic fragment of a logic is indicated by an I infix.
For example, MILL2 is the second order fragment of multiplicative, intu-
itionistic linear logic.

2.3 One Sided Sequent Calculus

Proposition 2.3 The following formulas are derivably equivalent.

1⊥ =⊥
⊥⊥ =1
>⊥ =0
0⊥ =>

(A⊥)⊥ =A
(A⊗B)⊥ =A⊥ &

B⊥

(A

&

B)⊥ =A⊥ ⊗B⊥

(A & B)⊥ =A⊥ ⊕B⊥

(A⊕B)⊥ =A⊥ & B⊥

(!A)⊥ =?A⊥

(?A)⊥ = !A⊥

(∀x.A)⊥ =∃x.A⊥

(∃x.A)⊥ =∀x.A⊥

Proof Trivial. 2

Because of the properties of negation given in proposition 2.3 (De Morgan
dualities, elimination of double negation) we can restrict negation to atomic
formulas, and move all formulas to the right hand side of the sequent. This
is just a matter of economy: a syntactic manipulation to reduce the number
of rules. The one sided sequent calculus is shown in Table 2.2 on the next
page.

In the [Ax] and [Cut] rules the formula A⊥ refers to the formula A with
the outer negation distributed to the atomic formulas and double negations
removed according to the equivalences of Proposition 2.3. So the negation in
these rules is a defined operation.

A valid instance of the axiom rule would be, for example

` (a⊥⊕?b)⊗ c, (a&!b⊥)

&

c⊥
[Ax]

2.4 Intuitionistic Linear Logic

The obtain the intuitionistic sequent calculus for linear logic from the clas-
sical formulation we simply restrict the succedent to contain at most one
formula. This means the connectives ‘?’ and ‘

&

’, which make essential use of
multiple succedent formulas in their sequent rules, need to be dropped.



2.4 Intuitionistic Linear Logic 15

` A, A⊥ [Ax] ` Γ, A ` A⊥, ∆
` Γ, ∆

[Cut]

` Γ, B, A,∆
` Γ, A, B,∆

[P ]

` Γ, ?A, ?A
` Γ, ?A

[C] ` Γ
` Γ, ?A

[W ]

`?Γ, A

`?Γ, !A
[!]

` Γ, A

` Γ, ?A
[?]

` Γ, A ` ∆, B

` Γ, ∆, A⊗B
[⊗]

` Γ, A, B

` Γ, A

&

B
[

&

]

` Γ, A ` Γ, B

` Γ, A & B
[&]

` Γ, Ai

` Γ, A0 ⊕A1
[⊕]

Table 2.2: One sided sequent calculus for linear logic

In fact, it turns out to be natural to restrict intuitionistic linear logic to
sequents with exactly one succedent formula, which means linear negation
‘(.)⊥’ and the constant ‘⊥’ are also out. This leaves us with the calculus
shown in Table 2.3 on the following page for (propositional) ILL.

2.4.1 Natural Deduction

The multiplicative, intuitionistic fragment of linear logic has an alternative
formulation to the sequent calculus. This is the natural deduction formulation
of multiplicative, intuitionistic linear logic, which are a natural restriction of
Gentzen’s (1934) natural deduction rules for intuitionistic logic. In a sense,
the proof nets introduced for multiplicative linear logic in Chapter 4 are the
classical counterpart of natural deduction.

Natural deduction proofs are tree-like structures where the conclusion is
the root of the tree and the hypotheses are the leaves. Instead of sequent left
(resp. right) rules we will have elimination (resp. introduction) rules for our
connectives.

Leaves can be either ‘active’ or ‘inactive’, some of the rules ‘discharging’
a single active hypothesis occurrence, for example

[A]n....
B

A−◦B [−◦I]n

where the bracketing indicates the hypothesis A is no longer active beyond
the rule with which it is coindexed.



16 Linear Logic

Multiplicatives

Γ, A, B ` C

Γ, A⊗B ` C
[L⊗] Γ ` A ∆ ` B

Γ, ∆ ` A⊗B
[R⊗]

Γ ` A ∆, B ` C

Γ, ∆, A−◦B ` C
[L−◦] Γ, A ` B

Γ ` A−◦B [R−◦]

Multiplicative Unit

Γ ` C
Γ,1 ` C

[L1] ` 1
[R1]

Additives

Γ, Ai ` C

Γ, A0 & A1 ` C
[L&] Γ ` A Γ ` B

Γ ` A & B
[R&]

Γ, A ` C Γ, B ` C

Γ, A⊕B ` C
[L⊕]

Γ ` Ai

Γ ` A0 ⊕A1
[R⊕]

Additive Units

Γ,0 ` C
[L0]

Γ ` > [R>]

Exponentials

Γ, A ` C

Γ, !A ` C
[L!] !Γ ` A

!Γ `!A [R!]

Structural Rules

Γ, B, A,∆ ` C

Γ, A, B,∆ ` C
[LP ]

Γ, !A, !A ` C

Γ, !A ` C
[LC] Γ ` C

Γ, !A ` C
[LW ]

Table 2.3: Sequent calculus for intuitionistic linear logic

If there is a natural deduction proof with undischarged leaves Γ for A, we
will write this as Γ ` A or as a tree like

Γ....
A

The natural deduction rules for multiplicative intuitionistic linear logic
are shown in Table 2.4 on the next page.

The square brackets in the [−◦I] and [⊗E] rules indicate these rules dis-



2.4 Intuitionistic Linear Logic 17

Hypothesis

A

Logical Rules

A A−◦B
B

[−◦E]

[A]i....
B

A−◦B [−◦I]i

A⊗B

[A]i [B]i....
C

C
[⊗E]i A B

A⊗B
[⊗I]

Table 2.4: The natural deduction calculus MILL

charge exactly one occurrence of the named formulas.
The [⊗E] rule appears a bit strange: in intuitionistic logic, there are two

[∧E] rules, which look as follows.

A ∧B
A

[∧E] A ∧B
B

[∧E]

From the linear point of view, however, these would be the natural de-
duction rules for the additive conjunction ‘&’. What we would like the write
for the multiplicative conjunction would be the following rule

A⊗B
A B

[⊗E′]

but this rule does not conform to the tree-like structure of natural deduction
proofs. Comparing rule [⊗E′] to rule [⊗E], we see that the latter is merely a
way of writing the former rule in such a way that it respects the structure of
natural deduction proofs. We will see in Chapter 7 that moving to a calculus
with multiple conclusions allows us to give a rule very similar to the [⊗E′]
rule above. For the remainder of this chapter, however, we will use the [⊗E]
rule.

2.4.2 The Curry-Howard Isomorphism

The main interest of natural deduction lies in the Curry-Howard isomor-
phism; by interpreting functional types as implicational formulas and pair-
ing types as conjunctive formulas, we can see that constructing a term t of
type A in the simply typed lambda calculus corresponds to finding a natural
deduction proof D of the formula corresponding to A.

We will make this a bit more precise below



18 Linear Logic

Definition 2.4 (Types) The types are defined inductively as follows

(i) we have a finite number T1, . . . , Tn of atomic types.

(ii) if T and U are types, T → U is a type (function space).

(iii) if T and U are types, T × U is a type (Cartesian product).

Atomic formulas correspond to atomic types, the implication ‘−◦’ will
correspond to ‘→’, and the product ‘⊗’ will correspond to ‘×’.

We can now define the set of linear lambda terms as follows

Definition 2.5 (Linear Lambda Terms) The linear lambda terms are defined in-
ductively as follows

(i) for each type T we have a (countably infinite) supply x, y, z, . . . of variables of
that type.

(ii) if t is a term of type T → U and u is a term of type T then (t u) is a term of
type U .

(iii) if t is a term of type U and x is a term of type T which occurs exactly once
in t, then λx.t is a term of type T → U .

(iv) if u is a term of type U ×V and t is a term of type T in which a term x of type
U and a term y of type V occur exactly once then t with π1u substituted for x
and π2u substituted for y is also a term of type T .

(v) if t is a term of type T and u is a term of type U then 〈u, v〉 is a term of type
T × U .

An alternative way to define the set of linear lambda terms is given in
(Abramsky 1993).

Just as the set of MILL proofs is a proper subset of of the set of intuition-
istic proofs, the set of linear lambda terms is a proper subset of the set of
lambda terms. We get the usual definition of lambda terms by dropping the
‘occurs exactly once’ restriction of case (iii) and case (iv). Case (iv) without
this restriction is equivalent to the more familiar.

(iv) if u is a term of type U × V then π1u is a term of type U and π2u is a term of
type V .

We will make the isomorphism fully explicit by presenting a ‘semanti-
cally’ labeled version of the natural deduction calculus from the previous
section in Table 2.5 on the facing page, where the term operations mirror the
rules. x, y, z denote fresh variables and t, u, v denote arbitrary lambda term
labels. A term of the form t[x := u] corresponds to the term t where the term
u is substituted for all free occurrences of the variable x.

For the sequent calculus we don’t have such a 1–1 correspondence be-
tween proofs and lambda terms. The following two sequent proofs, for ex-
ample



2.4 Intuitionistic Linear Logic 19

Hypothesis
x : A

Logical Rules

u : A⊗B

[x : A]n [y : B]n....
t : C

t[x := π1u, y := π2u] : C
[⊗E]n t : A u : B

〈t, u〉 : A⊗B
[⊗I]

t : A−◦B u : A

(tu) : B
[−◦E]

[x : A]n....
t : B

λx.t : A−◦B [−◦I]n

Table 2.5: The natural deduction calculus MILL with semantic labeling

B ` B C ` C
B, B−◦C ` C

[L−◦]
A ` A

A, A−◦B, B−◦C ` C
[L−◦]

A ` A B ` B
A, A−◦B ` B

[L−◦]
C ` C

A, A−◦B, B−◦C ` C
[L−◦]

translate to the same natural deduction proof

A A−◦B
B

[−◦E]
B−◦C

C
[−◦E]

2.4.3 Normalisation

For the linear lambda terms we have the following set of equivalences, a beta
and eta equivalence for each type. The equivalences for the implicational
types have the restriction of t being free for u resp. x. We can always meet
this restriction by renaming variables when conflicts occur.

(λx.t)u =β t[x := u] λx.(tx) =η t
πi〈t1, t2〉 =β ti 〈π1t, π2t〉 =η t

Though equivalences, we will usually apply them from left to right as
asymmetric conversions, in which case we will call the left hand side of the
equivalence a redex and the right hand side its contractum.

Definition 2.6 (Reduction) We will say a term t converts to a term u if it can be
obtained by replacing a subterm which is a redex by its contractum.

We will say a term t reduces to a term u (t ; u) if it can be obtained by zero or
more conversion steps from t.



20 Linear Logic

Definition 2.7 (Normal form) A term is beta normal or just normal iff it does
not contain any beta redexes.

If a term t reduces to a term u and u is normal, we will call u a normal form of
t.

Proposition 2.8 For every term t there exists a normal form u such that t ; u,
moreover if t ; u′ and u′ is normal then we have u ≡ u′.

We will not prove this proposition here, but refer the interested reader to
(Girard, Lafont & Taylor 1988).

According to the Curry-Howard isomorphism, the conversions on terms
correspond to conversions on proofs. For example, beta conversion for the
implicational types corresponds to replacing the proof

[x : B]k.... D2

t : A
λx.t : B−◦A [−◦I]k

.... D1

u : B

(λx.t)u : A
[−◦E]

by a (simpler) proof, where instead of hypothesising a proof of B, we use
proof D1 of B directly

.... D1

u : B.... D2

t[x := u] : A

We will call a natural deduction proof normal iff its corresponding lambda
term is normal. In (Girard et al. 1988, p4̇1), Girard calls normal natural de-
duction proofs ‘morally equivalent’ to cut free sequent proofs, and indeed
many of the pleasant properties of the cut free sequent calculus, such as the
subformula property and consistency have corresponding notions in natural
deduction.

2.5 Linguistic Applications

In this section, I will present an overview of the linguistic applications of
the various connectives of linear logic. We will note that most of the groups
suggest at least some possible application to linguistic phenomena.

2.5.1 Multiplicatives

The core of our linguistic applications, and the main focus of this book are
the multiplicatives.

Using s as the formula expressing a sentence, np as the formula express-
ing a noun phrase and n as the formulas representing a common noun, we
can use linear implication to assign formulas to words, for example like.



2.5 Linguistic Applications 21

l(vito) = np
l(michael) = np
l(sollozzo) = np
l(orange) = n
l(an) = n−◦np
l(sleeps) = np−◦s
l(shoots) = np−◦(np−◦s)
l(buys) = np−◦(np−◦s)

Using this lexicon, we can derive ‘Vito buys an orange’ as a valid sentence
according to our grammar as follows.

np ` np
[Ax]

n ` n
[Ax]

np ` np
[Ax]

n−◦np, n ` np
[L−◦]

s ` s
[Ax]

np−◦s, n−◦np, n ` s
[L−◦]

np, np−◦(np−◦s), n−◦np, n ` s
[L−◦]

We can also use the simple multiplicative fragment to encode long dis-
tance dependencies like wh extraction. A wh word, like ‘which’ essentially
fulfills two roles. Firstly, it serves as a modifier to a noun. Secondly, it selects
for a sentence from which an np is missing, as follows.

(2.1) oranges which Vito bought [ ]np.

(2.2) oranges which Michael thought Vito would buy [ ]np.

We can capture these facts by assigning the word ‘which’ the following
formula.

l(which) = (np−◦s)−◦(n−◦n)

Using this, we can derive ‘oranges which Vito bought’ as follows.

np ` np
[Ax]

np−◦s ` np−◦s [Ax]

np, np−◦(np−◦s) ` np−◦s [L−◦] n ` n
[Ax]

n ` n
[Ax]

n, n−◦n ` n
[L−◦]

n, (np−◦s)−◦(n−◦n), np, np−◦(np−◦s) ` n
[L−◦]

The linguistic applications of ‘⊗’ and ‘

&

’ are less clear. It seems that in a
non-associative system, the non-equivalence of (A⊗B)−◦C and B−◦(A−◦C)
may necessitate the use of ‘⊗’. But, as far as I know there have been no
applications of ‘

&

’ which cannot be subsumed by ‘−◦’.

2.5.2 Additives

The prototypical linguistic use of the additives would be for the case of lexi-
cal ambiguity. When a word has two possible formulas A and B assigned to
it, we can combine these into the single formula A & B. Using this, we can
move lexical ambiguity into the logical part of our grammar system.



22 Linear Logic

For example a verb like ‘to believe’ can express a relation between two
persons, np’s in our interpretation, or between a person and a statement, an
s in our interpretation, as indicated by the following examples.

(2.3) Sollozzo believes Vito.

(2.4) Sollozzo believes Vito trusts him.

We can express this by two lexical assignments as follows

l(believes) = np−◦(np−◦s)
l(believes) = s−◦(np−◦s)

or we can collapse the two assignment to the single.

l(believes) = np−◦(np−◦s) & s−◦(np−◦s)

But now we can use the following theorem

A ` A
[Ax]

C ` C
[Ax]

A, A−◦C ` C
[L−◦]

A, (A−◦C)&(B−◦C) ` C
[L&]

B ` B
[Ax]

C ` C
[Ax]

B, B−◦C ` C
[L−◦]

B, (A−◦C)&(B−◦C) ` C
[L&]

A⊕B, (A−◦C)&(B−◦C) ` C
[L⊕]

(A−◦C)&(B−◦C) ` (A⊕B)−◦C [R−◦]

to move the additive ‘inside’ and generate a more compact lexical entry,
where the part of the initial two assignments which is identical is shared.

l(believes) = (s⊕ np)−◦(np−◦s)

Note that from the point of view of the one sided sequent calculus all
examples use ‘⊕’. It is unclear if we can find a similar use for ‘&’.

A second use of additives is given by Bayer & Johnson (1995) and which
is also used by Dörre & Manandhar (1995). They make use of the additives
to represent grammatical features, operating on the restriction that additives
can never have scope over multiplicatives, only over other additives and
atomic formulas.

As an example, assume we add atomic formulas 1st, 2nd and 3rd, indi-
cating first, second and third person, and atomic formulas sng and plr indi-
cating singular and plural, we can give a lexicon with features as follows.

l(I) = np&(1st&sng)
l(we) = np&(1st&plr)
l(you) = np&(1st&(sng ⊕ plr))
l(Luca) = np&(3rd&sng)
l(sleeps) = np&(3rd&sng)−◦s
l(sleep) = np&((1st⊕ 2nd)⊕ plr)−◦s

Now we can derive ‘I sleep’ as follows.



2.5 Linguistic Applications 23

np ` np
[Ax]

np&(1st&sng) ` np
[L&]

1st ` 1st
[Ax]

1st&sng ` 1st
[L&]

np&(1st&sng) ` 1st
[L&]

np&(1st&sng) ` 1st⊕ 2nd
[R⊕]

np&(1st&sng) ` (1st⊕ 2nd)⊕ plr
[R⊕]

np&(1st&sng) ` np&((1st⊕ 2nd)⊕ plr)
[R&]

s ` s
[Ax]

np&(1st&sng), np&((1st⊕ 2nd)⊕ plr)−◦s ` s
[R−◦]

2.5.3 Units

It is more difficult to find convincing applications of the multiplicative or
additive units. One possible application was suggested by Claudia Casadio
(personal communication), who proposes using the units for pro drop phe-
nomena, i.e. the phenomenon that in some languages the subject is optional
because the inflection of the verb contains enough information to extrapolate
it.

We can use a lexical assignment like the following to indicate the the Por-
tuguese form ‘falo’ (I speak) can be used without an explicit subject, forget-
ting about grammatical features for the moment.

l(falo) = (np−◦s)&s

Casadio’s proposal corresponds to moving the additive inwards, much
like we did with the lexical assignment to ‘believes’ on page 22, noting that
(np−◦s)&s is equivalent to (np−◦s)&(1−◦s), so we arrive at the following
assignment.

l(falo) = (np⊕ 1)−◦s

The general method used here is that a formula A ⊕ 1 represents an op-
tional A argument. When there are multiple optional arguments, represent-
ing each of them like this will be more economic than listing all possible in-
stantiations of the arguments through the use of additives without constants.

2.5.4 Exponentials

The logical rules for the exponentials provide us with an other method of
encoding linguistic features. Hodas (1996) proposes the use of the exponen-
tials, specifically of the [!R] logical rule to block subject extraction. This is the
restriction on wh extraction that an np cannot be extracted from inside the
subject. Compare the following two examples.

(2.5) Cannoli which [ ]np tastes good.

(2.6) ∗ Cannoli which [ the cooking of [ ]np ]np is simple.



24 Linear Logic

The basic idea is that an np island is represented by the formula !np. Be-
cause !np ` np an np island can function as a normal np, but because np 6`!np
a normal np isn’t necessarily an np island.

Now if we use the following lexical assignments, where we give some
complex expressions a single entry for the sake of simplicity

l(cannoli) = n
l(is simple) = !np−◦s
l(tastes good) = !np−◦s
l(the cooking of) = np−◦np
l(which) = (!np−◦s)−◦(n−◦n)

we can derive the first but not the second example, as required. We can de-
rive ‘tastes good’ as an !np−◦s by simply using the axiom rule. On the other
hand ‘the cooking of is simple’ cannot be derived as an !np−◦s, as demon-
strated by the proof attempt shown below.

np ` np
[Ax]

!np ` np
[L!]

FAIL
np `!np s ` s

[Ax]

np, !np−◦s ` s
[L−◦]

!np, np−◦np, !np−◦s ` s
[L−◦]

np−◦np, !np−◦s `!np−◦s [R−◦]

2.5.5 Quantifiers

The first order quantifiers provide us with yet another way of encoding lin-
guistic features. We will discuss more linguistic applications of the first order
quantifiers in Chapter 5, where the arguments of predicates will be used to
encode string positions.

The second order quantifiers give us a way of encoding so-called ‘poly-
morphic’ words, like ‘and’ and ‘or’, which can combine almost any two ex-
pressions into a single expression of the same type.

(2.7) Michael and Sollozzo meet.

(2.8) Vito stumbles and falls.

(2.9) A dangerous and influential man.

Given the following lexicon

l(and) = ∀X.X−◦(X−◦X)
l(falls) = np−◦s
l(or) = ∀X.X−◦(X−◦X)
l(stumbles) = np−◦s
l(vito) = np

we can derive ‘Vito stumbles and falls’ as follows.



2.5 Linguistic Applications 25

np−◦s ` np−◦s [Ax]
np−◦s ` np−◦s [Ax]

np ` np
[Ax]

s ` s
[Ax]

np, np−◦s ` s
[L−◦]

np, (np−◦s)−◦(np−◦s), np−◦s ` s
[L−◦]

np, np−◦s, (np−◦s)−◦((np−◦s)−◦(np−◦s)), np−◦s ` s
[L−◦]

np, np−◦s, ∀X.X−◦(X−◦X), np−◦s ` s
[R∀]

2.5.6 Structural Rules

It is unclear to me if we can find linguistic applications for the structural
rule of weakening, but the structural rule of contraction has been proposed
for an analysis of parasitic gapping, for example by Morrill (1994). Parasitic
gapping is the phenomenon that in some cases a hypothetical resource can
be multiplied, apparently unlimited.

(2.10) Vito is a man everyone who knows [ ]np respects [ ]np.

To account for this kind of behavior, we can modify the lexical entry for
‘which’ from page 21, replacing the hypothetical np formula by np⊗!np.

l(which) = ((np⊗!np)−◦s)−◦(n−◦n)

Another application of contraction would be ellipsis, where part of the
sentence, typically the verb phrase, is not repeated in a clause following the
initial use. Examples include the following.

(2.11) Vito likes wine and Clemenza cannoli.

(2.12) Michael took his gun before McCluskey did.

In Example 2.11, the verb ‘likes’ is understood to be the verb of the second
clause, even though it does not explicitly appear there. Example 2.12 is a
classic example of the distinction between strict and sloppy readings: the
elliptical ‘his gun’ from the subordinate clause can refer to both ‘Michael’
(strict reading) and to ‘McCluskey’ (sloppy reading).

Commutativity is a rule which predicts word order is irrelevant. For ex-
ample, given the previous proof of ‘Vito buys an orange’, we can extend it
by applying the permutation rule several times.

np ` np
[Ax]

n ` n
[Ax]

np ` np
[Ax]

n−◦np, n ` np
[L−◦]

s ` s
[Ax]

np−◦s, n−◦np, n ` s
[L−◦]

np, np−◦(np−◦s), n−◦np, n ` s
[L−◦]

np−◦(np−◦s), np, n−◦np, n ` s
[LP ]

np−◦(np−◦s), n−◦np, np, n ` s
[LP ]

n−◦np, np−◦(np−◦s), np, n ` s
[LP ]



26 Linear Logic

But this would be a proof of ‘An buys Vito orange’, which is clearly un-
grammatical. Even languages with relatively free word order are not glob-
ally commutative. So the rule of commutativity, if we need it, needs to be
restricted to certain formulas, as already done with the structural rules of
weakening and contraction.

There is a final pair of structural rules in linear logic, which is usually
treated even more implicitly than the commutativity rule. It is the rule of
associativity , which states the the structure imposed by the comma in the
sequent calculus is irrelevant.

Γ[(∆1, (∆2, ∆3))] ` Γ′

Γ[((∆1, ∆2), ∆3)] ` Γ′ [LAss1]
Γ[((∆1, ∆2), ∆3)] ` Γ′

Γ[(∆1, (∆2, ∆3))] ` Γ′ [LAss2]

We will discuss non-associative logics in more detail in Section 3.2.

2.5.7 Semantics

The Curry-Howard isomorphism, as discussed in Section 2.4.2, is a corre-
spondence between natural deduction proofs and linear lambda terms. Mon-
tague (1974) used first order intensional logic, which included the lambda
operator, for his compositional semantics of natural language and stipulated
a semantic rule for every syntactic rule in his system. But, as noted by van
Benthem (1987) in the context of proofs for the Lambek calculus with per-
mutation, we can use the Curry-Howard interpretation of natural deduction
proofs to generate the semantics of a derivation and afterwards substitute
the lexical meaning recipes. This makes the syntax-semantics interface com-
pletely regular and nonstipulative. Also, we can use any typed logical lan-
guage which includes the lambda operator as our semantic language. For ex-
ample, Muskens (1994) shows a type theoretic implementation of Discourse
Representation Theory (Kamp & Reyle 1993).

Example 2.9 Given the lexicon below, where we have given every word a lexical
semantics in addition to a linear logic formula.

l(shot) = np−◦(np−◦s)− λv.λw.shot(v, w)
l(someone) = (np−◦s)−◦s− λx.∃y.(x y)
l(vito) = np− vito

Note the difference between a regular np, like ‘Vito’ and a generalized quantifier
quantifier like ‘someone’. Because we want the generalized quantifier ‘someone’ to
take scope at sentence level, we assign it the type (np−◦s)−◦s. In this way semantic
intuitions, together with the Curry-Howard isomorphism, help us to assign the right
formulas to words in the lexicon. Conversely, the formulas correspond directly to the
semantics types, which helps us in assigning the right lambda term semantics to
words in our lexicon.

Now, consider the proof of ‘someone shot Vito’, in natural deduction format la-
beled with semantic terms, below.



2.5 Linguistic Applications 27

[x : np]1
z : np y : np−◦(np−◦s)

(y z) : np−◦s [−◦E]

((y z) x) : s
[−◦E]

λx.((y z) x) : np−◦s [−◦I]1
v : (np−◦s)−◦s

(v λx.((y z) x)) : s
[−◦E]

Substituting vito for x, λv.λw.shot(v, w) for y and λx.∃y.(x y) for v.

(λx.∃y.(x y) λz.((λv.λw.shot(v, w) z) vito)) =β

(λx.∃y.(x y) λz.(λw.shot(z, w) vito)) =β

(λx.∃y.(x y) λz.shot(z, vito)) =β

∃y.(λz.shot(z, vito) y) =β

∃y.shot(y, vito)

There is an alternative natural deduction proof for the sentence ‘someone shot
Vito’, which is presented below.

x : np

[z : np]1 y : np−◦(np−◦s)
(y z) : np−◦s [−◦E]

((y z) x) : s
[−◦E]

λz.((y z) x) : np−◦s [−◦I]1
v : (np−◦s)−◦s

(v λz.((y z) x)) : s
[−◦E]

The only difference with the previous proof is that the [−◦I] rule discharges the
other np formula. The resulting lambda term for this proof, after substitution and
beta reduction, would be

∃y.shot(vito, y)

which we would expect as the semantics of ‘Vito shot someone’. It turns out that the
problem here is the structural rule of commutativity, which is implicit in the natural
deduction formulation we have given. In Section 3.5, we will present a natural
deduction calculus which is explicit about the structural rules of associativity and
commutativity.

An interesting alternative take on natural language semantics and linear
logic is given by de Groote & Retoré (1996), where instead of performing
a substitution with lexical semantics, the lexical semantics is incorporated
directly as a separate derivation which is connected to the rest of the proof
by means of the cut rule.



28 Linear Logic

NP Complete MLL, MLL1
PSPACE Complete MALL
NEXPTIME Complete MALL1
EXPSPACE Hard MELL
RE Complete LL, MLL2

Table 2.6: Complexity results for different fragments of linear logic

2.6 Complexity

Now that we have seen linguistic applications of all families of connectives
in linear logic, we will look at the computational complexity of the different
fragments of linear logic.

There have been a number of results on the complexity of various frag-
ments of linear logic. An overview is given by Lincoln (1995). Table 2.6
summarizes the most important results.

At the moment, the only big unknown is MELL for which only a lower
bound has been proven by encoding the reachability problem of Petri nets in
it.

The NP Completeness result of MLL was proved by Kanovich (1991), and
also holds for the intuitionistic and the Horn clause fragment. This means
that it is unlikely we will find efficient theorem proving algorithms even for
this simplest fragment of linear logic.

Adding the additives moves us up to a PSPACE complete problem, while
adding the first order quantifiers will cause to logic to remain NP complete
in the multiplicative case, but move us to NEXPTIME completeness in the
multiplicative, additive case.

The exponentials and the second order quantifiers are computationally
quite powerful, the former making the logic EXPSPACE hard in the multi-
plicative case and undecidable in the multiplicative, additive case, the latter
already making the logic undecidable in the multiplicative case.

For our linguistic applications, we will be somewhat conservative with
respect to the complexity of the logics we will use. It is desirable to use a
logic which is in PSPACE, as this would not allow our logic to be overly ex-
pressive. Some computational linguists include polynomial parsability as a
demand on linguistic theory. I will confront this claim in Chapter 10, where I
will give a logical fragment for which derivability is decidable in polynomial
time.

For the remainder of this thesis, however, I will be perfectly happy to use
logics for which the decision procedures are in NP or in PSPACE. This is al-
ready a restriction, and one which will probably make it difficult for our logic
to deal with parasitic gapping and polymorphism, phenomena which seem
to require the exponentials and the second order quantifiers respectively. It
is unclear if we can restrict the exponentials in such a way that the decision
procedure is in PSPACE, but with respect to the second order quantifiers,
Perrier (1999) gives a PSPACE complete fragment of MALL2, which allows



2.7 Conclusions 29

at least the polymorphic cases we have discussed in Section 2.5.5.

2.7 Conclusions

Looking back, we see that by restricting the structural rules of contraction
and weakening, which apply freely in classical logic, we obtain as resource
sensitive logic, which lends itself well to linguistic applications. Most frag-
ments of linear logic suggest at least some linguistic phenomenon to which
the can be applied. However, a number of these fragments use computation-
ally heavy machinery.

The multiplicative intuitionistic fragment already allows us to capture
a large set of linguistic data, provided we restrict the structural rules even
further. This will be the main topic of the next chapter.





CHAPTER 3
LAMBEK CALCULI

W E have seen in the previous chapter how the various fragments of li-
near logic could be applied to linguistic purposes and what some of

the problems were with the logic as formulated.
In this chapter, we will discuss Lambek calculi, relate them to the mul-

tiplicative intuitionistic fragment of linear logic, and show how using them
solves many of the overgeneration problems we previously encountered.

3.1 Lambek Calculus

One of the main problems of applying linear logic to linguistics is the global
availability of the permutation rule. It makes the rather incorrect predication
that every natural language is closed under permutation. So, the commuta-
tivity rule should at least be restricted, much like contraction and weakening
are restricted in linear logic.

When we drop commutativity, we are immediately faced with the fact
that it is implicit in many of the sequent rules of multiplicative linear logic.
For example, the [L−◦] rule, repeated below, assumes that the main formula
of a rule can always be moved to the rightmost position of the antecedent,
which we can generally not demand in a non-commutative setting. The [R−◦]
rule on the other hand, assumes that the position of the active formula A with
respect to the antecedent Γ is irrelevant.

∆ ` A Γ, B ` C

Γ, ∆, A−◦B ` C
[L−◦] Γ, A ` B

Γ ` A−◦B [R−◦]

Let’s present two alternative formulations for the sequent rules for linear
implication.



32 Lambek Calculi

A ` A
[Ax]

∆ ` A Γ, A, Γ′ ` C

Γ, ∆, Γ′ ` C
[Cut]

Γ, A, B,∆ ` C

Γ, A •B, ∆ ` C
[L•] Γ ` A ∆ ` B

Γ, ∆ ` A •B
[R•]

∆ ` B Γ, A, Γ′ ` C

Γ, A/B,∆, Γ′ ` C
[L/]

Γ, B ` A

Γ ` A/B
[R/]

∆ ` B Γ, A, Γ′ ` C

Γ, ∆, B\A, Γ′ ` C
[L\] B, Γ ` A

Γ ` B\A [R\]

Table 3.1: The sequent calculus L

∆ ` A Γ, B,Γ′ ` C

Γ, B◦−A, ∆, Γ′ ` C
[L◦−]

Γ, A ` B

Γ ` B◦−A
[R◦−]

∆ ` A Γ, B,Γ′ ` C

Γ, ∆, A−◦B, Γ′ ` C
[L−◦] A, Γ ` B

Γ ` A−◦B [R−◦]

Under global commutativity all left and right rules presented so far are
equivalent. Without it, A−◦B, with the left rule shown above, looks for its A
argument to the left, while B◦−A looks for its argument to the right. When
we write A\B instead of A−◦B, A/B instead of A◦−B and A • B instead
of A ⊗ B, the logical rules for non-commutative multiplicative intuitionistic
linear logic are shown in Table 3.1.

Interestingly, this logic is known as the Lambek calculus L (Lambek 1958)
and it precedes linear logic by many years. Lambek proved cut elimination
for his calculus as well and this result holds for all of the extensions to the
original calculus discussed in this chapter. This means the Lambek calcu-
lus is consistent, has the subformula property and, as a consequence of the
subformula property and the absence of contraction and weakening, that the
Lambek calculus is decidable. We will look at an alternate proof of cut elimi-
nation for Lambek calculi in Section 7.6.

Lambek’s formulation of the calculus included the additional restriction
that antecedents cannot be empty. Though from a logical point of view the
derivability of ` a−◦a or ` a/a makes perfect sense, there are linguistic rea-
sons to reject it.

Example 3.1 Given the lexicon of Table 3.2 on the facing page we can derive the
sentence ‘Ripley saves a colonist’ as shown in Figure 3.1 on the next page.

Some characteristic theorems of multiplicative linear logic are not deriv-
able in L, for example.



3.2 Non-Associative Lambek Calculus 33

l(ripley) = np
l(bishop) = np
l(newt) = np
l(colonist) = n
l(a) = np/n
l(sleeps) = np\s
l(likes) = (np\s)/np
l(saves) = (np\s)/np

Table 3.2: Example L lexicon

np ` np
[Ax]

s ` s
[Ax]

np, np\s ` s
[L\] n ` n

[Ax]
np ` np

[Ax]

np/n, n ` np
[L/]

np, (np\s)/np, np/n, n ` s
[L/]

Figure 3.1: Example L derivation

A •B 0 B •A A⊗B `B ⊗A
A/B 0 B\A B−◦A`B−◦A

(A •B)\C 0 (B\C)/A (A⊗B)−◦C `A−◦(B−◦C)
0 A/A `A−◦A

3.2 Non-Associative Lambek Calculus

Where the Lambek calculus is only sensitive to the order of the antecedent,
conventional linguistic wisdom teaches that the structure of the antecedent
also plays a role. Whereas the structural rule of commutativity is usually ap-
plied implicitly in the sequent formulation of linear logic, the structural rule
of associativity is implicit in the sequent formulation of L. Lambek (1961) also
introduced the non-associative Lambek calculus NL, where the antecedents
are trees of formulas.

In the sequent formulation of NL, which is shown in Table 3.3 on the fol-
lowing page, Γ[∆] indicates an antecedent tree Γ with a distinguished subtree
occurrence ∆.

Again, removing structural rules restricts the derivability of sequents. Be-
low, we present some typical sequents which are derivable in L but underiv-
able in NL.

A/B 0NL (A/C)/(B/C) A/B `L (A/C)/(B/C)
(A/B) • (B/C) 0NL A/C (A/B) • (B/C)`L A/C

(A\B)/C 0NL A\(B/C) (A\B)/C `L A\(B/C)
A/(B • C) 0NL (A/C)/B A/(B • C)`L (A/C)/B



34 Lambek Calculi

A ` A
[Ax]

∆ ` A Γ[A] ` C

Γ[∆] ` C
[Cut]

Γ[A ◦ B] ` C

Γ[A •B] ` C
[L•] Γ ` A ∆ ` B

Γ ◦ ∆ ` A •B
[R•]

∆ ` B Γ[A] ` C

Γ[A/B ◦ ∆] ` C
[L/]

Γ ◦ B ` A

Γ ` A/B
[R/]

∆ ` B Γ[A] ` C

Γ[∆ ◦ B\A] ` C
[L\] B ◦ Γ ` A

Γ ` B\A [R\]

Table 3.3: The sequent calculus NL

LP

NL

L NLP
�I

I�com ass

ass com

Figure 3.2: The different Lambek calculi and their relations

We can recover the associative Lambek calculus L from NL by adding the
structural rules of associativity.

Γ[∆1 ◦ (∆2 ◦ ∆3)] ` C

Γ[(∆1 ◦ ∆2) ◦ ∆3] ` C
[Ass1]

Γ[(∆1 ◦ ∆2) ◦ ∆3] ` C

Γ[∆1 ◦ (∆2 ◦ ∆3)] ` C
[Ass2]

We can also add the rule of commutativity to our system again, collaps-
ing the two implications again and moving us to the Lambek calculus with
Permutation LP which is an alternative formulation of MILL without empty
antecedents.

Γ[∆2 ◦ ∆1] ` C

Γ[∆1 ◦ ∆2] ` C
[Com]

It is also possible to add the structural rule of commutativity without
adding associativity. The resulting logic is the non-associative Lambek cal-
culus with permutation NLP, though the practical applications of this logic
appear quite limited.

Summarizing, the logical systems discussed so far in this chapter can be
related to eachother as indicated by Figure 3.2.



3.3 Multimodal Lambek Calculus 35

3.3 Multimodal Lambek Calculus

A problem with the setup describe in the previous section is that while we
can add structural rules when we need them, we can do so only at a global
level. But this means that once we encounter a linguistic phenomenon which
requires commutativity or associativity, adding the structural rules we need
will collapse our logic to the next higher level.

For a solution to this, we could add controlled versions of these struc-
tural rules, as linear logic did with contraction and weakening, with struc-
tural modalities licensing the use of structural rules. We will discuss that
solution in the next section. Here we will use a different solution, proposed
by Moortgat & Oehrle (1993), who introduced a multimodal version of the
non-associative Lambek calculus.

In the multimodal setting, we will have different families of connectives,
representing different modes of composition. Given a mode i, it induces a
family of connectives {A/iB, A •i B, A\iB} and a corresponding structural
connective Γ ◦i ∆. More formally.

Definition 3.2 (Multimodal Formulas) Over a finite set of atomic formulas A
and for each member i of a finite set of indices I , the set of formulas is defined as
follows.

F ::= A
| F/iF
| F •i F
| F\iF

Definition 3.3 (Antecedent Terms) Over the set of formulas F and all elements
i of the set of indices I , we define the set of antecedent terms T as follows

T ::= F
| T ◦i T

In Table 3.4 we see the definition of NLR, which is the sequent calculus
of NL with the addition of mode information and a separate set of structural
rules R. As before, the notation Γ[∆] will mean the antecedent term Γ has
a distinguished subterm occurrence ∆. In all logical rules the logical con-
nective is coindexed with the structural punctuation. For the rules [R/i],[R\i]
and [L•i] this coindexing acts as a condition in forward chaining proof search,
allowing the connective to be eliminated only if it appears in the right con-
text.

The rules in the identity group are mode-independent.
Every structural rule is schematically of the following form shown in Ta-

ble 3.4: inside an antecedent term Γ we replace a tree Ξ, which is an an-
tecedent term with variables ∆1 to ∆n as its leaves, by a tree Ξ′ where π is a
permutation on the leaves.

Definition 3.4 (Linear Structural Rules) A structural rule is linear if it is of the
following form.



36 Lambek Calculi

Identity

A ` A
[Ax]

Γ[B] ` C ∆ ` B

Γ[∆] ` C
[Cut]

Logical Rules

Γ[A ◦i B] ` C

Γ[A •i B] ` C
[L•i] Γ ` A ∆ ` B

Γ ◦i ∆ ` A •i B
[R•i]

∆ ` B Γ[A] ` C

Γ[A/iB ◦i ∆] ` C
[L/i]

Γ ◦i B ` A

Γ ` A/iB
[R/i]

∆ ` B Γ[A] ` C

Γ[∆ ◦i B\iA] ` C
[L\i]

B ◦i Γ ` A

Γ ` B\iA
[R\i]

Structural Rules

Γ[Ξ′[∆1, . . . ,∆n]] ` C

Γ[Ξ[∆π1 , . . . ,∆πn ]] ` C
[SR]

Table 3.4: The sequent calculus NLR

Γ[Ξ′[∆1, . . . ,∆n]] ` C

Γ[Ξ[∆π1 , . . . ,∆πn ]] ` C
[SR]

(i) Ξ′ is non-empty.

(ii) π is a permutation on the leaves.

The main advantage of formulating the logic this way is that we can now
provide modalized versions of the structural rules. For example, if we want
to claim that mode a is associative, we can add the structural rules for this
specific mode as follows.

Γ[∆1 ◦a (∆2 ◦a ∆3)] ` C

Γ[(∆1 ◦a ∆2) ◦a ∆3] ` C
[Ass1]

Γ[(∆1 ◦a ∆2) ◦a ∆3] ` C

Γ[∆1 ◦a (∆2 ◦a ∆3)] ` C
[Ass2]

Suppose we also have a mode n, representing a non-associative family of
connectives. We can relate this mode to the associative mode a by means of
a structural rule as follows.

Γ[∆1 ◦a ∆2] ` C

Γ[∆1 ◦n ∆2] ` C
[Link]

Now, using this postulate we can derive a/ab ` a/nb as follows.



3.3 Multimodal Lambek Calculus 37

a ` a
[Ax]

b ` b
[Ax]

a/ab ◦a b ` a
[L/a]

a/ab ◦n b ` a
[Link]

a/ab ` a/nb
[R/n]

The converse will be excluded, because we can only apply the [L/] rule
when the mode on the logical and the structural connective are identical.

FAIL
a/nb ◦a b ` a

a/nb ` a/ab
[R/a]

In other words, given a formula a/ab which has the right to reassociate,
we can forfeit that right and turn in into a non-associative formula a/nb, but
the converse does not hold. This is in the spirit of the [L!] rule from linear
logic, where a formula which does allow contraction and weakening can be
used as a weaker formula which doesn’t use these rules.

Interestingly, the opposite linking relation is also possible, where a/nb `
a/ab is a theorem and the converse is not. Hepple (1994a) and de Groote
(1996) subscribe to this point of view, where the intuition is that if you can
derive a formula a/nb, that is without using associativity, then you can cer-
tainly derive a/ab where the use of associativity is allowed.

We can also formulate more complex interactions between the different
modes, for example modes which have special interaction properties when
they occur together.

Example 3.5 An example of these ‘mixed’ structural rules are the following ver-
sions of associativity and commutativity, proposed by Moortgat & Oehrle (1994) to
deal with phenomena like Dutch verb raising, which are outside the scope of uni-
modal L.

Γ[(∆1 ◦0 ∆3) ◦1 ∆2] ` C

Γ[(∆1 ◦1 ∆2) ◦0 ∆3] ` C
[MC]

Γ[∆1 ◦1 (∆2 ◦0 ∆3) ` C

Γ[(∆1 ◦1 ∆2) ◦0 ∆3] ` C
[MA]

We can use these postulates, in combination with the Dutch lexicon of Table 3.5
on the next page, to give an account of verb raising in Dutch subordinate clauses.

Figure 3.3 shows a derivation of ‘(dat) Ripley Newt wil redden’.
Observe, however, that we can now also derive ‘∗(dat) Ripley wil Newt redden’

by omitting the last rule of the proof, resulting in a sentence which is an ungram-
matical subordinate clause. In the next section we will introduce tools to restrict the
generation of these kinds of ungrammatical sentences.



38 Lambek Calculi

l(ripley) = np
l(newt) = np
l(wil) = (np\1s)/0inf
l(redden) = np\1inf

Table 3.5: Example verb raising lexicon

np ` np
[Ax]

inf ` inf
[Ax]

np ` np
[Ax]

s ` s
[Ax]

np ◦1 np\1s ` s
[L\1]

np ◦1 ((np\1s)/0inf ◦0 inf)
[L/0]

np ◦1 ((np\1s)/0inf ◦0 (np ◦1 np\1inf)) ` s
[L\1]

np ◦1 (np ◦1 ((np\1s)/0inf ◦0 np\1inf)) ` s
[MC]

Figure 3.3: Derivation of ‘(dat) Ripley Newt wil redden’

3.4 Unary Operators

The logical rules for the structural modalities of linear logic are in fact the
sequent formulation of the modal logic S4, that is, the modal logic character-
ized by the following axioms.

!A, !(A−◦B) `!B K
!A ` A T
!A `!!A 4

These axioms are easily derivable as theorems of the sequent formulation
of linear logic. The first applications of structural modalities, for example by
Morrill, Leslie, Hepple & Barry (1990) and Hepple (1990) used the (intuition-
istic) S4 sequent rules of ‘!’ adding modalized versions of structural rules like
commutativity, much like linear logic did for weakening and contraction.

However, just like we made the multiplicative connectives of linear logic
more fine-grained by restricting the structural rules, we can make the struc-
tural modalities more fine-grained by restricting the structural rules which
are ‘hidden’ in the sequent formulation of the S4 rules. We do this in such a
way that S4 is just one of many possible packages of structural rules.

The non-associative Lambek calculus with the unary connectives ‘3’ and
‘2↓’ has been first proposed by Moortgat (1996b). ‘3’ behaves like a future
possibility operator from temporal logic, whereas ‘2↓’ behaves like a past ne-
cessity operator. They relate to eachother like they would in temporal logic.

32↓A ` A ` 2↓3A

However, because in the Kripke models for our system the binary connec-
tives are also modal operators, some truths which hold in (minimal) modal
logic, notably the K postulate, don’t necessarily hold in this logic.



3.4 Unary Operators 39

2↓A, 2↓(A\B) 0 2↓B K

Another difference with the modal operators for linear logic is that the
logical rules for the unary connectives don’t refer explicitly to modalized
formulas, as in the [R!] rule, but that the unary connectives have their own
structural counterpart, 〈.〉i.

More formally, when we allow different modes of composition for the
unary as well as the binary modes, the system NL3R looks as follows.

Definition 3.6 (Multimodal Formulas) Over a set of atomic formulas A, a set I
of binary indices and a set J of unary indices, we have the following set of formulas

F ::= A
| 3jF
| 2

↓
jF

| F/iF
| F •i F
| F\iF

Definition 3.7 (Antecedent Terms) Over the set of formulas F , we define the set
of antecedent terms T as follows

T ::= F
| 〈T 〉i
| T ◦i T

The unary connectives greatly extend the possible structural postulates.
We can have postulates which determine the properties of the unary opera-
tors, as in the case of modal logic.

Γ[〈∆〉1] ` C

Γ[∆] ` C
[T]

Γ[〈∆〉1] ` C

Γ[〈〈∆〉1〉1] ` C
[4]

We can also have interaction between the unary and binary modes of
composition with distribution principles, as in the modal K postulate.

Γ[〈∆1〉1 ◦0 〈∆2〉1] ` C

Γ[〈∆1 ◦0 ∆2〉1] ` C
[K]

Example 3.8 Adding the [K] structural rule makes the K postulate a theorem as
follows.

A ` A
[Ax]

B ` B
[Ax]

A ◦0 A\0B
[L\0]

A ◦0 〈2↓
1(A\0B)〉1 ` B

[L2
↓
1]

〈2↓
1A〉1 ◦0 〈2

↓
1(A\0B)〉1 ` B

[L2
↓
1]

〈2↓
1A ◦0 2

↓
1(A\0B)〉1 ` B

[K]

2
↓
1A ◦0 2

↓
1(A\0B) ` 2

↓
1B

[R2
↓
1]

Similarly, the [T] and the [4] structural rule make the T and 4 postulate derivable.



40 Lambek Calculi

Identity

A ` A
[Ax]

Γ[B] ` C ∆ ` B

Γ[∆] ` C
[Cut]

Unary Connectives

Γ[〈A〉i] ` C

Γ[3iA] ` C
[L3i]

Γ ` C

〈Γ〉i ` 3iC
[R3i]

Γ[A] ` C

Γ[〈2iA〉i] ` C
[L2

↓
i ]

〈Γ〉i ` C

Γ ` 2iC
[R2

↓
i ]

Binary Connectives

Γ[A ◦i B] ` C

Γ[A •i B] ` C
[L•i] Γ ` A ∆ ` B

Γ ◦i ∆ ` A •i B
[R•i]

∆ ` B Γ[A] ` C

Γ[A/iB ◦i ∆] ` C
[L/i]

Γ ◦i B ` A

Γ ` A/iB
[R/i]

∆ ` B Γ[A] ` C

Γ[∆ ◦i B\iA] ` C
[L\i]

B ◦i Γ ` A

Γ ` B\iA
[R\i]

Structural Rules

Γ[Ξ′[∆1, . . . ,∆n]] ` C

Γ[Ξ[∆π1 , . . . ,∆πn ]] ` C
[SR]

Table 3.6: The sequent calculus NL3R

It is also possible to have weaker versions of the K postulate where the
unary mode distributes only to the left or the right branch of the binary
mode.

Γ[〈∆1〉i ◦j ∆2] ` C

Γ[〈∆1 ◦j ∆2〉i] ` C
[K1]

Γ[∆1 ◦j 〈∆2〉i] ` C

Γ[〈∆1 ◦j ∆2〉i] ` C
[K2]

Finally, we can have ‘modally licensed’ versions of the usual structural
rules in the same way linear logic had for the exponentials.

Γ[∆2 ◦a 〈∆1〉c] ` C

Γ[〈∆1〉c ◦a ∆2] ` C
[Com]

Γ[〈∆1〉c ◦a ∆2] ` C

Γ[∆2 ◦a 〈∆1〉c] ` C
[Com]

The unary connectives will also be the main way to encode linguistic
features in the multimodal Lambek calculus, but see Heylen (1999) for an
overview and comparison of several different possibilities.



3.4 Unary Operators 41

Γ[〈∆〉0] ` C

Γ[〈∆〉1] ` C
[I]

Γ[〈∆1〉0 ◦0 〈∆2〉0] ` C

Γ[〈∆1 ◦1 ∆2〉0] ` C
[K]

Γ[〈∆1〉1 ◦1 ∆2] ` C

Γ[〈∆1 ◦1 ∆2〉1] ` C
[K1]

Γ[∆1 ◦1 〈∆2〉1] ` C

Γ[〈∆1 ◦1 ∆2〉1] ` C
[K2]

Γ[(∆1 ◦0 ∆3) ◦1 ∆2] ` C

Γ[(∆1 ◦1 ∆2) ◦0 ∆3] ` C
[MC]

Γ[∆1 ◦1 (∆2 ◦0 ∆3) ` C

Γ[(∆1 ◦1 ∆2) ◦0 ∆3] ` C
[MA]

Table 3.7: Structural rules for Dutch verb raising

l(ripley) = np
l(newt) = np

l(wil) = 2
↓
0((np\1s)/0inf)

l(redden) = 2
↓
0(np\1inf)

Table 3.8: Revised verb raising lexicon

Example 3.9 In Example 3.5, we noted that the lexicon given there allowed us to de-
rive ungrammatical sentences in addition to grammatical ones. Moortgat & Oehrle
(1994) present the following solution to this: in addition to the two binary modes of
Example 3.5 we have two unary modes 0, representing lexical heads, and 1, repre-
senting phrasal heads. The structural rules are given in Table 3.7. Structural rule
[I] is an inclusion postulate indicating every lexical head is also a phrasal head. The
crucial structural rule is [K]: it states that two lexical heads combined in the binary
head adjunction mode 0 can be combined into one complex lexical head. The [K1]
and [K2] structural rules allow a phrasal head to move up through a phrasal binary
composition mode, and the [MC] and [MA] structural rules are unchanged from
before.

The lexicon for this fragment is shown in Table 3.8. Compared to Table 3.5 on
page 38 the only difference is that the verbs have been marked as lexical heads by
virtue of the ‘2↓’ as their main formula constructor.

Figure 3.4 shows a derivation of ‘(dat) Ripley Newt wil redden’.

Kurtonina & Moortgat (1997) show how we can use the unary modali-
ties to give embedding translations between the different unimodal logics
discussed in Section 3.2, which is reminiscent of the way the structural rules
of contraction and weakening are modally licensed in linear logic. What
is interesting, however, is that Kurtonina & Moortgat also give embedding
translations which restrict the structural rules of a system. For example, by
enriching L with the unary modalities, we can give a faithful translation of
NL formulas into the resulting logic L3.

In Chapter 9, when we have more tools available to analyze NL3R, we
will look at the complexity of this logic, and carve out a fragment which is



42 Lambek Calculi

np ` np
[Ax]

inf ` inf
[Ax]

np ` np
[Ax]

s ` s
[Ax]

np ◦1 np\1s ` s
[L\1]

np ◦1 ((np\1s)/0inf ◦0 inf)
[L/0]

np ◦1 ((np\1s)/0inf ◦0 (np ◦1 np\1inf)) ` s
[L\1]

np ◦1 ((np\1s)/0inf ◦0 (np ◦1 〈2↓
0np\1inf〉0)) ` s

[L2
↓
0]

np ◦1 (〈2↓
0((np\1s)/0inf)〉0 ◦0 (np ◦1 〈2↓

0(np\1inf)〉0)) ` s
[L2

↓
0]

np ◦1 (np ◦1 (〈2↓
0((np\1s)/0inf)〉0 ◦0 〈2↓

0(np\1inf)〉0)) ` s
[MC]

np ◦1 (np ◦1 〈2↓
0((np\1s)/0inf) ◦1 2

↓
0(np\1inf)〉0) ` s

[K]

np ◦1 (np ◦1 〈2↓
0((np\1s)/0inf) ◦1 2

↓
0(np\1inf)〉1) ` s

[I]

np ◦1 〈np ◦1 (2↓
0((np\1s)/0inf) ◦1 2

↓
0(np\1inf))〉1 ` s

[K2]

〈np ◦1 (np ◦1 (2↓
0((np\1s)/0inf) ◦1 2

↓
0(np\1inf)))〉1 ` s

[K2]

np ◦1 (np ◦1 (2↓
0((np\1s)/0inf) ◦1 2

↓
0(np\1inf))) ` 2

↓
1s

[R2
↓
1]

Figure 3.4: ‘(dat) Ripley Newt wil redden’ with structural control

PSPACE complete.

3.5 Natural Deduction

It is also possible to formulate a natural deduction calculus for the multimo-
dal Lambek calculus. Compared to natural deduction for multiplicative in-
tuitionistic linear logic, as discussed in Section 2.4.1, we now give a ‘sequent
style’ presentation of natural deduction, where we keep track of the undis-
charged hypotheses and of the way they are structured in the antecedent.
Thus our basic units will be of the form Γ ` C, where Γ is an antecedent term
according to Definition 3.7.

As shown in Section 2.5.7, the Curry-Howard isomorphism gives us an
elegant mode of communication between syntax and semantics. There are
two basic possibilities of extending the Curry-Howard isomorphism to sys-
tems like NL3R.

(i) we modify the lambda calculus to have directional lambda operators
λl and λr, directional application terms etc., keeping a full isomor-
phism between natural deduction proof and directional lambda terms.
This line is followed by Hepple (1994b) and, in a sense, also in Chap-
ter 6. The directional lambda calculus, however, does not appear to be
very useful as a theory of natural language semantics, as it is unclear
in which way the directionality of the lambda terms would affect the
meaning of grammatical expressions.

(ii) we leave the lambda terms as they are, but move from a Curry-Howard



3.5 Natural Deduction 43

Hypothesis
A ` A

Binary Connectives

∆ ` A •i B

[A ` A]n [B ` B]n....
Γ[A ◦i B] ` C

Γ[∆] ` C
[•E]n Γ ` A ∆ ` B

Γ ◦i ∆ ` A •i B
[•I]

Γ ` A/iB ∆ ` B

Γ ◦i ∆ ` A
[/E]

[B ` B]n....
Γ ◦i B ` A

Γ ` A/iB
[/I]n

∆ ` B Γ ` B\iA
∆ ◦i Γ ` A

[\E]

[B ` B]n....
B ◦i Γ ` A

Γ ` B\iA
[\I]n

Unary Connectives

∆ ` 3iA

[A ` A]n....
Γ[〈A〉i] ` C

Γ[∆] ` C
[3E]n Γ ` A

〈Γ〉i ` 3iA
[3I]

Γ ` 2
↓
i A

〈Γ〉i ` X
[2↓E]

〈Γ〉i ` A

Γ ` 2
↓
i A

[2↓I]

Structural Rules

Γ[Ξ′[∆1, . . . ,∆n]] ` C

Γ[Ξ[∆π1 , . . . ,∆πn ]] ` C
[SR]

Table 3.9: The natural deduction calculus NL3R

isomorphism to a Curry-Howard homomorphism, that is, instead of hav-
ing a one-one correspondence between lambda terms and proofs we
have one-many correspondence. Meaning we allow for a (possibly
empty) set of natural deduction proofs to correspond to a lambda term.

For natural language semantics, option (ii) appears to be the most useful.
The semantically labeled natural deduction calculus we get in this frame-
work is shown in Table 3.10 on the following page. The unary connectives
have their own term constructors, which are inspired by the binary ones,



44 Lambek Calculi

Hypothesis

x : A ` x : A

Binary Connectives

∆ ` u : A •i B

[x : A ` x : A]n [y : B ` y : B]n....
Γ[x : A ◦i y : B] ` t : C

Γ[∆] ` t[x :=π1u, y :=π2u] : C
[•E]n Γ ` t : A ∆ ` u : B

Γ ◦i ∆ ` 〈t, u〉 : A •i B
[•I]

Γ ` t : A/iB ∆ ` u : B

Γ ◦i ∆ ` (tu) : A
[/E]

[x : B ` x : B]n....
Γ ◦i x : B ` t : A

Γ ` λx.t : A/iB
[/I]n

∆ ` u : B Γ ` t : B\iA
∆ ◦i Γ ` (tu) : A

[\E]

[x : B ` x : B]n....
x : B ◦i Γ ` t : A

Γ ` λx.t : B\iA
[\I]n

Unary Connectives

∆ ` u : 3iA

[y : A ` y : A]n....
Γ[〈y : A〉i] ` t : C

Γ[∆] ` t[y :=∨u] : C
[3E]n Γ ` x : A

Γ `∧x : 3iA
[3I]

Γ ` t : 2
↓
i A

〈Γ〉i `tt : A
[2↓E]

〈Γ〉i ` t : A

Γ `ut : 2
↓
i A

[2↓I]

Table 3.10: The natural deduction calculus NL3R with semantic labeling

even though it is unclear if we can find useful semantic applications of these
constructors.

Example 3.10 Now, if we return to Example 2.9 but add directionality to the im-
plications, we see that our modified lexicon looks as follows.

l(shot) = (np\as)/anp− λv.λw.shot(v, w)
l(someone) = s/a(np\as)− λx.∃y.(x y)
l(vito) = np− vito

Suppressing the antecedent information for readability, we can now derive ‘some-
one shot Vito’ as a sentence in the following way.



3.6 Model Theory 45

v(3iA) = {x | ∃y.(R2
i xy ∧ y ∈ v(A))}

v(2↓
i A) = {y | ∀x.(R2

i xy → x ∈ v(A))}
v(A •i B) = {x | ∃y.z.(R3

i xyz ∧ y ∈ v(A) ∧ z ∈ v(B))}
v(A/iB) = {y | ∀x.z.((R3

i xyz ∧ z ∈ v(B))→ x ∈ v(A))}
v(B\iA) = {z | ∀x.y.((R3

i xyz ∧ y ∈ v(B))→ x ∈ v(A))}

Table 3.11: Model theoretic evaluation of complex formulas

v : s/a(np\as)

[x : np]1
y : (np\as)/anp z : np

(y z) : np\as
[/aE]

((y z) x) : s
[\aE]

λx.((y z) x) : np\as
[\aI]1

(v λx.((y z) x)) : s
[/aE]

3.6 Model Theory

Though this thesis is primarily concerned with proof theory, we will turn for
a moment to the model theoretic side of the multimodal Lambek calculus.
Restricting ourselves to a subset of the possible structural postulates will also
give us soundness and completeness with respect to the model.

Formulas will be interpreted in multimodal Kripke frames: tuples of the
form 〈W, {R2

j}j∈J , {R3
i }i∈I〉. The set of worlds W are our linguistic resources

and the accessibility relations R2
j and R3

i model the unary and binary com-
position of resources. The valuation v is defined as follows. It assigns arbi-
trary subsets of W to the atomic formulas, and valuates complex formulas as
shown in Table 3.11.

Readers familiar with the Kripke semantics for modal logic will recog-
nise the 3 interpretation as that of the modal possibility operator, and the
2↓ interpretation as that of the modal necessity operator with the direction
reversed (as suggested by the downarrow superscript). It is important to see
that the binary connectives are also modal operators. They can be seen as
generalizations of the unary cases.

The valuation above gives us a base logic without structural rules for
any of the modes. Structural postulates are translated into restrictions on the
accessibility relations R. A structural postulate [T ] for a unary mode j, for
example, will restrict the possible accessibility relations R2

j to those which
satisfy ∀x(R2

jxx), i.e. are reflexive.

Definition 3.11 A weak Sahlqvist structural rule (Kurtonina 1995) is a rule of
the form

Γ[Ξ′[Θ1, . . . ,Θm]] ` C

Γ[Ξ[∆1, . . . ,∆n]] ` C



46 Lambek Calculi

subject to the following conditions

(i) both Ξ and Ξ′ contain only the structural connectives . ◦i . and 〈.〉i.

(ii) Ξ′ contains at least one structural connective.

(iii) there is no repetition of variables in ∆1, . . . ,∆n.

(iv) all variables in Θ1, . . . ,Θm occur in ∆1, . . . ,∆n.

All of the structural rules we have seen so far are Sahlqvist structural
rules. The linearity condition on structural rules, where we demand that
Θ1, . . . ,Θm is a permutation of ∆1, . . . ,∆n, restricts the structural rules even
further.

Example 3.12 Some valid weak Sahlqvist structural rules which are not linear
structural rules are the following.

Γ[〈∆1〉0] ` C

Γ[∆1 ◦0 ∆2] ` C
[LW]

Γ[∆ ◦0 ∆] ` C

Γ[∆] ` C
[LC]

However, the following are disallowed, violating conditions (i), (ii), (iii) and (iv)
respectively.

Γ[B\0A] ` C

Γ[A/0B] ` C
[C]

Γ[∆] ` C

Γ[〈∆〉0] ` C
[T−1]

Γ[〈∆〉0] ` C

Γ[∆ ◦0 ∆] ` C
[P1]

Γ[∆1 ◦0 ∆2] ` C

Γ[∆1] ` C
[P2]

Theorem 3.13 (Kurtonina (1995)) The multimodal sequent calculus is sound and
complete for NL3 and an arbitrary setR of weak Sahlqvist structural rules.

Corollary 3.14 The multimodal sequent calculus is sound and complete for NL3

and an arbitrary setR of linear structural rules.

3.7 Conclusions

In this chapter we have seen how removing associativity and commutativity
as global structural rules makes the resulting logic very suitable for linguistic
analysis. We have seen how a multimodal system containing both unary and
binary connectives gives us enough flexibility to deal with the often subtle
restrictions on word order encountered in natural language.

Our aim over the next chapters will be to incorporate some of the proof
theoretic advances of linear logic, notably proof nets, into the multimodal
Lambek calculus.



PART II

PROOF NETS AND LINGUISTICS





CHAPTER 4
PROOF NETS FOR MULTIPLICATIVE LINEAR LOGIC

F OR the multiplicative fragment of linear logic, we have a particularly
elegant proof theory, called proof nets. Proof nets were introduced by

Girard (1987), both for the multiplicative fragment and for full linear logic,
though Girard already noted that the proof net calculus was considerably
less elegant for the full system. Improvements to the original formulation of
proof nets for the multiplicative fragment are due to Danos & Regnier (1989)
and Danos (1990).

Let’s take a closer look at the one sided sequent calculus for multiplica-
tive linear logic, repeated here for convenience as Table 4.1. Throughout this
chapter, with the exception of Section 4.7 where we discuss non-commutative
proof nets, we will keep the commutativity rule implicit.

A problem with this calculus is that a sequent like

` a, a⊥ ⊗ b, b⊥ ⊗ c, c⊥

has two different sequent proofs, depending on whether we apply the [⊗]
rule first to a⊥ ⊗ b or to b⊥ ⊗ c.

` a, a⊥ [Ax]
` b, b⊥

[Ax]
` c, c⊥

[Ax]

` b, b⊥ ⊗ c, c⊥
[⊗]

` a, a⊥ ⊗ b, b⊥ ⊗ c, c⊥
[⊗]

` a, a⊥ [Ax]
` b, b⊥

[Ax]

` a, a⊥ ⊗ b, b⊥
[⊗]

` c, c⊥
[Ax]

` a, a⊥ ⊗ b, b⊥ ⊗ c, c⊥
[⊗]



50 Proof Nets for Multiplicative Linear Logic

` A, A⊥ [Ax] ` Γ, A ` A⊥, ∆
` Γ, ∆

[Cut]

` Γ, A ` B, ∆
` Γ, A⊗B, ∆

[⊗]
` Γ, A, B

` Γ, A

&

B
[

&

]

Table 4.1: The sequent calculus MLL

We would like to claim that the ‘essence’ of these proofs is the same, that
is, all logical rules in both proofs are applied to the same formula occur-
rences, only the context formulas Γ and ∆ of the rules are managed dif-
ferently. Computationally, this kind of derivational ambiguity, sometimes
called spurious ambiguity, is also quite harmful, because when we search
for proofs using the sequent calculus, we may find equivalent proofs many,
many times.

In a proof net, the different logical rules are applied in parallel, and the
result is a system which is much like a natural deduction system with many
conclusions.

4.1 Proof Nets

The inductive construction rules for proof nets mimic the sequent rules quite
closely, but they abstract away from the context formulas.

Definition 4.1 (Proof Net) The set of proof nets is inductively defined as follows

[Axiom] If A is a formula of MLL, then the following is a proof net with conclu-
sions A, A⊥.

A A⊥

The axiom link is symmetric, i.e. the order of the conclusions of the rule is
irrelevant.

[Cut] If S1 is a proof net with conclusion A and S2 is a proof net with conclusion
A⊥, then we can combine the with a cut link as follows.

A A⊥

S1 S2

Like the axiom link, the cut link is symmetric.



4.1 Proof Nets 51

a

a⊥ b b⊥ c

c⊥b⊥ ⊗ ca⊥ ⊗ b

Figure 4.1: Proof net of ` a, a⊥ ⊗ b, b⊥ ⊗ c, c⊥

[Par] If S is a proof net with conclusions A and B, then we can attach a par link to
it as follows.

S

A B

A

&

B

The order of the formulas A and B is relevant, as it determines whether the
conclusion of the new proof net is A

&

B or B

&

A.

[Tensor] If S1 is a proof net with conclusion A and S2 is a proof net with conclusion
B, then we can combine them with a tensor link as follows.

A B

A⊗B

S1 S2

Like the par link, the order of A and B with respect to the tensor link is rele-
vant.

Example 4.2 When we follow the inductive definition to construct the proof net
corresponding to the sequent proof on page 49 we see that the proof net will look as
shown in Figure 4.1 regardless of the sequence in which we apply the two tensor
rules.



52 Proof Nets for Multiplicative Linear Logic

Axiom

A A⊥
Premisses: None
Conclusions: A, A⊥

Cut

A A⊥
Premisses: A, A⊥

Conclusions: None

Tensor

A B

A⊗B
Premisses: A, B
Conclusion: A⊗B

Par

A B

A

&

B
Premisses: A, B
Conclusion: A

&

B

Table 4.2: Links for MLL

The question we are interested in is the following: given a list of formulas,
is there a proof net with these formulas as a conclusion? We answer this
question in the following way. First, in Section 4.2, we will give a definition
of proof structures, candidate proof nets which can be enumerated for any
given list of formulas. In Section 4.3, we will give a correctness criterion which
will identify the proof nets among the proof structures. Finally, in Section 4.4,
we show that the proof net calculus satisfies cut elimination, that is, to show
that we can restrict ourselves, without loss of generality, to proof nets which
do not contain cut links.

4.2 Proof Structures

Definition 4.3 (Proof Structure) A proof structure 〈S,L〉 consists of a set S of
formulas and a set L of links in S, where the links are as shown in Table 4.2,

Furthermore, a proof structure must satisfy the following conditions.



4.3 Soundness and Completeness 53

b⊥

(a⊥ &

b)⊗ b⊥

a⊥ b

a⊥ &

b

a

Figure 4.2: Incorrect proof structure

– every formula is at most once the premiss of a link,

– every formula is exactly once the conclusion of a link.

Formulas which are not the premiss of any link are called the conclusions of a
proof structure.

Now, given a sequent, we can enumerate all possible proof structures for
it by unfolding all connectives until we reach the atomic formulas and their
negations and connect these using axiom links.

4.3 Soundness and Completeness

Obviously, not all proof structures are proof nets. For example, given that
the sequent ` (a⊥

&

b) ⊗ b⊥, a is underivable, the proof structure shown in
Figure 4.2 is not a proof net.

We need a criterion which allows us to identify the proof nets from other
proof structures. Girard (1987) gave a condition based on travel instructions
through a proof net. The criterion presented below is an improvement due
to Danos & Regnier (1989). We will discuss another criterion in Section 4.5.

Definition 4.4 For a proof structure S, a switching ω for S is a choice for every
par link of one of its premisses.

Definition 4.5 From a proof structure S and a switching ω we obtain a correction
graph ωS by replacing all par links

B C

A

by one of the following links, depending on the premiss of the link selected by ω.



54 Proof Nets for Multiplicative Linear Logic

b⊥

(a⊥ &

b)⊗ b⊥

a⊥ b

a⊥ &

b

a

b⊥

(a⊥ &

b)⊗ b⊥

a⊥ b

a⊥ &

b

a

Figure 4.3: Correction graphs for the incorrect proof structure of Figure 4.2
on the preceding page

B C

A

B C

A

For a tensor link with premisses A and B and with conclusion C the cor-
rection graph has an (undirected) edge both from A to C and from B to C,
whereas a par link, being an disjunction, produces an edge either from A to
C or from B to C.

Example 4.6 Before sketching the proof of the main theorem, we show that the proof
structure above is not a proof net. It has the following two correction graphs.

We can see the correction graph on the right is both cyclic and disconnected and
conclude this proof structure is incorrect.

Lemma 4.7 A proof net without terminal par links has a splitting tensor link, that
is, removing the tensor link and its conclusion will yield two disjoint proof nets.

Lemma 4.7 was first proved by Girard (1987). For a proof more in line
with the acyclicity and connectedness criterion we are using, we refer the
reader to Danos & Regnier (1989) or Bellin & van de Wiele (1995).

Lemma 4.8 A proof net which has at least one par link has a splitting par link.
Removing the par link will yield two disjoint proof nets, where one of the proof nets
will have the conclusion C of the par link as a hypothesis, that is, a formula which is
not the conclusion of any link.

We refer the reader to Danos (1990) for a proof of this lemma.
The main theorem shows that the proof nets, i.e. the proof structures

which are sequentializable, are exactly those proof structures of which all
correction graphs are acyclic and connected.



4.3 Soundness and Completeness 55

S

A B

A

&

B

Figure 4.4: Terminal par link

Theorem 4.9 A proof structure is a proof net iff all its correction graphs are acyclic
and connected.

Proof

[⇒] Induction.

[⇐] We have to prove that every proof structure of which all correction
graphs are acyclic and connected corresponds to a sequent proof. To reduce
the number of cases in the proof, we will treat a cut link as a tensor link with
a special formula (Cut) as its conclusion.

We use induction on the number of logical links in the proof net. In the
case there are no logical links in the proof net, then by disconnectedness it
must consist of a single axiom link and the sequent proof corresponding to
this proof net consists of just the axiom rule.

If the proof net does contain logical links, there are two basic ways to
continue the sequentialization part of the proof. The splitting tensor se-
quentialization proof uses Lemma 4.7 and is perhaps the most familiar way
of proving sequentialization. The splitting par sequentialization proof uses
Lemma 4.8.

Splitting Tensor We proceed by a case analysis; if the proof net has a
terminal par link, it must be of the form shown in Figure 4.4.

When we remove the par link and its conclusion, the resulting proof
structure is still a proof net, so we can apply the induction hypothesis to
give us a sequent proof D of ` Γ, A, B, which we can extend as follows.

.... D
` Γ, A, B

` Γ, A

&

B
[

&

]

When all terminal links are tensor links, then by Lemma 4.7 one of these
tensor links is a splitting tensor. That is, a tensor link such that removing it
and its conclusion yields two disjoint proof nets.



56 Proof Nets for Multiplicative Linear Logic

a⊥ b⊥

a⊥ ⊗ b⊥

b a

b

&

a c

(b

&

a)⊗ c c⊥

Figure 4.5: Proof net with a non-splitting tensor link

A B

A⊗B

S1 S2

Γ ∆

Figure 4.6: Splitting tensor link

Not every tensor link is a splitting tensor, because removing an arbitrary
tensor link can result in a single, disconnected proof structure. For exam-
ple, in the case shown in Figure 4.5 removing the leftmost tensor link will
generate an incorrect proof structure, because the path from a to b through
a⊥ ⊗ b⊥ will disappear, making both correction graphs disconnected. How-
ever, Lemma 4.7 guarantees the existence of a splitting tensor and in the case
above, the other tensor link is indeed splitting.

Given that there is a splitting tensor link, we are schematically in the sit-
uation shown in Figure 4.6.

Induction hypothesis gives us a proof D1 of ` Γ, A and a proof D2 of
` B, ∆. We can combine these proofs as follows to produce a proof of `
Γ, A⊗B, ∆.

.... D1

` Γ, A

.... D2

` B, ∆
` Γ, A⊗B, ∆

[⊗]
2

Splitting Par If there are par links in the proof net, Lemma 4.8 guaran-
tees that way are schematically in the case shown in Figure 4.7 on the left,



4.3 Soundness and Completeness 57

S2

S1

A B

A

&

B

Γ

∆

S2

S1

Γ

∆

A

&

B

A B

Figure 4.7: Splitting par link

S2

S1

A B

A

&

B

Γ

∆

Γ′

∆′

S2

S1

Γ

∆

Γ′

∆′ A

&

B

A B

Figure 4.8: Splitting par link with hypotheses

and removing the par link results in the structure shown in Figure 4.7 on the
right.

A problem with the structure on the right is that it is not even a proof
structure! This is because the formula A

&

B is not the conclusion of any link,
violating condition 2 of Definition 4.3. However, we can modify the defini-
tions of proof structures and proof nets to also allow formulas which are not
the conclusion of any link. We will call these the hypotheses of the proof
structure. We will explore the idea of proof nets with hypotheses further in
Chapter 7, where we introduce two sided proof structures and proof nets. A
proof structure with hypotheses Γ and conclusions ∆ will correspond to a
two sided sequent Γ ` ∆.

Given that our proof nets are allowed to have hypotheses, the situation
we are in is shown in Figure 4.8.

Now, induction hypothesis gives us a proofD1 of Γ′ ` Γ, A, B and a proof
D2 of ∆′, A

&

B ` ∆, which we can combine as follows.



58 Proof Nets for Multiplicative Linear Logic

A B

A⊗B

S1 S2

Γ ∆

Γ′ ∆′

Figure 4.9: Splitting tensor with hypotheses

.... D1

Γ′ ` Γ, A, B

Γ′ ` Γ, A

&

B
[

&

]
.... D2

∆′, A

&

B ` ∆
Γ′, ∆′ ` Γ, ∆

[Cut]

If the proof net has no par links, then acyclicity and connectedness guar-
antee every terminal tensor link is splitting. So we are in the situation shown
in Figure 4.9.

Induction hypothesis gives us a proof D1 of Γ′ ` Γ, A and a proof D2 of
∆′ ` B, ∆. We can combine these proofs as follows to produce a proof of
Γ′, ∆′ ` Γ, A⊗B, ∆.

.... D1

Γ′ ` Γ, A

.... D2

∆′ ` B, ∆
Γ′, ∆′ ` Γ, A⊗B, ∆

[⊗]
2

4.4 Cut Elimination

Because we have factored out all rule permutations which were present in
the sequent calculus, proving cut elimination for the proof net calculus turns
out to be quite simple, as shown by Girard (1987).

Before we prove cut elimination, we show in the following lemma we can
restrict ourselves to proof nets with axiom links on atomic formulas without
loss of generality.

Lemma 4.10 For each proof net S there exists a proof net S ′ with the same conclu-
sions as S where all axiom links are atomic. We call this proof net eta expanded.

Proof By induction on the total number of connectives of formulas which
are the conclusions of non-atomic axiom links.

A proof net S with at least one complex axiom link has to be of the form.



4.4 Cut Elimination 59

A⊥ ⊗B⊥ A

&

B

S

We can replace this proof net by a proof net with axiom links on the direct
subformulas of the conclusion of the axiom link as follows

A⊥ B⊥

A⊥ ⊗B⊥

A B

A

&

B

S

where we have reduced the total number of connectives of conclusions of
axiom links by two.

We can see that any switching of the new par link will produce a path
from the formula A⊥ ⊗ B⊥ to the formula A

&

B, so every correction graph
of the new net will be acyclic and connected. 2

Theorem 4.11 For every proof net S there exists a proof net S ′ with the same con-
clusions as S which does not contain cut links.

Proof First, we replace S by S ′′ which is its eta expanded counterpart ac-
cording to Lemma 4.10. We proceed by induction on the total number n of
connectives of formulas which are premisses to cut links.

[n = 0] We can successively remove all remaining cut links, which must be
of the following form.

A A⊥ A

S1

S2



60 Proof Nets for Multiplicative Linear Logic

It is easy to see we can replace this proof net by the following, while
maintaining acyclicity and connectedness.

A

S1

S2

[n > 0] When we have a complex cut, our proof net has to be of the following
form. The possibility that A⊥ ⊗ B⊥ or A

&

B is the conclusion of an
axiom link is excluded because our proof net is eta expanded.

A⊥ B⊥

A⊥ ⊗B⊥

A B

A

&

B

S1 S2 S3

No correction graph of this proof net can have connections between
S1 and S2, other than through A⊥ ⊗ B⊥, otherwise the proof structure
would be cyclic. Similarly for S1 and S3 and for S2 and S3. We also
know that every correction graph of this proof net needs to have a path
from A to B which is completely inside S3.

Now, when we replace the cut link by the following two cut links, the
total complexity decreases by 2.

A⊥ B⊥ A B

S1 S2 S3

We show that this new proof structure is also a proof net, that is that
for every correction graph and any two vertices in the correction graph



4.5 Contractions 61

.
x

.
y

.
y

.
x

.
x2→ 1→

Figure 4.10: Graph contractions

there is a unique path which connects them. Take an arbitrary correc-
tion graph and two arbitrary vertices v1 and v2 in it.

If both are in the same component, they are connected by virtue of
being connected for every correction graph of the original proof net.

If v1 is in S1 and v2 in S3, then we know there is a unique path from v1

to A⊥ and a unique path from v2 to A. We can combine these two paths
with the cut link to produce a unique path from v1 to v2. Similarly for
v1 in S2 and v2 in S3.

In the final case v1 is in S1 and v2 in S2. Now we know there is a unique
path from v1 to A⊥, which we extend by the cut link to A. We also know
there is a unique path from A to B through S3, which we extend again
with the cut link to B⊥. Finally we know there is a unique path from
B⊥ to v2. Combining these paths gives us the unique path from v1 to
v2 we need. Notice that in the original proof net this path went directly
through the formula A⊥ ⊗B⊥. 2

4.5 Contractions

For a proof net with p par links, there will be 2p different correction graphs,
so naive application of the acyclicity and connectedness criterion will give
us an exponential algorithm. Danos (1990) gives us a computationally more
attractive method for checking whether a proof structure is acyclic and con-
nected. In Chapter 7 we will adapt this criterion for the multimodal Lambek
calculus.

Starting with the graph of the proof structure, we apply the contractions
shown in Figure 4.10, with the following conditions.

( 1→) only if x 6= y

( 2→) only if the two edges come from the same link.

It is important to note the edges of a par link are paired, as suggested by
the arc connecting them. This means that when multiple par links have the



62 Proof Nets for Multiplicative Linear Logic

.
z

.
x

.
v

.
w

.
y

.
u

1→

.
v

.
w

.
y

.
z

.
x

1→

.
w

.
y

.
z

.
x

1→

.
y

.
z

.
x

1→
.
x

.
y

.
y

.
x

.
x2→ 1→

Figure 4.11: Contraction of a proof net

same vertex as a base, which can happen after applying some contractions,
we keep track of which pairs belong together.

It is immediate that whenever it is possible to apply more than one con-
traction to a graph, the results will converge as the conflicting contractions
will either 1) produce isomorphic graphs immediately, or 2) the two conver-
sion are locally confluent, that is, applying conversion a after b and applying
conversion b after a produces the same result.

Contraction of a proof net will result in a single vertex.

Example 4.12 An example of the contraction of a proof net is shown in Figure 4.11.

Reduction of a proof structure which is not a proof net will result in a
graph which is not a single vertex. The incorrect proof structure of Figure 4.2
on page 53 will reduce in 4 steps to

.
y

.
z

.
x

which can be further reduced by a single 1 reduction after which no reduc-
tions are possible. This means we can never apply the 2 reduction to elimi-
nate the par link and contract to a single vertex.

Theorem 4.13 A proof structure S is a proof net iff its graph reduces to a single
vertex by applying reductions 1 and 2 above.

Proof



4.6 The Intuitionistic Fragment 63

[⇒] We prove that for all proof nets its graph can be reduced to a single
vertex. We do this by following the inductive proof net definition.

(Axiom) The proof net consists just of an axiom link, which we can reduce
by a 1 reduction to a single vertex.

(Unary) We add a unary link to a proof net which reduces to a vertex. To the
resulting graph we can apply a 1 reduction, resulting in a single vertex.

(Times) We have two proof nets reducing to a vertex. After adding the
times link we can just apply the 1 reduction two times, and the resulting
graph consists of a single vertex.

(Par) We have a proof net which reduces to a single vertex. Adding the par
link will give us a 2 redex. Applying a 2 reduction followed by a 1
reduction gives us a single vertex.

(Cut) We have two proof nets reducing to a vertex. We can apply a 1 reduc-
tion to the cut link, which gives us a single vertex.

[⇐] It is easy to see that whenever we apply one of the reductions to
reduce a proof structure S to a proof structure S ′ then S is acyclic and con-
nected iff S ′ is. A single vertex is acyclic and connected, so if S reduces in a
number of steps to a single vertex it is acyclic and connected. Application of
theorem 4.9 gives us that S is also a proof net. 2

Beginning with a proof structure with n par links and m times links, we
can first reduce all times links in O(m) time. Then we can find a par link
to which reduction 2 and 1 can be applied in at most O(n) time. If such a
par link cannot be found, we fail because the proof structure is disconnected.
Reducing all par links will then take n + (n− 1) + . . . + 1(= 1

2n(n + 1)) time.
The maximum time for determining a proof structure is a proof net will then
be O( 1

2n(n + 1) + m) = O(n2).
Two recent algorithms, proposed by Guerrini (1999) and by Murawski &

Ong (2000), check correctness for multiplicative proof nets in linear time.

4.6 The Intuitionistic Fragment

It is relatively simple to adapt the classical proof nets we’ve seen so far to the
intuitionistic fragment of multiplicative linear logic. This basically amounts
to a restriction on the formulas of classical linear logic.

Definition 4.14 A one sided intuitionistic sequent is of the form ` N0, . . . ,Nn,P ,
where theN and P formulas are defined over a set of atomic formulas A as follows.

N ::= A⊥

| P ⊗ N
| N

&

N



64 Proof Nets for Multiplicative Linear Logic

P ::= A
| N

&

P
| P ⊗ P

We will call the formulas ofN negative formulas and the formulas ofP positive
formulas.

With this definition in hand, we can translate a multiplicative intuitionis-
tic sequent

A1, . . . , An ` B

into a one sided sequent

` ‖A1‖−, . . . , ‖An‖−, ‖B‖+

as follows.

‖a‖+ = a
‖A−◦B‖+ = ‖A‖−

&

‖B‖+
‖A⊗B‖+ = ‖A‖+ ⊗ ‖B‖+

‖a‖− = a⊥

‖A−◦B‖− = ‖A‖+ ⊗ ‖B‖−
‖A⊗B‖− = ‖A‖−

&

‖B‖−

Note that the translation function ‖.‖+ produces only formulas of P and
that the translation function ‖.‖− produces only formulas of N .

Instead of translating an intuitionistic sequent first into a classical sequent
and then constructing the proof net, we can also construct an intuitionistic
proof net directly, using polarity labels to indicate if we are operating on a
positive or a negative formula. The links for an intuitionistic proof structure
are shown in Table 4.3.

Using these links, the proof nets we are generating differ from classical
proof nets built with intuitionistic formulas only in the formulas.

Example 4.15 For the intuitionistic sequent

a, a−◦(a−◦b), (a−◦b)−◦b ` b

we can construct the following proof net

−
a

+
a

−
a−◦(a−◦b)

+
a

−
b

−
a−◦b

−
b

−
(a−◦b)−◦b

−
a

+

b

+

a−◦b

+

b



4.7 Non-commutative Proof Nets 65

−
A

+

A

−
A

+

A

−
A

−
B

−
A⊗B

+

A
−
B

−
A−◦B

+

A
+

B

+

A⊗B

−
A

+

B

+

A−◦B

Table 4.3: Links for MILL

Translating the sequent above to a classical sequent would produce

` a⊥, a⊗ (a⊗ b⊥), (a⊥ &

b)⊗ b⊥, b

and the corresponding proof net would be the following.

a⊥

a

a⊗ (a⊗ b⊥)

a b⊥

a⊗ b⊥ b

(a⊥ &

b)⊗ b⊥

a⊥ b

a⊥ &

b

b

4.7 Non-commutative Proof Nets

As already noted by Girard (1987), it is possible to give a graph theoretic
characterization of proof nets for non-commutative multiplicative linear lo-
gic as well. Non-commutative, or cyclic linear logic is obtained by replacing
the commutativity rule



66 Proof Nets for Multiplicative Linear Logic

` Γ, B, A,∆
` Γ, A, B,∆

[P]

by the cyclic permutation rule.

` Γ, A

` A, Γ
[Cyc]

Cyclic permutations allow us to move formulas to the front or the back of
the sequent, but the cyclic ordering of the formulas will remain the same.

For a one sided sequent calculus for cyclic linear logic, we have to realize
that negation, when it distributes over a multiplicative connective due to the
de Morgan laws, reverses the order of the subformulas, as follows.

A⊥⊥ =A
(A⊗B)⊥ =B⊥ &

A⊥

(A

&

B)⊥ =B⊥ ⊗A⊥

Non-commutative proof nets, then, are those for which the axioms links
are planar.

Example 4.16 We can derive the sequent ` b⊥, a

&

(a⊥ ⊗ b) in cyclic linear logic
as follows.

` a, a⊥ [Ax]
` b, b⊥

[Ax]

` a, a⊥ ⊗ b, b⊥
[⊗]

` b⊥, a, a⊥ ⊗ b
[Cyc]

` b⊥, a

&

(a⊥ ⊗ b)
[

&
]

The proof net corresponding this sequent is the following.

b⊥

a a⊥ ⊗ b

a

&

(a⊥ ⊗ b)

a⊥ b

We can translate the formulas of Lε, which is the Lambek calculus which
allows for empty antecedent derivations, into formulas of cyclic linear logic
as follows.



4.7 Non-commutative Proof Nets 67

−
A

+

A

−
A

+

A

−
B

−
A

−
A •B

+

B
−
A

−
A/B

−
A

+

B

−
B\A

+

A
+

B

+

A •B

+

A
−
B

+

A/B

−
B

+

A

+

B\A

Table 4.4: Links for Lε

‖A •B‖= ‖A‖ ⊗ ‖B‖
‖A/B‖=‖A‖

&

(‖B‖)⊥
‖B\A‖=(‖B‖)⊥

&

‖A‖

When we look at the non-commutative, intuitionistic fragment of linear
logic, we extend the non-commutative links above with polarity marking,
just as we did for multiplicative intuitionistic linear logic in the previous
section. The links for Lε are shown in Table 4.4.

Example 4.17 One characteristic non-theorem of L is A•B 0 B •A. There is only
on proof structure for this sequent, which is shown below and which is not planar.

−
B

−
A

−
A •B

+

B
+

A

+

B •A

Theorem 4.18 (Roorda (1991)) A proof net is valid in Lε iff

– all its correction graphs are acyclic and connected,

– all its axiom links are planar.



68 Proof Nets for Multiplicative Linear Logic

See also Lamarche & Retoré (1996) for a good overview of proof nets for
the Lambek calculus. Abrusci & Ruet (1999) present a combined commu-
tative/non-commutative version of multiplicative linear logic, essentially a
classical version of the intuitionistic calculus of de Groote (1996). They give
a proof net calculus for their logic with a correctness criterion based on Gi-
rard’s (1987) long trip condition. However, it is unclear if we can extend this
methodology to non-associative or multimodal logics.

4.8 Conclusions

We have seen how proof nets function as a sort of parallel proof theory
for MLL and how proof nets for MILL can be obtained as a natural frag-
ment of this calculus. We have also seen a natural way of dealing with non-
commutativity. In the next chapters we will adapt these proof nets to several
different settings. In Chapter 5, we will add the first order quantifiers to the
proof net calculus and use them to encode string positions and locality do-
mains. In Chapter 6, we will use labeling as a way of enforcing word order
and structural constraints. Finally, in Chapter 7 we will look at a version of
the contraction criterion discussed in Section 4.5 which is sound and com-
plete for the multimodal Lambek calculus.



CHAPTER 5
PROOF NETS FOR FIRST ORDER LINEAR LOGIC

I N this chapter we will discuss the first order multiplicative intuitionistic
fragment of linear logic, MILL1, and its applications to linguistics. The

first order multiplicative fragment is attractive because its computational
complexity is NP complete, just like the propositional multiplicative frag-
ment and because there is a proof net calculus with a correctness criterion
which is a natural extension of the ‘switching’ criterion of Theorem 4.9.

We give an embedding translation from formulas in the Lambek calculus
to formulas in MILL1 and show this translation is sound and complete. We
then exploit the extra power of the first order fragment to give an account of
a number of linguistic phenomena which have no satisfactory treatment in
the Lambek calculus.

This chapter is based on joint work with Mario Piazza (Moot & Piazza
2001).

5.1 Proof Theory

Definition 5.1 (Language) The language L(MILL1) is defined as follows.

[Alphabet] The alphabet consists of the following symbols: countably many indi-
vidual variables x0, x1, . . ., countably many individual constants c0, c1, . . .,
symbols for functors of different arities, the binary connectives ‘⊗’ and ‘−◦’,
the quantifiers ‘∀’ and ‘∃’, the sequent symbol ‘`’ and the auxiliary symbols
‘,’, ‘.’, ‘(’ and ‘)’.

[Terms] If f is a function symbol of arity n, and e1, . . . , en are (not necessarily
distinct) variables and constants, then f(e1, . . . , en) is a term.

If f has arity 0 we will call its term a proposition.



70 Proof Nets for First Order Linear Logic

A ` A
[Ax]

Γ ` A ∆, A ` C

Γ, ∆ ` C
[Cut]

Γ, A, B ` C

Γ, A⊗B ` C
[L⊗] Γ ` A ∆ ` B

Γ, ∆ ` A⊗B
[R⊗]

∆ ` A Γ, B ` C

Γ, ∆, A−◦B ` C
[L−◦] Γ, A ` B

Γ ` A−◦B [R−◦]

Γ, A ` C

Γ, ∃x.A ` C
[L∃]

Γ ` A[x := e]
Γ ` ∃x.A

[R∃]

Γ, A[x := e] ` C

Γ, ∀x.A ` C
[L∀] Γ ` A

Γ ` ∀x.A
[R∀]

Table 5.1: The sequent calculus MILL1

[Formulas] Given the set T of terms as defined above and the set V of variables,
the formulas in our language are the following

F ::= T | F ⊗ F | F−◦F | ∃V.F | ∀V .F

[Sequents] If Γ is a multiset of formulas separated by ‘,’ and C is a formula then
Γ ` C is a sequent. By taking Γ as a multiset we will implicitly assume
that the sequent comma ‘,’ is associative and commutative. We will call Γ the
antecedent of the sequent and C the succedent.

5.1.1 Sequent Calculus

The sequent calculus for MILL1 is given by the rules shown in Table 5.1.
The variable x in the quantifier rules is called the eigenvariable of the rule.

The rules [R∀] and [L∃] have the condition that this variable does not occur
freely in Γ or C.

The notation A[x := e] in the rules [L∀] and [R∃] signifies the formula A
with a variable or constant (of our choice) e substituted for all occurrences
of the variable x. When we read these rules from conclusion to premiss, as
in backward chaining proof search, we only have to consider substituting a
finite number of variables and constants for x, namely either those actually
occurring in Γ or C or a fresh variable or constant. In practice we want to
delay making a choice for e until we reach the axioms.

We will adopt the following conventions on variables.

– Each quantifier will have a different eigenvariable. We can accommo-
date for this condition by selecting a different variable name for each
application of a quantifier rule.

– The end-sequent of a proof does not contain occurrences of free vari-
ables. We can replace these free variables by constants not occurring
elsewhere in the proof.



5.1 Proof Theory 71

−
A

+

A

−
A

+

A

+

A
−
B

−
A−◦B

−
A

+

B

+

A−◦B

−
A

−
B

−
A⊗B

+

A
+

B

+

A⊗B

−
A

−
∃x.A

+

A[x := e]

+

∃x.A

−
A[x := e]

−
∀x.A

+

A

+

∀x.A

Table 5.2: Links for MILL1

The calculus enjoys elimination of the Cut rule and the cut-free formula-
tion of MILL1 can be used as an algorithm for proof search. Interestingly, as
noted by Lincoln (1995), adding quantifiers to the multiplicative fragment of
linear logic does not change the complexity of deciding whether a sequent is
provable. A nondeterministic machine can try all possibilities for the rules
[L∀] and [R∃] and find a solution in polynomial time. The NP hardness of
the propositional fragment then gives us an NP completeness result for first
order multiplicative linear logic.

5.1.2 Proof Structures

Definition 5.2 A proof structure 〈S,L〉 for first order multiplicative intuitionis-
tic linear logic consists of a set S of formulas and a set call of links in S of the forms
shown in Table 5.2, subject to the following conditions.

(i) Each formula is the conclusion of exactly one link.

(ii) Each formula is the premiss of at most one link.

(iii) Each quantifier link uses a distinct eigenvariable. If a variable occurs freely in
some formula of the structure then this variable is the eigenvariable of a link.



72 Proof Nets for First Order Linear Logic

(iv) Those formulas which are not the premiss of any link are the conclusions of
the proof structure. Conclusions must be closed.

5.1.3 Proof Nets

While we can show by induction on the length of the proof that we can as-
sociate a proof structure with every sequent proof, it should be obvious that
not all proof structures correspond to sequent proofs.

Example 5.3 Though the sequent ∀x0.∃x1.f(x0, x1) ` ∃x2.∀x3.f(x3, x2) is un-
derivable, it corresponds to the following proof structure.

−
∀x0.∃x1.f(x0,x1)

[x0:=x3]

−
f(x3,x1)

−
∃x1.f(x3,x1)

+
∃x2.∀x3.f(x3,x2)

[x2:=x1]

+
f(x3,x1)

+
∀x3.f(x3,x1)

A subset of proof structures, which we will call proof nets, does corre-
spond to sequent proofs. We can distinguish proof nets from other proof
structures by looking only at properties of the underlying graphs of proof
structures.

Definition 5.4 From a proof structure we obtain a correction graph by

(i) replacing all links

B C

A

by one of the following links.

B C

A

B C

A



5.1 Proof Theory 73

(ii) replacing all links

B

A

with eigenvariable x by a link from A to any formula in which x occurs freely
or by a link from A to B.

Theorem 5.5 (Girard (1991)) A proof structure is a proof net if and only if all its
correction graphs are acyclic and connected.

Example 5.6 Returning to our previous example, we should be able to find a cor-
rection graph of that proof structure which violates the proof net condition. Of the 9
correction graphs we can associate with that proof structure, the following

−
∀x0.∃x1.f(x0,x1)

−
∃x1.f(x3,x1)

−
f(x3,x1)

+
∃x2.∀x3.f(x3,x2)

+
∀x3.f(x3,x1)

+
f(x3,x1)

[x0:=x3] [x2:=x1]

is both disconnected and cyclic.

5.1.4 Embedding the Lambek Calculus

As a prelude to our linguistic applications we will first show a translation of
formulas and sequents in the Lambek calculus into formulas of MILL1.

Lambek Calculus

Definition 5.7 (Language) The language L(L) is the following

[Alphabet] The alphabet consists of the following symbols: a finite set of atomic
formulas A, the binary connectives ‘/’, ‘•’ and ‘\’, the sequent arrow ‘`’ and
the auxiliary symbol ‘,’.

[Formulas] The formulas of L are the following

F ::= A | F/F | F • F | F\F



74 Proof Nets for First Order Linear Logic

[Sequents] If Γ is a list of formulas separated by ‘,’ and C is a formula then Γ ` C
is a sequent. By taking Γ as a list instead of a multiset we will assume the
sequent comma ‘,’ to be associative and non-commutative.

A ` A
[Ax]

∆ ` A Γ, A, Γ′ ` C

Γ, ∆, Γ′ ` C
[Cut]

Γ, A, B,∆ ` C

Γ, A •B, ∆ ` C
[L•] Γ ` A ∆ ` B

Γ, ∆ ` A •B
[R•]

∆ ` B Γ, A, Γ′ ` C

Γ, A/B,∆, Γ′ ` C
[L/]

Γ, B ` A

Γ ` A/B
[R/]

∆ ` B Γ, A, Γ′ ` C

Γ, ∆, B\A, Γ′ ` C
[L\] B, Γ ` A

Γ ` B\A [R\]

For linguistic reasons, the Lambek calculus is usually defined with the
additional condition that all antecedents are non-empty. In the same way,
we can reformulate MILL1 with a restriction to non-empty antecedents and
impose a similar restriction on proof nets.

We can also allow empty antecedents and disallow them by means of an
extra argument whenever empty antecedent derivations would be undesir-
able, using the underivability of the following sequent.

0 ∃x0.a(. . . , x0)−◦∀x1.a(. . . , x1)

This strategy is actually an instance of the locality domains we will intro-
duce in more detail in Section 5.2.3. Allowing empty antecedent derivations
will be useful in Section 5.2.2, where we give an account of pied piping.

Translation

For the translation, we replace (propositional) atomic formulas in L by bi-
nary terms in MILL1. The two extra arguments will encode the (abstract) list
positions the formula occupies. This is closely related to the standard Logic
Programming practice of representing a partial list by a pair of arguments,
often called a difference list (see, for example, Pereira & Shieber (1987)). Our
translation can also be seen as an extension of the translation proposed by
Pareschi (1988), who proposes a translation of product-free Lambek calculus
formulas into (extended) definite clauses.

A sequent in the Lambek calculus A1, . . . , An ` B will be translated as
‖A1‖〈c0,c1〉, . . . , ‖An‖〈cn−1,cn〉 ` ‖B‖〈c0,cn〉.

Definition 5.8 The embedding translation ‖.‖〈ei,ej〉 from F(L) to F(MILL1)
is defined as follows.



5.1 Proof Theory 75

‖a‖〈ei,ej〉 = a(ei, ej)
‖A/B‖〈ei,ej〉 = ∀xk.‖B‖〈ej ,xk〉−◦‖A‖〈ei,xk〉

‖B\A‖〈ei,ej〉 = ∀xk.‖B‖〈xk,ei〉−◦‖A‖〈xk,ej〉

‖A •B‖〈ei,ej〉 = ∃xk.‖A‖〈ei,xk〉 ⊗ ‖B‖〈xk,ej〉

Note that this definition guarantees that the translation of any non-atomic
formula is of the form Qx.A#B, where Q is a quantifier and # a binary
connective.

Lemma 5.9 If an L sequent is translated into a sequent provable in MILL1, then
there is also a MILL1 proof of the same translated sequent where every conclusion of
a rule with main formula A#B is the premiss of a rule with main formula Qx.A#B.

Proof We show only the case for formulas ∃x.A ⊗ B. The cases for the
implications are similar.

Suppose we have a subproof of the form

∆ ` A ∆′ ` B
∆, ∆′ ` A⊗B

[R⊗]
.... Π

Γ ` A⊗B
Γ ` ∃x.A⊗B

[R∃]

we can move the application of the [R∃] rule up as follows

∆ ` A ∆′ ` B
∆, ∆′ ` A⊗ B

[R⊗]

∆, ∆′ ` ∃x.A ⊗B
[R∃]

.... Π
Γ ` ∃x.A⊗ B

as applying the rules in Π with ∃x.A ⊗ B instead of A ⊗ B is unproblematic
because we have one free variable less.

For the other case, suppose we have a subproof of the form

∆, A, B ` D

∆, A⊗B ` D
[L⊗]

.... Π
Γ, A⊗B ` C

Γ, ∃x.A⊗B ` C
[L∃]

we can move the application of the [L⊗] rule down as follows

∆, A, B ` D.... Π
Γ, A, B ` C

Γ, A⊗B ` C
[L⊗]

Γ, ∃x.A⊗B ` C
[L∃]



76 Proof Nets for First Order Linear Logic

which again gives us a valid proof. 2

Theorem 5.10 A sequent A1, . . . , An ` B is derivable in L if and only if the se-
quent ‖A1‖〈c0,c1〉, . . . , ‖An‖〈cn−1,cn〉 ` ‖B‖〈c0,cn〉 is derivable in MILL1.

Proof Because of the reordering result of Lemma 5.9, this proof is a simple
induction consisting of replacing a single rule like

Γ, B ` A

Γ ` A/B
[R/]

by a pair of rules

‖Γ‖〈c0,cn〉, ‖B‖〈cn,x0〉 ` ‖A‖〈c0,x0〉

‖Γ‖〈c0,cn〉 ` ‖B‖〈cn,x0〉−◦‖A‖〈c0,x0〉 [R−◦]

‖Γ‖〈c0,cn〉 ` ∀x0.‖B‖〈cn,x0〉−◦‖A‖〈c0,x0〉 [R∀]

and vice versa1. 2

Readers who are familiar with the relational completeness result of Kur-
tonina (1995, chapter 4) will note that the formula translation is a variant of
the one proposed there. Because all theorems of MILL1 are also theorems
of classical first order logic, this essentially made proving the completeness
direction of Theorem 5.10 unnecessary. As the emphasis of this article is on
proof theory, we chose to give a syntactic proof of this result.

The Lambek Calculus With Permutation

When we add the following Permutation rule to the Lambek calculus

Γ, B, A,∆ ` C

Γ, A, B,∆ ` C
[P ]

the resulting logic LP is just a syntactic variant of MILL, if we interpret both
‘/’ and ‘\’ as ‘−◦’ and ‘•’ as ‘⊗’. We can also use the following variation on
the translation from L into MILL1

‖a‖〈ei,ej〉
LP = a(ei, ej)

‖A/B‖〈ei,ej〉
LP =∀xk.∀xl.∀xm.∀xn.‖B‖〈xk,xl〉−◦‖A‖〈xm,xn〉

‖B\A‖〈ei,ej〉
LP =∀xk.∀xl.∀xm.∀xn.‖B‖〈xk,xl〉−◦‖A‖〈xm,xn〉

‖A •B‖〈ei,ej〉
LP =∃xk.∃xl.∃xm.∃xn.‖A‖〈xk,xl〉 ⊗ ‖B‖〈xm,xn〉

where we quantify over all positions of subformulas.
1There is a small technicality involved with constants versus free variables. The induction hy-

pothesis gives us a proof with cn+1 instead of x0, but it is always possible to replace a constant
by a variable which does not occur elsewhere in the proof. As a consequence of our translation
all occurrences of cn+1 will be in ‖A‖ and ‖B‖, so the end-sequent is again closed.



5.1 Proof Theory 77

The two translations give us a logic where translated formulas of LP and
L coexist and interact in non-trivial ways. A consequence of the above trans-
lation is, for example, that ‖A/B‖LP ` ‖A/B‖L is a theorem but the converse
is not.

The Non-associative Lambek Calculus

There are linguistic reasons to restrict even the structural rule of associativity
(which is implicit in the sequent formulation above) from the Lambek calcu-
lus. The non-associative Lambek calculus NL, introduced in (Lambek 1961),
is obtained by using trees of formulas as antecedents.

Sequent calculus for NL is the following, where the notation Γ[∆] indi-
cates an antecedent tree Γ with a distinguished subtree occurrence ∆.

A ` A
[Ax]

∆ ` A Γ[A] ` C

Γ[∆] ` C
[Cut]

Γ[(A, B)] ` C

Γ[A •B] ` C
[L•] Γ ` A ∆ ` B

(Γ, ∆) ` A •B
[R•]

∆ ` B Γ[A] ` C

Γ[(A/B,∆)] ` C
[L/]

(Γ, B) ` A

Γ ` A/B
[R/]

∆ ` B Γ[A] ` C

Γ[(∆, B\A)] ` C
[L\]

(B, Γ) ` A

Γ ` B\A [R\]

We could obtain a formulation of L equivalent to the one given in Sec-
tion 5.1.4 by adding the following structural rules for associativity.

Γ[(∆1, (∆2, ∆3))] ` C

Γ[((∆1, ∆2), ∆3)] ` C
[Ass1]

Γ[((∆1, ∆2), ∆3)] ` C

Γ[(∆1, (∆2, ∆3))] ` C
[Ass2]

To recover control over associativity, we give our atomic formulas an ex-
tra argument encoding its depth. Every depth level has its own constant.

‖a‖〈ei,ej ,di〉
NL = a(ei, ej, di)

‖A/B‖〈ei,ej ,di〉
NL =∀xk.‖B‖〈ej,xk,di〉−◦‖A‖〈ei,xk,di−1〉

‖B\A‖〈ei,ej ,di〉
NL =∀xk.‖B‖〈xk,ei,di〉−◦‖A‖〈xk,ej ,di−1〉

‖A •B‖〈ei,ej ,di〉
NL =∃xk.‖A‖〈ei,xk,di+1〉 ⊗ ‖B‖〈xk,ej ,di+1〉

We translate the sequents themselves as follows:

‖Γ ` C‖〈ci,cj,di〉
NL = ‖Γ‖〈ci,cj,di〉

NL ` ‖C‖〈ci,cj,di〉
NL

For the antecedent term, we use the following translation function, mak-
ing sure that ck on the right hand side is an unused constant.

‖(Γ, ∆)‖〈ci,cj ,di〉
NL = ‖Γ‖〈ci,ck,di+1〉, ‖∆‖〈ck,cj ,di+1〉



78 Proof Nets for First Order Linear Logic

It is perhaps not obvious that this encoding gives us enough information
to reconstruct an antecedent tree at any step, so we first prove the following
lemma.

Lemma 5.11 For any binary tree there is a bijection between the tree and the se-
quence of the depth of its leaves.

Proof Surjectivity is trivial, given that we can read off the depths of the
leaves of a tree from left to right. What remains to be shown is that any
sequence obtained by listing the depth of the leaves of a binary tree from left
to right determines a unique binary tree.

A depth sequence for a binary tree is inductively given by a rewrite sys-
tem with start symbol dk for some integer k and one rewrite rule

di → di+1di+1

A depth sequence d1, . . . , dn generated from root k with respective depth
indices index(d1), . . . , index(dn) and deepest leaf at depth index m has the
following property ∑

1≤i≤n

2m−index(di) = 2m−k

which we can show by simple induction.
From a depth sequence, we can construct a tree by induction on its length

n as follows.
If n = 1 our tree consists of a single leaf.
If n > 1 our tree has been generated from two subtrees with root dk+1, so

we know there exists an x such that∑
1≤i<x

2m−index(di) =
∑

x≤i≤n

2m−index(di) = 2m−(k+1)

Suppose now there is a y 6= x which has this same property. This would
mean there is a non-empty sequence between x and y such that the sum of
2m−i for all i between x and y is 0. But as any sum of powers of two is
strictly greater than 0 this leads to a contradiction. Ergo, there is a unique
way to split the sequence into two strictly smaller subsequences which, by
the induction hypothesis, correspond to unique binary trees, guaranteeing
the uniqueness of the resulting tree. 2

Theorem 5.12 An NL sequent is derivable if and only if its translation obtained by
the function ‖.‖NL is.

Proof Given that we can reorder our MILL1 proofs by Lemma 5.9 and
that we can construct a unique binary tree from the depths of the formulas
by Lemma 5.11, this proof is only a minor modification of Theorem 5.10.

The proof proceeds by induction on the length of the sequent proof as be-
fore. We show only one case and only the depth argument. An NL inference



5.1 Proof Theory 79

∆ ` B Γ[A] ` C

Γ[(A/B,∆)] ` C
[L/]

would be translated as

‖∆‖dk ` ‖B‖dk ‖Γ[‖A‖dk−1]‖d0 ` ‖C‖d0

‖Γ[‖B‖dk−◦‖A‖dk−1 , ‖∆‖dk ]‖d0 ` ‖C‖d0
[L−◦]

and vice versa. 2

The Non-associative Lambek Calculus With Permutation

The non-associative Lambek calculus with Permutation NLP is the logic we
get from NL by adding an additional rule of permutation. After the embed-
ding results of the previous sections, perhaps the natural question to ask is
how this logic would compare to the one we would get by using only the
depth argument from the NL translation, call it NLP′. It turns out that NLP
is not the same as NLP′.

As NLP has little linguistic relevance, the fact that the encoding is not
easily extensible to handle this logic is not a big restriction on possible ap-
plications of our system. It appears, however, that NLP′ is NLP with the
following additional structural rule

Γ[((∆1, ∆3), (∆2, ∆4))] ` C

Γ[((∆1, ∆2), (∆3, ∆4))] ` C
[Mix]

which, in combination with commutativity, allows us to rearrange the mul-
tiple binary subtrees in any depth-preserving way.

Unary Connectives

In Section 3.4 we introduced the unary operators ‘3’ and ‘2↓’ which can li-
cense or restrain the various structural rules. As our result for NL depends
on the trees being binary and the unary connectives would introduce unary
branches, it is unclear to us if it is possible to give a direct extension of
out proposed translation which includes the unary connectives. However,
Versmissen (1996) proposes a translation of the unary connectives into bi-
nary connectives with the help of two atomic formulas not used elsewhere
in the grammar: m, which intuitively corresponds to the bracket ‘〈’ and n,
which intuitively corresponds to the bracket ‘〉’. The translation, from L3 to
L is then defined as follows.

‖a‖ = a
‖A/B‖ = ‖A‖/‖B‖
‖B\A‖ = ‖B‖\‖A‖
‖A •B‖ = ‖A‖ • ‖B‖
‖2↓A‖ = (m\‖A‖)/n
‖3A‖ = (m • ‖A‖) • n



80 Proof Nets for First Order Linear Logic

We can combine this translation with one of the previous translations to
obtain a system with unary connectives. In Section 5.2.2, we will give an
example of how to mimic the way unary connectives give access to different
structural rules.

5.2 Linguistic Applications

Because of the embedding results of Section 5.1.4, we can take the lexicon
from a Lambek grammar fragment and translate it into an equivalent lexicon
for our calculus.

For example, given the lexicon l′ for the Lambek calculus

l′(Lambek)= np
l′(Gödel)=np

l′(Russell)= np
l′(student)=n
l′(article)=n
l′(proof)=n

l′(the)=np/n
l′(sleeps)= np\s
l′(likes)= (np\s)/np

l′(wrote)= (np\s)/np
l′(influenced)= (np\s)/np

l′(sent)= ((np\s)/np)/np
l′(believes)= (np\s)/s

l′(yesterday)= s\s
we can translate it into the lexicon l for MILL1 which is parameterized for
two position constants

l(Lambek, ci, cj) =np(ci, cj)
l(Gödel, ci, cj) =np(ci, cj)

l(Russell, ci, cj) =np(ci, cj)
l(student, ci, cj) =n(ci, cj)
l(article, ci, cj) =n(ci, cj)
l(proof, ci, cj) =n(ci, cj)

l(the, ci, cj) =∀x0.n(cj , x0)−◦np(ci, x0)
l(sleeps, ci, cj) =∀x0.np(x0, ci)−◦s(x0, cj)
l(likes, ci, cj) =∀x1.np(cj , x1)−◦∀x0.(np(x0, ci)−◦s(x0, x1))

l(wrote, ci, cj) =∀x1.np(cj , x1)−◦∀x0.(np(x0, ci)−◦s(x0, x1))
l(influenced, ci, cj) =∀x1.np(cj , x1)−◦∀x0.(np(x0, ci)−◦s(x0, x1))

l(sent, ci, cj) =∀x2.np(cj , x2)−◦∀x1.(np(x2, x1)−◦
∀x0.(np(x0, ci)−◦s(x0, x1)))

l(believes, ci, cj) =∀x1.s(cj , x1)−◦∀x0.(np(x0, ci)−◦s(x0, x1))
l(yesterday, ci, cj) =∀x0.s(x0, ci)−◦s(x0, cj)

with which we can derive, for example, ‘Russell wrote the article’ as a for-
mula of type s as shown in Figure 5.1 on the next page.



5.2 Linguistic Applications 81

For reasons of space, we have written only the main connective at each
node of the proof structure and indicated the substitutions next to the unary
links.

−
np(0,1)

−
∀x1

[x1:=4]

+
np(2,4)

−
−◦

−
∀x0

[x0:=0]

+
np(0,1)

−
s(0,4)

−
−◦

−
∀x2

[x2:=4]

+
n(3,4)

−
np(2,4)

−
−◦

−
n(3,4)

+
s(0,4)

Figure 5.1: Proof net for ‘Russell wrote the article’

In the remainder of this section we will discuss a number of linguistic
phenomena which have no satisfactory treatment in L, and sketch how they
can be treated in the more expressive framework we are proposing here.

5.2.1 Quantifier Scope

It has been noted since Montague (1974) that quantifiers like ‘someone’ and
‘everyone’, though they occupy np positions in a sentence, may take scope at
the sentence level.

In the Lambek calculus, we can account for some of the consequences of
this fact by giving a quantifier two assignments in the lexicon: one when it
occurs as an subject, and one for when it occurs as a (direct) object.

l′(someone) = s/(np\s)
= (s/np)\s

l′(everyone)= s/(np\s)
= (s/np)\s

These assignments allow us to derive classic sentences like

(5.1) Someone sleeps.

(5.2) Someone wrote the article.

(5.3) Everyone likes someone.

but not



82 Proof Nets for First Order Linear Logic

(5.4) Russell sent everyone the article.

Another problem arises with the following example. In Montague se-
mantics, a sentence

(5.5) Gödel believes someone sleeps

will have two readings, one in which there exists a specific person whom
Gödel believes to be sleeping (de re reading) and one in which an unknown
person is believed to be sleeping (de dicto reading).

In the standard Lambek calculus, only the second reading can be derived
with the lexical assignments above. This means we have to add a new lex-
ical entry for the quantifiers, and another if we want quantifiers to appear
in indirect object positions. Oehrle (1994) gives a good discussion of these
problems and proposes a solution in the form of string labeling.

Moortgat proposes the q operator for quantification

∆, A, ∆′ ` B Γ, C, Γ′ ` D

Γ, ∆, q(A, B, C), ∆′, Γ′ ` D
[Lq]

A problem with this operator is that it only allows a left rule to be formu-
lated, which makes it hard to view it as a logical connective. Decompositions
of the q connective into proper logical connectives, combined with an appro-
priate package of structural rules, have been proposed in (Morrill 1994) and
(Moortgat 1996a).

We can extend the translation function ‖.‖〈ei,ej〉 to translate q(A, B, C)
into MILL1 as follows.

‖q(A, B, C)‖〈ei,ej〉 =∀x0.∀x1.(‖A‖〈ei,ej〉−◦‖B‖〈x0,x1〉)−◦‖C‖〈x0,x1〉

After which the [Lq] rule becomes a derived rule in the following way.

‖∆‖〈i,j〉, ‖A‖〈j,j+1〉, ‖∆′‖〈j+1,k〉 ` ‖B‖〈i,k〉

‖∆‖〈i,j〉, ‖∆′‖〈j+1,k〉 ` ‖A‖〈j,j+1〉−◦‖B‖〈i,k〉
[R−◦]

‖Γ‖〈1,i〉, ‖C‖〈i,k〉, ‖Γ′‖〈k,l〉 ` ‖D‖〈1,l〉

‖Γ‖〈1,i〉, ‖∆‖〈i,j〉, (‖A‖〈j,j+1〉−◦‖B‖〈i,k〉)−◦‖C‖〈i,k〉, ‖∆′‖〈j+1,k〉, ‖Γ′‖〈k,l〉 ` ‖D‖〈1,l〉 [L−◦]

‖Γ‖〈1,i〉, ‖∆‖〈i,j〉, ∀x1.(‖A‖〈j,j+1〉−◦‖B‖〈i,x1〉)−◦‖C‖〈i,x1〉, ‖∆′‖〈j+1,k〉, ‖Γ′‖〈k,l〉 ` ‖D‖〈1,l〉 [L∀]

‖Γ‖〈1,i〉, ‖∆‖〈i,j〉, ∀x0.∀x1.(‖A‖〈j,j+1〉−◦‖B‖〈x0,x1〉)−◦‖C‖〈x0,x1〉, ‖∆′‖〈j+1,k〉, ‖Γ′‖〈k,l〉 ` ‖D‖〈1,l〉 [L∀]

In MILL1 we can assign generalized quantifiers the following lexical for-
mula

l(someone, ci, cj) =∀x0∀x1(np(ci, cj)−◦s(x0, x1))−◦s(x0, x1)
l(everyone, ci, cj)= ∀x0∀x1(np(ci, cj)−◦s(x0, x1))−◦s(x0, x1)

which, in the spirit of Montague’s ‘quantifying in’ rule, lets a quantifier take
as its input a sentence s (regardless of the position labeling) which is incom-
plete for a noun phrase np at the position of the quantifier, where the output
will be a sentence spanning the same positions as the incomplete sentence.



5.2 Linguistic Applications 83

This single lexical assignment allows us to derive the two readings for
‘Gödel believes someone sleeps’. The de dicto reading, where the succedent
s is linked to the antecedent s of believes, as shown in Figure 5.2, and the de
re reading, where the succedent s is linked to the antecedent s of someone, as
shown in Figure 5.3.

5.2.2 Relative Pronouns

In the Lambek calculus we can give a relative pronoun like ‘which’ the fol-
lowing two assignments

l′(which)= (n\n)/(np\s)
= (n\n)/(s/np)

This allows us to derive all cases where the incomplete sentence, which
the relative pronoun expects to its right, is incomplete for an np at the right
or left peripheral position, like the following

(5.6) Article which [ [ ]np influenced Gödel ]s.

(5.7) Article which [ Lambek likes [ ]np]s.

but not the cases where the np occurs elsewhere, as in the following examples

(5.8) Article which [ Lambek wrote [ ]np yesterday ]s.

(5.9) Article which [ Gödel sent [ ]np Russell ]s.

−
np(0,1)

−
∀x1

[x1:=4]

+
s(2,4)

−
−◦

−
∀x0

[x0:=0]

+
np(0,1)

−
s(0,4)

−
−◦

−
∀x2

[x2:=2]

−
∀x3

[x3:=4]

−
s(2,4)

−
−◦

−
np(2,3)

+
s(2,4)

+
−◦

−
∀x4

[x4:=2]

+
np(2,3)

−
s(2,4)

−
−◦

+
s(0,4)

Figure 5.2: De dicto reading for ‘Gödel believes someone sleeps’



84 Proof Nets for First Order Linear Logic

−
np(0,1)

−
∀x1

[x1:=4]

+
s(2,4)

−
−◦

−
∀x0

[x0:=0]

+
np(0,1)

−
s(0,4)

−
−◦

−
∀x2

[x2:=0]

−
∀x3

[x3:=4]

−
s(0,4)

−
−◦

−
np(2,3)

+
s(0,4)

+
−◦

−
∀x4

[x4:=2]

+
np(2,3)

−
s(2,4)

−
−◦

+
s(0,4)

Figure 5.3: De re reading for ‘Gödel believes someone sleeps’

−
n(0,1)

−
np(4,4)

+
s(2,5)

+
−◦

+
n(0,1)

−
n(0,5)

−
−◦

+

∃x1

[x1:=4]

−
∀x2

[x2:=0]

−
−◦

−
∀x0

[x0:=5]

−
np(2,3)

−
∀x3

[x3:=4]

+
np(4,4)

−
−◦

−
∀x4

[x4:=2]

+
np(2,3)

−
s(2,4)

−
−◦

−
∀x5

[x5:=2]

+
s(2,4)

−
s(2,5)

−
−◦

+
n(0,5)

Figure 5.4: Proof net for ‘article which Lambek wrote yesterday’

In MILL1 we can formulate the fact that the np may occur anywhere in
the incomplete sentence by quantifying over its position arguments and us-
ing the same variable for both its left and right position, giving it a license to
insert itself at any position. The resulting lexical entry

l(which, ci, cj) = ∀x0.(∃x1.np(x1, x1)−◦s(cj , x0))−◦
(∀x2.n(x2, ci)−◦n(x2, x0))

allows us to construct a proof net (Figure 5.4) for ‘article which Lambek wrote
yesterday’ as an expression of category n.



5.2 Linguistic Applications 85

Our treatment can be compared to the one proposed by Hodas (1992) for
the linear logic programming language Lolli and it appears to suffer from the
same problem observed by Hodas, namely that of blocking cases of extrac-
tion of an np from a complex subject, as in

(5.10) ∗Article which [ [ the proof in [ ]np]np is long ]s.

without blocking subject extraction altogether. If we choose to make a sub-
ject its own domain, as we could using our approach to locality from Sec-
tion 5.2.3, we would block the derivation of Example 5.6 in addition to the
derivation of 5.10. If not, we fail to reject Example 5.10.

Pied Piping

Morrill (1994) discusses relatives like ‘whom’ and ‘which’ which allow pied
piping, i.e. they have the possibility of fronting material from the extraction
site. This is perhaps best illustrated by comparing the extraction case in Ex-
ample 5.11 below to the nominal and prepositional pied piping cases in Ex-
amples 5.12 and 5.13 respectively. Morrill analyses these relatives as selecting
for a pp or an np which is incomplete for an np, as indicated by the bracketing
below.

(5.11) (a student) [ [ ]np]np which [ Gödel liked the article of [ ]np]s.

(5.12) (a student) [ the article of [ ]np]np which [ Gödel liked [ ]np]s.

(5.13) (a student) [ of [ ]np]pp which [ Gödel liked the article [ ]pp]s.

The assignment to ‘which’ of the previous section allows us to derive
only the extraction case of Example 5.11, where no material is fronted. With
the following two lexical assignments we can derive both the nominal pied
piping case of Example 5.12 and the prepositional pied piping case of Exam-
ple 5.13.

l(which, ci, cj) =∀x1.∀x3.(∃x0.np(x0, x0)−◦np(x1, ci))−◦
((∃x2.np(x2, x2)−◦s(cj , x3))−◦
∀x4.(n(x4, x1)−◦n(x4, x3)))

=∀x1.∀x3.(∃x0.np(x0, x0)−◦pp(x1, ci))−◦
((∃x2.pp(x2, x2)−◦s(cj , x3))−◦
∀x4.(n(x4, x1)−◦n(x4, x3)))

If we allow for empty antecedent derivations, the extraction assignment is a
special case of the nominal pied piping assignment. This is because there is
an empty antecedent derivation of

` ∀x1.(∃x0.np(x0, x0)−◦np(x1, cj))

which instantiates both x1 and x0 to cj , after which we have a syntactic vari-
ant of the previous lexical assignment to ‘which’.



86 Proof Nets for First Order Linear Logic

5.2.3 Locality

The Lambek calculus also has problems of overgeneration, caused by the
associativity rule. As already suggested by our embedding translation for
non-associative calculi in Section 5.1.4, we can block associativity when nec-
essary.

The basic idea is to add a ‘domain variable’ as first argument of all atomic
formulas. For ordinary lexical items and the succedent formula we univer-
sally quantify over this variable, but some lexical items may introduce new
domains.

l(Lambek, ci, cj) =∀x0.np(x0, ci, cj)
l(Gödel, ci, cj) =∀x0.np(x0, ci, cj)

l(admires, ci, cj) =∀x1.∀x2.np(x2, cj, x1)−◦
∀x0.(np(x2, x0, ci)−◦s(x2, x0, x1))

l(himself, ci, cj) =∀x0.∀x1.∀x2.∀x3.∀x4.(np(x0, ci, cj)−◦
(np(x0, x1, x2)−◦s(x0, x3, x4)))−◦
(np(x0, x1, x2)−◦s(x0, x3, x4))

l(believes, ci, cj) =∀x1.∀x2.(∀x3.s(x3, cj , x1)−◦
∀x0.(np(x2, x0, ci)−◦s(x2, x0, x1)))

The key lexical item here is believes: it introduces a new locality domain
x3 for the embedded s, which because of our conditions on quantifiers will
be different from the domain assigned to the whole sentence.

The assignment to the reflexive himself indicates it has a transitive verb as
its input and an intransitive verb as its output, but, because there is only a
single locality variable x0, both will be in the same locality domain.

This allows us to account for

(5.14) Lambekx6believes Gödelx1admires himselfx1 .

(5.15) ∗Lambekx6believes Gödelx1admires himselfx6 .

In Figure 5.5 on the facing page we show how, abstracting over the posi-
tion labeling for the sake of simplicity, we can derive sentence 5.14.

Figure 5.6 on the next page shows that it is not possible to bind himself
in the domain of the main sentence x6. When we choose the substitution
x5 := x6, we can only link the positive s(x1) as shown, which will force us
to substitute x1 for x4. But after performing this link there are three negative
np(x6) formulas and only two positive np(x6), so continuing will never result
in a proof net.

5.3 Conclusions

We have shown that we can extend the multiplicative fragment of linear logic
to the first order fragment without sacrificing either the elegant proof theory
(proof nets with a natural soundness criterion) or the computational com-
plexity.



5.3 Conclusions 87

−
np(x6)

−
∀x0

−
−◦

+
s(x1)

+

∀x1

−
∀x2

+
np(x6)

−
s(x6)

−
−◦

−
np(x1)

−
∀x3

−
∀x4

+
np(x1)

−
−◦

+
np(x1)

−
s(x1)

−
−◦

−
−◦

−
∀x5

−
np(x1)

+
−◦

−
np(x1)

+
s(x1)

+
−◦

+
np(x1)

−
s(x1)

−
−◦

+
s(x6)

+

∀x6

Figure 5.5: ‘Lambekx6 believes Gödelx1 admires himselfx1 ’

−
np(x6)

−
∀x0

−
−◦

+
s(x1)

+

∀x1

−
∀x2

+
np(x6)

−
s(x6)

−
−◦

−
np(x1)

−
∀x3

−
∀x4

+
np(x1)

−
−◦

+
np(x1)

−
s(x1)

−
−◦

−
−◦

−
∀x5

−
np(x6)

+
−◦

−
np(x6)

+
s(x6)

+
−◦

+
np(x6)

−
s(x6)

−
−◦

+
s(x6)

+

∀x6

Figure 5.6: ‘∗Lambekx6 believes Gödelx1 admires himselfx6 ’

We have given an embedding translation of sequents of both L and NL
to sequents in the first order fragment and shown how several linguistic
phenomena which could not be adequately handled in the Lambek calculus
could be treated in MILL1.

Though we have not tried to be comprehensive in our discussion of lin-
guistics, we hope to have given the reader an idea of a number of possible
applications of MILL1.





CHAPTER 6
ALGEBRAIC CRITERIA

T HE proof net criteria we’ve seen so far, for the multiplicative fragment
and the first order multiplicative fragment of linear logic, have been of a

graph theoretic nature; consisting of either switching or contractions on the
graph representation of proof structures. In this chapter we will look at a
different approach to checking the correctness of proof structures, which are
called the algebraic or labeling approaches. In an algebraic correctness crite-
rion, the nodes of the graph are labeled with terms of an algebra and equa-
tions or rewrite rules on these terms will decide whether the proof structure
is correct.

The algebraic criteria discussed in this chapter are also used in the Grail
automated theorem prover, which is described in Appendix A.

Though the proof net approach described in Chapter 4 gives us both a
nice proof theory, and a simple, transparent algorithm for proof search, it
does so only for LP. While LP is the language of choice for semantic com-
position, via the Curry Howard interpretation of proofs, as a language of
structural composition it is only of limited interest. We will develop a solu-
tion to this problem in the line of Gabbay’s (1996) labeled deduction; instead
of using formulas A as our basic declarative unit, we use labeled formulas
x : A. The label x represents a piece of structural information. The rules will
be adapted to operate on both the formulas and the labels.

The agenda for this chapter is the following.

– Keep the proof theory of multiplicative intuitionistic linear logic.

– Introduce a new level of description in the form of structural labeling.

– Apply these labels as constraints which give us the required discrimina-
tory power to embed arbitrary multimodal Lambek calculi with linear
structural rules in the proof net architecture.



90 Algebraic Criteria

Identity

x : A ` x : A
[Ax]

Γ, y : B ` Z[y] : C ∆ ` Y : B

Γ, ∆ ` Z[Y ] : C
[Cut]

Binary Connectives

Γ, x : A, y : B ` Z[x ◦i y] : C

Γ, z : A •i B ` Z[z] : C
[L•i] Γ ` X : A ∆ ` Y : B

Γ, ∆ ` X ◦i Y : A •i B
[R•i]

∆ ` Y : B Γ, x : A ` Z[x] : C

Γ, ∆, y : A/iB ` Z[y ◦i Y ] : C
[L/i]

Γ, y : B ` X ◦i y : A

Γ ` X : A/iB
[R/i]

∆ ` Y : B Γ, x : A ` Z[x] : C

Γ, ∆, y : B\iA ` Z[Y ◦i y] : C
[L\i]

Γ, y : B ` y ◦i X : A

Γ ` X : B\iA
[R\i]

Unary Connectives

Γ, x : A ` Z[〈x〉i] : C

Γ, y : 3iA ` Z[y] : C
[L3i]

Γ ` Z : C

Γ ` 〈Z〉i : 3iC
[R3i]

Γ, x : A ` Z[x] : C

Γ, y : 2iA ` Z[〈y〉i] : C
[L2

↓
i ]

Γ ` 〈Z〉i : C

Γ ` Z : 2iC
[R2

↓
i ]

Structural Rules

Γ ` Z[Ξ′[X1, . . . , Xn]] : C

Γ ` Z[Ξ[Xπ1 , . . . , Xπn ]] : C
[SR]

Table 6.1: The labeled sequent calculus NL3R

We will first follow this approach for the labeled sequent calculus and
labeled natural deduction, where adding labeling and proving soundness
and completeness is a relatively simple step.

When we add labels to the proof net calculus we will need some auxiliary
label constructors in order to allow us to make the same distinctions as the
labeled sequent calculus. In the next chapter we will see how these labels
correspond to two sided proof nets and prove soundness and completeness
of that approach.

6.1 Labeled Sequent Calculus

A labeled deductive version of the sequent calculus is presented in Table 6.1.
This consists of replacing the antecedent by a multiset, and formulas by la-
beled formulas. Labels are defined as follows.

Definition 6.1 Over a countably infinite set x, y, z, . . . of structural variables V ,



6.2 Labeled Natural Deduction 91

y :np ` y :np
[Ax]

v’ : inf ` v’ : inf
[Ax]

x :np ` x :np
[Ax]

w :s ` w :s
[Ax]

x :np, w’ :np\1s ` x ◦1 w’ :s
[L\1]

x :np, z : (np\1s)/0inf, v : inf ` x ◦1 (z ◦0 v’) :s
[L/0]

x :np, y :np, z : (np\1s)/0inf, v :np\1inf ` x ◦1 (z ◦0 (y ◦1 v)) :s
[L\1]

x :np, y :np, z : (np\1s)/0inf, v :np\1inf ` x ◦1 (y ◦1 (z ◦0 v)) :s
[MC]

Figure 6.1: Labeled sequent derivation of ‘(dat) Ripley Newt wil redden’

we define the set of structural labels inductively as follows

L::=V
| 〈L〉i
| L ◦i L

All antecedent types are assigned a fresh structural variable, but when no
confusion is possible it is usually more convenient to use the lexical word as
the label for a formula.

The succedent label will represent the way the antecedent resources are
configured. The notation Z[X ] will now be interpreted as a label Z with a
distinguished occurrence of a sublabel X . Newly introduced structure vari-
ables are assumed to be fresh.

We can define a (reversible) function from succedent labels to antecedent
configurations in the following way. Note that the constructors 〈.〉i and . ◦i .
are overloaded, on the left hand side of the equations they are label construc-
tors, while on the right hand side they are antecedent constructors.

‖x‖ = A iff x : A is a formula in the antecedent
‖〈X〉i‖ = 〈‖X‖〉i
‖X ◦i Y ‖ = ‖X‖ ◦i ‖Y ‖

With this translation in hand, we can easily show that the labeled and non
labeled sequent calculus derive the same theorems

Proposition 6.2 If ‖X‖ = Γ′ then Γ ` X : C iff Γ′ ` C.

Proof Induction. 2

Example 6.3 Figure 6.1 presents a labeled version of the derivation shown in Fig-
ure 3.3 on page 38.

6.2 Labeled Natural Deduction

Obviously, the labeling technique used for the sequent calculus in the previ-
ous section extends to natural deduction as well. Table 6.2 shows the labeled



92 Algebraic Criteria

Hypothesis

x : A

Binary Connectives

X : A •i B

[x : A]n [y : B]n....
Z[x ◦i y] : C

Z[X ] : C
[•E]n X : A Y : B

X ◦i Y : A •i B
[•I]

X : A/iB Y : B

X ◦i Y : A
[/E]

[x : B]n....
X ◦i x : A

X : A/iB
[/I]n

Y : B X : B\iA
Y ◦i X : A

[\E]

[x : B]n....
x ◦i X : A

X : B\iA
[\I]n

Unary Connectives

X : 3iA

[x : A]n....
Z[〈x〉i] : C

Z[X ] : C
[3E]n X : A

〈X〉i : 3iA
[3I]

X : 2
↓
i A

〈X〉i : X
[2↓E]

〈X〉i : A

X : 2
↓
i A

[2↓I]

Structural Rules

Γ ` Z[Ξ′[X1, . . . , Xn]] : C

Γ ` Z[Ξ[Xπ1 , . . . , Xπn ]] : C
[SR]

Table 6.2: The labeled natural deduction calculus NL3R

natural deduction calculus for NL3R. In this calculus we can suppress the
antecedent formulas which are still explicitly present in the unlabeled calcu-
lus of Table 3.9 on page 43, because the label provides enough information to
fully reconstruct the antecedent.

The following translation function, which is a simple modification of the
one in the previous section, shows how we can generate the antecedent for-



6.3 Labeled Proof Nets 93

r : np

wil : 2
↓
0((np\1s)/0inf)

〈wil〉0 : (np\1s)/0inf
[2↓

0E]
n : np

redden : 2
↓
0np\1inf

〈redden〉0 : np\1inf
[2↓

0E]

n ◦1 〈redden〉0 : inf
[\1E]

〈wil〉0 ◦0 (n ◦1 〈redden〉0) : np\1s
[/0E]

r ◦1 (〈wil〉0 ◦0 (n ◦1 〈redden〉0)) : s
[\1E]

r ◦1 (n ◦1 (〈wil〉0 ◦0 〈redden〉0)) : s
[MC]

r ◦1 (n ◦1 〈wil ◦1 redden〉0) : s
[K]

r ◦1 (n ◦1 〈wil ◦1 redden〉1) : s
[I]

r ◦1 〈n ◦1 (wil ◦1 redden)〉1 : s
[K2]

〈r ◦1 (n ◦1 (wil ◦1 redden))〉1 : s
[K2]

r ◦1 (n ◦1 (wil ◦1 redden)) : 2
↓
1s

[2↓
1I]

Figure 6.2: Natural deduction derivation of ‘(dat) Ripley Newt wil redden’

mulas from the label and vice versa.

‖x‖ = A iff x : A is a hypothesis of the proof
‖〈X〉i‖ = 〈‖X‖〉i
‖X ◦i Y ‖ = ‖X‖ ◦i ‖Y ‖

Proposition 6.4 If ‖X‖ = Γ then X : C has a labeled natural deduction proof iff
Γ ` C .

Proof Induction. 2

Because we can suppress the antecedent completely without losing infor-
mation and because we don’t have to introduce a new structural variables
for every subformula used in the proof as in the labeled sequent calculus,
the labeled natural deduction calculus gives an especially pleasant way of
portraying proofs in NL3R.

Example 6.5 Figure 6.2 presents a labeled natural deduction version of the deriva-
tion shown in Figure 3.4 on page 42.

6.3 Labeled Proof Nets

Moortgat (1997) proposes to add structural labeling to proof nets in the fol-
lowing way. His proposal should be contrasted with earlier labeling propos-
als like Moortgat (1990) and Morrill (1995) which were incomplete for the
product formulas.

Definition 6.6 Over a countably infinite set V of structural variables, we define the
set of structural labels L as follows



94 Algebraic Criteria

−
A

+

A

;
−

X :A
+

X :A

?

−
A

+

A
;

−
X :A

+

X :A
6

Table 6.3: Dynamic graphs for identity links

L::=V
| 〈L〉i (Structural counterpart of 3i)
| L ◦i L (Structural counterpart of •i)
| dLei (Auxiliary constructor for 2

↓
i )

| bLci (Auxiliary constructor for 3i)
| V\iL (Auxiliary constructor for \i)
| L/iV (Auxiliary constructor for /i)
| L/i (Auxiliary constructor for •i)
| L.i (Auxiliary constructor for •i)

Definition 6.7 The set of normal labels N is a subset of L defined as follows
N ::=V
| 〈N〉i
| N ◦i N

As can be seen from the definition above, there are two kinds of label
constructors: structural and auxiliary. The structural connectives are those
we used to generate antecedent terms for multimodal sequents. In addition,
we have an auxiliary constructor for each of the connectives in our formula
language. The purpose of these constructors will be to check the sublinear
constraints on derivability for that specific connective.

The negative formulas are initially assigned distinct structural variables
x, y, . . ., the positive formula a metavariable Z . We apply the following links,
where all newly occurring structural or metavariables are fresh, until we
reach atomic formulas.

From a proof structure we can construct the underlying dynamic graph,
or essential net as Lamarche (1994) calls them, as shown in Tables 6.3, 6.4 and
6.5 on this page and the following pages. A dynamic graph is a directed
graph, where every link in the proof structure induces one or two edges. The
direction of the edges in the graph indicate the flow of information in the
labels: for all negative formulas the information flow is upwards, whereas
for all positive formulas the information flows downwards. Note that we
follow de Groote (1999a) in reversing the arrows of Lamarche (1994).

Definition 6.8 An dynamic graph is correct if the following properties hold.

(i) it is acyclic,



6.3 Labeled Proof Nets 95

−
A

−
B

−
A •i B

;

−
X/i :A

−
X.i :B

−
X :A •i B

�]

+

A
+

B

+

A •i B

;

+

X :A
+

Y :B

+

X ◦i Y :A •i B

�^

−
A

+

B

−
A/iB

;

−
X ◦i Y :A

+

Y :B

−
X :A/iB

]

�

−
B

+

A

+

A/iB

;

−
x :B

+

X :A

+

X/ix :A/iB

�

+

B
−
A

−
B\iA

;

+

Y :B
−

Y ◦i X :A

−
X :B\iA

�

-

+

A
−
B

+

B\iA

;

+

X :A
−

x :B

+

x\iX :B\iA
^

Table 6.4: Dynamic graphs for binary links

(ii) every path from the negative premiss of a positive /i or \i link passes through
the conclusion of this link,

(iii) every path from the negative inputs of the graph passes through the positive
output of the graph.

Theorem 6.9 (Lamarche (1994)) A sequent Γ ` C is provable in MILL iff its
dynamic graph is correct.



96 Algebraic Criteria

−
A

−
3jA

;

−
bXcj :3jA

−
X :3jA

6

+

A

+

3jA

;

+

X :A

+

〈X〉j :3jA

?

−
A

−
2

↓
jA

;

−
〈X〉j :A

−
X :2↓

jA

6

+

A

+

2
↓
jA

;

+

X :A

+

dXej :2↓
jA

?

Table 6.5: Dynamic graphs for unary links

Corollary 6.10 Every correct MILL proof net can be assigned a label to its (unique)
positive conclusion based on its underlying dynamic graph.

Proof Immediate from Theorem 6.9 and the fact that the labeling follows
the information flow of the dynamic graph. 2

We now define a set of conversions on this succedent label, which will
check the sublinear constraints on derivability. We have one logical conver-
sion for each connective, as shown in Table 6.6.

We call the label on the right hand side of the conversion a redex and the
label on the left hand side its contractum. Converting a label X to a label Y
(X → Y ) consists of replacing all occurrences of a redex by its contractum.
We will write� (reduces to) for the transitive, reflexive closure of→.

In addition to these logical label conversions, we can have structural label
conversions corresponding to the set of structural rules R. We again require
these conversions to be linear according to Definition 3.4, i.e. all metavari-
ables in the conversion occur exactly once on the left hand side of the con-
version and exactly once on the right hand side of the conversion. Because
our logical component is fixed and language independent a label conversion
cannot refer to auxiliary constructors as this would allow us to change the



6.3 Labeled Proof Nets 97

X/i ◦i X.i → X [•i]
(X ◦i Y )/iY → X [/i]
Y \i(Y ◦i X)→ X [\i]
〈bXci〉i → X [3i]
d〈X〉iei → X [2↓

i ]

Table 6.6: Logical conversions

basic meaning of the connectives.

Definition 6.11 We will call a label L reducible if and only if there is a normal
label N such that L� N .

Example 6.12 A standard well-behavedness property for a sequent or proof net cal-
culus is that we can restrict ourselves to atomic instances of the axiom rule. We have
seen in Lemma 4.10 of Section 4.4 that we can derive all non atomic instances of
this rule at the logical level. The label reductions should therefore also allow us to
produce a normal label for those. For the product formula, the proof net below

−
a

−
b

−
a •i b

+

b
+
a

+

a •i b

produces the following dynamic graph.

−
x/i : a

−
x.i : b

−
x : a •i b

�]

+

x.i : b
+

x/i : a

+

x/i ◦i x.i : a •i b

�^

Using a non atomic axiom link would produce a label x for the succedent type
immediately. We can now use the logical conversion for the product formula on the
output label x/i ◦i x.i to get x/i ◦i x.i → x.

Definition 6.13 A labeled proof structure is a proof net if and only if it confirms
to the following conditions

(i) its underlying dynamic graph is correct.

(ii) all negative conclusions of the proof structure are assigned a structural vari-
able.

(iii) the label assigned to the positive conclusion of the proof structure is reducible.



98 Algebraic Criteria

6.4 Conclusion

We have seen how a two level approach of proof nets and labeling. What
is still lacking is a proof of the soundness and correctness of this algebraic
criterion. In the next chapter, I will present an alternative, graph theoretic
approach to proof nets for the multimodal Lambek calculus, which turns out
to be closely related to the algebraic approach. That system will have only a
single level of representation for which we will prove the basic soundness,
completeness and cut elimination results.



CHAPTER 7

CONTRACTION CRITERIA

I N the previous chapter, we have seen how we could use algebraic correct-
ness criteria for NL3R. In this chapter, I will present a graph theoretic

correctness criterion, in the line of Danos’ contraction criterion for Multi-
plicative Linear Logic, discussed in Section 4.5.

This chapter is based on joint research with Quintijn Puite, and parts of it
have appeared before in (Puite & Moot 1999), (Moot & Puite 1999) and (Moot
& Puite 2001).

7.1 Two Sided Proof Nets

Proof nets, as we have seen them in the previous chapters, having their roots
in the one sided sequent calculus, have a certain asymmetry in that they are
allowed to have conclusions, i.e. formulas which are not the premiss of a
link, but not hypotheses, i.e. formulas which are not the conclusion of a link.
Puite (1998) proposes a proof net calculus based on the two sided sequent
calculus, where a proof net is can have both hypotheses and conclusions.

In this calculus every link has a dual link. So, in addition to a normal
right tensor link, we have a left tensor link as shown in Table 7.1 on the next
page, which is by symmetry a par link and which has A⊗B as a premiss and
A and B as conclusions.

In the two sided calculus, this new link is a primitive link, but we can
see it as a defined link in the one sided calculus as shown in Figure 7.1 on the
following page.

If we compare the [L⊗] link with the defined link above, it is easy to verify
that for any proof structure S with the primitive [L⊗] link we can generate
a proof structure S ′ where the primitive link is replaced by the defined link



100 Contraction Criteria

A B

A⊗B

[L⊗]

A B

A⊗B

[R⊗]

Table 7.1: Two sided tensor links

A⊗B

A⊥ B⊥

A⊥ &

B⊥

A B

Figure 7.1: One sided representation of the [L⊗] link

above. Now for everyy switching ω the correction graph ωS will be acyclic
and connected if and only if ωS ′ is acyclic and connected.

We also have a left and right par link, which look as shown in Table 7.2.
One of the advantages of a two sided calculus is that we can now have

explicit negation links as shown in Table 7.3 on the facing page, a left nega-
tion link, which looks very much like an axiom link, and a right negation
link, which looks very much like a cut link.

The elimination of double negation and the De Morgan equalities, which
were ‘compiled away’ in the one sided calculus, now become explicitly rep-
resentable in the two sided calculus.

Example 7.1 As an example, we construct the proof net for the De Morgan equiv-
alence below.

a⊗ b ` (a⊥ &

b⊥)⊥

A B

A

&

B

[L

&

]

A B

A

&

B

[R

&

]

Table 7.2: Two sided par links



7.1 Two Sided Proof Nets 101

A A⊥
[L⊥]

A A⊥
[R⊥]

Table 7.3: Negation links

a b

a⊗ b

[L⊗]

a b a⊥ b⊥

a⊥ &

b⊥

[L

&

]

(a⊥ &

b⊥)⊥

[L⊥]

[L⊥]

[R⊥]

Figure 7.2: Example formula unfolding

We first unfold the formulas as before, which produces the result shown in Fig-
ure 7.2.

We can see from the example above that axiom links in the one sided proof net
calculus are, from the two sided point of view, a combination of a left negation link
and the identification of two syntactically identical formulas. Therefore, in the two
sided calculus the axiom rule corresponds only to the unification of two formulas.

For the proof structure of Figure 7.2 there is a unique way to produce a proof net,
which is shown as Figure 7.3.

a b

a⊗ b

[L⊗]

a⊥ b⊥

a⊥ &

b⊥

[L

&

]

(a⊥ &

b⊥)⊥

[L⊥]

[L⊥]

[R⊥]

Figure 7.3: Proof net for the formula unfolding of Figure 7.2



102 Contraction Criteria

A⊥ B

A⊥ &

B

[L

&

]

[L⊥]

A

A A−◦B

B

[L−◦]
;

A⊥ B

A⊥ &

B

[R

&

]

[R⊥]

A

A A−◦B

B

[R−◦]

;

Table 7.4: Links for implication, defined and primitive

Now, given that linear implication A−◦B is defined as A⊥ &

B, we can
abbreviate a combined par and negation link as shown in Table 7.4.

Example 7.2 The sequent below

a−◦b, b−◦c ` a−◦c

generates the proof structure shown in Figure 7.4 on the next page after connecting
the b and c atomic formulas.

Note that we now want to connect the a atomic formulas, but it is difficult to
portray this on a flat plane. When we imagine the plane we draw on is cylindrical,
i.e. if we move up far enough we reenter the plane from below, we can see how moving
upward from the top a formula we would reach the bottom a formula. However, we
will choose to portray these sitatuations by using curved connections, as shown in
Figure 7.5 on the facing page.

Observe that the above representation is very close to the corresponding
natural deduction proof, shown in Figure 7.6 on the next page, with the dif-
ference that instead of coindexing the [R−◦] rule with the discharged hypo-
thesis a, we represent the discharge by a link which removes the hypothesis
a from the hypotheses of the proof structure.



7.2 Sequent Calculus 103

a a−◦b

b

[L−◦]

b−◦c

c

[L−◦]

a a−◦c
[R−◦]

Figure 7.4: Proof structure for a, a−◦b, b−◦c ` a, a−◦c

a a−◦b

b

[L−◦]

b−◦c

c

[L−◦]

a−◦c
[R−◦]

Figure 7.5: Proof net for a−◦b, b−◦c ` a−◦c

7.2 Sequent Calculus

Though we have seen in the previous section how to extend proof nets for
multiplicative linear logic to a two sided calculus, unless we modify our cor-

[a ` a]1
b ` b c ` c
b, b−◦c ` c

[L−◦]

a, a−◦b, b−◦c ` c
[L−◦]

a−◦b, b−◦c ` a−◦c [R−◦]1

Figure 7.6: Natural deduction proof of a−◦b, b−◦c ` a−◦c



104 Contraction Criteria

rectness criterion, we will still be stuck in the multiplicative fragment of li-
near logic, albeit in the two sided formulation of it.

The rest of this chapter will be devoted to giving a correctness criterion
for NL3R by stating a contraction criterion which is a special case of Danos’
contraction criterion as discussed in Section 4.5. Moreover, this criterion will
be modular in that it generates a correctness criterion from the structural rule
component R of specific grammars, as long as they are linear according to
Definition 3.4. In Section 7.8, we will give a specialized contraction criterion
for the original Lambek calculus L.

For ease of reference, we repeat the language and the sequent calculus of
NL3R here.

Definition 7.3 The language L(NL3R) consists of the following.

[Formulas] Given a set of atomic formulas A, a set I of binary indices and a set J
of unary indices, the set of formulas is defined inductively as follows

F ::= A |3jF |2↓
jF |F/iF |F •i F |F\iF

We will use A, B, C, . . . to denote arbitrary formulas.

[Antecedent Terms] Over the set of formulas F , we define the set of antecedent
terms T as follows

T ::= F | 〈T 〉j | T ◦i T
We will use Γ, ∆, Ξ, . . . to denote arbitrary antecedent terms. When we want
to refer to a specific subtree occurrence ∆ of an antecedent term Γ we will
write this as Γ[∆]

[Sequents] A sequent is written as Γ ` C, where Γ is an antecedent term we will
call the antecedent of the sequent and C is a formula we will call the succedent
of the sequent.

The sequent calculus for NL3 is given by the rules in Table 7.5 on the
facing page. The set of structural rules R is an additional set of sequent
rules, which is dependent on the application of the system. Each rule of
R is schematically of the form shown on the last line of Figure 7.5 on the
next page, where Ξ and Ξ′ are fixed trees built from the structural operators
(− ◦i −) and 〈−〉j with n distinct structural variables as leaves, and where π
is a permutation of these leaves. As a consequence, each structural variable
occurs once in the premiss and once in the conclusion of a structural rule.

This restriction guarantees the structural rules of contraction and weake-
ning will never be derivable in our logic and as a consequence all our con-
nectives are multiplicatives in the sense of Danos & Regnier (1989).

Illustration: wh extraction in English

As our running example throughout this chapter we will look at what is often
called wh extraction.



7.2 Sequent Calculus 105

A ` A
[Ax]

Γ[A] ` C ∆ ` A

Γ[∆] ` C
[Cut]

Γ[〈A〉j ] ` C

Γ[3jA] ` C
[L3j ]

Γ ` C

〈Γ〉j ` 3jC
[R3j ]

Γ[A] ` C

Γ[〈2↓
jA〉j ] ` C

[L2
↓
j ]

〈Γ〉j ` C

Γ ` 2
↓
jC

[R2
↓
j ]

Γ[(A ◦i B)] ` C

Γ[A •i B] ` C
[L•i]

Γ ` A ∆ ` B

(Γ ◦i ∆) ` A •i B
[R•i]

Γ[A] ` C ∆ ` B

Γ[(A/iB ◦i ∆)] ` C
[L/i]

(Γ ◦i B) ` A

Γ ` A/iB
[R/i]

Γ[A] ` C ∆ ` B

Γ[(∆ ◦i B\iA)] ` C
[L\i]

(B ◦i Γ) ` A

Γ ` B\iA
[R\i]

Γ[Ξ′[∆1, . . . ,∆n]] ` C

Γ[Ξ[∆π1 , . . . ,∆πn ]] ` C
[SR]

Table 7.5: The sequent calculus NL3R

To keep the current discussion simple we will only look at the wh word
‘whom’, which we analyze as a noun modifier selecting a sentence from
which a noun phrase is missing. The restriction ‘whom’ imposes is that this
missing noun phrase cannot occur in subject position, as indicated by the
following examples.

(7.1) ∗ agent whom [ [ ]np interrogated Neo ]s

(7.2) agent whom [ Trinity escaped [ ]np ]s

(7.3) agent whom [ Morpheus considered [ ]np dangerous ]s

To model this behavior, we give a very simple grammar fragment with
only one binary and one unary mode. An extracted np is marked as 302

↓
0np.

As 3j2
↓
jA ` A is a theorem of the base logic for all j and A, this allows

these constituents to function as an np. Crucial for this application is that the
[L2

↓
j ] rule, read top down, introduces unary brackets, which produces the

proper configuration for the structural rules shown in Table 7.6.
It should be noted, however, that these rules allow a 〈∆〉0 constituent to

move only from a right branch of a structure to another right branch. As
a subject would appear on a left branch, this prevents subject extraction as
desired.



106 Contraction Criteria

Γ[∆1 ◦0 (∆2 ◦0 〈∆3〉0)] ` C

Γ[(∆1 ◦0 ∆2) ◦0 〈∆3〉0] ` C
[P1]

Γ[(∆1 ◦0 〈∆3〉0) ◦0 ∆2] ` C

Γ[(∆1 ◦0 ∆2) ◦0 〈∆3〉0] ` C
[P2]

Table 7.6: Structural rules for wh extraction

n ` n
[Ax]

n ` n
[Ax]

n ◦0 n\0n ` n
[L\0]

s ` s
[Ax]

np ` np
[Ax]

np ◦0 np\0s ` s
[L\0]

np ` np
[Ax]

np ◦0 ((np\0s)/0np ◦0 np) ` s
[L/0]

np ◦0 ((np\0s)/0np ◦0 〈2↓
0np〉0) ` s

[L2
↓
0]

(np ◦0 (np\0s)/0np) ◦0 〈2↓
0np〉0 ` s

[P1]

(np ◦0 (np\0s)/0np) ◦0 302
↓
0np ` s

[L30]

np ◦0 (np\0s)/0np ` s/0302
↓
0np

[R/0]

n ◦0 ((n\0n)/0(s/0302
↓
0np) ◦0 (np ◦0 (np\0s)/0np)) ` n

[L/0]

Figure 7.7: Sequent derivation for ‘agent whom Trinity escaped’

The lexicon, with which we can derive the well-formed expressions given
above is shown in Table 7.7.

lex(agent) =n

lex(dangerous) =n/0n

lex(Neo) =np

lex(Trinity) =np

lex(Morpheus) =np

lex(escaped) =(np\0s)/0np

lex(interrogated) =(np\0s)/0np

lex(considered) =((np\0s)/0(n/0n))/0np

lex(whom) =(n\0n)/0(s/0302
↓
0np)

Table 7.7: Example lexicon

Example 7.4 Given the above structural rules and the lexicon of Figure 7.7, we
can give a derivation of expression 7.2, ‘agent whom Trinity escaped’, as shown in
Figure 7.7.



7.3 Proof Structures 107

7.3 Proof Structures

We will now present proof structures for NL3R.

Definition 7.5 A link L is a tuple 〈τ, ν, P, Q, p, q〉, where τ is either ‘⊗’ or ‘

&

’, ν is
a label indicating the name of the link, P is a sequence of formulas which we call the
premisses of L, Q is a sequence of formulas which we call the conclusions of L, p is
a subsequence of P and q is a subsequence of Q such that length(p)+length(q) ≤ 1.

If τ = ‘⊗’, we will call the link a tensor link. If τ = ‘

&

’, we will call the link a
par link.

If length(p) = 1, we will call the link a left link, the element A of p the output
or main formula and the other elements of P and the elements of Q the input or
active formulas.

If length(q) = 1, we will call the link a right link, the element B of q the output
or main formula and the elements of P and the other elements of Q the input or
active formulas.

If length(p) = length(q) = 0 we will call the link a neutral link.

We will display our links a bit different from the way we did in Section 7.1
and portray them, following Puite (1998),as shown below, with the premisses
above the horizontal line and the conclusions below it, both numbered ac-
cording to their linear order (when no confusion is possible we will often
omit the numbering and order the premisses and conclusions from left to
right). For left and right links, we indicate the main formula of the link by
an arrow moving to that formula, while the active formulas have an arrow
moving from them. Neutral links are displayed without arrows. We attach
the label ν to the horizontal line.

p1 · · · pn

1 n

1 k m

c1 · · · ck

R

· · · cm

p1 · · · pk

L

· · · pn

1 k n

1 m

c1 · · · cm

p1 · · · pn

1 n

1 k m

c1 · · · ck

N

· · · cm

We distinguish tensor links and par links graphically by drawing a solid
horizontal line for a tensor link and a dashed horizontal line for a par link.

Definition 7.6 A proof structure 〈S,L〉 consists of a finite set S of formulas to-
gether with a set L of links in S of the forms shown in Table 7.8, for each binary
mode i and unary mode j.

such that the following holds.

– every formula of S is at most once a conclusion of a link,

– every formula of S is at most once a premiss of a link.

Formulas which are not the conclusion of any link are the hypotheses H
of the proof structure, while those that are not the premiss of any link are its
conclusions Q.



108 Contraction Criteria

3jA

L3j

A

A

3jA

R3j

A •i B

L•i
1 2

A B

A B
1 2

A •i B

R•i

2
↓
jB

L2
↓
j

B

B

2
↓
jB

R2
↓
j

A A \i B

L\i

1 2

B

B

1 2

A A \i B

R\i

B /i A

L/i

A
1 2

B

B

1 2

B /i A

R/i

A

Table 7.8: Links for NL3R

Note that there are no links corresponding to the axiom or cut rule in
the sequent calculus. Instead we will have axiomatic and cut formulas. An
axiomatic formula is a formula which is not the main formula of any link,
whereas a cut formula is a formula which is the main formula of two links.
We will call all formulas which are neither cut nor axiomatic formulas flow
formulas.

We can determine which formulas are axiomatic and cut formulas in the
graphical representation of a proof structure as follows. An axiomatic for-
mula has no arrows pointing to it; depending on whether it is a hypothesis
or a conclusion of the proof structure, there are four possibilities. A cut for-
mula has two arrows pointing to it.

A

(Axiom)
hypothesis

conclusion

A

(Axiom)
hypothesis

¬conclusion

A

(Axiom)
¬hypothesis

conclusion

A

(Axiom)
¬hypothesis

¬conclusion

A

(Cut)

Example 7.7 The proof structure corresponding to the sequent proof of Figure 7.7
is show in Figure 7.8 on the facing page.

There are five axiomatic formulas in this proof structure: both n formulas, both
np formulas and the s formula, each corresponding to one instance of the axiom rule
in the sequent proof.



7.4 Abstract Proof Structures 109

(n\0n)/0(s/0302
↓
0np)

L/0

s/0302
↓
0np

n\0nn

L\0

n

s
R/0

np np\0s
L\0

(np\0s)/0np

L/0

np

2
↓
0np

L2
↓
0

302
↓
0np

L30

Figure 7.8: Proof structure corresponding to the derivation of Figure 7.7

Note that the antecedent formulas of the end-sequent correspond to the hypothe-
ses of the proof structure and the succedent formula to its conclusion, and that every
logical rule of the sequent proof corresponds to a link of the same name in the proof
structure.

We can show by simple induction on the length of the sequent proof that
for any given sequent proof we can construct a proof structure having the
properties mentioned in the example above.

However, the converse does not hold: there are proof structures which do
not correspond to any derivable sequent. A correctness criterion allows us to
distinguish proof structures which do correspond to derivable sequents, proof
nets, from other proof structures.

7.4 Abstract Proof Structures

To formulate our correctness criterion we need to convert our proof struc-
tures into slightly more abstract graphs. We will call these graphs abstract
proof structures (aps’s).

Definition 7.8 An abstract proof structure 〈V,L〉 consists of a finite set V of
vertices, where each vertex is assigned a sequence of premisses and a sequence of
conclusions, together with a set L of links in V of the following forms.



110 Contraction Criteria

�

�

〈 〉j

� �
1 2

�

◦i

�

L3j�

�

L•i
1 2

� �

�

�

R2
↓
j

�

1 2

� �

R\i

�

1 2

�

R/i

�

such that the following holds.

– every vertex of V is at most once a conclusion of a link,

– every vertex of V is at most once a premiss of a link.

Furthermore, we assign to each vertex a sequence of premisses and a sequence
of conclusions, where we require that each vertex which is a hypothesis (resp. con-
clusion) of the structure has a single formula in its sequence of premisses (resp.
conclusions) and for all other vertices this sequence is empty.

From a proof structure S we obtain an abstract proof structure A by re-
placing all [L/i], [L\i] and [R•i] links by [◦i] links and all [L2

↓
j ] and [R3j ] links

by [〈 〉j ] links. That is, we forget about the inputs and outputs of all tensor
links.

In addition, we replace every formula F of S by a vertex v, which is as-
signed [F ] as its sequence of premisses if F is a hypothesis of S and [ ] oth-
erwise, and which is assigned [F ] as its sequence of conclusions if F is a
conclusion of S and [ ] otherwise.

Graphically, we will display premisses above and conclusions below their
vertex, as shown below. The premisses and conclusion play no active role
in our correctness criterion, they merely allow us to keep track of which
formula occurrences are assigned to the hypotheses and conclusions of the
proof structure.

�

¬hypothesis

¬conclusion

�F

hypothesis

¬conclusion

�
F

¬hypothesis

conclusion

�F

F

hypothesis

conclusion

We will write S 7→ A to indicate that the aps A is obtained from the
proof structure S in this fashion. We will often write Ŝ for the abstract proof
structure A obtained from S.

Definition 7.9 A hypothesis tree is an acyclic, connected abstract proof structure
containing only [◦i] and [〈 〉j ] links.

A hypothesis tree A with hypotheses A1, . . . , An and conclusion C cor-
responds to a sequent with antecedent formulas A1, . . . , An and succedent
formula C in the obvious way.



7.4 Abstract Proof Structures 111

(n\0n)/0(s/0302
↓
0np)� �

�

◦0

n�

�
n

◦0

�
R/0

np� �
◦0

(np\0s)/0np� �
◦0

�
〈 〉0

�

L30

Figure 7.9: Abstract proof structure corresponding to Figure 7.8

We will write ΓC for the hypothesis tree corresponding to the sequent
Γ ` C.

Example 7.10 The abstract proof structure computed for the proof structure of Fig-
ure 7.8 from Example 7.7 is shown in Figure 7.9.

The abstract proof structure of the example above is not a hypothesis tree.
This does not mean the original proof structure is not a proof net, of course.
We will define a number of conversions on abstract proof structures: con-
tractions, which are valid in the base logic, and structural conversions, which
correspond to the structural rules in the sequent calculus.

By a contraction we will mean the replacement of one of the pairs of links
shown in Table 7.9 on the following page by a single node. Contractions will
be named after the par link. We require that all vertices shown in the redices
of Table 7.9 are distinct. σH and σQ represent the sequence of hypotheses and
the sequence of conclusions of the displayed vertex respectively.

Note that all contractions are a variation on the same theme: in every re-
dex the ‘active vertices’ of a par link are connected to a single, neutral tensor
link in a way which respects the left to right ordering and the reduct is a
single node.

In addition to these contraction steps a grammar fragment can have a
set R of structural conversions. These conversions operate on trees of neutral
tensor links only, with the condition that both trees in the conversion have
the same set of leaves. This is a reflection of the same restriction on structural
rules in the sequent calculus.



112 Contraction Criteria

σH�

L3j�� [L3j ]→
σH�
σQ

�
σQ

〈 〉j

σH�

L•i
1 2

� � [L•i]→
σH�
σQ1 2

�
σQ

◦i

σH�

�

〈 〉j

[R2
↓
j ]
→

σH�
σQ

�
σQ

R2
↓
j

�

1 2

�
σQ

R\i

� σH�
1 2

�

◦i

[R\i]→
σH�
σQ

�

1 2

�
σQ

R/i

σH� �
1 2

�

◦i

[R/i]→
σH�
σQ

Table 7.9: The contractions for NL3

Example 7.11 The following structural conversion corresponds to sequent rule [P1]
of our examples.

x1
�

1 2

z

◦0

x2
�

1 2

�

◦0

x3

�

〈 〉0

[P1]→R

�
1 2

z

◦0

x1 x2
1 2

�

◦0

x3

�

〈 〉0

7.5 Proof Nets

Definition 7.12 A proof structure is a proof net if and only if its abstract proof
structure converts to a hypothesis tree.

Example 7.13 The abstract proof structure of Example 7.10 converts to a tree given
the structural conversion [P1], making this proof structure a proof net for any gram-
mar fragment with this structural rule.

After applying the [P1] conversion, the abstract proof structure looks as follows.



7.5 Proof Nets 113

n� �

�
n

◦0

(n\0n)/0(s/0302
↓
0np)� �
◦0

�
R/0

�

L30�

�

〈〉0

np� (np\0s)/0np�

�

◦0

�

�

◦0

Now we can apply the [L30] contraction, which results in the following abstract
proof structure.

n� �

�
n

◦0

(n\0n)/0(s/0302
↓
0np)� �
◦0

�
R/0

np� (np\0s)/0np�

�

◦0

� �

�

◦0

Finally, we can apply the [R/0] contraction and the result will be the following
hypothesis tree

(n\0n)/0(s/0302
↓
0np)� �

�

◦0

n�

�
n

◦0

np� (np\0s)/0np�
◦0

which corresponds to the end-sequent



114 Contraction Criteria

n ◦0 ((n\0n)/0(s/0302
↓
0np) ◦0 (np ◦0 (np\0s)/0np)) ` n

of Example 7.4.
Note that we have computed the structure of the antecedent instead of assuming

it as given and that we have performed the conversions in the exact same order as the
corresponding rules in the sequent proof when read from axioms to end-sequent.

Before we prove our main theorem, we will first prove the following short
lemma.

Lemma 7.14 If S is a non-trivial proof structure such that the underlying abstract
proof structure Ŝ is actually a hypothesis tree, then at least one of the leaves (conclu-
sion and hypotheses) of S is the main formula of its link.

Proof To prove: if every hypothesis is an active formula of its link, then
the conclusion is the main formula of its link. We proceed by induction on
the hypothesis tree Γ.

The trivial case Γ =
A� cannot occur.

In case Γ = Γ1 ◦i Γ2, assume every hypothesis is an active formula of its
link. We write L for the final ◦i link, connecting Γ1 and Γ2. If Γ1 is trivial, the
assumption entails that the corresponding formula in S is an active formula
of L. If Γ1 is non-trivial, by induction hypothesis we know that its conclusion
is the main formula of the link above, whence of the form 3jA or A•i B. This
implies that it is not the main formula of L, which would be 2↓

jB, A \i B
or B /i A. Hence it is an active formula of L. The same holds for the second
premiss of L. As both premisses are active, the conclusion of L must be main,
as desired.

The case Γ = 〈Γ1〉j is proved analogously. 2

Theorem 7.15 A sequent Γ ` C is derivable in NL3R if and only if there is a
proof structure S which converts to the hypothesis tree ΓC , using only the contrac-
tions and the structural conversions inR.

Proof
[⇒] From sequents to proof nets, we proceed by induction on the length of
the sequent proof. We extend the conversion sequence with a contraction or a
structural conversion whenever we encounter the corresponding rule in the
sequent proof. By ‘applying a conversion step to a proof structure’ we will
mean ‘applying a conversion step to its underlying abstract proof structure’.

For a [L•i] rule

Γ[(A ◦i B)] ` C

Γ[A •i B] ` C
[L•i]

we know the following by induction hypothesis.



7.5 Proof Nets 115

A B

S1 �R

C

A� B�
1 2

�

◦i

Γ[ ]
�
C

We can keep the original conversion sequence, where we attach a [L•i]
link to the abstract proof structure and we extend the conversion sequence
with a [L•i] contraction as follows.

A •i B

L•i
1 2

A B

S1 �R

C

A•iB�

L•i
1 2

� �
1 2

�

◦i

[L•i]→
Γ[ ]

�
C

A•iB�
Γ[ ]

�
C

[⇐] The sequentialization part of the proof proceeds in a way analogous to
the ‘splitting par’ sequentialization proof of Danos (1990). We proceed by
induction on the length l of the conversion sequence.

[l = 0] If there are no conversions in the sequence, our proof structure
corresponds to an abstract proof structure which is already a hypothesis tree.
We proceed by induction on the number of tensor links in the proof structure.

If there are no tensor links, our proof structure looks as follows

A 7→
A�
A

and the corresponding sequent proof is A ` A
[Ax]

.
If there are tensor links, then by Lemma 7.14 we know the proof structure

has at least one main leaf, call it D.
In the sub-case where D is the main formula of a [L/i] link, D is of the

form A/iB and must be the first premiss of this link. Now the proof structure
S and the underlying hypothesis tree ΓC are of the form

S2

A /i B

L/i

B
1 2 7→

A

S1

C

Γ2
A/iB� �
1 2

�

◦i

Γ1[ ]
�
C



116 Contraction Criteria

By induction hypothesis there are derivations D2 of Γ2 ` B and D1 of
Γ1[A] ` C, which may be combined into

.... D2

Γ2 ` B

.... D1

Γ1[A] ` C

Γ1[(A/iB ◦i Γ2)] ` C
[L/i]

which is a derivation of Γ ` C.
The remaining sub-cases, where D is the main formula of a [R3j ], [R•i],

[L2↓
j ] or [L\i] link, are proved similarly.

[l > 0] We look at the last conversion in the sequence.

If it is a structural conversion Ξ[x1, . . . , xn]
[P]→R Ξ′[xπ1 , . . . , xπn ], we are

in the following situation.

∆1 · · · ∆n

� � � � �
S�R Ξ[. . .]

[P]→R
�

Γ[ ]
�
C

∆π1 · · · ∆πn

� � � � �
Ξ′[. . .]
�

Γ[ ]
�
C

The induction hypothesis gives us a derivation D1 of

Γ[ Ξ[ ∆1, . . . ,∆n ] ] ` C

which we can extend as follows

.... D1

Γ[ Ξ[ ∆1, . . . ,∆n ] ] ` C

Γ[ Ξ′[ ∆π1 , . . . ,∆πn ] ] ` C
[P]

to give us a derivation of Γ ` C.
If the last conversion is a [L•i] contraction we are schematically in the

following situation.

A •i B

L•i
1 2

A B

�

L•i
1 2

� �
1 2

�

◦i

�

ρ
�R

[L•i]→

S1

S2

Γ1[ ]

Γ2

Γ1[ ]

Γ2

�
C

�
CC



7.5 Proof Nets 117

Reasoning backwards from the hypothesis tree, we can see that the [L•i]
link serves as a boundary and that every conversion in the sequence is either
applied strictly above or strictly below it. So we can split our initial conver-
sion sequence ρ into a conversion sequence ρ1 which converts S1 to a hypo-
thesis tree and a conversion sequence ρ2 which converts S2 into a hypothesis
tree as follows

A� B�
1 2

�

◦i

�
A•iB

A •i B

�
CC

A B

ρ1�R

ρ2�R

S1

S2

Γ1[ ]

Γ2

As both conversion sequences are strictly smaller than our initial conver-
sion sequence, the induction hypothesis gives us a derivation D2 ending in
Γ2 ` A •i B and a derivation D1 ending in Γ1[(A ◦i B)] ` C. We can
combine these derivations as shown below

.... D2

Γ2 ` A •i B

.... D1

Γ1[(A ◦i B)] ` C

Γ1[A •i B] ` C
[L•i]

Γ1[Γ2] ` C
[Cut]

The other contractions are similar. 2

The sequentialization part of our proof has the somewhat inelegant prop-
erty that it produces sequents proofs which use the [Cut] rule even for proof
nets without cut formulas. However, we can refine the proof of Theorem 7.15
in such a way that the sequent proofs we produce have exactly one [Cut] rule
application for each cut formula. For this purpose we first state the following
lemma.

Lemma 7.16 (Substitution) Let D1 be a derivation of Γ1 ` C1 and D2 be a
derivation of Γ2[C1] ` C2.

(i) If C1 ` C1 is an axiom of D1, the succedent formula of which coincides with
the succedent formula of Γ1 ` C1, then we can substitute D2 into D1 in
order to get a derivation D1[D2] of Γ2[Γ1] ` C2.



118 Contraction Criteria

C1 ` C1C1C1.... D1

Γ1 ` C1C1C1

.... D2

Γ2[C1] ` C2

Γ2[Γ1] ` C2
[Cut]

becomes

.... D2

Γ2[Γ2[Γ2[C1]]] ` C2C2C2.... D1

Γ2[Γ2[Γ2[Γ1]]] ` C2C2C2

(ii) If C1 ` C1 is an axiom of D2, the antecedent formula of which coincides
with the occurrence in Γ2[C1] ` C2, then we can substitute D1 into D2 in
order to get a derivation D2[D1] of Γ2[Γ1] ` C2.

.... D1

Γ1 ` C1

C1C1C1 ` C1.... D2

Γ2[C1C1C1] ` C2

Γ2[Γ1] ` C2
[Cut]

becomes

.... D1

Γ1Γ1Γ1 ` C1.... D2

Γ2[Γ1Γ1Γ1] ` C2

Proof In general every leaf of a tree determines a path to the root. In par-
ticular every axiom rule of a derivation determines a path of sequents from
that axiom to the conclusion of the derivation. Let Γ ` ∆ and Γ′ ` ∆′ be
two successive sequents in a certain path β, i.e. Γ′ ` ∆′ is the conclusion of
an inference rule with Γ ` ∆ among its hypotheses.

For a binary inference rule R we say that β passes R via the left (right)
hypothesis if Γ ` ∆ is the first (second) hypothesis of R with respect to the
formulation of Figure 7.5.

(i) As the occurrence C1C1C1 is preserved along the path β inD1 between C1 `
C1C1C1 and Γ1 ` C1C1C1, the possible inference rules β passes are [Cut] (via
the left hypothesis), the left logical rules (if binary, then via the left
hypothesis), or a structural rule. Each of these rules has the property
that if

Γ1 ` C1C1C1

(
Γ0 ` C0

)
Γ3 ` C1C1C1

is an instance, then so is

Γ2[Γ2[Γ2[Γ1]]] ` C2C2C2

(
Γ0 ` C0

)
Γ2[Γ2[Γ2[Γ3]]] ` C2C2C2

(ii) As the occurrence C1C1C1 is preserved along the path β inD2 between C1C1C1 `
C1 and Γ2[C1C1C1] ` C2, it will never be an active formula in any inference
rule β passes. Hence if

Γ2[C1C1C1] ` C2

(
Γ0 ` C0

)
Γ3[C1C1C1] ` C3

is an instance of a rule, then so is



7.6 Cut Elimination 119

Γ2[Γ1Γ1Γ1] ` C2

(
Γ0 ` C0

)
Γ3[Γ1Γ1Γ1] ` C3

2

Now extend the proof of Theorem 7.15 by simultaniously showing that
every axiomatic formula corresponds to an [Ax] rule, and moreover that ev-
ery axiomatic conclusion corresponds to an axiom as in Lemma 7.16.1 and
every axiomatic hypothesis corresponds to an axiom as in Lemma 7.16.2. We
adapt the proof in the case that l > 0 and the last conversion step is a con-
traction: if the main formula of L (say: D) is a cut formula of S we proceed
as described earlier. However, if D is not a cut formula, then D is an ax-
iomatic leaf of one of the two substructures, whence we can apply the par
rule followed by the appropriate substitution.

7.6 Cut Elimination

One important property of proof net calculi and logics in general is cut elim-
ination. Given a proof net with a number of cut formulas, we want to find a
proof net without cut formulas which converts to the same hypothesis tree.
In investigating cut elimination, we will give our notion of conversion se-
quence slightly more structure, touching upon reordering the conversions in
such a way that the sequence satisfies certain properties necessary for cut
elimination.

Recall that a cut formula is a formula which is the main formula of two
dual links. A cut reduction step, S  S ′, is defined as deleting these links
and the cut formula, while pairwise identifying the active formulas in case
they are different (as occurrence of the same formula), or deleting them if
they are identical.

B

1 2

A A A \i B

R\i

L\i

 A B
1 2

B

Let D be a cut formula and L the corresponding par link. We will show
that if (S, ρ) is a conversion sequence ending in hypothesis tree ΓC , then so
is (S′, ρ′), where S  S ′, and ρ′ consists of the same set of conversion steps
as ρ, except the contraction α of L, in a sense to be made precise shortly.

Before proving the cut elimination theorem, we first introduce the auxil-
iary notations of component and block and make some observations about
their properties.



120 Contraction Criteria

Γ′
6

Γ′
5

Γ′
4

Γ′
3

ρ6�R

ρ5�R

ρ4�R

ρ3�R

Γ6

Γ5

Γ4

Γ3

α2→

α1→

Γ′
2

Γ′
1

ρ2�R

ρ1�R

Γ2

Γ1

α→ Γ′ ρ0�R ΓC

Figure 7.10: The components of a certain conversion sequence with three
contractions

Definition 7.17 Let A = 〈V,L〉 be an abstract proof structure. A′ = 〈V ′,L′〉 is a
component of A if A′ is a substructure of A, where L′ contains only tensor links
and A′ is maximally connected with respect to the tensor links of L.

For a proof structure S, a substructure S′ is a component iff Ŝ′ is a component
of Ŝ.

When we delete all p par links (but not their vertices) from an abstract
proof structure A the notion of component as defined above coincides with
the definition of component from graph theory. Observe that a component
may consist of one vertex only.

For a proof net, its components are p + 1 hypothesis trees. This even holds
for all intermediate abstract proof structures between S and ΓC : reason-
ing backwards from the final hypothesis tree, we start with one component
(p = 0). After a number of structural conversions, a contraction α splits this
component Γ′ into two parts and replaces one node by a redex. The par link
L of this redex now serves as a boundary between the two new components
Γ1, which is attached to the active formulas A and B of L, and Γ2, which is
attached to the main formula D of L. At this moment Γ1 is a nice hypothesis
tree w.r.t. L, i.e. attaching L enables its contraction α.

All next structural conversions take place completely within one of the
two components, and the next contraction takes place in exactly one of the
two components as well. In this way every par contraction replaces one com-
ponent by two new components, yielding p + 1 components in each abstract
proof structure.

Figure 7.10 gives an illustration of how we can factor the different conver-
sions of ρ into components. Another way of seeing this is that ρ determines
a rooted, ordered tree of hypothesis trees, with the initial components as the
leaves and the final hypothesis tree as the root, where, reasoning backwards



7.6 Cut Elimination 121

S
D

L•i
1 2 L
A B

SL

ρL�R

F

S
�

L•i
1 2 L
� �

1 2

�

◦i

∆[ ]
�

Figure 7.11: The block of a [L•i] link L

from the final hypothesis tree, every structural conversion produces a unary
branch and every contraction a binary branch.

Definition 7.18 (Block) Let (S, ρ) be a conversion sequence ending in ΓC . Let L
be a par link of S and α be the contraction in ρ corresponding to L.

The conversion sequence ρ looks as follows.

S
ρ1�R S1

α→ S2

ρ2�R ΓC

We define a subnet (SL, ρL) called the block of L by induction on the length of ρ1

as follows. As before, when we talk about applying a conversion to a proof structure
we will mean applying the conversion to the underlying abstract proof structure.

If ‖ρ1‖ = 0 then SL is the component of the active formulas of L and ρL is
empty.

If ‖ρ1‖ > 0 then we are in the following situation.

S δ0→ S′
ρ′
1�R S1

Induction hypothesis gives us (S ′
L, ρ′L), which is the block for the shorter con-

version sequence starting with S′. If the reduct of δ0 is not in S′L then (SL, ρL) =
(S ′L, ρ′L). If the reduct of δ0 is in S′L then ρL is ρ′L with the conversion δ0 prefixed
and SL is S′L with the reduct of δ0 replaced by its redex.

Figure 7.11 gives an illustration what the block of the [L•i] looks like
schematically with respect to the full proof net S. By construction, we can
replace the conversion sequence ρ for S by the following, where ρ̃L is the
conversion sequence which contains all conversions of ρ not in ρL with the
exception of α.

S
ρL�R A α→ B

ρ̃L�R ΓC

⊂ ⊂

SL

ρL�R ∆F



122 Contraction Criteria

Example 7.19 In Figure 7.10, assuming Γ1 is the component containing the active
formulas of L, the block of L is (SL, ρL), where SL consists of the components Γ′

3

and Γ′
4 connected by the par link contracted in step α1 and where the sequence ρL

consists of the conversions in the gray area of the figure.

Theorem 7.20 (Cut elimination) If S is a proof net converting to ΓC , and S  
S ′ by a cut reduction step, then S ′ is a proof net converting to ΓC as well.

Proof Let α be the contraction corresponding to the par link L which is
removed by the cut reduction step. As observed above, we can replace the
conversion sequence ρ by

Ŝ
ρL�R A α→ B

ρ̃L�R ΓC

that is, we are schematically in the following situation, where L1 remains
untouched during ρL.

� �
1 2

L1

�

◦i

L•i
1 2 L
� �

ρL�R

� �
1 2

L1

�

◦i

L•i
1 2 L
� �

1 2
L2

�

◦i

α→

� �
1 2

L1

�

◦i

ρ̃L�R ΓC

Executing a cut reduction step yields the situation pictured below.

� �
ρL�R

� �
1 2

L2

�

◦i ∼=
� �

1 2
L1

�

◦i
ρ̃L�R ΓC

which proves the result. 2

7.7 Abstract Proof Structures and Labels

We will now briefly sketch the relationship between the structural labels of
the previous chapter and the abstract proof structures of the current chapter.

The basic idea is that for a given structural label every sublabel corre-
sponds to a vertex in the corresponding abstract proof structure and every



7.7 Abstract Proof Structures and Labels 123

+

X :A
+

Y :B

+

X ◦i Y :A •i B

�^

X Y
1 2

X ◦i Y

◦i

−
X ◦i Y :A

+

Y :B

−
X :A/iB

]

�
X Y

1 2

X ◦i Y

◦i

Table 7.10: Structural labels and abstract proof structures: tensor cases
−

X/i :A
−

X.i :B

−
X :A •i B

�]
X

L•i
1 2

X/i X.i

−
x :B

+

X :A

+

X/ix :A/iB

�

X

1 2

X/ix

R/i

x

Table 7.11: Structural labels and abstract proof structures: par cases

auxiliary constructor corresponds to a par link in the abstract proof structure
and the other constructors correspond to tensor links.

First, note that the dynamic graphs for the axiom and the cut link, shown
in Table 6.3 on page 94 have no reflex of this link in the structural label. Sim-
ilarly, axiom and cut do not correspond to a link in the abstract proof struc-
tures.

Now compare the dynamic graphs for the tensor links of ‘•’ and ‘/’ to
the corresponding abstract proof structures. Table 7.10 shows this relation.
To make the relation more clear we label the vertices of the aps with the
corresponding term label. The formula which is labeled with the complex
label is always the conclusion of the link in the abstract proof structure.

Finally, compare the labels for the par links for ‘•’ and ‘/’ with the corre-
sponding abstract proof structure. Table 7.11 shows them next to eachother.

As shown in the table, the single [L•i] link corresponds two auxiliary con-
structors: the X/i and the X.i constructor. Because the structural labels are



124 Contraction Criteria

X ◦i x

1 2

(X ◦i x)/ix

R/i

X x
1 2◦i

[R/i]→ X

Figure 7.12: Contraction for a [R/i] link with labeling

A ` A
[Ax]

Γ, A, Γ′ ` C ∆ ` A

Γ, ∆, Γ′ ` C
[Cut]

Γ, A, B,Γ′ ` C

Γ, A •B, Γ′ ` C
[L•] Γ ` A ∆ ` B

Γ, ∆ ` A •B
[R•]

Γ, A, Γ′ ` C ∆ ` B

Γ, A/B,∆, Γ′ ` C
[L/]

C, Γ, B ` A

C, Γ ` A/B
[R/]

Γ, A, Γ′ ` C ∆ ` B

Γ, ∆, B\A, Γ′ ` C
[L\] B, Γ, C ` A

Γ, C ` B\A [R\]

Table 7.12: The sequent calculus L

essentially trees, the par link for [L•i] cannot be expressed by a single con-
structor. In the abstract proof structure, we treat the two occurrences of the
X label as the same vertex. For the [R/i] link the x label will also occur twice
in the structural label and we will treat both occurrences as the same vertex
in the abstract proof structure.

When we compare the label conversions of Table 6.6 on page 97 to the
graph contractions of Table 7.9 on page 112 we note that they express the
same restrictions. Figure 7.12 shows the [R/i] contraction on an abstract proof
structure, again with the structural labels on the vertices to make the corre-
spondence more clear.

7.8 Lambek Calculus

In this section a contraction criterion for the Lambek calculus will be for-
mulated and proved. This criterion is a combination of Danos’ contraction
criterion for one sided MLL (Danos 1990) and Lafont’s criterion for parsing
boxes (Lafont 1995). The contraction relation is terminating, though not con-
fluent. However, we achieve confluence on a restricted domain, leading us
to the main contraction theorem, Theorem 7.28. Our contraction criterion
has the special property that a priori there is no order on the leaves of the



7.8 Lambek Calculus 125

proof structure; if the proof structure is correct (in the sense that it contracts
properly), our criterion a posteriori provides the unique order of the leaves.

The Lambek calculus (L), as introduced by Lambek (1958), is defined by
the inference rules of Table 7.12 on the facing page, where the antecedent
part of each sequent is a non-empty sequence rather than a structure tree. In
our formulation of the calculus, preservation of non-empty antecedent parts
during applications of the rules [R/] and [R\] is forced by the presence of the
extra formula C.

The Lambek calculus is equivalent to the special case of NL3R with zero
unary modes, one binary mode and no structural rules but associativity. The
latter mimics the fact that each sequent has a sequence instead of a structure
tree as antecedent part. In this way Theorem 7.15 provides us with a correct-
ness criterion for L, since L derives C1, . . . , Cn ` C precisely if this special
instance of NL3R derives C1 ◦ (C2 ◦ (. . . (Cn−1 ◦ Cn) . . . )) ` C.

However, we can obtain a more attractive correctness criterion when by
adapting our theory in such a way that the structural rules become part of
the theory and are not present explicitly anymore. This is done by a general-
ization of the links in the definition of abstract proof structure.

Definition 7.21 An L-proof structure 〈S,L〉 consists of a finite set S of (3- and
2↓-free and unimodal) formulas together with a set L of links in S of the following
forms.

A •B

L•1 2

A B

A B
1 2

A •B

R•

A A \B

L\
1 2

B

B

1 2

A A \B

R\

B / A

L/

A
1 2

B

B

1 2

B / A

R/

A

such that the following holds.

– every formula of S is at most once a conclusion of a link,

– every formula of S is at most once a premiss of a link.

Definition 7.22 An abstract L-proof structure 〈V,L〉 consists of a finite set V of
nodes together with a set L of links in V of the following forms (where n ≥ 2).



126 Contraction Criteria

� � · · · � �
1 2 n−1 n

�
�

L•1 2

� �

�

1 2

� �

R\
�

1 2

�

R/

�

such that the following holds.

– every node of V is at most once a conclusion of a link,

– every node of V is at most once a premiss of a link.

Furthermore, we assign to each node a sequence of premisses and a sequence of con-
clusions, as in Definition 7.8.

The generalized tensor link will be called an n-comb (n ≥ 2). For practical
reasons, we define a 1-comb to be a single node; notice that thus a 1-comb is
not a link, contrary to n-combs with n ≥ 2.

The redex of a contraction consists of a par link and an (n + 1)-comb (n +
1 ≥ 2), as depicted below (where we require — as usual — all nodes to be
distinct). Observe that in every case the par link is attached to two successive
formulas of the (n + 1)-comb, when we order them in a cyclic way. It is
replaced by an n-comb (which is a single node if n = 1), and all nodes keep
their labels. The contraction will be named after the par link ([L•], [R\], [R/]).

xk

L•1 2

x1 · · · � � · · · xn
1 k k+1 n+1

x0

[L•]→ x1 · · · xk · · · xn
1 k n

x0

� x1 x2 . . . xn
1 2 3 n+1

�

1 2

x0

R\

[R\]→

x1 x2 . . . xn
1 2 n

x0

x1 x2 · · · xn
�

1 2 n n+1

�

1 2

x0

R/

[R/]→

x1 x2 · · · xn
1 2 n

x0



7.8 Lambek Calculus 127

By a structural conversion we mean the following composition of combs
(n + 1, m ≥ 2).

xk · · · xk+m−1
1 m

x1 · · · � · · · xn+m
1 k n+1

x0

→ x1 · · · xk · · · xk+m−1 · · · xn+m
1 k k+m−1 n+m

x0

Now, starting with a proof structure S, we can form the underlying ab-
stract proof structure Ŝ in the usual way (which — besides nodes — consists
of par links and 2-combs only).

For any non-empty sequence Γ and formula C, let ||Γ|| be the multiset of
elements in Γ; let ΓC be the obvious abstract proof structure (consisting of
one n-comb, n ≥ 1) with conclusion node (lower) labeled by C. Any abstract
proof structure of this form will be called a hypothesis comb. Let � be the
transitive, reflexive closure of→, by which we mean the contractions as well
as the structural conversions.

It is easy to see that this conversion relation is terminating; in each con-
version step at least one link disappears.

Theorem 7.23 Γ ` C is derivable in L if and only if there is a proof structure S
such that Ŝ � ΓC .

Proof The proof is similar to that of Theorem 7.15: it can be shown that
for any derivation D of Γ ` C the corresponding proof structure converts
to the hypothesis comb ΓC .

The other way around, we can prove that a proof structure S that converts
to a hypothesis comb ΓC is actually the proof structure of a derivation D of
Γ ` C. 2

Given a proof structure S with p par links, we define a switching ω for S
to be a choice, for each par link L, of one of the active ends of L. The correction
graph ωS of S under the switching ω is obtained by replacing each par link
by the chosen active end. Let PS ′ denote the collection of those elements S
of PS, the set of all proof structures, for which all 2p correction graphs ωS
are trees.

Lemma 7.24 Let S1,S2 ∈ PS and suppose S1 → S2. Then S1 ∈ PS′ if and
only if S2 ∈ PS′.

In particular, the conversion steps are well defined on PS ′ (i.e. they do
yield an element of PS ′ when applied on an element of PS′).

Since hypothesis combs belong to PS′, we immediately obtain the next
result.



128 Contraction Criteria

Corollary 7.25 If a proof structure S converts to a hypothesis comb ΓC , then S ∈
PS ′.

So proof nets (the proof structures that convert to a hypothesis comb) will
only be found in PS′. Now confluence of this conversion relation on PS′ is
easily proved. This is a consequence of firstly the absence of cycles in the
correction graphs, and secondly the absence of the unary connectives which
already destroy confluence on general NL3R.

Lemma 7.26 If S ∈ PS ′ converts in one step to S1 and S2, then both S1 and S2

convert in at most one step to a common S3 ∈ PS′.

By means of Lemma 7.26 and termination, we can sharpen Theorem 7.23
into the following.

Theorem 7.27 Let Γ ` C be a sequent. Then the following are equivalent.

(i) Γ ` C is derivable in L;

(ii) There is a proof structure S such that all conversion sequences S � S′
(where S′ is a hypothesis comb) satisfy S ′ = ΓC .

Theorem 7.28 Let S be a proof structure and S � S ′ be an arbitrary conversion
sequence to a normal form. Then S is the proof structure of a derivation if and only
if S′ is a hypothesis comb.

Again the following holds.

Theorem 7.29 (Cut elimination) If S is a proof net converting to ΓC , and S  
S ′ by a cut reduction step, then S ′ is a proof net converting to ΓC as well.

7.9 Discussion

We have presented a proof net calculus for the multimodal Lambek calculus
which is new, elegant and very general. By giving a correctness criterion
for L, we have also shown how our correctness criterion can function as a
sort of meta correctness criterion which can be used to produce a correctness
criterion for special instances of NL3R.

The formalism we have presented here is related to a number of other
proposals, notably to Danos’s (1990) graph contractions, of which our con-
tractions are a special case. As a result, acyclicity and connectedness of the
underlying correction graphs are a consequence of our correctness criterion.

We have also sketched the relation between abstract proof structures and
the structural labels of the labeled proof nets of Moortgat (1997) we discussed
in Chapter 6. Advantages of our formalism are that we have a very direct
correspondence between proof structures and abstract proof structures and



7.9 Discussion 129

that cyclic or disconnected proof structures are unproblematically disquali-
fied by our correctness criterion. The algebraic correctness criterion will fail
to compute a meaningful label for cyclic or disconnected proof structures.

It is possible to overcome the formal difference between proof structures
and abstract proof structures. Puite (2001) introduces the notion of link graph
for this purpose. Link graphs comprise both proof structures and hypothesis
trees, which also play a role as sequents for the calculus. By means of this
new notion Puite proves a correctness criterion for CNL, the classical non-
associative Lambek calculus (de Groote & Lamarche 2001), along the lines of
the proof of Theorem 7.15.





PART III

RELATIONS AND COMPUTATIONS





CHAPTER 8
AUTOMATED DEDUCTION

One of the attractive aspects of proof nets as discussed in the previous chap-
ter is that they lend themselves well to automated proof search. First of all,
in Section 7.6 we saw that we could eliminate cut formulas from proof nets,
making it unnecessary to consider cut formulas in our proof search. Sec-
ondly, we can restrict ourselves to proof nets where all our axiomatic formu-
las are atomic, as indicated by the following lemma.

Lemma 8.1 Given a proof structure S we can construct a proof structure S ′ with
the same hypotheses and conclusions where all axiomatic formulas are atomic and
where Ŝ ′ �∅ Ŝ . We will call such a proof structure eta expanded.

Proof By induction on the total complexity of the axiomatic formulas.
If there are no complex axiomatic formulas in the proof structure, we take

S′ = S and an empty conversion sequence.
If we have a proof structure S0 where the axiomatic formulas have n + 1

total connectives, we can expand a complex axiomatic A •i B formula as
shown in Figure 8.1. The other connectives are treated similarly. The result-
ing proof structure S1 will have two new axiomatic formulas and the total
number of connectives of axiomatic formulas will be n.

By induction hypothesis we know that Ŝ′1 �∅ Ŝ1, so we can suffix a [L•i]
contraction producing the following conversion sequence.

Ŝ ′1 �∅ Ŝ1
[L•i]→ Ŝ0

As we use only contractions, the theorem holds regardless of the struc-
tural rules. 2

The following corollary is an immediate consequence of Theorem 7.20
and Lemma 8.1.



134 Automated Deduction

A •i B

P

Q

;

Q

P

A •i B

L•i
1 2

A BA B
1 2

A •i B

R•i

Figure 8.1: Eta expansion step for a A •i B formula

Corollary 8.2 For every proof net P of Γ ` C there exists a proof net P ′, also of
Γ ` C, which is cut free and eta expanded.

So we can, without loss of generality, restrict ourselves to proof structures
where all complex formulas are neither axiomatic nor cut formulas. A simple
algorithm for the enumeration of cut free, eta expanded proof nets is shown
in Table 8.1 on the next page.

We assume computation is nondeterministic, i.e. the steps of our algo-
rithm can produce a number of solutions: the lexicon can produce different
formulas for each word, there can be many different ways of identifying the
atomic formulas and we might be able to convert our abstract proof structure
to many different hypothesis trees. When one step in our algorithm fails to
produce a solution, we backtrack to a previous step and try the next solution
there until we have found all solutions.

The set of parameters on the final hypothesis tree can restrict the output
of the algorithm in any of the following ways.

(i) left to right traversal of the hypothesis tree yields the formulas in the
order indicated by the input sequence.

(ii) only binary modes from I′ ⊆ I and unary modes J ′ ⊆ J can occur in
the hypothesis tree.

(iii) return only the shortest conversion sequence(s).

When we use our algorithm for parsing a sentence, we typically want to
satisfy condition (i). However, it can be useful to see all different hypothesis
trees for the current proof structure because this might reveal ungrammatical
sentences which are derivable with the current lexicon and structural rules.

Sometimes it makes sense to disallow certain modes from appearing in
the final hypothesis tree, as indicated by condition (ii). We call a mode i ∈ I ′

or j ∈ J ′ external and a mode i ∈ I \ I ′ or j ∈ J \ J ′ an internal mode.



135

Input − sequence w1, . . . , wn of words
− lexicon l, which assigns formulas to words
− set of goal formulas Q
− setR of structural rules
− set P of parameters restricting the shape of the final hy-
pothesis tree

Output set of cut free, eta expanded proof nets with hypotheses
l(w1), . . . , l(wn) and conclusion q ∈ Q

(1) For each of the words wi in the input sequence, select one of the formulas
assigned to this word from the lexicon and select a q ∈ Q as the conclu-
sion.

(2) Decompose the formulas according to the links of Table 7.8 on page 108
until we reach the atomic subformulas. The disjoint union of these proof
structures is itself a proof structure, though it will have several hypothe-
ses in addition to those from the lexicon and several conclusions in addi-
tion to the goal formula.

(3) Identify each atomic premiss with an atomic conclusion to produce a
proof structure with hypotheses l(w1), . . . , l(wn) and conclusion q.

(4) Convert the abstract proof structure corresponding to this proof structure
to a hypothesis tree using only the structural conversions of R and the
contractions.

(5) Check if this hypothesis tree conforms to our parameters P .

Table 8.1: Proof search algorithm for NL3R

Finally, parameter (iii) states that we are sometimes only interested in the
shortest conversion sequence to a hypothesis tree. This should not be taken
as a constraint on the derivability relation in the sense of ‘shortest move’ con-
straints proposed in minimalist frameworks (Chomsky 1995), but as a way of
preferring conversion sequences without redundant structural conversions.

Throughout the next sections we will present some improvements over
the initial, naive algorithm of Table 8.1. These improvements can be catego-
rized as follows.

[Compilation] This is a standard programming technique where predic-
table computation steps are done in advance and the results stored
or where we collapse several simple steps into a single derived step.
In the context of declarative programming languages compilation is
sometimes called partial execution (Pereira & Shieber 1987). We will ap-
ply partial execution to the current problem in Section 8.2, where we
will store abstract proof structures in the lexicon, eliminating step 2
from the algorithm and in Section 8.6 where we compile multiple par



136 Automated Deduction

contractions into a single, derived contraction.

[Divide and Conquer] This refers to the basic technique of solving a prob-
lem by dividing it in several simpler problems in such a way that a
solution to all these simple problems is a solution to the complete prob-
lem as well. We will use this strategy in Sections 8.5 and 8.9 where we
will use components as a natural way of restricting structural rule ap-
plications.

[Early Failure] In constraint programming (Dechter 2000), it is often possi-
ble to get good performance on computationally intractable problems.
This is done by strategies for realizing, as early as possible, that the cur-
rent choices we have made will never lead us to a solution. While early
failure may take the form of simple, deterministic tests, it can some-
times also consist of doing computations as early as possible. We will
see examples of this in Sections 8.1, 8.3, 8.4 and 8.7.

[Parallel Computation] We will develop a way of performing the structural
conversions in parallel in Section 8.8.

A general trade-off we will see is that we can sacrifice generality or com-
pleteness for efficiency. Some of the most powerful heuristics mentioned in
this chapter function only for restricted fragments of NL3R and in the next
chapter we will see that only quite restricted fragments of NL3R are decid-
able in polynomial time.

8.1 Invariants

As connecting the atomic formulas and the structural conversions are com-
putationally expensive, it is desirable to do some static tests on the set of
proof structures we get from the lexical formulas after the unfolding stage of
the algorithm to make sure we at least have a chance of ultimately convert-
ing to a hypothesis tree. The following are two simple tests to reject proof
structures which can never satisfy our correctness criterion.

First, by our definition of hypotheses and conclusions of proof structures,
all atomic formulas other than lexical formulas or the conclusion must be
both a premiss and a conclusion of some link in a proof structure with hy-
potheses l(w1), . . . , l(wn) and conclusion q. So we can count if each of these
atomic formulas occurs as many times as a conclusion as it occurs as a pre-
miss. This is sometimes called the count check (van Benthem 1986).

Secondly, the following lemma, suggested to me by Quintijn Puite, gives
us a condition on the number of binary links occurring in a proof net.

Lemma 8.3 Suppose we have a proof structure S with h hypotheses, t binary tensor
links, p binary par links and a single conclusion. Then the following holds if S is a
proof net.

t + 1 = p + h



8.2 Compiling the Lexicon 137

Proof Reasoning backwards from the hypothesis tree to the initial hypo-
thesis structure we see that it holds for the hypothesis tree (with p = 0), that
the structural conversions and the unary contractions preserve t, p and h and
that the contractions for the binary links increase t and p simultaneously. 2

We cannot use the same reasoning for unary connectives; though the con-
tractions for the unary connectives remove one unary tensor and one unary
par link, even in the case without structural rules we can state only that
p1 ≤ t1, where p1 is the number of unary par links and t1 the number of
unary tensor links. This is because there can be an arbitrary number of unary
tensor links in the final hypothesis tree. In the presence of structural rules,
which possibly increase the number of unary tensor links, there is little we
can tell simply from counting the unary links.

8.2 Compiling the Lexicon

Instead of have a lexicon which consists of formulas, we can compile the
formulas of the lexicon to proof structures, which we can further compile
to abstract proof structures, where we keep track of the output formulas of
every abstract proof structure. We can denote this by using square brackets,
for example. A formula between square brackets is then a ‘true’ hypothesis
or conclusion of the abstract proof structure, we will call it a bound formula.
The other formulas are atoms which will disappear after they are used for
axiom connections, so they are ‘temporary’ hypotheses and conclusions, we
will call them free formulas.

This is only necessary so we can distinguish between an atomic formula a
used a hypothesis and an atomic formula a used as a conclusion, the former
looking like shown below on the left, the latter looking like shown below on
the right.

[a]�
a

a�
[a]

Alternatively, we can say that the hypotheses and conclusions of a proof
structure or an abstract proof structure are the conclusion of ‘hypothesis’
links or the premiss of ‘conclusion’ links respectively.

Hyp

F

F

Con

In the depiction of the proof structures, this will have the advantage that
all axiomatic formulas are now the active formula of two links, by symmetry
with the cut formulas, which are the main formula of two links. It is often
of mnemonic value to use the word w to which this lexical proof structure is



138 Automated Deduction

assigned instead of ‘Hyp’ as the label of of a hypothesis link. We’ll give an
example of this in Section 8.4.

Identifying two vertices by means of an axiom connection is possible in
an abstract proof structure if one has the formula F as a free premiss and the
other has the formula F as a free conclusion. Both formulas will disappear
after the axiom connection.

8.3 Acyclicity and Connectedness

If we translate formulas and antecedent terms of NL3R to formulas and an-
tecedent terms of multiplicative intuitionistic linear logic as follows

‖a‖ = a
‖3jA‖ = ‖A‖
‖2↓

jA‖ = ‖A‖
‖A/iB‖ = ‖B‖−◦‖A‖
‖B\iA‖ = ‖B‖−◦‖A‖
‖A •i B‖ = ‖A‖ ⊗ ‖B‖

‖〈Γ〉j‖ = ‖Γ‖
‖Γ ◦i ∆‖ = ‖Γ‖, ‖∆‖

then every derivable sequent of NL3R corresponds to a derivable sequent
of MILL.

We define switchings and correction graphs for abstract proof structures
of NL3R analogous to the way we did for L-proof structures in Section 7.8.
As we already noted in Section 4.5, we have linear time algorithms for check-
ing whether all correction graphs of a proof structure are acyclic and con-
nected. Because of this, it seems prudent to make an acyclicity and connect-
edness test before trying to convert the abstract proof structure to a tree.

In many cases, we can already see during the stage where we are con-
necting the axioms that, no matter how we continue, we will never produce
an acyclic and connected abstract proof structure.

If an abstract proof structureA has a substructure with a cyclic correction
graph, then Awill have a cyclic correction graph too.

Similarly, if an abstract proof structureA has a correction graph with dis-
connected substructures A1, . . . ,An then every disconnected substructure
must have a free formula at at least one of its vertices, otherwise it will be
impossible to produce a connected correction graph for A even after we per-
form further axiomatic connections.

8.4 Axiomatic Connections

The algorithm, as shown in Table 8.1 does not specify anything about the or-
der in which we perform the axiomatic connections in step 3. From a logical
point of view the order in which we connect the axioms does not matter, but



8.4 Axiomatic Connections 139

agent

�
n

n� �
1 2

�
n

◦0

�
whom

�
1 2◦0

s�

1 2

R/0

�

L30��

�
np

〈〉0

�
np

Trinity

�
escaped

np�
1 2

�

◦0

np�
1 2

�
s

◦0

n�

Goal

Figure 8.2: Lexical aps’s for ‘agent whom Trinity escaped’

from a computational point of view it is useful to keep the principles of early
failure in mind and always connect the axiom which is the most restricted in
its possibilities. This will make the information in the proof structure more
explicit, which in turn can trigger other early failure mechanisms.

Let’s look at an example. Figure 8.2 shows the lexical abstract proof struc-
tures for ‘agent whom Trinity escaped’ according to the lexicon of Table 7.7
on page 106.

We see one s conclusion and one s premiss, two np conclusions and two
np premisses, and two n conclusions and two n premisses. In this case, there
is only one possible way of connecting the s formulas, so this is the preferred
connection, resulting in the abstract proof structure shown in Figure 8.3.

After this connection, some information which was implicit in Figure 8.2
has become explicit, for example that, unless some structural conversion op-
erates on this abstract proof structure, the word ‘whom’ will precede the
word ‘escaped’ in the final hypothesis tree. We’ll see in Section 8.7 how to
exploit this kind of word order information.

At the current stage, superficially, it doesn’t matter if we decide to link
the np’s or the n’s, because in both case we have to consider two possibilities.
However, should we choose to link the n conclusion attached to ‘agent’ to the
n premiss of the goal formula, we would produce a disconnected abstract
proof structure. So, if we take the acyclicity and connectedness criterion dis-
cussed in Section 8.3 into account, we have only one way of connecting the
four n formulas, namely as shown in Figure 8.4.

Finally, we connect the np formulas. We have two possibilities here, de-
pending on where we connect the np conclusion corresponding to ‘Trinity’



140 Automated Deduction

�
n

agent

n� �
1 2

�
n

◦0

�
whom

�
1 2◦0

�

1 2

R/0

�

L30�

�
np

〈〉0

�
np

Trinity

�
escaped

np�
1 2

�

◦0

np� �
1 2

�

◦0

n�

Goal

Figure 8.3: Abstract proof structure after the s connection

�
agent

�
1 2

�

◦0

�
whom

�
1 2◦0

�

1 2

R/0

�

L30�

�
np

〈〉0

�
np

Trinity

�
escaped

np�
1 2

�

◦0

np� �
1 2

�

◦0

Goal

Figure 8.4: Abstract proof structure after the n connections

to the left or right premiss. In this case, only the first possibility allows the
resulting abstract proof structure to convert to a hypothesis tree, as shown in
Example 7.13

In the worst case, with n premisses and n conclusions, we might have to
consider all n! different connections, but the strategy of first connecting the
atomic formula with the smallest number of possible candidates for connec-
tion appears to be quite powerful.

Another strategy to perform the axiom links would be to perform them



8.5 Components 141

incrementally from left to right, starting with the first word of the sentence
and trying to make as many connections as possible after each new word.
This has been independently proposed by Johnson (1998) and by Morrill
(1998) (2000). Both authors present evidence that the number of unconnected
atomic formulas in a proof structure corresponds to the relative difficulty a
human would have when processing the sentence, giving some surprising
psycholinguistic support for the use of proof nets in linguistic analysis. I
want to avoid making any claims about the psychological reality of the cur-
rent, opportunistic literal selection strategy. Connecting the operation of an
automated theorem prover to psychological processes is, in my opinion, nei-
ther necessary nor desirable.

Finally, the axiom connections are related to strategies for resolution-
based theorem provers. Eisinger & Ohlbach (1993) give a good overview
of different literal selection strategies.

8.5 Components

Components, which we introduced in Section 7.6 to prove cut elimination,
have some good properties we can use for automated deduction.

Recall from Definition 7.17 that a component of an abstract proof struc-
tureA is a maximally connected substructure with respect to the tensor links
of A. Structural conversions operate on one component only, and leave all
other components unchanged. Contractions operate on one component, in
which they erase a tensor link, then merge this component with another.

Definition 8.4 If a component C of an abstract proof structure A does not contain
vertices which are the output vertex of a par link, but

(i) either C = A, that is, there are no par links in A

(ii) or both input vertices of a par link are in C

we call the component active. Otherwise, we will call it waiting,
Similarly, if all input vertices of a par link are in the same component, we will

call this link active. Otherwise, we will call it waiting.

Example 8.5 The components in the abstract proof structure of Example 7.10 are
drawn in black in Figure 8.5 on the following page. Note that the top component
consists of only a single vertex.

In this abstract proof structure there is only one active component, the middle
one, and only the [L30] link is active.

Lemma 8.6 We can restrict ourselves to conversion sequences of the following form.

(1) Apply a number of structural conversions in an active component.

(2) If the abstract proof structure still has par links, contract an active par link of
which the inputs are in the current component, reassess the active components
and continue from 1.



142 Automated Deduction

(n\0n)/0(s/0302
↓
0np)� �

�

◦0

n�

�
n

◦0

�
R/0

np� �
◦0

(np\0s)/0np� �
◦0

�
〈 〉0

�

L30

Figure 8.5: The components of Figure 7.9

Proof As noted before, the different components of an abstract proof
structure are independent until they are united into one component by a
contraction. As the contractions are defined to operate by contracting a par
link of which all active vertices are connected to the same tensor link, this
means the first contraction in any abstract proof structure must be a par link
of which the active vertices are already in the same component.

Because we also prohibit the active component from containing the main
vertex of a par link, no contractions other than the contraction of one of the
active par links from this component will affect the current component. 2

Some remarks need to be made. When an abstract proof structure has
multiple active components, we can apply structural rules to them indepen-
dently; we can start with any active component we want or we can even
operate on all active components in parallel.

However, when a component has multiple active par links, it is possible
that we are in the following situation: if we contract one before the other,
we can convert the abstract proof structure to a hypothesis tree, but if we
contract them in the other order, conversion to a hypothesis tree may not be
possible. Figure 8.6 on the next page presents two examples of such situa-
tions, which occur in the base logic NL3.

On the left of the figure, both the [L30] and the [R2
↓
0] link are active, but

if we contract the [L30] link first, we will be unable to contract the [R2
↓
0] link.

On the other hand, if we contract the [R2
↓
0] link first, we produce a redex for

the [L30] contraction immediately.



8.5 Components 143

302
↓
0a�

L30

2
↓
0302

↓
0a�

�� �

〈 〉0

L30�

〈 〉0

�

�

R2
↓
0

�

〈 〉0

�
302

↓
0a

〈 〉0

�
2

↓
0a

R2
↓
0

Figure 8.6: Conflicts between two active par links

On the right of the figure, we have the same active component, with the
same active par links, only now we are in the opposite situation: contract-
ing the [L30] link is required before contracting the [R2

↓
0] link if we want to

convert to a hypothesis tree.

Definition 8.7 A component is completed if none of its vertices are labeled with
free formulas.

When a component is both completed and active, further axiomatic con-
nections will not be relevant for that component, at least not until one of the
active par links bordering it will be contracted, which may cause the new
component to be incomplete again. Therefore, when we are performing the
axiom connections, we have the possibility of performing conversions on ac-
tive, completed components whenever we produce them. However, it may
not necessarily be the best strategy to contract par links bordering completed
components whenever we encounter them. We have to be careful which
strategy we prefer: do we choose eager evaluation, that is contract par links
as soon as the component it is attached to is completed, or lazy evaluation,
that is wait with contracting par links as much as possible.

The advantage of eager evaluation appears to be that we can detect par
links which are not contractable at an early stage, thereby triggering early
failure mechanisms and possible preventing unnecessary computations.

However, it is possible lazy evaluation gives better performance. Conti-
nuing connecting axioms may fail with respect to other early failure mecha-
nisms which are computationally less expensive. Waiting may also produce
other active, completed components which are smaller or more likely to fail.
Finally, with respect to eager evaluation it is difficult to decide between mul-
tiple, active par links and making the wrong choice can lead to a dead end in
the search space.

The Grail automated theorem prover discussed in Appendix A gives you
the choice of performing eager or lazy evaluation of par links. Section A.3.9



144 Automated Deduction

�

L3j�

σH� �

〈 〉j

� →
σH�
σQ1 2

�

◦i

�

1 2

�
σQ

R/i

Figure 8.7: A combined /i3j contraction

gives details on how to set up these parameters.

8.6 Focusing

One of the insights of focusing proofs (Andreoli 2000) is that multiple par
links which are connected in such a way that the active formula of one par
link is the main formula of the other, can be executed at the same time. We
will call such par links consecutive par links. In Figure 8.5 on page 142 the
[L30] and the [R/0] link are consecutive par links. We can treat these con-
figurations as if they were a single logical operator. In the case of ‘/030’ its
logical rules would be the following.

Γ[A] ` C ∆ ` B

Γ[A/030B ◦0 〈∆〉0] ` C
[L/030]

Γ ◦0 〈B〉0
Γ ` A/030B

[R/030]

The contraction corresponding to this combination is shown in Figure 8.7.
A similar strategy is not possible with a tensor/par combination. For

example, though we can add the following rules for 302
↓
0 to our sequent

calculus

Γ[A] ` C

Γ[302
↓
0A] ` C

[L302
↓
0]

〈Γ〉0 ` A

〈Γ〉0 ` 302
↓
0A

[R302
↓
0]

these rules will be incomplete, that is, there are valid derivations with for-
mulas of the form 302

↓
0A which you will not find using the combined rules

above, but which you will find using a separate 3 and 2↓ rule. In the ex-
ample above, applying the [L30] rule instead of the combined rule would
possibly open up new structural rules. Example 7.4 on page 106 shows such
a situation. If we look at the sequent rules of Table 7.5 on page 105, we see
that from a forward chaining proof search perspective the tensor rules add



8.7 Word Order 145

structural information, whereas the par rules remove it under certain condi-
tions.

With respects to the components of an abstract proof structure, consecu-
tive par links will correspond to components consisting of a single vertex, see
for example Figure 8.5. Now, it is possible to extend the definition of active
par links to active consecutive par links.

Definition 8.8 Consecutive par links are active whenever all the inputs to the tree
of par links are in the same component.

Lemma 8.9 We can restrict ourselves to conversion sequences of the following form.

(1) Apply a number of structural conversions in an active component.

(2) If the abstract proof structure still has par links, contract a tree of active con-
secutive par links of which all leaves are in the current component, reassess the
active components and continue from 1.

Proof According to Lemma 8.6 we can restrict ourselves to conversion
sequences where we apply structural conversions in an active component,
then contract an active par link attached to the current component. Now let C
be an active component and L be an active par link which is part of an active
consecutive par link. Performing this par contraction will remove a tensor
link from the active component and if the par link was part of a consecutive
par link, the component will now be attached to a single vertex. This means
any structural conversion which is possible after this contraction was already
possible before this contraction as well, since the new component is a proper
substructure of the component just before the contraction. 2

8.7 Word Order

There are cases where we can see from the abstract proof structure we are
constructing that it will never convert to an abstract proof structure where
the words of the input sequence occur in the right order.

For example, the abstract L-proof structures we introduced in Section 7.8
have only a structural rule representing associativity, and no structural rules
which could change the order of the hypotheses to the abstract proof struc-
ture. This means that whenever we make a axiomatic connection which does
not respect the order of the words in the input sentence, we will never be
able to contract the abstract L-proof structure to a single hypothesis comb.
Also, when the second conclusion of [R/] link is connected to anything but
the last hypothesis of a comb, contracting it will never be possible. Similar
arguments can be made for the other par links.

This property is a reflex in our proof net calculus of the planarity con-
dition we discussed in Section 4.7. We call binary modes for which either
no structural rules or one or both of the associativity structural rules apply
continuous.



146 Automated Deduction

A way of enforcing planarity for some modes but not for others is by
first order approximation. In Section 5.1.4 we gave embedding results for
both L and LP into the first order multiplicative fragment of linear logic.
By giving every continuous mode the L translation and every discontinuous
mode the LP translation, we have a simple way of enforcing at least some of
the word order constraints on derivation. We can also imagine giving certain
modes a slightly more sophisticated translation, such as those suggested in
Section 5.2.2 for relative pronouns. Morrill (1999) gives similar suggestions
for using first order constructs to enforce word order constraints.

In some cases, we can also use an eager evaluation strategy for perform-
ing the structural conversions and put the words in the right order with re-
spect to eachother whenever possible; each time we perform an axiom con-
nection between two disjoint abstract proof structures, we merge the words
of the two abstract proof structures until the new aps has all words in the
right order again. Again, eager evaluation can be dangerous because it can
force us to select the wrong alternative or because it can be impossible to put
two words in the right order until they are put in a bigger context.

The Grail automated theorem prover of Appendix A gives you the choice
of how to evaluate the word order constraints, see Section A.3.9 for details
on how to set up these parameters.

8.8 Parallel Computation

Though we have already seen that it is possible to apply structural rules in
parallel in different active components, in this section we will see that if we
represent a component appropriately, we can apply structural rules in paral-
lel in the same component as well.

This is done simply by allowing every vertex to be the conclusion and
the premiss of more than one link. We call such a structure a parallel abstract
proof structure. This makes it a quite a bit harder to represent the abstract
proof structures in an orderly way. I will choose to represent parallel aps’s
by just listing the links, in what I will call the distributed representation of a
parallel aps, even though this will mean vertices can occur in multiple places.
I think the alternative, having every vertex fixed and drawing the links be-
tween them, will lead to unnecessarily cluttered figures.

Example 8.10 Let’s look at the abstract proof structure corresponding to the se-
quent a/aa, a/aa, a/aa ` a/aa shown in Figure 8.8 on the next page, where we
assume mode a is associative but not commutative.

When we present this abstract proof structure as a parallel aps, it will look as
shown in Figure 8.9 on the facing page. The links are named L1 to L4 for future
reference.

We perform structural conversions on parallel abstract proof structures
as follows.



8.8 Parallel Computation 147

a/aa� �
1 2

a/aa� �

◦a

1 2

a/aa� ��

◦a

1 2◦a

�

1 2

�
a/aa

R/a

Figure 8.8: Abstract proof structure for a/aa, a/aa, a/aa ` a/aa

a/aa
x2 x3

a/aa
x4 x5

L1 L2

x1

◦a

x3

◦a

a/aa
x6 x7 x1

L3 L4

x5

◦a

x8
a/aa

R/a

x7

Figure 8.9: The aps of Figure 8.8 in a distributed representation

– find all sets of connected tensor links which are the redex of a structural
conversions.

– using fresh internal vertices, add the reduct of the structural conversion
to the parallel aps unless the reduct is equivalent, up to renaming of the
internal vertices, with links which are already present in the parallel
aps.

Example 8.11 Using one application of the associativity rule, we can expand the
parallel aps of Figure 8.9 with the links shown in Figure 8.10 on the next page.
From L1 and L2 associativity gives us L5 and L6, and we can reassociate L2 and L3

into L7 and L8.
For the next generation, we know that at least one of the links to which we apply

a structural rule must have been introduced in the last generation, because this is
the only way we can produce new links.

The third generation tensor links are shown in Figure 8.11 on the following page.
L9 and L10 have been obtained from L3 and L5, whereas L11 and L12 have been
obtained from L1 and L7. The redexes formed by L5 and L6 and by L7 and L8 have
not been triggered, because their reducts would be equivalent up to renaming of the



148 Automated Deduction

x9 x5
a/aa
x2

a/aa
x4

L5 L6

x1

◦a

x9

◦a

x10 x7
a/aa
x4

a/aa
x6

L7 L8

x3

◦a

x10

◦a

Figure 8.10: Second generation tensor links

x11 x7 x9
a/aa
x6

L9 L10

x1

◦a

x11

◦a

x12 x7
a/aa
x2 x10

L11 L12

x1

◦a

x12

◦a

Figure 8.11: Third generation tensor links

internal nodes to L1 and L2 and to L2 and L3 respectively.
We have completed the structural rule applications: no structural conversion

from the current state will produce new links. We are now in a position to apply
the [R/a] contraction, which will identify vertices x8, x11 and x12 and which will
erase all links which have become unreachable from the root vertex x8. The resulting
parallel aps is shown in Figure 8.12.

For the current example, the contraction system described in Section 7.8 is, of
course, much more efficient. However, the setup described here is very general and
works for any set of structural rules

x9
a/aa
x6

a/aa
x2

a/aa
x4

L10 L6

x8

◦a

x9

◦a

a/aa
x2 x10

a/aa
x4

a/aa
x6

L12 L8

x8

◦a

x10

◦a

Figure 8.12: Parallel aps after the [L/a] contraction



8.9 Rule Filtering 149

The methodology outlined in this section is very close to finding a canon-
ical model according to the Kripke semantics discussed in Section 3.6. The
two frame constraints for an associative mode a would be the following.

∀x1.x2.x3.x4.x5. x1Rax2x3 ∧ x3Rax4x5 → ∃x6. x1Rax6x5 ∧ x6Rax2x4

∀x1.x2.x3.x4.x5. x1Rax2x5 ∧ x2Rax3x4 → ∃x6. x1Rax3x6 ∧ x6Rax4x5

When we interpret xRiyz as there is a tensor link of mode i with pre-
misses y and z and conclusion z, all we do when applying the structural
rules to a parallel aps is to add tensor links and vertices which must exists
according to the frame constraints.

An interesting possibility to investigate would be to extend parallel com-
putation beyond single components, possibly even extending it to compute
different lexical assignments to words of the input sentence in parallel and
compare the time and space complexity with the sequential version of Ta-
ble 8.1.

8.9 Rule Filtering

In many cases we can see from the shape of the structural conversions that
some structural conversions can never produce a redex for the contraction of
the active par link we are looking at.

Example 8.12 If we want to add features for person, number, gender and case to a
simple English grammar, in the style of Heylen (1999), we might do this as shown
in Table 8.2. The features on the lexical entry for ‘he’ show it is a 3rd person singular
masculine nominative pronoun. For every feature we have a ‘top’ and and a ‘bottom’
element. For example the gender feature has, in addition to values m for masculine, f
for feminine and n for neuter a value g which includes any gender feature and a value
G which is included by any gender feature, as stated by the following structural
rules, where i ∈ {m, f, n}.

Γ[〈∆〉G] ` C

Γ[〈∆〉i] ` C
[i,G]

Γ[〈∆〉i] ` C

Γ[〈∆〉g] ` C
[g,i]

In the lexicon of Table 8.2, ‘they’ is assigned gender feature G which means it can
satisfy any gender requirement from the verb. On the other hand, ‘smiles’ selects for
a subject with gender feature g which means any marking for gender will satisfy it.
An example derivation of ‘Marla smiles’ is shown in Figure 8.13.

In the example above, we only have structural rules for inclusion and
none for interaction. The abstract proof structure for this derivation, where,
for the sake of simplicity, we abstract over the 2

↓
3 and 2↓

sg connectives, is
shown in Figure 8.14.



150 Automated Deduction

l(he) = 2
↓
32

↓
sg2

↓
m2↓

nomnp

l(she) = 2
↓
32

↓
sg2

↓
f2↓

nomnp

l(it) = 2
↓
32

↓
sg2

↓
n2

↓
Cnp

l(him) = 2
↓
32

↓
sg2

↓
m2↓

accnp

l(her) = 2
↓
32

↓
sg2

↓
f2↓

accnp

l(they) = 2
↓
32

↓
pl2

↓
G2↓

nomnp

l(them) = 2
↓
32

↓
pl2

↓
G2↓

accnp

l(Marla) = 2
↓
32

↓
sg2

↓
f2

↓
Cnp

l(smiles) = 2
↓
32

↓
sg2

↓
g2

↓
nomnp\s

l(hates) = (2↓
32

↓
sg2

↓
g2

↓
nomnp\s)/2↓

p2
↓
n2↓

g2
↓
accnp

Table 8.2: A lexicon with feature information

np ` np
[Ax]

〈2↓
Cnp〉C ` np

[L2
↓
C ]

〈2↓
Cnp〉nom ` np

[nom,C]

2
↓
Cnp ` 2↓

nomnp
[R2↓

nom]

〈2↓
f2

↓
Cnp〉f ` 2↓

nomnp
[L2

↓
f ]

〈2↓
f2

↓
Cnp〉g ` 2↓

nomnp
[g,f]

2
↓
f2

↓
Cnp ` 2↓

g2
↓
nomnp

[R2↓
g]

〈2↓
sg2

↓
f2

↓
C〉sgnp ` 2↓

g2
↓
nomnp

[L2↓
sg]

2↓
sg2

↓
f2

↓
Cnp ` 2↓

sg2
↓
g2

↓
nomnp

[R2↓
sg]

〈2↓
32

↓
sg2

↓
f2

↓
Cnp〉3 ` 2↓

sg2
↓
g2

↓
nomnp

[L2
↓
3]

2
↓
32

↓
sg2

↓
f2

↓
Cnp ` 2

↓
32

↓
sg2

↓
g2

↓
nomnp

[R2
↓
3]

s ` s
[Ax]

2
↓
32

↓
sg2

↓
f2

↓
Cnp ◦2

↓
32

↓
sg2

↓
g2

↓
nomnp\s ` s

[L\]

Figure 8.13: Derivation of ‘Marla smiles’ with feature information

Now it is clear that the [R2↓
nom] contraction does not depend in any way

on what happens to the [〈〉f ] link; only the [〈〉C ] link is relevant to this con-
traction and there is only one rule which can produce a [〈〉nom] link, namely
the [nom,C] conversion. Similarly, after the [R2↓

nom] contraction we only the
[g,f] rule can produce a redex for the [R2↓

g] contraction.
The general idea here is: given an active par link which is not a redex

for the corresponding contraction, we look at which structural conversions
could be the last conversion just before the contraction and then, recursively,
we look at which conversions could have produced the redex for the previ-
ous conversion. This strategy is particularly effective when modes have only



8.10 Conclusions 151

2
↓
f
2

↓
Cnp
�

�

〈〉f

�

〈〉C

�

R2
↓
nom

�

�

R2
↓
g

� 2↓
g2↓

nomnp\s�
1 2

�
s

◦

Figure 8.14: Abstract proof structure for ‘Marla smiles’

structural rules for inclusion, as in the example above, but other grammars
can benefit from this strategy as well. If we look at Figure 8.8 on page 147
again, it is obvious that in order to produce a redex for a [R/a] contraction we
only need to use the [Ass1] structural rule, whereas we would only need to
use the [Ass2] structural rule to produce a [R\a] redex. Either structural rule
could be the last conversion before a [L•a] contraction, however.

8.10 Conclusions

We have seen several ways of improving the efficiency of the initial, naive al-
gorithm by giving heuristics which are applicable in many cases. Though the
complexity results from the next chapter make it unlikely that we will find an
efficient algorithm for the general problem, it is possible to find algorithms
which work reasonably well for large subclasses of the problem.





CHAPTER 9

COMPLEXITY

T ABLE 9.1 gives an overview of the complexity results for various frag-
ments of NL3R. Even without contraction, weakening or similar struc-

tural rules where information is copied or deleted, the full logic NL3R is
undecidable, as we will demonstrate in Section 9.3.

Undecidable NL3R

...

...

−

− PSPACE NL3R−

NP MLL1, LP

− ? L

−

− P

−

−

n6 NL,LTAG

n3 AB

Table 9.1: Complexity results for different fragments of NL3R

In Section 9.2, however, we will show that if we disallow structural rules
which remove unary connectives the resulting logic will be PSPACE com-
plete. In Chapter 5 we already gave a number of examples of phenomena
which could be described by the NP complete logic MILL1 and related this
logic to fragments of the multimodal Lambek calculus. Other NP complete



154 Complexity

systems include LP, as shown by Kanovich (1991), and L extended with a
commutative version of the right implication rule, as shown by Dörre (1996).
Emms (1993a) shows the recognizing capacity of this logic is beyond that of
context free grammars..

De Groote & Lamarche (2001) prove that, given a bracketed input, the
decision problem for NL can be solved in O(n6) time and in the next chapter
I will present a fragment of NL3R with a restriction on the allowed formu-
las and fixed set of structural rules for which we can use the O(n6) parsing
algorithms which have been proposed for LTAGs.

Finally, there are simple AB grammars, precursors to the Lambek calcu-
lus introduced by Ajdukiewicz (1935) and Bar-Hillel (1964), which can be
seen as the Lambek calculus with only the [L/],[L\], [Ax] and [Cut] rules. AB
grammars have been shown to be weakly equivalent to context free gram-
mars by Bar-Hillel, Gaifman & Shamir (1964), and can therefore be compiled
into context free grammars after which we can use any of the standard O(n3)
algorithms which exist for context free grammars.

Some problems still remain open: while it is relatively simple to show
that the associative Lambek calculus is in NP, for example by the translation
function of Section 5.1.4, it is still unknown if L is NP complete or if there ex-
ists a polynomial algorithm for deciding provability. Though Pentus (1995)
(1997) has shown L grammars to be weakly equivalent to context free gram-
mars, his proposed translation is exponential. Only some polynomial results
for fragments of L have been found: Aarts (1994) shows that we can use poly-
nomial parsing for the Lambek calculus with restricted formula complexity,
whereas de Groote (1999b) gives an exponential algorithm based on proof
nets and tabulation which performs in polynomial time for a subset of the
complete logic, but so far the exact complexity for the full logic has remained
elusive.

9.1 NP Complete Fragments

It seems quite reasonable to demand that we can determine the existence
of a conversion sequence in polynomial time. In other words, we would
like to restrict ourselves to packages of structural rules for which we have
a polynomial time algorithm for finding a conversion sequence ending in a
hypothesis tree, if such a conversion sequence exists.

Providing such an algorithm will immediately show the corresponding
instance of NL3R is in NP, and, if the logic contains some form of commu-
tativity, even NP complete.

In Section 4.5 we have already given an O(n2) contraction algorithm for
MLL, whereas in Section 7.8 we provided a O(n2) contraction algorithm for
L, though in the case of L this merely shows L to be in NP and does not imply
NP completeness of the problem.

One possibility for investigating fragments of NL3R which are inher-
ently in NP would be to provide specialized versions of the contraction cri-
terion, along the lines of the contraction criterion for the Lambek calculus.



9.2 Restricted Structural Rules 155

We will not investigate this possibility here, but in the next section we will
explore a PSPACE complete formulation of NL3R.

9.2 Restricted Structural Rules

In the previous section we saw how providing a polynomial conversion al-
gorithm would give us a logic which is in NP, or even NP complete if it has
some form of commutativity. Table 8.1, however, gives the set of structural
rules as an input to the algorithm, so it would be nice if we could see, just
from the form of the structural rules what the computational complexity of
the logic defined by these structural rules would be. As we will see in the
next section, it might be that the logic is undecidable. In this section we will
present a way of identifying logics which are decidable in PSPACE by sim-
ple, local properties of their structural rules.

A natural restriction on the structural rules is to require that the left hand
side of a structural conversion has at least as many unary connectives as the
right hand side. We will call these postulates non-expanding as, looking at
these postulates from the perspective of forward chaining proof search, the
structural rules cannot increase the number of symbols during the course of
a derivation.

Definition 9.1 Given an antecedent configuration Ξ, we define the length of Ξ as
follows.

length(∆1 ◦i ∆2) = length(∆1) + length(∆2) + 2
length(〈∆〉i) = length(∆) + 1
length(∆) = 0

We can extend Definition 9.1 to include arbitrary n-ary configurations by
noting that the general form is the following.

length(∗(∆1, . . . ,∆n)) = length(∆1) + . . . + length(∆n) + n

Definition 9.2 The logic NL3R− is the logic NL3R where for every structural
rule R ∈ R

Γ[Ξ′[∆1, . . . ,∆n]] ` C

Γ[Ξ[∆π1 , . . . ,∆πn ]] ` C
[R]

the following holds.

length(Ξ[∆π1 , . . . ,∆πn ]) ≤ length(Ξ′[∆1, . . . ,∆n])

We call structural rules with this property non-expanding.

Note that because every structural rule of R is linear, Definition 3.4 re-
quires Ξ′ to be non-empty, or, equivalently, that length(Ξ′) > 0.



156 Complexity

The logic NL3R− still gives us access to a wide variety of structural pos-
tulates, including postulates like [K]

Γ[〈∆1〉1 ◦0 〈∆2〉1] ` C

Γ[〈∆1 ◦0 ∆2〉1] ` C
[K]

even though its inverse [K’] is not allowed.

Γ[〈∆1 ◦0 ∆2〉1] ` C

Γ[〈∆1〉1 ◦0 〈∆2〉1] ` C
[K’]

All the structural rules we have seen so far satisfy this condition, with the
exception of the [4] postulate.

Γ[〈∆〉1] ` C

Γ[〈〈∆〉1〉1] ` C
[4]

However, the linguistic applications of this postulate appear to be lim-
ited. Moortgat (1997) even shows we can simulate the [T] and [4] postulates
in NL3 without using structural rules.

Of the postulates which have been proposed in the literature, only two
postulates proposed by Moortgat (1996a), repeated below, violate this condi-
tion because the conclusion of both rules contains an extra unary structural
connective.

Γ[(∆1 ◦1 ∆2) ◦0 ∆3] ` C

Γ[∆1 ◦1 〈∆2 ◦0 ∆3〉l] ` C
[P1′]

Γ[∆2 ◦0 (∆1 ◦1 ∆3)] ` C

Γ[∆1 ◦1 〈∆2 ◦0 ∆3〉r] ` C
[P2′]

We will prove that the languages generated by NL3R− are equivalent to
the context sensitive languages, which are defined as follows.

Definition 9.3 A type 1 or context sensitive grammar G is a tuple 〈Σ, N, S, R〉,
where

Σ is the set of terminal symbols,

N is the set of nonterminal symbols,

S is a designated member of N called the start symbol,

R is the set of grammar rules.

We require that N and Σ are disjoint. The set R consists of rewrite rules Γ→ ∆,
where Γ and ∆ are lists of symbols from N ∪ Σ. We restrict R to rules where
Γ contains at least one nonterminal symbol and where length(Γ) ≤ length(∆).
Specifically, this excludes rules of the form Γ→ ε, where ε is the empty list.

A type 1 or context sensitive language LG is the set of lists of terminal sym-
bols obtained by taking a type 1 grammar G and computing the closure of the start
symbol S under the operation of the rules R.



9.2 Restricted Structural Rules 157

Example 9.4 Context sensitive grammars are a quite expressive formalism. It is
possible, for example, to formulate a grammar generating the following language.

{an | n is prime}

A more simple example is the grammar which generates the following language.

{anbncn| n > 0}

This grammar looks as follows: 〈{a, b, c}, {S, B, C}, S, R〉 where R is the fol-
lowing set of rules.

S →1 aSBC
S →2 aBC
CB →3 BC
aB →4 ab
bB →5 bb
bC →6 bc
cC →7 cc

This grammar generates the language anbncn for all n > 0. We can generate the
string aabbcc, for example, as follows.

S →1

aSBC →2

aaBCBC →3

aaBBCC →4

aabBCC →5

aabbCC →6

aabbcC →7

aabbcc

To facilitate later proofs, we introduce the notion of lexicalization for
phrase structure grammars. We formulate the definitions and lemma’s in
such a way that the don’t use the context sensitive restriction on the rules of
the grammar, so that we can reuse these results in Section 9.3, where we will
apply the same definitions to unrestricted phrase structure grammars.

Definition 9.5 We say a phrase structure grammar is lexicalized if every rule is
of one of the following forms.

(i) Γ→ ∆ where Γ and ∆ are lists of nonterminal symbols

(ii) A→ β where A ∈ N and β ∈ Σ.

We call the rules of form (i) the grammar rules and the rules of form (ii) the
lexicalization rules.

Lemma 9.6 For lexicalized grammars we can restrict ourselves to derivations where
all applications of grammar rules precede the applications of lexicalization rules.



158 Complexity

Proof We prove the lemma by induction on the number of lexicalization
rules which occur before grammar rules. Let D be a derivation of a lexical-
ized grammar and A → β be a lexicalization rule which occurs before some
grammar rules, that is, we are in the following situation

S �a Γ[A]→ Γ[β]�b ∆[β]

where at least one of the rules in �b is a grammar rule. Because of the re-
strictions on the rules, none of the rules in�b can rewrite β, so it is easy to
see the following derivation is valid too.

S �a Γ[A]�b ∆[A]→ ∆[β]

Because this derivation has one less lexicalization rule occurring before
grammar rules we can apply the induction hypothesis giving us a derivation
of the required form. 2

Lemma 9.7 For every phrase structure grammar G there is a lexicalized grammar
G′ which generates the same language.

Proof Take any rule ρ of the form Γ → ∆ from grammar G which is not
of one of the forms of Definition 9.5.

Let β1, . . . , βn be the terminal symbols occurring in ρ. Replace all occur-
rences of βi in the grammar by a new nonterminal symbol Ni. This replace-
ment does not introduce any new non-lexicalized rules: any rule previously
corresponding to Definition 9.5.(ii) now corresponds to Definition 9.5.(i) and
rules corresponding to Definition 9.5.(i) are unaffected. Finally, add a rule
Ni → βi to the grammar for every i. All these new rules correspond to Def-
inition 9.5.(ii) and rule ρ now corresponds to Definition 9.5.(i). Call this new
grammar G′.

It is clear that in G′ the nonterminal symbols N1, . . . , Nn play the role
of the terminal symbols β1, . . . , βn, that is, any derivation which generates
a terminal symbol βi by means of a rule in G which is not a lexicalization
rule, generates a nonterminal symbol Ni in G′. A separate lexicalization rule
then rewrites Ni to βi in G′. Conversely, any rule in G′ which produces a
nonterminal symbol Ni which is not a nonterminal symbol of G produces a
terminal symbol βi in G. 2

Example 9.8 The context sensitive grammar from Example 9.4 is not lexicalized.
Only rule 3 is a valid grammar rule in a lexicalized context sensitive grammar. But
replacing a by A, b by D and c by E and adding the corresponding lexicalization
rules produces a grammar in the form shown below, which is a lexicalized context
sensitive grammar.



9.2 Restricted Structural Rules 159

S →1 ASBC
S →2 ABC
CB →3 BC
AB →4 AD
DB →5 DD
DC →6 DE
EC →7 EE
A→8 a
D →9 b
E →10 c

The derivation of Example 9.4 proceeds as shown below.

S →1

ASBC →2

AABCBC →3

AABBCC →4

AADBCC →5

AADDCC →6

AADDEC →7

AADDEE →8

aADDEE →8

aaDDEE →9

aabDEE →9

aabbEE →10

aabbcE →10

aabbcc

Definition 9.9 From a lexicalized context sensitive grammar G we generate the
corresponding multimodal Lambek calculusM(G) as follows.M(G) has one unary
mode for every nonterminal of G and a single binary mode.

Every lexicalization rule A→ β corresponds to a lexical entry as follows.

lex(β) = a\2↓
Aa

The goal formula ofM(G) is a\2↓
Sa where S is the mode corresponding to the

start symbol of G.
M(G) has a structural rule for every grammar rule A1 . . . An →R1 B1 . . . Bm

of G.

Γ[〈. . . 〈∆〉Bm . . .〉B1 ] ` C

Γ[〈. . . 〈∆〉An . . .〉A1 ] ` C
[R1]

Because m > 0 and n ≤ m, this is a valid NL3R− rule.
Furthermore, the structural rule component ofM(G) contains one of the struc-

tural rules for associativity for the single binary mode

Γ[(∆1 ◦ ∆2) ◦ ∆3] ` C

Γ[∆1 ◦ (∆2 ◦ ∆3)] ` C
[Ass2]



160 Complexity

a a\2↓
Aa

L\

a
1 2

2
↓
Aa

L\

2
↓
Sa

R2
↓
S

1 2

a a a\2↓
Sa

R\

Figure 9.1: Proof structures for the lexicon and the goal formula

x

�

〈 〉B1

. . .
�

z

〈 〉Bm

→[R1]

x

�

〈 〉A1

. . .
�

z

〈 〉An

x1 x2
1 2

��

◦

x3
1 2

z

◦
→[Ass2]

x2 x3
1 2

x1
�

◦

�
1 2

z

◦

x1

�

〈 〉A

x2
1 2

z

◦
→[K1]

x1 x2
1 2

�

◦

z

〈 〉A

Figure 9.2: Structural conversions forM(G)

and the structural rule of [K1] for every mode A ∈ N .

Γ[〈∆1〉A ◦ ∆2] ` C

Γ[〈∆1 ◦ ∆2〉A] ` C
[K1]

Seeing this grammar from the proof structure perspective, all lexical en-
tries are of the form shown in Figure 9.1 on the left, where A is a unary index
ofM(G). The goal proof structure is shown in Figure 9.1 on the right. Fig-
ure 9.2 gives a schematic representation of the structural conversions.



9.2 Restricted Structural Rules 161

a a\2↓
A1

a

L\
1 2

2
↓
A1

a

L2
↓
A1

a
. . .

a a\2↓
An

a

L\
1 2

2
↓
An

a

L2
↓
An

a

2
↓
Sa

R2
↓
S

1 2

a\2↓
Sa

R\

Figure 9.3: Proof structure for a derivation inM(G)

Lemma 9.10 Let M(G) be a multimodal Lambek calculus which corresponds to
a context sensitive grammar G according to Definition 9.9. For every sequence of
hypotheses H1, . . . , Hn which correspond to lexical entries ofM(G) only the proof
structure S, which is shown schematically in Figure 9.3, can convert to a hypothesis
tree of H1, . . . , Hn ` a\2↓

Sa.

Proof Look at the structural rules of M(G): none of them change the
order of the hypotheses, so we need to consider only those proof structures
where the hypotheses are in the right order with respect to eachother. All hy-
potheses induce proof structures as shown in Figure 9.1 on the left, whereas
the goal formula induces the proof structure shown in Figure 9.1 on the right.

Suppose we connect the a hypothesis of the goal proof structure to any
formula other than the a conclusion of the rightmost lexical proof structure.
Linking it to its own conclusion produces a disconnected proof structure,
whereas linking it to a different lexical proof structure will make the formula
corresponding to that proof structure appear as the rightmost hypothesis.
We follow this line of reasoning inductively for the next lexical proof struc-
tures until after the last lexical proof structure has been connected to its a
conclusion, we connect its a hypothesis to the a conclusion of the goal proof
structure, producing the proof structure pictured in Figure 9.3. 2

Definition 9.11 We define a function f1 which translates a component of an ab-
stract proof structure into a list of nonterminal symbols as follows. ‘‖’ is the con-



162 Complexity

�
a\2

↓
A1

a
�

1 2

�

◦

�

〈 〉A1

. . .
�

a\2
↓
An

a
�

1 2

�

◦

〈 〉An

�

�

R2
↓
S

1 2

�
a\2

↓
Sa

R\

Figure 9.4: Abstract proof structure for a derivation inM(G)

catenation operator.

f1(F ) = ε
f1(〈Γ〉i) = f1(Γ) ‖ i
f1(Γ1 ◦ Γ2) = f1(Γ1) ‖ f1(Γ2)

Lemma 9.12 Let M(G) be a multimodal Lambek calculus which corresponds to
a context sensitive grammar G according to Definition 9.9. For every conversion
sequence ρ of a proof net forM(G), applying function f1 to the unique active com-
ponent C of the successive abstract proof structures of ρ before the two contractions
of ρ and removing all identity transitions yields a derivation D of G.

Proof Because ρ ends in a hypothesis tree, we can apply Lemma 9.10, and
we know S has to be of the form shown in Figure 9.3 on the preceding page.
Converting that proof structure into an abstract proof structure produces the
result shown in Figure 9.4.

Because we have only one active component and a single active consecu-
tive par link in it, we can apply Lemma 8.9 to ensure the two contractions
can always be performed after any structural conversions in this component.

We will generate a derivation D of Γ from ρ as follows. For the active
component C of the initial abstract proof structure f1(C) = A1 . . . An. We
extend this by applying the n appropriate lexicalization rules of G to produce
a valid suffix of a derivation of w1 . . . wn in G.



9.2 Restricted Structural Rules 163

We now proceed by induction on the length l of the sequence of the
structural conversions ρ, simultaneously proving that any time we compute
f1(Γ2) for the final clause of Definition 9.11 the result will be the empty list.
For the abstract proof structure of Figure 9.4 this property holds, because the
right branch of every [◦] link is a leaf.

If l = 0 then, because the consecutive ‘\2↓
S’ par link can be contracted

C = 〈a ◦ Γ〉S , and because we have proved by induction that f1(Γ) = ε this
means f1(〈a ◦ Γ〉S) is S. Therefore, we have produced a valid derivation in
G.

If l > 0 we look at the last conversion.
If it is an [Ass2] conversion, we keep the suffix of the derivation in G the

same. f1(Γ1 ◦ (Γ2 ◦ Γ3)) = f1((Γ1 ◦ Γ2) ◦ Γ3) = f1(Γ1)‖f1(Γ2)‖f1(Γ3) and,
given that f1(Γ2 ◦ Γ3) is ε, f1(Γ2) and f1(Γ3) are both ε.

If the last conversion is a [K1] conversions, we keep the suffix of the G
derivation the same. f1(〈Γ1〉A ◦ Γ2) = f1(Γ1)‖A‖f1(Γ2) whereas f1(〈Γ1 ◦
Γ2〉A) = f1(Γ1)‖f1(Γ2)‖A, but since we know f1(Γ2) = ε both are equivalent.

If the last conversion is a grammatical conversion, we prefix the corre-
sponding grammatical rule to the derivation of G. The result is again a valid
suffix of a derivation in G. 2

Lemma 9.13 Given a lexicalized context sensitive grammar G, the multimodal
Lambek calculus M(G) corresponding to it according to Definition 9.9 generates
the same language.

Proof We need to show that the multimodal Lambek calculusM(G) cor-
responding to G by Definition 9.9 generates the same language as G, that is
that there exists a derivation δ of string s in G iff there exists a derivation ρ
of s inM(G).

[⇒] Let δ be a derivation in G. Lemma 9.6 ensures there is a derivation δ ′

generating the same string where every grammar rule precedes every lexical-
ization rule. We construct the proof structure S for the proof net derivation
corresponding to δ by looking at the lexicalization steps of δ′ and selecting
the appropriate lexical entries corresponding to it according to the transla-
tion, then combining the lexical proof structures and the goal proof structure
according to Lemma 9.10.

The abstract proof structureA corresponding to S, which looks as shown
in Figure 9.4, can be converted as follows: for every grammatical rule of δ ′ we
apply the conversion corresponding to it according to Definition 9.9 toA. We
start by combining all [〈 〉i] links using [K1] and [Ass2] rules alternately until
we have a single sequence of [〈 〉i] links which, from hypotheses to conclu-
sion, corresponds to the sequence of terminals just after the last grammatical
rule of δ′. Now for every grammatical rule of δ′, starting with the last one, we
apply the corresponding structural rule. At every step, the sequence of [〈 〉i]
links will have modes B1, . . . , Bm corresponding to the sequence of nonter-
minals of δ′, until, before the first grammatical rule, it will contain a single



164 Complexity

a\2
↓
An−1

a

�
a\2

↓
An

a
�

1 2

�

◦

. .
.

a\2
↓
A1

a
� �

1 2

�
a\2

↓
Sa

◦

Figure 9.5: The final hypothesis tree of aM(G) proof net

[〈 〉S ] link, which we can contract using the [R2
↓
S ] contraction. After the [R\]

contraction the hypothesis tree will look as shown in Figure 9.5.

[⇐] This is a direct consequence of Lemma 9.12 which shows how to
generate a derivation of G from a conversion sequence of a proof net in
M(G). 2

Lemma 9.14 A nondeterministic linear bounded Turing machine can encode se-
quent proof search for any non-expanding multimodal Lambek calculus.

Proof First, we replace any word which has multiple lexical assignments
A1, . . . , Am by a single lexical assignment A1&. . .&Am and multiple possible
goal formulas G1, . . . , Gn by a single goal formula G1 ⊕ . . .⊕Gn, adding the
following logical ruled to the calculus.

Γ[Ai] ` C

Γ[A0 & A1] ` C
[L&] Γ ` Ci

Γ ` C0 ⊕ C1
[R⊕]

Note that these are just the [L&] and the [R⊕] rules from linear logic
adapted to NL3R. This addition to the logic is quite inessential and serves
only as a way to generate the right amount of space on the input tape of the
Turing machine in the case of multiple lexical assignments to a single word
or multiple possible goal formulas.

The input tape of the Turing machine for the sequence of words w1 . . . wn

consists of the lexical formulas f1 . . . fn corresponding to these words and the
goal formula g, in Polish prefix notation, the different antecedent formulas
separated by an arbitrary binary mode ◦0

` ◦0f1◦0. . .fng

Now look at the maximum amount of space required for forward chain-
ing proof search for the sequent calculus compared to the size of the input



9.2 Restricted Structural Rules 165

tape. Forward chaining proof search amounts to starting with the axioms
and applying the sequent rules from premisses to conclusion performing all
computations nondeterministically and halting with success when we have
generated the formulas on the input tape in the right order and with failure
when we have exhausted the search space.

Because of the subformula property, the sequents we have to consider
only contain subformulas of the end-sequent. We also need a binary se-
quent separator symbol, for which we use ‘∧’ to separate the different se-
quent proofs.

In Polish prefix notation, the sequent rules of [R3j ] and [R•i], normally
portrayed as follows

Γ ` C

〈Γ〉j ` 3jC
[R3j] Γ ` A ∆ ` B

Γ ◦i ∆ ` A •i B
[R•i]

look like shown below.

` ΓC
` 〈〉jΓ3jC

∧ ` ΓA ` ∆B
` ◦iΓ∆ • iAB

Counting the number of symbols in the premisses and the conclusion,
we see that these rules, like the other tensor rules, increase the number of
symbols, whereas the par rules keep the number of symbols constant. Fur-
thermore, because all structural rules are non-expanding they may reduce
the total amount of space needed, but they can never enlarge it.

We examine the tensor rules more closely. For the [R3j] and the [L2
↓
j ] rule

the conclusion has four symbols more than the premiss (we count 〈〉 and 2↓

as one symbol), for the [R•i], [L/i] and [L\i] rule there are two more symbols
in the conclusion. Of these extra symbols, two are included on the input tape,
which means that only for the [R3j ] and the [L2

↓
j ] we have to add two extra

spaces on the tape. This means that the maximum amount of space we need
is the length of the input tape l plus two extra symbols for every positive
occurrence of 3j and two extra symbols for every negative occurrence of 2

↓
j ,

which is strictly less than 2l. 2

Lemma 9.15 (Koroda (1964)) Any linear bounded Turing machine which does not
generate the empty string is equivalent to a context sensitive grammar.

·

LBTM\{ε}
· ·

NL3R−

CSG
� -

�

U
Lemma 9.14 Lemma 9.13

Lemma 9.15

Figure 9.6: A summary of the previous lemma’s



166 Complexity

Theorem 9.16 The parsing problem for NL3R− is equivalent to the parsing prob-
lem for context sensitive grammars.

Proof The theorem is an immediate consequence of Lemmas 9.13, 9.14
and 9.15, as shown in Figure 9.6 on the page before. We can decide the deriv-
ability of any sequent of NL3R− in nondeterministic linear space according
to Lemma 9.14 and any problem which can be solved in nondeterministic
linear space can be solved in NL3R− 2

Corollary 9.17 The decision problem for NL3R− is PSPACE complete.

Proof Karp (1972) shows that the decision problem for context sensitive
grammars, that is, given a description of a context sensitive grammar G and
a string s we return 1 if s ∈ LG and 0 otherwise, is PSPACE complete.

Given Theorem 9.16 the PSPACE completeness of the decision problem
for NL3R− follows immediately. It is PSPACE hard because we can encode
a context sensitive grammar in the structural rule component of NL3R− . It
is in PSPACE because we can translate any fragment of NL3R− , including
the structural rules, to a context sensitive grammar. Therefore it is PSPACE
complete. 2

9.3 NL3R

Carpenter (1995) showed that the multimodal Lambek calculus is undecid-
able if we allow structural rules which duplicate and erase material. A simi-
lar result is mentioned by Lincoln, Mitchell, Scedrov & Shankar (1990), where
the relation between semi-Thue systems and cyclic linear logic with exponen-
tials is sketched.

In this section I will prove that even if we restrict the structural rules to
be linear according to Definition 3.4 the logic NL3R is still undecidable. We
show this by using the structural rules for the unary connectives to encode
the recognition problem for type 0 languages, which is known to be unde-
cidable (Chomsky 1959). This result is mostly symmetric to the results of
the previous section, since, by the single restriction on the form of the rules
for a type 0 grammar, we will now give a translation encoding top down
search for type 0 grammar opposed to the bottom up search of the previous
translation.

One of the consequences of the results of this section is therefore that
we could have also defined the logic NL3R+ which has only non-shrinking
structural rules and which also generates the context sensitive languages.

Definition 9.18 A type 0 grammar G is a tuple 〈Σ, N, S, R〉, where

Σ is the set of terminal symbols,

N is the set of nonterminal symbols,



9.3 NL3R 167

S is designated member of N called the start symbol,

R is the set of grammar rules.

As usual, we require N and Σ to be disjoint. The set R consists of rewrite rules
Γ→ ∆, where Γ and ∆ are lists of symbols from N ∪Σ. The only restriction on the
form of the rules is that Γ contains at least one nonterminal symbol.

A type 0 language LG is the set of lists of terminal symbols obtained by taking
a type 0 grammar G and computing the closure of the start symbol S under the
operation of the rules R.

Since Definition 9.5 and Lemma 9.7 were formulated for general phrase
structure grammars, we can apply them here as well to talk about lexicalized
type 0 grammars and know that any type 0 grammar G generates the same
language as the corresponding lexicalized type 0 grammar G′.

Because our formulation of the Lambek calculus does not allow for empty
antecedent derivations, we also need to restrict ourselves to type 0 gram-
mars which do not derive the empty string. However, because determining
whether a given type 0 grammar generates the empty sting is known to be
undecidable, we will propose a simple transformation on type 0 grammars
which ensures the strings generated by the grammar are always non-empty.

Definition 9.19 A type 0 grammar G is ε free if LG does not include the empty
string.

From a type 0 grammar G we can create the ε free version G′ by adding two new
nonterminal symbols S′ and F and a single new terminal symbol ‘.’ to it. S ′ will be
the start symbol of G′ and the rules of G′ are exactly those of G with the addition of
the following two rules, where S is the start symbol of G.

S′ → SF
F → .

It is easy to see that S � Γ in G iff S ′ � Γ. in G′ because S′, F and ‘.’ don’t
appear in G.

Note that the ε free version of a grammar G is defined in such a way that
if G is lexicalized then G′ is lexicalized as well.

Definition 9.20 From a ε free, lexicalized type 0 grammar G we generate a multi-
modal Lambek calculusM0(G) as in Definition 9.9. M0(G) has one unary mode
for every nonterminal of G and a single binary mode.

Every lexicalization rule A→ β corresponds to a lexical entry as follows.

lex(β) = 3Aa/a

The goal formula ofM0(G) is 3Sa/a
M0(G) has a structural rule for every grammar rule A1 . . . An →R1 B1 . . . Bm

of G.



168 Complexity

3Aa/a

L/

a a
1 2

3Aa

L3A

3Sa

R3S

3Sa

1 2

a 3Sa/a

R/

a

Figure 9.7: Proof structures for the lexicon and the goal formula

Γ[〈. . . 〈∆〉A1 . . .〉An ] ` C

Γ[〈. . . 〈∆〉B1 . . .〉Bm ] ` C
[R1]

Because n > 0 by the single requirement on rules in type 0 grammars, this
structural rule is linear according to Definition 3.4. Note that the antecedent and
the conclusion of this rule are swapped compared to the translation of Definition 9.9,
because in a type 0 grammar m can be 0.

Furthermore, the structural rule component ofM0(G) contains one of the struc-
tural rules for associativity.

Γ[∆1 ◦ (∆2 ◦ ∆3)] ` C

Γ[(∆1 ◦ ∆2) ◦ ∆3] ` C
[Ass1]

Finally,M0(G) has the structural rule of [K2′] for every mode A ∈ N .

Γ[〈∆1 ◦ ∆2〉A] ` C

Γ[∆1 ◦ 〈∆2〉A] ` C
[K2′]

Lemma 9.21 Let M0(G) be a multimodal Lambek calculus which corresponds to
a type 0 grammar according to Definition 9.20. For every sequence of lexical hy-
potheses H1, . . . , Hn of this grammar, only the proof structure S, which is shown in
Figure 9.9, can convert to a hypothesis tree of H1, . . . , Hn ` 3Sa/a.

Proof The proof is similar to that of Lemma 9.10. Again, none of the
structural conversions modify the order of the lexical formulas so we need to
generate a proof structure where the lexical formulas are already in the right
order. Connecting the hypothesis a of the proof structure to any conclusion a
other than the one from the first lexical formula will result in a proof structure
with the wrong order on the hypotheses, connecting the hypothesis a from
this first lexical formula to anything but the second lexical formula will also
put the hypotheses in the wrong order, and so on. 2

Definition 9.22 We define a function f0 which translates the unique active com-
ponent of the abstract proof structure of Figure 9.10 into a list of terminal and non-
terminal symbols as follows. ‘‖’ is the concatenation operator and β corresponds to
the lexical word which produced the formula in case F is a leaf of the component or
ε otherwise.



9.3 NL3R 169

x

�

〈 〉A1

. . .
�

z

〈 〉An

→[R1]

x

�

〈 〉B1

. . .
�

z

〈 〉Bm

x2 x3
1 2

x1
�

◦

�
1 2

z

◦
→[Ass1]

x1 x2
1 2

��

◦

x3
1 2

z

◦

x1 x2
1 2

�

◦

z

〈 〉A
→[K2′]

x2

x1
�

〈 〉A

1 2

z

◦

Figure 9.8: Structural conversions forM0(G)

f0(F ) = β
f0(〈Γ〉i) = f0(Γ) ‖ i
f0(Γ1 ◦ Γ2) = f0(Γ1) ‖ f0(Γ2)

Lemma 9.23 For every conversion sequence ρ for an abstract proof structure gen-
erated from M0(G), applying function f0 of Definition 9.22 to the unique active
component of the successive abstract proof structures of ρ and removing all identity
transitions yields a derivation D of G.

Proof We generate D by induction on the length l of ρ, simultaneously
proving that for every component whenever we compute f0(Γ1) for the fi-
nal clause of Definition 9.22 the result will be a non-empty list of terminal
symbols.

For the active component C of the abstract proof structure shown in Fig-
ure 9.10, f0(I) = S which is a valid prefix for a derivation D.

Given that the previous n steps of ρ produced a prefix of a derivation
D we extend this derivation as follows, depending on the next conversion
Ci c→R Ci+1.

If c is a grammatical conversion, then we extend D with the correspond-
ing grammatical rule of G.



170 Complexity

3Ana/a

L/

a
1 2

3Ana

L3An

a

. .
.

3A1a/a

L/

a
1 2

3A1a

L3A1
a

3Sa

R3S

3Sa

1 2

3Sa/a

R/

Figure 9.9: Proof structure for a derivation inM0(G)

If c is a [K2′] conversion we need to shown f0(〈Γ1◦Γ2〉A) = f0(Γ1◦〈Γ2〉A).
Because the concatenation operation is associative, both components trans-
late to the same expression: f0(Γ1) ‖ f0(Γ2) ‖A. We keep D unchanged.

If c is an [Ass1] conversion, we do not extend D. The associativity of the
concatenation operation again preserves the translation of the two compo-
nents. f0(Γ1 ◦ (Γ2 ◦Γ3)) = f0((Γ1 ◦Γ2) ◦Γ3) = f0(Γ1) ‖ f0(Γ2) ‖ f0(Γ3). Given
that the first expression satisfies our invariant, that is, both f0(Γ1) and f0(Γ2)
are non-empty lists of terminal symbols, f0(Γ1 ◦ Γ2) is the concatenation of
these lists and is therefore also a non-empty list of terminal symbols.

If c is a [L3A] contraction, it will remove the [L3A] and [〈 〉A] links, con-
necting the active component to the [◦] link above it. This will replace the
first nonterminal symbol of f0(I) with the corresponding terminal symbol
according to a lexicalization rule of G, with which we extend the derivation
D. By construction, f0(Γ1) for the new binary link produces a list consisting
of a single terminal symbol.

The final conversion step is always the [R/] contraction. Because the
shape of the [R/] redex requires the rest of the abstract proof structure to
be on the left branch of the [◦]. Since we have just shown that the f0(Γ1) pro-
duces a non-empty sequence of terminals for every left branch of a [◦] link,
this means we have successfully completed our derivation in G. 2

Lemma 9.24 Given a ε free, lexicalized type 0 grammar G the fragment M0(G)
of NL3R which corresponds to it according to Definition 9.20 generates the same



9.3 NL3R 171

3An a/a� �
1 2◦

�

L3An�

. .
.

3A1a/a� �
1 2◦

�

L3A1�

�

〈 〉S

1 2

�
3Sa/a

R/

Figure 9.10: Abstract proof structure for a derivation inM0(G)

language.

Proof We show that for every derivation of G producing sentence s we
can construct a derivation inM0(G) producing the same sentence and vice
versa.

[⇒] Given a derivation D of a grammar G, we look at the lexicalization
rules of D to produce the right lexical entries for the proof structure, which
according to Lemma 9.21 has the form shown in Figure 9.9 and for which the
corresponding abstract proof structure looks as shown in Figure 9.10. For
every grammar rule of D, we apply the corresponding structural conversion
to the abstract proof structure until, after the last grammar rule the single
active component of the abstract proof structure contains modes A1, . . . , An

from top to bottom. We then apply the [L3A1 ] contraction, then using [Ass1]
and [K2′] conversions to move the successive unary modes up to the proper
place for contraction, until, after the [L3An ] we are in the position to perform
the [R/] contraction, producing a hypothesis tree as required.

[⇐] This is an immediate consequence of Lemma 9.23. 2

Theorem 9.25 NL3R in Turing complete.



172 Complexity

Proof Because Lemma 9.24 established the decision procedure for NL3R
is at least as hard as the parsing problem for type zero grammars, which is
known to be Turing complete, we only have to give a procedure for enumer-
ating derivations in NL3R. We have already given many of those, see for
example the proof net algorithm of Table 8.1. This establishes NL3R is Tur-
ing complete. 2

9.4 Conclusions

We have seen how NL3R, with no other restriction on the structural rules
than that they are all linear, is undecidable, but that NL3R− is PSPACE com-
plete when given as its input a set structural rules which are non-expanding
in addition to being linear. It appears this restriction gives us more than
enough power to adequately describe syntactic phenomena.

An interesting open problem is if it is possible to give a characterization
of packages of structural rules for which we can perform the conversions
in polynomial time. This would give us a fragment for NL3R which is in
NP and it will be useful to compare the allowable structural rules for an
NP fragment of NL3R with the PSPACE fragment NL3R− to see what the
trade-off would be.

Another interesting open question is how far we can extend the meth-
ods used for the known polynomial fragments of NL3R, principally NL and
formula-restricted versions of L, to more complex fragments.

Though PSPACE is a respectable complexity class for a logic, as a lin-
guistic theory there are formalisms with much better complexity theoretic
properties, though several others, such as HPSG (Pollard & Sag 1994), LFG
(Kaplan & Bresnan 1982) or definite clause grammars (Tärnlund 1977) are
only decidable in restricted cases. Also, PSPACE is only presented as an up-
per bound on the complexity of NL3R, where we leave the structural rule
component variable. Better complexity results may be obtained by using a
fixed structural rule component.

In the next chapter, we will look at a polynomial grammar formalism,
Lexicalized Tree Adjoining Grammars and relate it to a fragment of NL3R,
with a fixed set of structural rules and a restriction of the allowed formulas.
Moreover, we will prove this correspondence is strong, allowing us to using
the polynomial parsing strategies proposed for Lexicalized Tree Adjoining
Grammars for this fragment.



CHAPTER 10

PROOF NETS AND TREE ADJOINING GRAMMARS

T HIS chapter will relate the proof nets introduced in Chapter 7 to Lexical-
ized Tree Adjoining Grammars (LTAGs).

After a brief introduction to LTAGs, I will show how the tensor fragment
of NL3 corresponds to the substitution only fragment of LTAGs.

Then, I will show how to simulate adjunction with the use of par links and
structural conversions. Furthermore, I will show that this correspondence is
strong, i.e. that it generates the same trees as LTAGs.

Finally, I will sketch what some proposed extensions to TAGs, notably
Multi Component Tree Adjoining Grammars, would look like in the proof
net formalism.

This embedding has immediate computational implications, in that it
gives us a fragment of the multimodal Lambek calculus for which we can
directly use the O(n6) parsing algorithms which have been proposed for LT-
AGs (Vijay-Shanker & Joshi 1985, Schabes & Joshi 1988, Schabes & Vijay-
Shanker 1990).

Some different perspectives on Lambek calculi and their relation to Tree
Adjoining Grammars have been proposed by Joshi & Kulick (1997), Joshi,
Kulick & Kurtonina (2001) in their work on what they call ‘partial proof
trees’, where they use (partial) Lambek calculus natural deduction proofs
as syntactic objects for tree operations.

Especially in the substitution only case, which we will discuss in Sec-
tion 10.2, the work in this chapter is related to the partial proof tree approach.
Our basic objects are just proof structures instead of partial natural deduction
proof trees. The main difference with that work are that we formalize the ad-
junction operation inside the proof net calculus instead of defining it as an
operation on proof trees and that we prove a formal embedding theorem.



174 Proof Nets and Tree Adjoining Grammars

10.1 Tree Adjoining Grammars

Tree Adjoining Grammars (Joshi 1994, Joshi & Schabes 1996) are a formalism
where the basic objects are trees. This in contrast with, for example, context
free grammars where the tree representation is only a way to portray deriva-
tions. Tree Adjoining Grammars, after (Joshi & Schabes 1996), are defined as
follows.

Definition 10.1 (Tree Adjoining Grammar) A TAG or Tree Adjoining Gram-
mar is a tuple 〈Σ, N, I, A, S〉, where

Σ is a finite set of terminal symbols,

N is a finite set of nonterminal symbols,

I is a finite set of finite trees, the initial trees, which satisfy the following.

– the root node and all internal nodes are labeled with a nonterminal sym-
bol,

– every leaf of an initial tree is labeled either with a terminal symbol or
with a nonterminal symbol which is marked for substitution. We will
indicate a nonterminal symbol A is marked for substitution by writing
it as A↓.

A is a finite set of finite trees, the auxiliary trees, which satisfy the following.

– the root node and all internal nodes are labeled with a nonterminal sym-
bol,

– every leaf of an auxiliary tree is labeled either with a terminal symbol or
with a nonterminal symbol. One of these leaves must be labeled with the
same nonterminal as the root of the tree and be marked as the foot of the
auxiliary tree, all other nonterminals are marked for substitution. We
will indicate the nonterminal A which is the foot of an auxiliary tree by
writing it as A∗.
We will refer to the root node, the foot node and all internal nodes on the
path from the root to the foot as the spine of the auxiliary tree.

S is a distinguished nonterminal symbol, the start symbol.

We will call a TAG a Lexicalized Tree Adjoining Grammar or LTAG if every
initial and auxiliary tree has at least one leaf labeled with a terminal symbol.

Trees in I ∪ A are called elementary trees. Trees built by the composition of
other trees are called derived trees.

Example 10.2 The elementary trees for an example Tree Adjoining Grammar are
shown in Figure 10.1 on the facing page. The elementary trees for ‘quietly’ and
‘tasteless’ are auxiliary trees, the other trees are initial trees.

Note that this TAG is lexicalized, as every tree has a leaf labeled with a terminal
symbol.



10.1 Tree Adjoining Grammars 175

n

Deckard

np

n

Rachael

np

n

sushi

np

s

np↓ vp

slept

s

np↓ vp

ate np↓

vp

vp∗ quietly

n

tasteless n∗

Figure 10.1: An example LTAG lexicon

From the elementary trees we can produce derived trees by the following
operations of substitution and adjunction. These are the only rules available
in a Tree Adjoining Grammar.

Definition 10.3 (Substitution) Given a tree α which has a leaf l with label A↓

and a tree β with root labeled A, which is derived from an initial tree (i.e. none of its
leaves is marked as a foot), the substitution of β at l in α is defined as replacing the
leaf A↓ by the tree β.

Visually, substitution looks as shown in Figure 10.2 on the next page.

Definition 10.4 (Adjunction) Given a tree α with root A, which is derived from
an auxiliary tree (i.e. one of its leaves is marked as the foot A∗) and a tree β where
one of its nodes n is labeled with A, the adjunction of α at n in β is defined as
follows. We cut β at n into two trees, β′ which has a copy of n labeled with A as a
leaf and β′′ which has a copy of n also labeled with A as its root. We then substitute
α for the leaf A in β′ and substitute β′′ for the foot node A∗ of α.

Perhaps this is most clearly illustrated by the graphical representations of the
trees, shown in Figure 10.3 on the following page.

We allow β′′ to be empty, that is, A can be a leaf of tree β and in that case it is a
leaf of the resulting tree as well and keeps its marking, either for substitution or as a



176 Proof Nets and Tree Adjoining Grammars

A↓

α

A

β

A

β

α
↘

↗

Figure 10.2: Substitution

A∗
α

A

A

β′′

β′
α

A

A

β′′

β′

↗

↘

Figure 10.3: Adjunction

foot. In other words, the only marking which disappears after an adjunction step is
the foot marking of tree α.

Note that the A node from tree β has been replaced by tree α.

Definition 10.5 (Derivation) A TAG derivation d is a binary tree of trees such
that

– every leaf of d is an elementary tree,

– every branch of d is a valid application of the substitution or the adjunction
operation,

– the root of d is a tree δ, where the root of δ is S and the leaves of δ are all
terminal symbols.

Example 10.6 From the elementary trees of the TAG in Example 10.2, we can de-
rive the sentence ‘Rachael slept quietly’ as shown in Figure 10.4 on the next page.



10.1 Tree Adjoining Grammars 177

n

Rachael

np

s

np↓ vp

slept

↗

↘

vp

vp∗ quietly

s

np vp

sleptn

Rachael

↘

↗

np

s

vp

vp quietly

slept

n

Rachael

Figure 10.4: LTAG derivation of ‘Rachael slept quietly’

Definition 10.7 We say a node in a tree at some step of an LTAG derivation is
saturated if no adjunction takes place at that node in any of the remaining steps of
the derivation.

We say a tree is saturated at some step of an LTAG derivation if all its nodes are.

The notion of saturation will be important in the next sections, because,
depending on whether a node is saturated or not, we will translate it diffe-
rently.

Example 10.8 Because only one adjunction takes place in the derivation of Fi-
gure 10.4, the tree for ‘quietly’ is trivially saturated during the entire proof.

LTAGs allow multiple terminal leaves on their elementary trees. For the
remainder of this chapter, however, we want to restrict ourselves to LTAGs
where every elementary tree has exactly one terminal leaf.

Lemma 10.9 For every LTAG grammar g there is an LTAG grammar g ′ which gen-
erates the same language and where every elementary tree has exactly one terminal
leaf. We will call this grammar an LTAG1 grammar.

Proof By definition every elementary tree in an LTAG grammar has at
least one terminal leaf. We need to show that every elementary tree α with



178 Proof Nets and Tree Adjoining Grammars

more than one terminal leaf can be transformed into one with exactly one
terminal leaf. For all but one of the terminal leaves of α we do the following:
we add a new nonterminal symbol A to N , replace the terminal leaf l by A↓

and add a new initial tree consisting only of root A and the single terminal
leaf l. The resulting tree α′, as well as any newly introduced initial trees, have
exactly one terminal leaf. Because the new nonterminal symbols of α′ occur
only in the grammar g′ as the root of these newly introduced initial trees, any
derivation in g′ using α′ will contain substitution steps which transform α′

to α, with the only difference that the new derivation will have some extra
unary branches corresponding to the new nonterminal symbols just before
some terminal leaves. 2

In the following sections, we will also restrict ourselves to LTAGs and
proof nets where all branches are either unary and binary, though the results
generalize immediately to arbitrary n-ary branching systems.

10.2 Substitution Only Tree Adjoining Grammars

The substitution only fragment of LTAGs is a restriction of LTAGs to those
where the set of auxiliary trees A is empty. As a consequence, derivations in
this fragment can only use the substitution operation.

In the tensor only fragment of NL3, formulas in the lexicon are defined
as follows. Note the use of polarity to ensure that every proof structure con-
sisting of formulas from this fragment will contain only tensor links.

Definition 10.10 Over a set of atomic formulasA, the set of tensor only formulas
is defined as follows.

F ::= N

N ::= A
| 2↓N
| P\N
| N/P

P ::= A
| 3P
| P • P

To make the correspondence with LTAGs visually more clear, we write
our abstract proof structures slightly differently than we did in Chapter 7,
making the correspondence between LTAGs and the tensor only fragment of
the multimodal Lambek calculus more immediate.

Instead of writing our abstract proof structures which the conclusions at
the bottom, we will write them with the conclusions at the top. Table 10.1
illustrates the translation from proof structurs in the notation of Chapter 7 to
abstract proof structures in the new notation. The difference with the abstract



10.2 Substitution Only Tree Adjoining Grammars 179

A B
1 2

A •i B

R•i
;

A•B�

�
A

�
B

i

B B\iA

L\i

1 2

A

;

A�

�
B

�
B\iA

i

A/iB

L/i

B
1 2

A

;

A�

�
A/iB

�
B

i

A

3jA

R3j
;

3jA�

�
A

j

2
↓
jB

L2
↓
j

B

;

A�

�
2↓A

j

Table 10.1: Tensor links for abstract proof structures

proof structures we’ve seen before is purely notational and doesn’t change
the formal properties of the system.

Throughout this chapter, we will label the hypotheses of abstract proof
structures by the corresponding word label, like we did in Sections 8.2 and
8.4.

Definition 10.11 The translation τi from LTAG1 trees which have been derived
only from initial trees to lexical abstract proof structures is defined as follows.

Terminal leaves of the LTAG will correspond to word labels in the abstract proof
structures.

Nonterminals of the LTAG will correspond to atomic formulas in NL3. The
translation of a nonterminal n of an initial tree depends on their position in this tree.

– if n is the root of the tree, it will be translated as
n� .



180 Proof Nets and Tree Adjoining Grammars

�np �np �np

�

�
Rachael

�

�
Deckard

�

�
sushi

�s

�
np

�

�
slept

�
ate

�
np

�s

�
np

�

Figure 10.5: Lexical abstract proof structures for the initial trees of Figure 10.1

– if n is a leaf of the tree, it will be translated as �
n
.

– if n is an internal node of the tree, it will be translated as � .

Finally, a unary branch will be translated as a unary tensor link, whereas a
binary branch will be translated as a binary tensor link.

Example 10.12 The initial trees of the lexicon of Figure 10.1 will look as shown in
Figure 10.5. With the exception of the nonterminals which appear on the internal
nodes on Figure 10.1, the two figures are completely isomorphic.

It is not immediately clear that all lexical abstract proof structures gen-
erated by the translation τi correspond to formulas of NL3. They might in-
stead correspond to lexical modules in the sense of Lecomte & Retoré (1998).
The difference between a lexical formula and a lexical module is that the lat-
ter can have cut or axiom connections lexically determined. That is, modules
are lexical proof structures where the internal formulas can be axiomatic or
cut formulas.

It is in fact easier to show an embedding of LTAGs using lexical modules,
as it would allow us, for example, to have a lexical abstract proof structure
with multiple terminal leaves. In the following lemma we prove that every
abstract proof structure obtained by the translation of Definition 10.11 corre-
sponds to a formula.



10.2 Substitution Only Tree Adjoining Grammars 181

l(Deckard) = 2↓2↓np
l(Rachael) = 2↓2↓np
l(sushi) = 2↓2↓np
l(slept) = 2↓(np\s)
l(ate) = (np\s)/np

Table 10.2: The lexical formulas corresponding to Figure 10.5

Lemma 10.13 For every LTAG1 initial tree α, τiα corresponds to a tensor only
formula of NL3.

Proof In order to show that we only produce lexical formulas we need to
show our lexical abstract proof structure corresponds to a lexical proof struc-
ture where all internal formulas are flow formulas, i.e. the main formula of
exactly one link. If we can do this, we can apply the translation of Table 10.1
in reverse to determine the proof structure corresponding to the lexical entry
and thereby the formula corresponding to it.

The leaves and the root of the lexical abtract proof structures our transla-
tion produces are all axiomatic formulas, so they can’t be the main formula
of any link, whereas the unique terminal leaf must be the main formula of its
link L. If a is the arity of L, removing it will produce a distinct abstract proof
structures. Unless they are trivial, for each of these abstract proof structures
the vertex which was connected to L must be the main vertex of its link, be-
cause it would be axiomatic otherwise. In this way we inductively assign
every internal vertex to be to main vertex of a link. 2

Example 10.14 The lexical abstract proof structures of Figure 10.5 on the preceding
page correspond to the lexical entries of Table 10.2.

Lemma 10.15 Let d be an LTAG1 derivation tree with root δ and leaves α1, . . . αn,
such that every αi is an initial tree. There is a proof net derivation, where ρ is the
empty conversion sequence, of

τiα1, . . . , τiαn ` s

such that the hypothesis tree ΓS is isomorphic to δ.

Proof We prove by induction on the depth D of the derivation tree d,
that, given the isomorphism of the immediate subtrees, the tree at the current
depth is also isomorhpic.

If D = 0, then tree consists of a single initial tree α and τiα is by definition
isomorphic to it.

If D > 0, then by induction hypothesis the two immediate subtrees of α,
β1 and β2, are isomorphic to τiβ1 and τiβ2. β2 has root A and is substituted for
one of the leaves of β1 which is marked for substitution as A↓. But this means
τiβ1 has a leaf with hypothesis A and τiβ2 has a root with conclusion A, so



182 Proof Nets and Tree Adjoining Grammars

we can connect these two abstract proof structures with an axiom connection
to produce τiα, which is isomorphic to α. 2

10.3 Lexicalized Tree Adjoining Grammars

Now the correspondence between the abstract proof structures of Figure 10.5
and the initial trees of Figure 10.1 is very clear. The only difference is that
the nonterminal symbols on the internal nodes are absent from the abstract
proof structures. As these nonterminal symbols play a crucial role for the
adjunction operation we need to find a way to make them appear in the
abstract proof structures as well.

To do this we reintroduce the par links for our abstract proof structures
in Table 10.3. We only need the [L•i] and the [R\i] links in this section. In
Sections 10.4 and 10.5 we will find uses for the [R2

↓
i ] and the [L3i] links

respectively. By left to right symmetry, we could have used the [R/i] link
instead of the [R\i]; the current choice is arbitrary.

For our encoding of the internal nodes we make use of the following two
theorems, which hold in the base logic for every formula A and B and for
every mode i. We will instantiate i with specific adjunction modes shortly.

(A/iB) •i B ` A
A ` (B/iA)\iB

When an internal node in an LTAG is labeled with nonterminal B we
encode this with a formula (A/iB) •i B in a negative context and with a
formula (B/iA)\iB in a positive context. In the abstract proof structures, an
insertion point will therefore look as shown in Figure 10.6, with the negative
insertion point shown on the left and the positive insertion point on the right.
Note the symmetry between the two configurations.

When no adjunction operations take place at an insertion point, we can
use an axiom connection followed by a contraction to remove the formulas
corresponding to the B nonterminal and continue our derivation as usual.
When an adjunction does take place at this node we will need to use struc-
tural conversions to eliminate the insertion point. The structural conversions,
however, will take care that we produce the result corresponding to the ad-
junction operation of LTAGs.

Again, if we would choose to use lexical modules, a single type of inser-
tion point would suffice. When we prove in Lemma 10.19 that our lexical
abstract proof structures correspond to formulas of the multimodal Lambek
calculus, we crucially need the two different insertion points of Figure 10.6.

For auxiliary trees, instead of giving the foot node some special marking,
we mark the path to it by two binary modes: 1, indicating the foot node is in
the first (left) subtree, and 2, indicating the foot node is in the second (right)
subtree. For the unary branches a single mode 1 suffices, whereas, in general,
for an n-ary branch we would need n different modes to indicate in which
of the subtrees the foot is located. Mode 0, occurring both as a unary and a



10.3 Lexicalized Tree Adjoining Grammars 183

A•iB
L•i

1 2

A B

;
?
i

�
A•iB

A� B�

A

1 2

B B\iA

R\i
;

�
i

�
A

B� B\A�

A

1 2

A/iB

R/i

B

;

I
i

�
A

A/B� B�

3jA

L3j

A

; ?
j

�
3A

A�

B

2
↓
jB

R2
↓
j ;

6
j

�
A

2↓A�

Table 10.3: Par links for abstract proof structures

?
i

�
(a/ib)•ib

�b

�a

� �
b

i

�
i

�
b

�(b/ia)\ib

�b

� �
a

i

Figure 10.6: Abstract proof structures for insertion points



184 Proof Nets and Tree Adjoining Grammars

A

B

;

�

�

0

A

F

;

�

�

1

A

B C

;

�

� �

0

A

F C

;

�

� �

1

A

B F

;

�

� �

2

Table 10.4: Translation for LTAG connections

binary mode, indicates none of the subtrees contain a foot node. The unary
and binary mode 0 are the only external modes of this grammar.

For the adjunction operation we need to distinguish at least between
nodes which are on the spine of an auxiliary tree and other nodes. How-
ever, it is also convenient to have a different mode for upward and down-
ward movement. This gives us four adjunction modes: f for movement
downward to the foot node, h for movement upward from the foot node, d
for downward movement anywhere else and u for upward movement any-
where else.

Definition 10.16 We define a translation τ from LTAG trees to abstract proof struc-
tures. Table 10.4 shows how the connections are translated; in all cases the node
marked F indicates this subtree contains a leaf which is marked as the foot node, B
and C indicate the respective subtrees do not contain as leaf which is marked as the
foot node.

The nodes themselves are translated as shown in Table 10.5 on the facing page.
We distinguish between the root node, positive and negative internal nodes, positive
and negative foot nodes, terminal leaves and leaves marked for substitution. Note
that a root node is just a negative internal node with an additional A conclusion and
that foot nodes are treated as internal nodes with an additional A hypothesis. The
vertices marked α1 and α2 denote where the nodes are attached to connections or, in
the case of α1, to a substitution or terminal leaf.

Mode x is instantiated as either f or d depending on whether the node it trans-
lates is on the spine or not. Mode y is instantiated as either h or u depending on
whether it is on the path to the foot node.

With respect to an LTAG derivation d, τd is defined as τ with the exception that
a node in an LTAG tree which is saturated according to Definition 10.7 is translated



10.3 Lexicalized Tree Adjoining Grammars 185

Root node A

?

x

�
α1

�A

�A

� �
A

x

Internal node A
Negative
Internal node A

Positive

?

x

�
α1

�A

�α2

� �
A

x

�
y

�
A

�α2

�A

� �
α1

y

?

f

�
A

�A

�α2

� �
A

f

�
h

�
A

�α2

�A

� �
A

h

Foot node A∗
Negative

Foot node A∗
Positive

Leaf A↓

�α2

A

Terminal leaf

�α2

word

Table 10.5: Translation for LTAG nodes

as a simple vertex like in Definition 10.11 instead of as one of the insertion points
shown in Table 10.5.

Definition 10.17 We say an abstract proof structure obtained from an LTAG1 tree
by means of τ is saturated if it does not contain mode u, d, f or h and unsaturated
if it does.

We obtain the saturated abstract proof structure corresponding to an unsaturated
one by performing the appropriate axiom connections and contractions.

The obvious intuition here is that a saturated tree α in an LTAG derivation
d will correspond to the saturated abstract proof structure τdα.

Definition 10.18 We say an abstract proof structure obtained from an LTAG1 tree
by translation τ is auxiliary if the corresponding saturated abstract proof structure
has a path from its root to one of its leaves passing only unary mode 1, binary mode
1 through its left leaf and binary mode 2 through its right leaf.

We say an abstract proof structure is initial otherwise.



186 Proof Nets and Tree Adjoining Grammars

l(Deckard) = 2
↓
0((2

↓
0((np/dnp) •d np)/dn) •d n)

l(Rachael) = 2
↓
0((2

↓
0((np/dnp) •d np)/dn) •d n)

l(sushi) = 2
↓
0((2

↓
0((np/dnp) •d np)/dn) •d n)

l(slept) = 2
↓
0(((np\0((s/ds) •d s))/dvp) •d vp)

l(ate) = (((np\0((s/ds) •d s))/dvp) •d vp)/0np
l(quietly) = ((vp/fvp)\fvp)\1((vp/hvp) •h vp)
l(tasteless) = ((n/fn) •f n)/2((n/hn)\hn)

Table 10.6: The lexicon corresponding to the elementary trees of Figure 10.1

Auxiliary abstract proof structures will correspond to LTAG trees which
have been derived from auxiliary trees and which can therefore be adjoined
to other trees. Initial abstract proof structures will correspond to LTAG trees
derived from initial trees.

Lemma 10.19 For every elementary LTAG1 tree α, τα correponds to a formula of
the multimodal Lambek calculus.

Proof This lemma is a simple extension of Lemma 10.13. We again need
to show we can assign a main vertex to every tensor link in such a way that
every internal vertex is the main vertex of exactly one link, because then we
can apply the translation of Tables 10.1 and 10.3 in reverse to find out the
lexical formulas.

Look at Table 10.5 again. In every case the tensor link is a [L/a] link,
which means the main formula of this tensor link is the internal vertex. The
difference between the positive and the negative versions of the internal and
foot nodes is that for the former the vertex labeled with α1 is not the main
vertex of any links in the insertion point but the vertex labeled with α2 is,
whereas for the latter the situation is reversed. So we first follow the strategy
of Lemma 10.13 to obtain the proof structure τiα, assign modes according
to Table 10.4, and finally, depending on whether the internal vertices are the
main formula of the link above or below them, assign them a negative or a
positive insertion point respectively. 2

Example 10.20 The elementary trees of Figure 10.1 correspond to the lexical as-
signments of Table 10.6. The saturated versions of the translated initial trees in this
table are the formulas shown in Table 10.2, with the exception that all ‘modeless’
connectives of Table 10.2 are now mode 0. The saturated versions of ‘quietly’ and
‘tasteless’ are vp\1vp and n/2n respectively.

The structural conversions come in four groups: one conversion for each
of the adjunction modes in combination with each of the modes used to mark
the spine, as shown in Table 10.7. Note that the structural rules for mode h
are inverses to the structural rules for mode f and that the only difference
between modes f and d and between modes h and u is that modes d and u
replace an internal mode by an external mode, that is, modes d and u erase
the path to the foot node, whereas modes f and h preserve it.



10.3 Lexicalized Tree Adjoining Grammars 187

Mode f Mode h

Γ[∆1 ◦f 〈∆2〉1] ` C

Γ[〈∆1 ◦f ∆2〉1] ` C
[K2]

Γ[〈∆1 ◦h ∆2〉1] ` C

Γ[∆1 ◦h 〈∆2〉1] ` C
[K2’]

Γ[∆1 ◦f (∆2 ◦1 ∆3)] ` C

Γ[(∆1 ◦f ∆2) ◦1 ∆3] ` C
[F1]

Γ[(∆1 ◦h ∆2) ◦1 ∆3] ` C

Γ[∆1 ◦h (∆2 ◦1 ∆3)] ` C
[1H]

Γ[∆1 ◦f (∆2 ◦2 ∆3)] ` C

Γ[(∆1 ◦f ∆3) ◦2 ∆2] ` C
[F2]

Γ[(∆1 ◦h ∆3) ◦2 ∆2] ` C

Γ[∆1 ◦h (∆2 ◦2 ∆3)] ` C
[2H]

Mode d Mode u

Γ[∆1 ◦d 〈∆2〉1] ` C

Γ[〈∆1 ◦d ∆2〉0] ` C
[K2]

Γ[〈∆1 ◦u ∆2〉1] ` C

Γ[∆1 ◦u 〈∆2〉0] ` C
[K2’]

Γ[∆1 ◦d (∆2 ◦1 ∆3)] ` C

Γ[(∆1 ◦d ∆2) ◦0 ∆3] ` C
[D1]

Γ[(∆1 ◦u ∆2) ◦1 ∆3] ` C

Γ[∆1 ◦u (∆2 ◦0 ∆3)] ` C
[1U]

Γ[∆1 ◦d (∆2 ◦2 ∆3)] ` C

Γ[(∆1 ◦d ∆3) ◦0 ∆2] ` C
[D2]

Γ[(∆1 ◦u ∆3) ◦2 ∆2] ` C

Γ[∆1 ◦u (∆2 ◦0 ∆3)] ` C
[2U]

Table 10.7: Structural rules

Lemma 10.21 If tree α is a saturated LTAG tree with respect to derivation d, which
is adjoined at node n of a tree β to form tree γ, then we can transform τdα and τdβ
to τdγ by using axiom connections, the structural rules and a contraction.

Proof Given that node n is unsaturated, its translation will have one of
the forms shown in Table 10.5. We attach τdα, at its root and at its foot, to the
atomic formulas of the insertion point. By construction, all nodes of τdα are
saturated and there is a path marked from the root to the foot node.

After we attach the root and foot nodes of τdα to the atomic formulas
of the insertion point, the abstract proof structure will look schematically as
shown in the initial situation of Figure 10.7 in case of a negative insertion
point and as shown in the initial situation of Figure 10.8 in case of a positive
insertion point. Mode x is again instantiated by either d or f , while y repre-
sents either mode u or h. In every case we can use the structural conversions
for the mode we encounter to produce the conversions of sequence ρ in the
figure, after which we can contract the par link by the appropriate contrac-
tion. Compare the final stage of both figures to the result of the adjunction
operation shown in Figure 10.3.

Since none of the conversions operate in τdβ
′ or τdβ

′′, every node which
was saturated or unsaturated in τdβ is still saturated or unsaturated respec-
tively in τdγ, with the exception of the unsaturated node n, which has been
replaced by the saturated abstract proof structure τdα.

If the insertion point was on the path to the foot of an auxiliary tree then
modes f and h will have left the path of τdα intact, and τdγ still has a path to



188 Proof Nets and Tree Adjoining Grammars

τdβ
′′

�

� �

x

?

x

�

�

τdα

τdβ
′

ρ→R

τdβ′′

�

� �

x

?

x

�

�

�

τdα

τdβ
′

[L•x]→

τdβ
′

τdα

τdβ
′′

�

�

Figure 10.7: Simulating adjunction for a negative insertion point

�
y

�

�

�

� �

y

τdβ
′

τdα

τdβ
′′

ρ→R

�
y

�

�

�

� �

y

τdβ
′

τdα

�

τdβ
′′

[R\y ]→

τdβ
′

τdα

τdβ
′′

�

�

Figure 10.8: Simulating adjunction for a positive insertion point

its foot, only now passing through τdα as well. Therefore the abstract proof
structure we have produced is τdγ.

If the insertion point was not on the path to the foot of an auxiliary tree
then modes u and d will have replaced all internal modes by mode 0 and we



10.3 Lexicalized Tree Adjoining Grammars 189

have again produced τdγ. 2

Lemma 10.22 Let τα1, . . . , ταn be abstract proof structures obtained from elemen-
tary trees of an LTAG by the translation of Definition 10.16. If we want to produce a
proof net from these abstract proof structures, we only need to consider the following
three types of axiom connections.

(i) connect the two atomic formulas of an insertion points to eachother,

(ii) connect the root and foot node of an auxiliary abstract proof structures to the
atomic formulas of a single insertion point,

(iii) connect the root of an initial aps to any leaf which is not a foot node of an aps.

Proof To convert an abstract proof structure generated by τ to a hypothe-
sis tree containing only external modes, we need to do two things: remove
all par links by the appropriate contraction and remove all internal modes.

For modes u, d, f and h, given that all structural conversions preserve
them, we can only remove them using the appropriate contraction. This can
be done either directly, by connecting the atomic formulas of an insertion
point to eachother, or indirectly, by connecting an auxiliary aps at the root
and foot node to the two atomic formulas of the insertion point.

For modes 1 and 2, given that τ does not produce par links for these
modes, we can only removing them using the structural conversions for the
u and d modes, which erase the spine of a given auxiliary aps.

Connecting an initial aps to an insertion point would prevent the contrac-
tion which is neccesary for removing this insertion point from taking place.

Connecting an atomic formula of one insertion point to an atomic formula
of another insertion point would prevent the contractions of both insertion
points. Similarly for connecting the root and foot of an auxiliary aps to the
atomic formulas of different insertion points.

Connecting an initial aps to the foot node of an auxiliary aps results in
an aps without marking to its foot but with some 1 and 2 modes still in it,
thereby preventing future contraction of the d or u par link we would attach
it to.

Attaching an auxiliary aps A1 to the foot node of an auxiliary aps A2

results in a new auxiliary aps B. However, this new auxiliary aps is identical
to the one we would obtain by connecting the root and foot of A1 to the
insertion point at the foot of A2 and removing the h or f mode of the foot by
the appropriate structural conversions and contraction once A1 is saturated.
2

Lemma 10.23 For every LTAG derivation d we can construct an LTAG derivation
d′, which ends in the same tree and where

(i) no adjunctions take place at leaves which are marked for substitution until
after the substitution has taken place,



190 Proof Nets and Tree Adjoining Grammars

d1� A

α′

α′′

d2�

↘

A∗

B

A

β′

β′′

↗
A

B

A

β′

β′′

α′′

α′

B

B∗
δ

d4�

d3�

γ′′

B

γ′

↘

↗

B

B

γ′

δ

γ′′

d5�

Figure 10.9: Node B of tree β is unsaturated

(ii) every time an auxiliary tree α is adjoined to a node, α is saturated.

Proof For property (i), we only need to realize that if we can perform
an adjuction at node n before the substitution, we can perform it after the
substitution as well and obtain the same result.

We prove property (ii) of the lemma by induction on the total number of
adjunctions taking place in auxiliary trees after they have been adjoined. If
there are no such adjunctions, our derivation is of the required form.

If there are, our derivation must be of the following form: an auxiliary
tree β is adjoined to tree α and, at some later point in the derivation, a tree δ
is adjoined at node B of β. So we are in the situation shown in Figure 10.9.

We can rearrange this derivation by adjoining tree δ to tree β before tree β
is adjoined to tree α. This will make node B saturated. The result is shown
in Figure 10.10 on the facing page.

The number of adjunctions in the auxiliary tree β is decreased by one,
whereas for tree α it has remained constant. Therefore, the total number of
unsaturated nodes in the derivation has decreased by one. 2

Theorem 10.24 There is an LTAG1 derivation d ending in tree γ if and only if there
is a LTAG-proof net derivation ending in the tree τdγ.

Proof

[⇒] First, we transform our LTAG derivation d, according to Lemma 10.23,
into an LTAG derivation d′ also ending in α where all trees which are ad-
joined are saturated.



10.3 Lexicalized Tree Adjoining Grammars 191

d1� A

α′

α′′

d2�

A∗

B

A

β′

β′′

↘

↗ A∗

B

B

A

β′

δ

β′′

↘

↗

B

B∗
δ

d4�

A

B

B

A

α′

β′

δ

β′′

α′′

d3�
B

B

γ′

δ

γ′′

d5�

Figure 10.10: Node B of tree β is saturated

By Lemma 10.19 all leaves α1, . . . , αn of the derivation tree d, which are
by definition elementary trees, correspond to τα1, . . . , ταn. By performing
an axiom connection and a contraction for all insertion points which are sat-
urated with respect to d, we obtain τdα1, . . . , τdαn.

We now prove that whenever two LTAG trees β1 and β2 are combined
using the adjunction or substitution operation to form tree β, we can likewise
combine τdβ1 and τdβ2 to form τdβ, thereby proving by means of induction
on the depth of d that we produce a derivation of τdγ.

If β1 and β2 are combined using the substitution operation, then perform-
ing an axiom connection to τdβ1 and τdβ2 produces τdβ.

If β1 and β2 are combined by means of adjunction, then, because we only
adjoin saturated trees, Lemma 10.21 tells us we can produce τdβ from τdβ1

and τdβ2.

[⇐] Lemma 10.22 tells us that we only have to consider axiom connections
of the following patterns: attaching the root and foot of a single auxiliary
aps to the atomic formulas of an insertion point, connecting the two atomic
formulas of a single insertion point and attaching the root of an initial aps to
a leaf of another aps.

We define an interpretation function τ−1 from abstract proof structures
obtained by τ to LTAG trees as follows. We travel from the root of the ab-
stract proof structure to the leaves. Insertion points are treated as shown in
Figure 10.11. If the formula a is not connected, we take the left path and
generate the nonterminal a, if a is connected, we follow the right path, not
generating any nonterminal symbol for the current node.

Binary branches of modes 0, 1 and 2 are translated as binary branches in



192 Proof Nets and Tree Adjoining Grammars

?

x

�

�

�

� �
α

x
�

y

�
α

�

�

� �

y

α = a α 6= a α = a α 6= a

Figure 10.11: Traversal of inserion points

?

f

�
a

� � �

� �
a

h

�

�
a

�

1

�

� �
a

2

�

�
a

1

Figure 10.12: Foot nodes

the LTAG, whereas unary branches of modes 0 and 1 are translated as LTAG
unary branches. All nonterminal leaves are translated as leaves marked for
substitution, with the exception of leaves of the forms shown in Figure 10.12
which are translated as foot nodes.

Now it is easy to verify that for every LTAG tree α, τ−1τα = α, that
connecting the atomic formulas of an insertion point n of aps A1 such that
τ−1A1 = α1 to the root and foot of an auxiliary aps A2 such that τ−1A2 = α2

produces an aps A3 such that τ−1A3 is equivalent to adjoining α2 to node
n of α1, and that connecting an atomic leaf to an atomic root formula will
produce a translation equivalent to the substitution operation applied to the
two LTAG trees.

The final possible axiom connection according to Lemmas 10.22 is to at-
tach the two atomic formulas of an insertion point to eachother. If the node
is internal, this will have the effect of erasing the nonterminal label from that
node of the tree. However, we can reconstruct the nonterminal label from
earlier parts of the derivation, so this is not a problem.

Now let A be the abstract proof structure we obtain after performing all
axiomatic connections. For every conversion c such that An

c→R An+1 we
have that τ−1An = τ−1An+1; in case c is a contraction we replace a config-
uration producing an empty nonterminal labeling with a single vertex also
producing an empty nonterminal labeling, in case c is a structural conversion
only one of the two branches has an interpretation according to τ−1, so again
the conversion is neutral with respect to τ−1.

Because we have already established that every axiom connection or pair



10.4 Adjoining Constraints 193

α

B∗

B

;

�
b

τα

�b

�

t

Figure 10.13: Mode information for selective and obligatory adjunction

�z

�
x

t It,u→

�z

�
x

u

Figure 10.14: Inclusion conversion

of axiom connections corresponds to an LTAG operation under τ−1 this es-
tablishes that the final hypothesis tree ΓS is isomorphic to the final LTAG tree
α. 2

10.4 Adjoining Constraints

For linguistic reasons, Tree Adjoining Grammars are sometimes defined with
constraints on adjunction. That is, for every node in a tree one of the follow-
ing constraints can be specified.

[Selective Adjunction (SA(T ))] Only members of the set T ⊆ A can be ad-
joined to the node.

[Null Adjunction (NA)] No adjunction is allowed at the node. This is equiv-
alent to SA(∅).

[Obligatory Adjunction (OA(T ))] An auxiliary tree of T ⊆ A must be ad-
joined to the node.

Nodes without constraints can be seen as have SA(A) as their specifica-
tion. For modeling these adjoining constraints, we use the unary connectives
to code features, conform Heylen (1999, Chapter 8).



194 Proof Nets and Tree Adjoining Grammars

?

x

�
α2

�b

�α1

� �

x

6
u

�
b

6
u

�
b

�

�
y

�α1

�b

� �
α2

y

Figure 10.15: Insertion points for obligatory adjunction

In principle, the constraints allow us to refer to every possible subset of
the set A, so for a grammar with a auxiliary trees, we would need 2a modes.
However, we will assume that a realistic grammar will only refer to some
quite limited number of subsets.

Every abstract proof structure corresponding to an auxiliary tree α will
have an extra unary branch with mode t which corresponds to the singleton
set containing only α, as shown in Figure 10.13 on the page before.

In addition, we will have a structural conversion [It,u] of the form shown
in Figure 10.14 on the preceding page for every singleton set t and every set
u such that t ( u.

The insertion points will now look as follows: for obligatory adjunction
the insertion point will make use of the underivability of the following se-
quents. x ∈ {f, d}, y ∈ {h, u}

(A/x2
↓
t B) •x B 6` A

A 6` (B/yA)\y2
↓
t B

The corresponding abstract proof structures are shown in Figure 10.15.
For the abstract proof structures above, we won’t be able to contract the

[R2↓
u] link unless we attach the B formula to an auxiliary aps where the root

is connected to a [〈 〉t] link to which we can apply the [It,u] conversion fol-
lowed by the [R2↓

u] contraction. After that, we can simulate adjunction with
the structural rules as before.

For selective adjunction we make use of the fact that 2
↓
t B ` 2

↓
t B for

every formula B. So our insertion points will correspond to the following
theorems



10.4 Adjoining Constraints 195

?

x

�
α2

�

�α1

� �

x

�b

�

u

6
u

�
b

�

6
u

�
b

�

�b

�

u

�
y

�α1

�

� �
α2

y

Figure 10.16: Insertion points for selective adjunction

(A/x2↓
uB) •x 2↓

uB ` A
A ` (2↓

uB/yA)\y2↓
uB

and will look as follows.
In this case, we have two possibilities.

(i) no adjunctions take place at B, which means we can connect the two B
formulas of the insertion point after which we are in the right configu-
ration to perform the two necessary contractions.

(ii) the B formulas are attached to an aps α where the root B of α is con-
nected by means of a [〈 〉t] link such that there is a [It,u] conversion.

In the second case, we apply the [It,u], contract the two unary links and
proceed as before. Only after the adjunction is complete do we add a final
structural rewrite to remove the last [〈 〉t] link as well. We need the two struc-
tural conversions of Figure 10.17 on the following page for this.

Observe that if we are only interested in selective adjunction and not in
obligatory adjunction, we can do without the extra structural rules if we re-
place the auxiliary trees as shown in Figure 10.18 on the next page.

As a final remark, the easiest way to model null adjunction constraints
in a proof net system is to make a node which is not an insertion point at
all. Treating it as a special case of selective adjunction, however, makes it
possible to see the nonterminal symbol of the node with the null adjunction
constraint in the proof net system as well.



196 Proof Nets and Tree Adjoining Grammars

�z

�
x

�

x

�
y

u →XU

�z

�
x

�
y

x

�

�
x

�
y

y

�z

�

u

→UY

�z

�
x

�
y

y

Figure 10.17: Erasing the u subset marking

α

B∗

B

;
τα

�b

�

t

6
t

�
b

�

Figure 10.18: Alternative auxiliary tree for selective adjunction only

10.5 Multi Component Tree Adjoining Grammars

Multi Component TAGs (MCTAGs) were first introduced by Joshi, Levi &
Takahashi (1975), then under the name simultaneous TAGs. MCTAGs are a
natural extension to TAGs where, instead of adjoining a single auxiliary tree,
a (non-empty) set of auxiliary trees is adjoined at the same time.

Vector Multi Component TAGs (VMCTAGs), which were introduced by



10.5 Multi Component Tree Adjoining Grammars 197

Rambow (1994), further extend this by allowing at most one initial tree to be
a member of the set of trees.

The term component used in this section is unrelated to the term compo-
nent from Definition 7.17, we trust this will not lead to confusion.

Definition 10.25 A Vector Multi Component Tree Adjoining Grammar (V-
MCTAG) is a tuple of the form 〈Σ, N, I, A, I,A, S〉, where

〈Σ, N, I, A, S〉 is a TAG

A ⊆ ℘(A) \ ∅

I ⊆ {T } ∪ ℘(A) where T ∈ I

An VMCTAG is called lexicalized if every T ∈ A ∪ I has an A ∈ T which has
a leaf marked with a terminal symbol. It is called 1-lexicalized if exactly one A ∈ T
has exactly one leaf marked with a terminal symbol.

If I contains only singleton sets, we call the grammar a Multi Component Tree
Adjoining Grammar (MCTAG).

An MCTAG is called tree local if adjunction of a set of auxiliary trees is re-
stricted to take place on a single initial tree.

An MCTAG is called set local if adjunction of a set of auxiliary trees is restricted
to take place on a single initial tree or inside a single element of A.

An MCTAG is called non local if there is no restriction of the adjunction of
auxiliary trees.

Depending on the restriction we impose on the adjunction operation for
MCTAGs, we generate different languages.

For tree local MCTAGs, the class of languages we generate is strongly
equivalent to the class of languages for TAGs.

For set local MCTAGs, Weir (1988) shows we still have a mildly context
sensitive and polynomially parsable formalism, which is weakly equivalent
to several other interesting grammar formalisms, like Linear Context Free
Rewrite Systems (Weir 1988), Multiple Context Free Grammars (Seki, Mat-
sumura, Fujii & Kasami 1991) and Stabler’s (1997) derivational minimalism.

Finally, Rambow (1994) shows that non local MCTAGs and VMCTAGs
are NP complete.

Example 10.26 Figure 10.19 on the following page shows an example of a vector
multi component lexical entry for the quantifier ‘everyone’, consisting of one initial
tree and one auxiliary tree. Figure 10.20 on the next page shows how these lexical
components would combine with ‘ate sushi’ to derive ‘Everyone ate sushi’.

From a proof net perspective, there is not much difference between the
different multi component systems of Definition 10.25, but as usual we re-
strict ourselves to uniquely lexicalized systems, (V)MCTAG1.

Combining two components into a single abstract proof structure is done
as shown in Figure 10.21 on page 199. The node marked A is the main leaf of



198 Proof Nets and Tree Adjoining Grammars

{ np

everyone ,

s

s∗

}

Figure 10.19: A multi component lexical entry

s

np↓ vp

ate sushi

→

s

everyone vp

ate sushi

s

Figure 10.20: A derivation of ‘Everyone ate sushi’

τβ, i.e. it is the main vertex of the link above it. We can choose an arbitrary
leaf of β to be the main leaf.

If β is an auxiliary tree and the node marked A is its foot node, then mode
m is equal to 1. Otherwise, mode m is equal to 0.

The structural conversions for mode c are shown in Table 10.8. They are
essentially the right extraction/right infixation rules proposed by Moortgat
(1999), with the addition of the structural rules [Pr0] and [Pr0′]. Note that
structural rules [Pr1] and [Pr2] are equivalent up to the names of the unary
modes with structural rules [P1] and [P2] from Section 7.2.

This package of structural rules has the property that the 〈Γ〉c constituent
can move into and out of every structural configuration of unary and binary
mode 0.

Now it is relatively simple to see that whenever we would produce a
proof net using both separate abstract proof structures, we can use the com-

Γ[〈∆1 ◦0 〈∆2〉c〉0] ` C]
Γ[〈∆1〉0 ◦0 〈∆2〉c] ` C

[Pr0]
Γ[〈∆1〉0 ◦0 〈∆2〉c] ` C

Γ[〈∆1 ◦0 〈∆2〉c〉0] ` C]
[Pr0′]

Γ[∆1 ◦0 (∆2 ◦0 〈∆3〉c)] ` C

Γ[(∆1 ◦0 ∆2) ◦0 〈∆3〉c] ` C
[Pr1]

Γ[(∆1 ◦0 ∆2) ◦0 〈∆3〉c] ` C

Γ[∆1 ◦0 (∆2 ◦0 〈∆3〉c)] ` C
[Pr1′]

Γ[(∆1 ◦0 〈∆3〉c) ◦0 ∆2] ` C

Γ[(∆1 ◦0 ∆2) ◦0 〈∆3〉c] ` C
[Pr2]

Γ[(∆1 ◦0 ∆2) ◦0 〈∆3〉c] ` C

Γ[(∆1 ◦0 〈∆3〉c) ◦0 ∆2] ` C
[Pr2′]

Table 10.8: Structural rules for mode c



10.6 Discussion 199

�
A

�
Lex

τα

τβ

?

0

�
Lex

� �
?
c

�

�

�

c

�

�
A

�

m

τβ

τα

Figure 10.21: Combining two component abstract proof structures

bined aps in its place, adding an extra structural conversion in case m = 1
and converting τα and τβ to hypothesis trees as before. We only have to
show we can contract the two par links we used to attach τα to τβ. We do
this by applying conversions [Pr0], [Pr1] and [Pr2] to move the 〈 〉c constituent
first up as far as necessary, then applying the [Pr0′], [Pr1′] and [Pr2′] to move
it down to the leaf of τα after which we can contract the [L3c] and the [L•0]
link.

10.6 Discussion

We have presented a way of embedding various formulations of the TAG
formalism into multimodal proof nets. The resulting embedding gives us a
new polynomial fragment of the multimodal Lambek calculus, with a fixed
set of structural rules and a restricted use of par links.

An interesting line of research would be how could extend the translation
to remove or relax the formula restrictions while maintaining the polynomial
time parsing complexity of the fragment. For this, it would be useful to make
use of the automata models which have been proposed for TAGs, see for
example (Joshi & Schabes 1996, Rambow 1994), and show how to simulate
proof search for fragments of NL3R directly in the automata models.





CHAPTER 11

CONCLUSIONS

T ROUGHOUT this book, we have seen how proof nets in their various
forms can be used as a logical tool for the description of linguistic anal-

yses. The main advantage of proof nets over other formulations of the mul-
timodal Lambek calculus, such as natural deduction or sequent calculi, is
that proof nets are inherently redundancy free, that is, different proof nets
correspond to different linguistic objects, they are not merely different repre-
sentations of the same linguistic object. In this sense, proof nets capture the
‘essence’ of proofs.

This property is not merely conceptually attractive, but also offers com-
putational advantages in that we do not need to formulate procedural re-
strictions on the order of rule applications in the system to avoid generating
duplicate solutions, or worse, check every time we find a solution to see if it
is a new solution or a syntactic variant of an old solution.

We have given proof net calculi for MLL, Lε, MLL1 and finally for NL3R
and looked at correctness criteria for these calculi in the form of graph con-
tractions, switchings and labeling. We have also given several possible lin-
guistic applications of these calculi.

The logic NL3R, because it contains a variable structural rule component
R, was given a modular correctness criterion where the structural rules ofR
correspond to graph rewrite rules and where the logical rules correspond to
special cases of the graph contractions for MLL. We have given an algorithm
for checking this contraction criterion and analyzed its complexity.

Finally, we have presented the Grail grammar development tool, which
is based on this algorithm and which includes many of the heuristics we
discussed in Chapter 8. This system has been used as courseware for intro-
ductory to advanced level courses in linguistics and artificial intelligence.



202 Conclusions

11.1 Further Research

Some questions were left open during throughout the chapters of this book.
First of all, though PSPACE is a good upper bound on the complexity for

multimodal Lambek calculi, a similar charactarization of NP complete and
polynomial fragments would be useful. I have suggested the use of special
cases of the contraction criterion for NP decidability and of extensions of the
LTAG translation for polynomial decidability.

Instead of restricting the logic, another approach would be to extend the
logic with operators like second order quantifiers or a contraction modality.
We have suggested some uses for these connectives in Chapter 2, though it is
still unclear if we can give an account of the linguistic phenomena discussed
there without using the exponentials or second order quantifiers. Adding
these connectives to the logic will be a delicate undertaking, since it can have
a devastating effect on the complexity of the resulting logic. Proposals for
decidable extensions of the Lambek calculus with a contraction modality or
second order quantifiers are given by Jäger (2001) and Emms (1993b) respec-
tively. Also, it would be interesting to see what proof nets for these logics
would look like.

Finally, not all of the algorithmic improvements discussed in Chapter 8
have been implemented in the Grail automated theorem prover we will dis-
cuss in Appendix A. Measuring the effect of the different heuristics on per-
formance and discovering other, more powerful heuristics will be useful for
practical applications of the system.



APPENDIX A

THE GRAIL THEOREM PROVER

T HIS appendix gives an overview of the Grail system, developed as part
of my PhD project, and its use as a tool for the development and proto-

typing of grammar fragments for the multimodal Lambek calculus.
Grail is an automated theorem prover based on proof nets and algebraic

labeling, a combination discussed in Chapter 6. The theorem prover is im-
plemented in SICStus Prolog, the user interface in TclTk.

Though the underlying logic, with a minor restriction on the structural
rules, is decidable, and the theorem prover can operate automatically, user
guidance is often desirable during the proof search. It can increase the per-
formance of the algorithm and, more importantly, help the user visualize the
status of the proof attempt thereby showing why a given statement is prov-
able or not.

The Grail user interface is based on the Prolog debugger. At each proof
step the user can take one of the following actions: select allows the user to
select an inference step, leap performs automatic proof search until a proof
is found, fail marks the current branch of the search tree as unsuccessful and
abort abandons the entire proof attempt.

In my experience, the interface gives users better insight in the operation
of the theorem prover and greatly enhances its facilities for prototyping and
debugging of fragments of the multimodal Lambek calculus.

A.1 History

In the end of 1995, the first incarnation of Grail was a piece of Prolog code of
some 250 lines. You could enter a logical statement and wait until it produced
an answer in the form of yes or no , or until you got bored (which happened



204 The Grail Theorem Prover

a lot those days). In spite of a number of improvements to the efficiency of
the original code, several grammar fragments designed in it could not handle
longer sentences in a reasonable amount of time.

I therefore tried to give a user-friendly representation of the computation
state which the user can inspect to guide the computation. The benefits of
this are twofold: firstly, the user can select a promising continuation from
the possible ones and abandon hopeless subgoals, and secondly, it gives the
user insight into why specific statements are underivable, without having to
use the Prolog debugger where tracing the execution is difficult even for the
programmer.

The current version is some 8000 lines of mixed Prolog and TclTk code,
using the TclTk library included with SICStus Prolog. It can be used without
knowledge of Prolog and produces output in human-friendly natural deduc-
tion format.

Grail is used as a research tool and as courseware for introductory to ad-
vanced level courses in Lambek grammars. Grail is free software distributed
under the GNU General Public License, and can be downloaded as source
code and binaries from my personal home page.

http://www.let.uu.nl/˜Richard.Moot/personal/grail.html

A.2 Tutorial

Before I give an in-depth overview of all possibilities at the different win-
dows in Grail, it is perhaps useful to give a short introduction to designing
and running grammar fragments in Grail.

A.2.1 Getting Started

You start Grail from the directory where you installed the source code or the
binaries by giving the follow command.

sicstus -l grail

This will start Grail and, if SICStus and TclTk are correctly installed on
your system, the window shown in Figure A.1 will appear.

This is the main window, where you activate the theorem prover and
open new windows to edit the current grammar fragment. See Section A.3.1
for an overview of all options here.

A.2.2 The Lexicon

Since we start with an empty grammar fragment, we will first fill the lexicon
with a few useful words. From the main window, select [Window/Lexicon
Window] to open the lexicon window. The lexicon, being empty, does not



A.2 Tutorial 205

Figure A.1: The Grail startup window.

look very interesting right now, so select [Edit/New Entry...] from the menu
bar of the lexicon window. The following window should appear.

Figure A.2: The lexicon edit window.

Lexical Entries A lexical entry in Grail consists of three things: a prosodic
entry, representing the word being described, a formula and a semantic entry,
which encodes the lamba term meaning of the current entry. The entire top
part of the lexicon edit window is dedicated to entering the formula.

Simple Formulas We start by assigning a simple np formula to a word in
the lexicon. Because no atomic formulas have been defined for our frag-
ment yet, we type np , followed by <Enter> in the text entry field next to the



206 The Grail Theorem Prover

[Atom] and [Macro] selection fields. You can click on [Atom] to verify that
np has been added as an atomic formula. Enter ‘tony’ in both the Pros and
the Sem entry field. The lexical edit window should now look as shown in
Figure A.3.

Figure A.3: The lexicon edit window after typing in the first lexical entry.

Storing Entries It is important to note that the edits in the lexical edit win-
dow functions will only affect the lexicon once you select [Edit/Store Entry]
from the menu. If you select [Edit/Store Entry] from the menu now, you will
see the entry for ‘tony’ appear in the lexicon window.

Exercise 1 Add some more np’s to the lexicon by editing the Pros and Sem fields
followed by [Edit/Store Entry] until the lexicon looks as in Figure A.4 on the next
page.

Complex Formulas Now, we will add some entries with complex formulas
to the lexicon, assigning the formula (np\as)/anp to ‘shot’. First, erase the
previous lexical entry by selecting [Edit/Clear Entry] from the menu, then
type ‘shot’ in both the Pros and Sem fields and ‘a’ in the index field next to
the binary connectivies as shown in Figure A.5 on the facing page.

Formulas are entered top-down left-to-right, always starting with the
main connective of the current (sub)formula, and always specifying the left
subformula before the right subformula. For (np\as)/anp the main connec-
tive is ‘/a’, so we proceed by pressing the [/] button. The result is shown in
Figure A.6 on page 208.

We proceed with the left subformula, which is the complex formula np\as
with main connective ‘\a’. The correct index a should still be in the index
field, if not, reenter it or select it from the [Index] menu next to it. Pressing
the [\] button now should result in Figure A.7 on page 208.

We’ve entered all connectives now and we only have to fill in the atomic
formulas. We can do this be entering them in the atom field and pressing



A.2 Tutorial 207

Figure A.4: The lexicon after inputting some np’s.

Figure A.5: The edit window after entering the mode information.

<Enter> or by selecting them from the [Atom] menu if we’ve entered them
before. After selecting ‘np’, entering ‘s’ and selecting ‘np’ again, our formula
looks as shown in Figure A.8 on page 209 and we can select [Edit/Store En-
try] to store it in the lexicon.

Exercise 2 Add entries for ‘likes’, ‘hates’ and ‘distrusts’ to the lexicon.

The Macro Facilities You can mark any subformula of the current lexical
entry by clicking it and give it a name to use later. For example, we can click
on the main connective ‘/a’ of the lexical entry for ‘shot’ to select the entire
‘(np\a)/anp’ formula, we can give it the abbreviation ‘tv’, for transitive verb,



208 The Grail Theorem Prover

Figure A.6: The edit window after entering ‘/a’.

Figure A.7: The edit window after entering ‘\a’.

by entering this in the atom field and selecting [Macro/Store Selection as
Macro] from the menu. We can also click on the connective ‘\a’ to select the
formula np\aa and store it as ‘iv’ for intransitive verb, again by entering this
in the atom field and selecting [Macro/Store Selection as Macro].

We can now enter more complex entries quite simply. Suppose we want
to assign the word ‘himself’ the formula ‘((np\as)/anp)\a(np\as)’. With the
macro’s we just stored this is equivalent to ‘tv\aiv’, so we can press [\], select
‘tv’ from the [Macro] menu, then select ‘iv’ from the macro menu and we
have entered the correct formula. After storing it, the lexicon should look as
shown in Figure A.9 on the facing page.

The macro’s are also the simplest way of producing complex goal formu-
las for use in the main window.

Exercise 3 Give ‘someone’ an entry of the form s/aiv. Store this entry as a macro
for ‘gq s’, a subject generalized quantifier.



A.2 Tutorial 209

Figure A.8: The edit window after entering all atomic formulas.

Figure A.9: The lexicon window after entering some complex formulas.

Exercise 4 Use the macro from the previous exercise to assign a lexical entries of
the form ‘gq s/an’ to ‘a’ and ‘every’.

Correcting Mistakes When you notice you have made a mistake when en-
tering the current formula there are several ways of correcting it.

First of all, if you want to erase the lexical entry window completely, you
can select [Edit/Clear Entry] from the menu.

If you want to erase the currect formula, or a part of it, while keeping
the [Pros] and [Sem] fields intact, you can select the root of the formula tree
you want to erase and select [Edit/Cut] from the menu or press (Control-



210 The Grail Theorem Prover

k) on the keyboard. This will replace the currently selected formula tree by
an insertion point. Selecting [Edit/Paste] or pressing (Control-y) while you
have selected an insertion point will paste the formula you have cut at the
insertion point. Selecting [Edit/Copy] or pressing (Control-c) will store the
selected formula for the next paste operation without deleting anything.

Finally you may want to replace a connective with a different connective,
this is done simply by selecting the connective and pressing one of the con-
nective buttons. Replacing ‘/’ by ‘\’ or vice versa will also switch the order
of the subformulas, all other replacements will leave the order of the subfor-
mulas unchanged.

It is not possible to replace an atom with a different atom or a connective
in this way: you have to erase this explicitly with [Edit/Cut] or (Control-k).

If you notice that you have stored an incorrect entry into the lexicon and
you wish to correct it, the best way to proceed is to double-click on the lex-
ical entry or to click on it followed by selecting [Edit/Edit Entry...] from
the lexicon menu. This will open the incorrect entry into the lexical edit
window. Then, select [Edit/Delete Entry] from the lexicon menu or press
(Control-Button 1) to delete the incorrect entry from the lexicon, and proceed
by editing the incorrect entry in the lexical edit window.

Exercise 5 Use the edit facilities to change a transitive verb from the lexicon to
produce an entry for ‘talks’ of the form ‘(np\as)/app’ and an entry for ‘needs’ of the
form ‘(np\as)/a((s/anp)\as)’.

Exercise 6 Edit the lexical assignment to ‘someone’ from Exercise 3 to produce an
additional lexical entry of the form ‘(s/anp)\as’. Store this formula as a macro for
gq o, an object generalized quantifier. Use this macro to assign appropriate new
lexical entries to ‘a’ and ‘every’ as well.

Loading and Saving Your Fragment Now that we have a simple lexicon, it
is time to put the theorem prover to work, but before we do that, we first save
the grammar fragment we have produced so far to a file. Select [File/Save
Fragment...] from the menu of the main window, then type in a file name in
the entry field and press the [Save] button.

To load this fragment again from a new Grail session select [File/Consult
Fragment...] from the menu, select the file from the file select window, then
press the [Open] button.

Saving or loading a file will change the name of the main Grail window
to the name of the current fragment file.

A.2.3 The Theorem Prover

Entering a New Sentence From the main window, type a sentence in the
entry field marked ‘words’ and a formula in the entry marked ‘formula’. The
sentence can be any string.



A.2 Tutorial 211

Lexical Lookup By default, Grail does not distinguish between upper and
lower case and all interpunction symbols are treated as spaces. The reference
guide details how to modify this standard behavior. Press <Enter>, select
[Sentences/Parse] from the main window menu or press the [Parse] button
to start the theorem prover. The status window will now appear.

Any string between spaces is treated as a word and will be looked up in
the lexicon. If a word has no lexical entries at all, Grail will complain and
abort the attempt. Check the lexicon and your spelling if this happens.

Proof Status If lexical lookup succeeds, the status window will appear to
give updates on the status of the proof attempt and show a rough estimate
of the computation remaining for the current lookup.

While the theorem prover is running, it is not possible to edit the lexicon
or any other aspect of the current grammar. However, if you get tired of
waiting, you can press the [Abort] button from the status window or use
(Control-c).

After the theorem prover has completed its computations, the status win-
dow will have one of the following messages.

[Done] One or more solutions were found.

[Failed] No solutions were found.

[Aborted] User aborted the computation.

The sentence will now be added to the list of sentences in the main win-
dow. If no solutions were found before the user aborted the computation, the
sentence will have a ‘?’ prefixed to it. If no solutions we found even though
the computation finished, the sentence will have a ‘∗’ prefixed to it. Other-
wise, the sentence will have a space as its first symbol. Keep in mind that
Grail only remembers the last proof attempt for a sentence: retrying after
changing the grammar fragment can result in new derivability markings.

You can retry a sentence without entering it again by double-clicking on
it, or by selecting it and the pressing [Parse], the <Enter> button or selecting
[Edit/Parse] from the menu.

Exercise 7 Enter the sentences shown in Figure A.10 on the next page in the main
window. The goal formula in all these cases is s.

Proofs If you have LATEX installed on your computer, Grail can produce
natural deduction output for any proofs it has found. Pressing the [View]
button will cause your selected LATEX previewer to appear with one or more
natural deduction proofs for the last successfully parsed sentence. For the
different types of natural deduction output format, we will refer to the refer-
ence manual. A typical natural deduction proof produced by Grail is shown
in Figure A.11 on the following page.



212 The Grail Theorem Prover

Figure A.10: The main window after entering some sentences.

tony ` np

distrusts ` (np\as)/anp richie ` np

distrusts ◦a richie ` np\as
[/E]

tony ◦a (distrusts ◦a richie) ` s
[\E]

1. ((distrusts richie) tony)

Figure A.11: LATEX natural deduction output

Debug Mode There can be cases where you want to get more detail as
to why a certain sentence was underivable in the current fragment, or —
equally important — to guide the theorem prover to a proof which would
take too long to find without guidance. For these situations, Grail has a de-
bug mode, which you can activate by selecting [Debug/Interactive] from the
status window. This will cause the status window to expand to the proof net
window.

Double-click on the sentence ‘Livia hates someone’. Grail has marked it
as underivable and we want to know why. The proof net window should
look like shown in Figure A.12 on the next page.

The proof net window displays the formulas in a way similar to the lexi-
cal edit window, with the following differences.

– the main connective of a formula is at the bottom,

– positive atomic formulas are drawn in white, negative atomic formulas
are drawn in black,

– par links are drawn with dotted lines.



A.2 Tutorial 213

Figure A.12: The proof net window for ‘Livia hates someone’.

The links used in the proof net window are essentially the same as those
we used for the Lambek calculus in Section 4.7. This makes it easy to identify
proof nets which need some form of the commutativity rule, as those proof
nets will have crossing axiom links.

The lookup shown in Figure A.12 uses the subject generalized quantifier
type for ‘someone’, which seems unlikely to be correct. We can press the
[Fail] button to reject this lookup and force Grail to find new formula assign-
ments to the words of the sentence. Using [Fail] carelessly can lead to Grail
failing to find proofs which it normally would have found; selecting [Fail]
means you take responsability for the absence of proofs in the current branch
of the search space. After pressing [Fail], Grail returns with the second lex-
ical lookup and the proof net window looks as shown in Figure A.13 on the
next page.

The second lookup uses the object generalized quantifier type for ‘some-
one’, which appears the right choice in the current situation.

We can now select [Nonstop], which causes Grail to continue until it has
found all proofs for the current sentence. However, because we already
know the current proof attempt will fail, this is not the right choice.

We can also select [Leap], which causes Grail to continue until either.

– it has found a complete linking of all axioms,

– or it failed to produce a complete linking of all axioms at which point
Grail will try to find new lexical assignments and, if successful, wait
for your input again.

Selecting [Creep] takes us through the axiom links one at a time, though,



214 The Grail Theorem Prover

Figure A.13: The proof net window for ‘Livia hates someone’.

by selecting [Fail] we can at any point mark the current linking as unsuccess-
ful and continue with the next untried axiom link.

Manual Axiom Links The final possibility is to perform the axiom links
manually. This is especially recommended in the case of larger proof nets.
To make an axiom link manually, click one of the atomic formulas in the
proof net window. Start with the leftmost, negative np which corresponds to
‘Livia’. After clicking this np all possible positive np’s you can link it to will
be marked by a white box, as shown in Figure A.14 on the facing page.

Select the leftmost positive np. An axiom link connecting the two np’s
will now appear. Grail will keep track of the other possibility for this axiom
link for you, so you don’t have to worry about mistakes. If at any point
you produce an incorrect proof structure, for example by creating a cycle,
Grail will complain and ask you to retry the last choice you made where
alternatives were available.

If you are very sure there is only one correct way of linking the current
formula, you can use <Shift> in combination with the left mouse button.
This will commit you to the current axiom link. It is equivalent to selecting
all other possible axiom links first and immediately following them by [Fail].
Be careful that this may prevent proofs from being found.

Exercise 8 Connect all axiomatic formulas until the proof structure looks as shown
in Figure A.15 on the next page.

After all axiom links have been made, you are given a final opportunity



A.2 Tutorial 215

Figure A.14: Possibilities for linking the first np.

Figure A.15: Proof net after making all axiom links.

press [Fail] and try to find another linking. Pressing [Creep] or [Leap], how-
ever will take you to the rewrite window.

Rewriting The rewrite window contains the label computed for the current
proof structure. Section 6.3 explains how the labels are obtained from acyclic



216 The Grail Theorem Prover

and connected proof structures. For the current proof structure, the label
looks as shown in Figure A.16.

Figure A.16: Label for ‘Livia hates someone’.

In order to produce a correct label, we have to do two things.

– remove all auxiliary constructors by means of their rewrite rules. For
‘/’ we have to use to conversion shown in Figure A.17. The conversions
for the other connectives as shown in Figure A.28 on page 229,

– left to right traversal to the label tree should produce the words in the
order they appear in the input sentence.

In this case, the words are already in the correct order, but it is impos-
sible at the moment to use the ‘/’ conversion because we need to be in the
configuration shown in Figure A.18 on the next page for that.

You can check for yourself that we cannot produce a correct label. [Leap]
or [Creep] will not succeed and Grail will continue by trying to find a new

Y X

X◦i

/i

→Res/ Y

Figure A.17: Conversion for ‘/’.



A.2 Tutorial 217

Figure A.18: Label we need for the ‘/’ conversion.

axiom link. You can also click on every node of the tree to see a list pop up
which shows which conversions are applicable at this node and see this list
is empty for all nodes in the tree.

When you find a sentence which isn’t derivable, while you would want
it to be, you can

– either add a new entry to the lexicon for one of the words in the sen-
tence or correct or modify an old entry,

– or add a new structural rule to your grammar.

The first option seems unattractive in this case; we already have two as-
signments for the quantifier ‘someone’ and assigning a new formula for ev-
ery new construction we encounter would lead to a huge lexicon. So in this
case, we would like to generalize a bit by adding some structural rules.

A.2.4 The Structural Postulates

Editing a Postulate You open the postulate window from the main win-
dow by selecting [Window/Postulate Window] from the menu or by pres-
sing (Control-p). Initially, your grammar fragment will have no structural
postulates. But you can create a postulate by selecting [Edit/New Postu-
late] from the postulate window to make the postulate edit window appear,
which looks as shown in Figure A.19 on the following page.

The edit postulate window is similar in structure to the edit lexical entry
window, only now we only have ‘•’ and ‘3’ as connectives and instead of
atomic formulas we have structural variables.



218 The Grail Theorem Prover

Figure A.19: Creating a new postulate.

To add a structural rule for associativity to the current grammar, first se-
lect a from the [Ind] menu next to the [•] button. Then click on the ∗ on the
left hand side of the arrow and press the [•] button twice. The edit postulate
window should now look as shown in Figure A.20.

Figure A.20: Entering the left hand side of the postulate.

All that remains is to create the leaves. Select the [Variable] menu. Only
one variable ‘A’ is available initially, so select it. Now, since ‘A’ has been
used, a new variable ‘B’ will be added to the menu. Select this. Finally, select
‘C’ from the variable menu. We have now completed the left hand side of the
structural rule.

Exercise 9 Complete the right hand side of the postulate, so that it the postulate
looks as shown in Figure A.21 on the facing page.

Storing a Postulate Like the changes you make in the lexical edit menu,
the changes in the postulate edit menu don’t take effect until you select
[Edit/Store Postulate] from the menu.

Before storing the postulate, let’s give it a name by typing ‘Ass’ in the
Name field. We have three possibilities for storing a postulate: we can store



A.2 Tutorial 219

Figure A.21: Completed postulate.

the left-to-right version — which is the default —, we can store the right-to-
left version or we can store both. We can toggle between these possibilities
by clicking on the arrow. To save time, click on the arrow once then select
[Edit/Store Postulate] store both versions of this postulate. The postulate
window should now look as shown in Figure A.22.

Figure A.22: Two postulates for associativity.

Note that Grail will complain if one of the following holds.

– there are multiple occurrences of a variable on either side of the postu-
late arrow,

– a variable occurs on only one side of the postulate arrow,

– a postulate has more occurrences of unary connectives on the left hand
side than on the right hand side.

In the last case, you can overrule Grail’s complaints and store the postu-
late anyway, though this might lead to nontermination of Grail’s proof search
mechanism.

Finally, if you try to store a postulate which is already a consequence of
other postulates in you fragment, Grail will notify you of this.



220 The Grail Theorem Prover

Editing a Postulate To edit an existing postulate, you basically have the
same options as for editing a lexical entry. You can cut, copy and paste by
using [Edit/Cut], [Edit/Copy] and [Edit/Paste] respectively.

You can delete a postulate by selecting it and using [Edit/Delete Postu-
late] from the postulate window. A final option is to disable postulates. This
makes a postulate unavailable without actually deleting it and is a way of
experimenting with different sets of structural postulates to see which struc-
tural rules you really need. You can disable a postulate from the postulate
window by clicking on the middle mouse button or by selecting [Edit/Dis-
able/Enable Postulte] from the menu.

Rewriting Now that we have added the structural postulates for associa-
tivity to the grammar, we can see if this finally makes the sentence ‘Livia
hates someone’ derivable. Double-click again on this sentence from the main
menu, select [Fail] after the first lexical lookup, then select [Leap] to gener-
ate the first acyclic, connected proof structure for this lookup and the rewrite
window will appear, looking exactly as before in Figure A.16 on page 216.

Now, however when we select the ‘◦a’ node just below the ‘/’ node, the
popup menu will display we have the option here to use the ‘Ass’ structural
rule we have just added. We select this from the menu, to produce the label
shown in Figure A.18 on page 217. Grail automatically keeps track of all
alternatives, and if we change our mind about the current rewrite, we can
select [Run/Undo!] from the menu or press <u>. If we select the ‘/’ node
from this configuration the popup menu will display ‘Res’, which indicates
we can perform the residuation conversion for ‘/’ and eliminate this node
from the label, which gives the result shown in Figure A.23.

Figure A.23: Correct label for ‘Livia hates someone’.

This is a correct label, but if you want you can apply an extra associativity
step by selecting the top ‘◦a’ node. When you are satisfied with the currect



A.3 Reference Guide 221

label, press either [Creep] or [Leap] and Grail will start producing the LATEX
output, then continue trying to find proofs for a different axiom linking.

A.3 Reference Guide

A.3.1 The Main Window

Figure A.24: The main window.

The main window is your interface to the theorem prover. From here you
can parse grammatical expressions, load and save grammar fragments, and
open other windows to view and edit these fragments.

The window will display a list of previously parsed sentences for the cur-
rent fragment and an input section where you can enter new expressions.

Clicking on one of the sentences will display the words in the word en-
try section, and the goal formula in the formula entry section. You can edit
the words and the formula, and parse the sentence by pressing (Enter) or the
[Parse] button. Double clicking one of the sentences will parse it immedi-
ately.

When parsing, a status window will appear which gives an indication
of the computations being performed, and when ready will display either
‘done’ or ‘failed’ depending on whether a proof was found. The [Abort]
button cancels the computation when you run out of patience.

Tokenization Grail will tokenize an input sentence in the following way.
First of all, the following characters are, by default, defined as interpunction
characters and will be treated as spaces.

! " ’ - . : ; ? ‘



222 The Grail Theorem Prover

Grail contains a Prolog hook you can use to override the default be-
haviour. If your fragment contains a declaration of the form

special_string(String,Atom).

Grail will tokenize the String which is given as the first argument of
special_string/2 as the Prolog atom given as the second argument. Ex-
amples would be the following.

special_string("?",’?’).
special_string("can’t",’cannot’).

Note that you still have to add lexical entries for ’?’ and ’cannot’ if you
want to use this in your fragments.

Currently, you can only add special_string/2 declarations to your
fragment by editing your file manually.

Command Buttons below the entry sections you will find the following
command buttons.

[Parse] Parses the words in the input entry as a formula described in the
formula entry. The output is sent to LATEX.

[LaTeX] Sends the results of the previous parse to LATEX; this is useful if you
have changed some of the output options.

[Xdvi] Sends the result of the previous parse to LATEX and displays them
using the xdvi previewer.

[Exit] Exits the program.

Menu Bar from the menu bar of the main window, you can access the fol-
lowing operations.

[File]

[About] Prints information on the release date and version number.

[New Fragment] Starts a new grammar fragment from scratch. All
previous information will be lost.

[Consult Fragment...] Loads a grammar fragment.

[Save Fragment...] Saves your fragment.

[Compile Prolog Source...] Compiles a Prolog file.

[Close] Iconifies the main window.

[Quit...] Hasta la vista, baby.

[Sentences]

[Clear Entry] Erases the words and formula.



A.3 Reference Guide 223

[Parse] Parses the selected sentence.

[Delete] Deletes the selected sentence from the sentence list.

[Options]

[Prolog Messages] A choice between Quiet and Verbose. When set to
Quiet, only some information about the time a computation takes
will be sent to screen. When set to Verbose, a lot more information
about the state of the computation will be printed. Defaults to
Quiet.

[View Format] A selection of LATEX output formats for the Grail nat-
ural deduction output. Current possibilities are ‘none’ (no LATEX
output, resulting in faster execution of Grail because it is unnec-
essary to keep track of the path to the solution), ‘dvi’, ‘postscript’
and ‘pdf’. Defaults to dvi.

[Viewer Geometry] A choice of the window size of the LATEX pre-
viewer. Possible values are 320x200, 640x400, 800x600, 1024x800
and 1280x1024. Defaults to 800x600. Note that some previewers
ignore their geometry parameters.

[Natural Deduction Style] A choice between Prawitz style natural de-
duction and Fitch style natural deduction. Defaults to Prawitz.

[Proofs]

[Eta Long Proofs] When this checkbutton is on, eta long natural
deduction proofs will be produced. Defaults to off.

[Hypothesis Scope] When this checkbutton is on, the scope of a
hypothesis in Fitch style natural deduction will be indicated
by a vertical bar. Defaults to on.

[Labels]

[Output Labels] When this checkbutton is on, labeled deduction
proofs will be produced. Defaults to on.

[Implicit Structural Rules] Hides structural rule applications.
[Collapsed Structural Rules] Successions of multiple structural

rules will be collapsed into one.
[Explicit Structural Rules] Each structural rule is portrayed ex-

plicitly. This is the default setting.

[Formulas]

[Reduce Macros] When this checkbutton is on, complex formulas
will be reduced by the macro definitions. Defaults to off.

[Semantics]

[Output Semantics] When this checkbutton is on, lambda term
semantics will be printed with the formulas. Defaults to off.

[Functional Notation] Switches off the Montague-style notation
conventions and displays complex function terms normally.



224 The Grail Theorem Prover

[Predicate Notation] Uses Montague-style notation conventions
displaying a term like ((f y) x) as f(x, y).

[Reduce Semantics] When this checkbutton is on, lambda term
reductions will be performed whenever possible. Defaults to
off.

[Substitute Lexical Semantics] Formulas will be assigned their
lexical meaning recipes instead of semantic variables. De-
faults to off.

[Semantics For Unary Connectives] When this checkbutton is off,
the semantic constructors for the unary connectives will be
ignored. Defaults to on.

[Colors...] Opens a color selection window allowing you to change
the standard colors of the Grail application.

[Fonts...] Open a font selection window allowing you to change the
font family, weight, slant, width and size. Font selection changes
will only affect the proof net and the rewrite window.

[Save Current Options] Save the currect settings for all options to the
file .grail default options.pl which will be automatically
loaded the next time you start Grail.

[Restore Default Options] Return the options to their initial state, as
if you had just restarted Grail.

[Window]

[Status/Proof Net Window] Opens the status or proof net window,
depending on whether debugging is turned on or off. See sec-
tions A.3.2 and A.3.3.

[Rewrite Window] Opens the rewrite window, only available when
debugging is turned on. See section A.3.4.

[Lexicon Window] Opens the lexicon window. See section A.3.5.
[Postulate Window] Opens the postulate window. See section A.3.7.
[Analysis Window] Opens the analysis window. See section A.3.9.

[Help]

[On This Window] Gives a help message.

A.3.2 The Status Window

The status window gives information about the current state of the computa-
tion, and allows you to abort time-consuming parses. It will open automat-
ically during proof search, or you can open it by selecting [Window/Status
Window] or by typing (Control-s).

The white part of the status bar gives an estimate of the number of links
which have not been tried yet.

The status message can be one of the following.



A.3 Reference Guide 225

Figure A.25: The status window.

Initializing Garbage collecting, preprocessing.

Linking Performing axiom links.

Rewriting Performing label conversions.

Generating Output Generating LATEX output, and sending it to a file.

Done Computation terminated, one or more derivations were found.

Failed Computation terminated, no derivations were found.

Aborted User got bored and pressed the [Abort] button. If derivations were
found, they can still be viewed.

Menu Bar From the menu bar, we can select the following.

[Window]

[Close] Iconifies this window.

[Debug]

[Automatic] Debugging off. Grail will search for proofs without user
guidance.

[Interactive] Switches on the interactive debugger.

A.3.3 The Proof Net Window

When the interactive debugger is on, the status window will be replaced
by the proof net window. In the proof net window we see the current par-
tial proof structure, with the decomposition trees of the formulas the cur-
rent lookup assigns to the words from the sentence above the corresponding
word. Positive atomic formulas are drawn in white and negative atomic for-
mulas drawn in black. Here atomic formulas of opposite polarity are linked
until we find a proof structure which is both acyclic and connected.

The console buttons offer the following options.



226 The Grail Theorem Prover

Figure A.26: The proof net window.

[Creep] Will perform the next step in the computation, then wait for inter-
action.

[Leap] Will return after a total linking for the current lookup has been found
or to the next lookup if no such linking exists.

[Nonstop] Will perform the rest of the proof search automatically.

[Fail] Will abandon the current branch of the search space and continue
with the next untried branch.

[Abort] Aborts the current proof attempt.

In addition, you can click on the atomic formulas themselves to have com-
plete control over the order in which the axioms are linked. As a first step
you select any atom not currently linked by an axiom link. The selected
formula will then appear in a black box and the atoms of opposite polarity
which have not been tried before will appear in a white box, as shown in Fig-
ure A.26. You can then click any of the boxed formulas to perform an axiom
link.

In addition, if you know you are only interested in one specific choice
of the possible axiom links, you can keep the (Shift) key depressed when
you press the mouse button in order to commit yourself to a specific axiom



A.3 Reference Guide 227

link. This is equivalent to first selecting every other possibility followed by
pressing the [Fail] console button.

If at any time you perform a link which results in a cyclic or disconnected
proof structure, you will get a message and the current link will fail.

Be warned that by selecting [Fail], [Abort] or using the commit option,
you cut part of the search space and may miss valid proofs if you are not
careful.

Menu Bar For the menu bar, we can select the following.

[Window]

[Save Postscript] Saves the current (partial) proof structure to a post-
script file.

[Close] Iconifies this window.

[Debug]

[Automatic] Debugging off. Grail will search for proofs without user
guidance.

[Interactive] Switches on the interactive debugger.

[Run] Setting this option to [Nonstop] will cause Grail perform all axiom
links without user interaction. Defaults to [Creep].

A.3.4 The Rewrite Window

When the interactive debugger is on, you can open the rewrite window by
selecting [Window/Rewrite Window] or by typing (Control-r).

The rewrite window (Figure A.27 on the following page) displays the cur-
rent label and allows you to perform rewrite operations on this label. Click-
ing on a node of the label will cause a pop-up menu with the label conver-
sions rooted at that node to appear. You can apply a conversion by selecting
it from the menu. Any alternatives to your choice will be added to the queue.

The status message gives you an indication of the number of unvisited
labels in the queue and of the current depth.

As shown in the figure, some label constructors are drawn in dark grey.
These correspond to unsatisfied constraints, which are checked by the label
conversions shown in Figure A.28.

For the non-associative base logic, these are all available conversions.
However, you can relax the constraints by specifying your own structural
postulates as specified in section A.3.7. Each structural postulate can be ap-
plied backwards as a label conversion.

You can rewrite a label until you reach one where all constraints have
been satisfied and the words are in the order required by the input sentence.
Grail will only check if you meet these conditions when you press the [Creep]



228 The Grail Theorem Prover

Figure A.27: The rewrite window.

or [Leap] button in order to allow you to continue rewriting a label even if
all constraints have been satisfied.

The console buttons offer the following options.

[Creep] Will add all one step conversions from the current label to the back
of the queue, then continue with the first element of the queue.

[Leap] Will return only after all label constraints have been satisfied.

[Nonstop] Will perform the rest of the proof search automatically.

[Fail] Will abandon the current branch of the search space and continue
with the next item on the queue.

[Abort] Aborts the current proof attempt.

Menu Bar For the menu bar, we can select the following.

[Window]

[Postulate Window] Opens the postulate window.

[Save Postscript] Saves the current label to a postscript file.

[Close] Closes this window.

[Labels]



A.3 Reference Guide 229

YX

X ◦i

\i

→Res\ Y Y X

X◦i

/i

→Res/ Y

X X

Ji Ii

◦i

→Res• X

X

u↓i

3i

→Res3 X X

3i

t↓i

→Res2↓ X

Figure A.28: Residuation conversions

[No Eager Evaluation] Will prevent Grail from doing any early failure
on label conditions.

[Automatic Eager Evaluation] Will cause Grail to perform automatic
eager label conversions. This is the default.

[Manual Eager Evaluation] Will allow the user to perform eager label
conversions himself. Be careful, as careless eager conversions may
prevent solutions from being found.

[Run] Setting this option to [Nonstop] will cause Grail perform all label
conversions without user interaction. Defaults to [Creep].

A.3.5 The Lexicon Window

You can open the lexicon window from the menu bar in the main window
by selecting [Window/Lexicon Window], or by typing (Control-l).

The lexicon window (Figure A.29 on the next page) displays a list of the
words in the fragment and of the formulas assigned to them. From here you
can edit, delete or enter new lexical entries.

Clicking an entry will select it, indicated by the selection bar. The next
edit or delete command will then be applied to that entry.



230 The Grail Theorem Prover

Figure A.29: The lexicon window.

Double-clicking one of the entries will open the edit lexical entry window,
with that entry displayed in it (see section A.3.6 for more on the editing of
lexical entries).

Clicking one of the entries with the (Control) key depressed will delete it.

Menu Bar from the menu bar of the lexicon window the following opera-
tions are available.

[Window]

[Close] Closes the lexicon window.

[Edit]

[New Entry] Opens the edit entry window.

[Edit Entry] Shows the selected lexical entry in the edit entry window.

[Delete Entry] Deletes the selected lexical entry.

[Help]

[On This Window] Gives a help message.

A.3.6 Editing a Lexical Entry

The edit entry window (Figure A.30 on the facing page) is where you mod-
ify existing entries in the lexicon or create new entries from scratch. You
can open the edit entry window by selecting [Edit/New Entry] or [Edit/Edit
Entry] from the lexicon window.



A.3 Reference Guide 231

Figure A.30: The edit entry window.

The edits you perform here will only be stored in the lexicon when you
press (Control-s) or select [Edit/Store Entry] from the menu bar, so you don’t
have to worry about accidentally modifying your lexicon.

A lexical entry consists of three parts: prosodics, a syntactic formula and
semantics.

Formula the formula edit fields take up the upper section of the window.

Selection The formula is displayed as its construction tree. You can
select a part of the formula by clicking on it. The selection cursor appears as
a box surrounding the root of the selected tree.

Insertion Points A special constant ‘*’ functions as an insertion point in
the formula. It is not a part of the formula language. By pressing (Control-k)
the selected tree will be replaced by this constant, and copied to the paste
buffer.

When an insertion point is selected (as shown in Figure A.30), you can
insert something at that position in one of the following ways.

[Paste] Pressing (Control-y) will insert the contents of the paste buffer to
this position.

[Atom] By clicking on the atom menu, you can insert one of the atomic
formulas found in this fragment. Alternately, you can type in a new
atom in the atom entry, followed by (Enter). Atoms should start with



232 The Grail Theorem Prover

a lower case letter, and be followed by any number of alphanumeric
characters or _.

If you want to use complex Prolog terms as atomic formulas, you will
have to explicitly declare them in your fragment file. For example by
using the following.

atomic_formula(np(nom)).
atomic_formula(np(acc)).

Note that you can currently do this only by editing your fragment man-
ually.

[Macro] A very simple macro facility is provided, where you can give a
name to commonly occurring formulas. Selecting one of the macros
from the macro menu will insert it at the current position.

[Constructor] You can insert a unary or binary constructor by selecting an
index from the index menu next to the buttons for these constructors
(or typing in a new index in the index entry next to it) and pressing the
button for the connective you wish to insert.

Prosodics The prosodics of an entry is the way it will appear in your ex-
pressions. You can enter a Prolog term in the prosodics entry section. The
current version does not support lexical entries consisting of more than one
word.

Semantics You can give your lexical entry a Montague-style lambda term
meaning in the semantics entry section. Editing the semantics in the current
version is very cumbersome, as it requires you to type in the internal seman-
tic representation. It is recommended you leave the semantics field empty or
type in a single constant. If you really want to enter lambda term meaning
recipes you can use Table A.1 on the next page to convert lambda terms to
Prolog terms.

Menu Bar In the edit lexical entry window, you can select the following
from the menu bar

[Window]

[Close] Closes this window.

[Edit]

[Clear Entry] Erases the formula, prosodics and semantics fields.

[Store Entry] Stores the current lexical entry in the lexicon.

[Cut] Cuts the current selection to the paste buffer.



A.3 Reference Guide 233

Lambda Term Prolog Term
variable Prolog variable
constant Prolog constant
(f x) appl(F,X)
λx.t lambda(X,T)
〈x, y〉 pair(X,Y)
π1x fst(X)
π2x snd(X)
∨t debox(T)
∧t conbox(T)
∪t dedia(T)
∩t condia(T)
¬x not(X)
x ∧ y bool(X,&,Y)
x ∨ y bool(X,\/,Y)
x→ y bool(X,->,Y)
∀x.t quant(forall,X,T)
∃x.t quant(exists,X,T)
ιx.t quant(iota,X,Y)

Table A.1: Representation of semantic terms in Prolog

[Copy] Copies the current selection to the paste buffer.

[Paste] Pastes the buffer to the current position.

[Macro]

[Store Entry As Macro] Stores the formula of the current entry as a
macro. The macro will take its name from the atom entry field.

[Store Selection As Macro] Stores the selection as a macro. The macro
will take its name from the atom entry field.

[Help]

[On This Window] Prints a help message.

A.3.7 The Postulate Window

The postulate window (shown in Figure A.31 on the following page) por-
trays the structural postulates of the current fragment. From here you can
delete or edit structural postulates.

You can open the postulate window from the menu bar in the main win-
dow by selecting [Window/Postulate Window], or by typing (Control-p).

Clicking on a postulate will select it. This will cause a selection bar to
appear over it, and allows you to perform the operations in the edit menu on
it.



234 The Grail Theorem Prover

Figure A.31: The postulate window.

Double clicking a postulate will display that postulate in the edit postu-
late window.

Clicking a postulate with (Control) depressed will delete that postulate.
Pressing mouse button 2 over a postulate will change the status of the

postulate from enabled to disabled or vice versa. This allows you to experi-
ment with the effects of structural postulates without having to create several
versions of the same fragment.

Menu Bar From the menu bar, the following options are available.

[Window]

[Close] Closes the postulate window.

[Edit]

[New Entry] Opens the edit entry window.

[Edit Entry] Shows the selected structural postulate in the edit postu-
late window.

[Delete Entry] Deletes the selected structural postulate.

[Disable/Enable Postulate] Toggles the selected postulate between
enabled and disabled.

[Help]

[On This Window] Gives a help message.



A.3 Reference Guide 235

A.3.8 Editing a Postulate

Figure A.32: The postulate edit window.

Editing a postulate is much like editing a formula. There is now a formula
on both the left and the right hand side of the postulate arrow. Selection and
cut/copy/paste can be performed as before.

Instead of atomic formulas we now have structural variables, which can
be inserted from the variable menu, and our choice of constructors is limited
to 3 and •.

Postulate Arrow By clicking on the postulate arrow it will change from→
to ↔ to ←. This makes it easier to store equivalences or inverses of postu-
lates. In the postulate window, all postulates will appear in their left to right
version regardless of the postulate arrow, so storing a postulate A ↔ B will
in fact be the same as storing both A→ B and B → A.

Postulate Names You can give a postulate any name which is printable in
LATEX math mode.

Valid Postulates The computational architecture poses some limitations on
the type of postulates allowed in your fragments. Grail will report an error
when you try to store postulates of the following form.

– There are multiple occurrences of a variable on either side of the pos-
tulate arrow.

– A variable occurs on only one side of the postulate arrow.

In addition, because of the backward chaining proof search strategy, a
warning will be generated when a postulate has more constructors on the



236 The Grail Theorem Prover

left hand side than on the right hand side. If you add one of these postulates
to your fragment, the proof search algorithm is not guaranteed to terminate.
This is the same restriction discussed in Section 9.2 and ensures that proof
search is PSPACE complete as opposed to (potentially) undecidable.

Menu Bar the menu bar allows you to access the following functions.

[Window]

[Close] Closes the edit postulate window.

[Edit]

[Clear Postulate] Erases the postulate in this window.

[Store Postulate] Stores the postulate in memory. It will now appear
in the postulate window.

[Reverse Postulate] Swaps the left and right hand sides of the postu-
late.

[Cut] Deletes the selected part of the postulate, and copies it to the
paste buffer.

[Copy] Copies the selected part of the postulate to the paste buffer.

[Paste] Pastes the contents of the buffer to the place of the selected
variable.

[Help]

[On This Window] Hmmm, what does this window do?

A.3.9 The Analysis Window

The analysis window (see Figure A.33 on the next page) is where you can
improve the performance of the theorem prover by setting the parameters
for early failure. This can be done either automatically or by hand.

External Modes Sometimes you may want to prevent a mode from occur-
ring in the output, because it is used only as a grammar internal or auxiliary
mode. By default all modes will be external, but you can set modes to inter-
nal by turning off their checkbutton here.

Lazy, Transparent and Continuous Modes Three forms of early failure are
supported which apply only to structural postulates satisfying some criteria.
These are the following.

– lazy versus eager contraction of the [R/i], [R\i] and the [R2
↓
j ] links, as

discussed in Section 8.5.



A.3 Reference Guide 237

Figure A.33: The analysis window.

– lazy versus eager evaluation of word order constraints for transparent
modes, as discussed in Section 8.7.

– first order approximation for continuous modes, as discussed in Sec-
tion 8.7.

All can be detected by the program, and only the lazy reductions test is
expensive to compute. When the program suspects checking for lazy reduc-
tions will take up an unreasonable amount of time, you will get a choice to
set these parameters to their default, safe settings and only perform the other
tests.

You can overrule any of these settings manually, but this may cause the
theorem prover to miss valid derivations.

Menu Bar From the menu bar, the following options are available.

[Window]

[Close] Closes the analysis window.

[Options]

[Show Status] Gives a description of Grail’s estimate of the current
analysis settings. This can be manual if the settings were per-
formed by the user, safe if performance is perhaps not optimal but
will not prevent solutions from being found, optimal if a complete
analysis has been performed on the current postulates, or unknown
if postulates were added after the last analysis.

[Analyse Postulates] Performs a complete analysis of the postulate
set.



238 The Grail Theorem Prover

[Analyse Convergence] Will only check if the label reductions con-
verge for eager evaluation. This is generally time-consuming.

[Analyse Transparency] Will only check if word order constraints can
be applied eagerly.

[Analyse Continuity] Will only check for which modes continuity la-
beling applies.

[Safe Settings] Switches off all early failure.

A.4 Conclusions

We have given an overview of the Grail interactive theorem prover and its
underlying logical theory. Grail displays an intuitive representation of the
state of the computation and allows the user to guide the computation by
interacting with this representation.

On the proof net level, an advantage over sequent or natural deduction
systems is that linking atomic formulas is a relatively trivial way to generate
all proofs for a given statement. User guidance allows more experienced
users to perform the axiom links they are interested in immediately, thereby
sidestepping the O(n!) complexity.

On the label rewrite level, it is often enlightening to see Grail (ab)use your
carefully chosen structural rules in unintended ways, showing linguistically
incorrect predictions of your logical theory, or to see it fail to satisfy a critical
constraint, pointing to a missing or not sufficiently general structural rule.
User interaction can considerably improve the performance by allowing the
user to perform the intended label conversions himself.

Finally, though proof nets are in many ways an optimal proof theory for
proof search, as previous chapters ought to have shown, natural deduction
is generally a better theory to display them. Therefore, source code which
transforms the completed proof net into LATEX natural deduction output is
included with the release.



BIBLIOGRAPHY

Aarts, E. (1994), ‘Proving theorems of the second order Lambek calculus in
polynomial time’, Studia Logica 53, 373–387.

Abramsky, S. (1993), ‘Computational interpretations of linear logic’, Theoret-
ical Computer Science 111, 3–57.

Abrusci, V. M. & Ruet, P. (1999), ‘Non-commutative logic I : the multiplicative
fragment’, Annals of Pure and Applied Logic 101(1), 29–64.

Ajdukiewicz, K. (1935), ‘Die syntaktische Konnexität’, Studies in Philosophy
1, 1–27.

Andreoli, J.-M. (2000), ‘Focussing and proof construction’, Annals of Pure and
Applied Logic . to appear.

Bar-Hillel, Y. (1964), Language and Information. Selected Essays on their Theory
and Application, Addison-Wesley, New York.

Bar-Hillel, Y., Gaifman, C. & Shamir, E. (1964), On categorial and phrase
structure grammars, in Y. Bar-Hillel, ed., ‘Language and Information.
Selected Essays on their Theory and Application’, Addison-Wesley,
New York, pp. 99–115.

Bayer, S. & Johnson, M. (1995), Features and agreement, in ‘Proceedings of
the 33rd Annual Meeting of the Association for Computational Linguis-
tics’, San Francisco, pp. 70–76.

Bellin, G. & van de Wiele, J. (1995), Empires and kingdoms in MLL, in J.-Y.
Girard, Y. Lafont & L. Regnier, eds, ‘Advances in Linear Logic’, Cam-
bridge University Press, pp. 249–270.

Carpenter, B. (1991), ‘The generative power of categorial grammars and
head-driven phrase structure grammars with lexical rules’, Computa-
tional Linguistics 17(3), 301–314.



240 Bibliography

Carpenter, B. (1995), The Turing-completeness of multimodal categorial
grammars. Manuscript.

Chomsky, N. (1959), ‘On certain formal properties of grammars’, Information
and Control 2(2), 137–167.

Chomsky, N. (1995), The Minimalist Program, MIT Press, Cambridge, Mas-
sachusetts.

Danos, V. (1990), La Logique Linéaire Appliquée à l’étude de Divers Proces-
sus de Normalisation (Principalement du λ-Calcul), PhD thesis, Univer-
sity of Paris VII.

Danos, V. & Regnier, L. (1989), ‘The structure of multiplicatives’, Archive for
Mathematical Logic 28, 181–203.

de Groote, P. (1996), Partially commutative linear logic: sequent calculus and
phase semantics, in V. M. Abrusci & C. Casadio, eds, ‘Proofs and Lin-
guistic Categories, Application of Logic tot the Analysis and Implemen-
tation of Natural Language’, CLUEB, pp. 199–208. Proceedings 1996
Roma Workshop.

de Groote, P. (1999a), ‘An algebraic correctness criterion for intuitionistic
proof-nets’, Theoretical Computer Science 224(1–2), 115–134.

de Groote, P. (1999b), A dynamic programmin approach to categorial deduc-
tion, in H. Ganzinger, ed., ‘CADE-16, 16th International Conference on
Automated Deduction’, Vol. 1632 of Lecture Notes in Computer Science,
Springer, pp. 1–15.

de Groote, P. & Lamarche, F. (2001), Classical non-associative Lambek cal-
culus, in W. Buszkowski & M. Moortgat, eds, ‘Studia Logica’, Kluwer
Academic Publishers. Special Issue Dedicated to Joachim Lambek.

de Groote, P. & Retoré, C. (1996), On the semantic readings of proof nets, in
G.-J. Kruijff, G. Morrill & R. T. Oehrle, eds, ‘Formal Grammar’, pp. 57–
70.

Dechter, R., ed. (2000), Principles and Practice of Contraint Programming, Vol.
1894 of Lecture Notes in Computer Science, Springer. Proceedings of the
6th International Conference CP2000.

Dijkstra, E. W. (1979), A Discipline of Programming, Prentice-Hall, Englewood
Cliffs, New Jersey.

Dörre, J. (1996), Parsing for semidirectional Lambek grammar is NP-
complete, in ‘Proceedings of the 34th Annual Meeting of the ACL’, Uni-
versity of California, Santa Cruz, California, pp. 95–100.

Dörre, J. & Manandhar, S. (1995), Constraint-based Lambek calculi, in
P. Blackburn & M. de Rijke, eds, ‘Specifying Syntactic Structures. Stud-
ies in Logic, Language and Information’, CSLI, Stanford.



Bibliography 241

Eisinger, N. & Ohlbach, H.-J. (1993), Deduction systems based on resolu-
tion, in ‘Handbook of Logic in Artificial Intelligence and Logic Program-
ming’, Vol. I, Oxford University Press, Oxford, chapter 4.

Emms, M. (1993a), Extraction covering extensions of the Lambek calculus
are not context free, in P. Dekker & M. Stokhof, eds, ‘Proceedings 9th
Amsterdam Colloquium’, pp. 268–286.

Emms, M. (1993b), Parsing with polymorphism, in ‘Proceedings of the Sixth
Conference of the European Association of Computational Linguistics’,
pp. 120–129.

Gabbay, D. M. (1996), Labeled Deductive Systems, Clarendon Press.

Gentzen, G. (1934), ‘Untersuchungen über das logische Schließen’, Mathema-
tische Zeitschrift 39, 176–210, 405–431.

Girard, J.-Y. (1987), ‘Linear logic’, Theoretical Computer Science 50, 1–102.

Girard, J.-Y. (1991), Quantifiers in linear logic II, in G. Corsi & G. Sambin,
eds, ‘Nuovi problemi della logica e della filosofia della scienza’, Vol. II,
CLUEB, Bologna, Italy. Proceedings of the conference with the same
name, Viareggio, Italy, January 1990.

Girard, J.-Y., Lafont, Y. & Taylor, P. (1988), Proofs and Types, Cambridge Tracts
in Theoretical Computer Science 7, Cambridge University Press.

Guerrini, S. (1999), Correctness of multiplicative proof nets is linear, in ‘Four-
teenth Annual IEEE Symposium on Logic in Computer Science’, IEEE
Computer Science Society, pp. 454–263.

Hepple, M. (1990), The Grammar and Processing of Order and Dependency:
A Categorial Approach, PhD thesis, Centre for Cognitive Science, Uni-
versity of Edinburgh.

Hepple, M. (1994a), Comments on multimodal systems, in M. Moortgat,
ed., ‘Lambek Calculus. Multimodal and Polymorphic Extensions’, OTS,
Utrecht, pp. 37–44. DYANA Report R1.1.B.

Hepple, M. (1994b), Labelled deduction and discontinuous constituency, in
V. M. Abrusci, C. Cassadia & M. Moortgat, eds, ‘Linear Logic and Lam-
bek Calculus’, ILLC, Amsterdam, pp. 123–150.

Heylen, D. (1999), Types and Sorts: Resource Logic for Feature Checking,
PhD thesis, Utrecht Institute of Linguistics OTS, Utrecht University.

Hodas, J. S. (1992), Specifying filler-gap dependency parsers in a linear-logic
programming language, in K. Apt, ed., ‘Proceedings of the 1992 Joint
International Conference and Symposium on Logic Programming’, MIT
Press.



242 Bibliography

Hodas, J. S. (1996), A linear logic treatment of phrase structure grammars
for unbounded dependencies, in A. Lecomte, F. Lamarche & G. Per-
rier, eds, ‘Proceedings of the Workshop on Logical Aspects of Compu-
tational Linguistics’.

Jäger, G. (2001), Anaphora and quantification in categorial grammar, in
M. Moortgat, ed., ‘Logical Aspects of Computational Linguistics’, Vol.
2014 of Lecture Notes in Computer Science, Springer, pp. 70–90.

Johnson, M. (1998), ‘Proof nets and the complexity of processing center-
embedded constructions’, Journal of Logic, Language and Information
7(4), 443–447.

Joshi, A. (1994), Tree-adjoining grammars, in R. E. Asher, ed., ‘The Encyclo-
pedia of Language and Linguistics’, Pergamon Press, Oxford, UK.

Joshi, A. & Kulick, S. (1997), Partial proof trees, resource sensitive logics, and
syntactic constraints, in C. Retoré, ed., ‘Logical Aspects of Computa-
tional Linguistics, Selected Papers’, Vol. 1328 of Lecture Notes in Com-
puter Science, Springer, pp. 21–42.

Joshi, A., Kulick, S. & Kurtonina, N. (2001), An LTAG perspective on catego-
rial inference, in M. Moortgat, ed., ‘Logical Aspects of Computational
Linguistics’, Vol. 2014 of Lecture Notes in Computer Science, Springer,
pp. 90–105.

Joshi, A., Levi, L. S. & Takahashi, M. (1975), ‘Tree adjunct grammars’, Journal
of Computer and System Science 10, 136–163.

Joshi, A. & Schabes, Y. (1996), Tree-adjoining grammars, in G. Rosenberg &
A. Salomaa, eds, ‘Handbook of Formal Languages’, Vol. 3, Springer,
New York, pp. 69–123.

Kamp, H. & Reyle, U. (1993), From Discourse to Logic, Kluwer Academic Pub-
lishers, Dordrecht.

Kanovich, M. (1991), The multiplicative fragment of linear logic is NP-
complete, Technical report, University of Amsterdam. ITLI Prepubli-
cation Series X-91-13.

Kaplan, R. & Bresnan, J. (1982), Lexical-functional grammar. A formal system
for grammatical representation, in J. Bresnan, ed., ‘The Mental Repre-
sentation of Grammatical Relations’, MIT Press, pp. 173–281.

Karp, R. (1972), Reducibility among combinatorial problems, in R. Mille
& J. Thatcher, eds, ‘Complexity of Computer Computations’, Plenum
Press, New York, pp. 85–104.

Koroda, S.-Y. (1964), ‘Classes of languages and linear-bounded automata’,
Information and Control 7, 207–223.



Bibliography 243

Kurtonina, N. (1995), Frames and Labels. A Modal Analysis of Categorial
Inference, PhD thesis, OTS Utrecht, ILLC Amsterdam.

Kurtonina, N. & Moortgat, M. (1997), Structural control, in P. Blackburn
& M. de Rijke, eds, ‘Specifying Syntactic Structures’, CSLI, Stanford,
pp. 75–113.

Lafont, Y. (1995), From proof nets to interaction nets, in J.-Y. Girard, Y. Lafont
& L. Regnier, eds, ‘Advances in Linear Logic’, Cambridge University
Press, pp. 225–247.

Lamarche, F. (1994), Proof nets for intuitionistic linear logic I: Essential nets,
Technical report, Imperial College.

Lamarche, F. & Retoré, C. (1996), Proof nets for the lambek calculus — an
overview, in V. M. Abrusci & C. Casadio, eds, ‘Proofs and Linguistic
Categories’, CLUEB, Bologna, pp. 241–262.

Lambek, J. (1958), ‘The mathematics of sentence structure’, American Mathe-
matical Monthly 65, 154–170.

Lambek, J. (1961), On the calculus of syntactic types, in R. Jacobson, ed.,
‘Structure of Language and its Mathematical Aspects, Proceedings of
the Symposia in Applied Mathematics’, Vol. XII, American Mathemati-
cal Society, pp. 166–178.

Lecomte, A. & Retoré, C. (1998), Words as modules: a lexicalised grammar in
the framework of linear logic proof nets, in C. Martin-Vide, ed., ‘Math-
ematical and Computational Analysis of natural Language’, Vol. 45 of
Studies in Functional and Structural Linguistics, John Benjamins, pp. 129–
144. Selected papers of ICML’96.

Lincoln, P. (1995), Deciding provability of linear logic formulas, in J.-Y. Gi-
rard, Y. Lafont & L. Regnier, eds, ‘Advances in Linear Logic’, Cambridge
University Press, pp. 109–122.

Lincoln, P., Mitchell, J., Scedrov, A. & Shankar, N. (1990), Decision problems
in linear logic, in ‘Proceedings of the 31st Annual Symposium on Foun-
dations of Computer Science’, IEEE Computer Society Press, pp. 662–
671.

Montague, R. (1974), The proper treatment of quantification in ordinary
English, in R. Thomason, ed., ‘Formal Philosophy. Selected Papers of
Richard Montague’, Yale University Press, New Haven.

Moortgat, M. (1990), Unambiguous proof representations for the Lambek cal-
culus, in ‘Proceedings 7th Amsterdam Colloquium’.

Moortgat, M. (1996a), In situ binding: A modal analysis, in P. Dekker &
M. Stokhof, eds, ‘Proceedings 10th Amsterdam Colloquium’, ILLC, Am-
sterdam, pp. 539–549.



244 Bibliography

Moortgat, M. (1996b), ‘Multimodal linguistic inference’, Journal of Logic, Lan-
guage and Information 5(3–4), 349–385.

Moortgat, M. (1997), Categorial type logics, in J. van Benthem & A. ter
Meulen, eds, ‘Handbook of Logic and Language’, Elsevier/MIT Press,
chapter 2.

Moortgat, M. (1999), Constants of grammatical reasoning, in G. Bouma,
E. Hinrichs, G.-J. Kruijff & R. T. Oehrle, eds, ‘Constraints and Resources
in Natural Language Syntax and Semantics’, CSLI, Stanford, pp. 195–
219.

Moortgat, M. & Oehrle, R. T. (1993), ‘Logical parameters and linguistic vari-
ation. Lecture notes on categorial grammar’. Fifth European Summer
School in Logic, Language and Information, Lisbon.

Moortgat, M. & Oehrle, R. T. (1994), Adjacency, dependency and order, in
‘Proceedings 9th Amsterdam Colloquium’, pp. 447–466.

Moot, R. & Piazza, M. (2001), ‘Linguistic applications of first order mul-
tiplicative linear logic’, Journal of Logic, Language and Information
10(2), 211–232.

Moot, R. & Puite, Q. (1999), Proof nets for multimodal categorial grammars,
in G.-J. M. Kruijff & R. T. Oehrle, eds, ‘Proceedings of Formal Grammar
1999’, pp. 103–114.

Moot, R. & Puite, Q. (2001), Proof nets for the multimodal Lambek calculus,
in W. Buszkowski & M. Moortgat, eds, ‘Studia Logica’, Kluwer Aca-
demic Publishers. Special Issue Dedicated to Joachim Lambek.

Morrill, G. (1994), Type Logical Grammar, Kluwer Academic Publishers, Dor-
drecht.

Morrill, G. (1995), Clausal proofs and discontinuity, in R. Kempson, ed., ‘Bul-
letin of the IGPL 3(2,3)’, IGPL, pp. 403–417. Special Issue on Deduction
and Language.

Morrill, G. (1998), Incremental processing and acceptability, Technical Report
LSI–98–46–R, Departament de Llenguatges i Sistemes Informàtics, Uni-
versitat Politècnica de Catalunya.

Morrill, G. (1999), Relational interpretation and linguistic form, in V. M. Abr-
usci & C. Casadio, eds, ‘Dynamic Perspectives in Logic and Linguistics’,
Bulzoni Editore, Roma.

Morrill, G. (2000), Type-logical anaphora, Technical Report LSI–00–77–
R, Departament de Llenguatges i Sistemes Informàtics, Universitat
Politècnica de Catalunya.



Bibliography 245

Morrill, G., Leslie, N., Hepple, M. & Barry, G. (1990), Categorial deductions
and structural operations, in G. Barry & G. Morrill, eds, ‘Studies in Cate-
gorial Grammar’, Vol. 5 of Edinburgh Working Papers in Cognitive Science,
Centre for Cognitive Science, pp. 1–21.

Murawski, A. S. & Ong, C.-H. L. (2000), Dominator trees and fast verification
of proof nets, in ‘Logic in Computer Science’, pp. 181–191.

Muskens, R. (1994), Categorial grammar and discourse representation the-
ory, in ‘Proceedings COLING 94’, Kyoto, pp. 508–514.

Oehrle, R. T. (1994), ‘Term-labeled categorial type systems’, Linguistics & Phi-
losophy 17(6), 633–678.

Pareschi, R. (1988), A definite clause version of categorial grammar, in ‘Pro-
ceedings of the 26th Annual Meeting of the Association for Computa-
tional Linguistics’, pp. 270–277.

Pentus, M. (1995), Lambek grammars are context free, in ‘Proceedings of the
Eighth Annual IEEE Symposium on Logic in Computer Science’, Mon-
treal, Canada, pp. 429–433.

Pentus, M. (1997), ‘Product-free Lambek calculus and context-free gram-
mars’, Journal of Symbolic Logic 62, 648–660.

Pereira, F. & Shieber, S. (1987), Prolog and Natural Language Analysis, CSLI,
Stanford.

Pereira, F. & Warren, D. (1980), ‘Definite clause grammars for language anal-
ysis. A survey of the formalism and a comparison with augmented tran-
sition networks’, Artificial Intelligence 13, 231–278.

Pereira, F. & Warren, D. (1983), Parsing as deduction, in ‘21st Annual Meet-
ing of the Association for Computational Linguistics’, Cambridge, Mas-
sachusetts, pp. 137–144.

Perrier, G. (1999), ‘A PSPACE-complete fragment of second order linear
logic’, Theoretical Computer Science 222(1–2), 267–289.

Pollard, C. & Sag, I. (1994), Head-Driven Phrase Structure Grammar, CSLI,
Chicago.

Puite, Q. (1998), Proof nets with explicit negation for multiplicative linear
logic, Technical report, Department of Mathematics, Utrecht University.
Preprint 1079.

Puite, Q. (2001), Sequents and Link Graphs: Contraction Criteria for Refine-
ments of Multiplicative Linear Logic, PhD thesis, Department of Math-
ematics, Utrecht University.

Puite, Q. & Moot, R. (1999), Proof nets for the multimodal Lambek calculus,
Technical Report 1096, Department of Mathematics, Utrecht University.



246 Bibliography

Rambow, O. (1994), Formal and Computational Aspects of Natural Language
Syntax, PhD thesis, University of Pennsylvania.

Roorda, D. (1991), Resource Logics: A Proof-theoretical Study, PhD thesis,
University of Amsterdam.

Schabes, Y. & Joshi, A. (1988), An Earley-type parsing algorithm for tree
adjoining grammars, in ‘26th Meeting of the Association for Compu-
tational Linguistics’, ACL.

Schabes, Y. & Vijay-Shanker, K. (1990), Deterministic left to right parsing of
tree adjoining languages, in ‘28th Annual Meeting of the Association for
Computational Linguistics’, ACL, pp. 276–283.

Seki, H., Matsumura, T., Fujii, M. & Kasami, T. (1991), ‘On multiple context-
free grammars’, Theoretical Computer Science 88, 191–229.

Shieber, S., Schabes, Y. & Pereira, F. (1995), ‘Principles and implementation
of deductive parsing’, Journal of Logic Programming 1–2(24), 3–36.

Stabler, E. (1997), Derivational minimalism, in A. Lecomte, ed., ‘LACL97’,
Vol. 1582 of Lecture Notes in Computer Science, Springer.

Tärnlund, S.-A. (1977), ‘Horn clause computability’, BIT 2, 215–226.

Troelstra, A. S. (1992), Lectures on Linear Logic, CSLI Lecture Notes 29, Center
for the Study of Language and Information, Stanford, California.

van Benthem, J. (1986), Categorial grammar, in ‘Essays in Logical Semantics’,
Reidel, Dordrecht, chapter 7, pp. 123–150.

van Benthem, J. (1987), Categorial grammar and lambda calculus, in D. Sko-
rdev, ed., ‘Mathematical Logic and Its Applications’, Plenum Press,
New York, pp. 39–60.

van Benthem, J. (1995), Language in Action: Categories, Lambdas and Dynamic
Logic, MIT Press, Cambridge, Massachusetts.

Versmissen, K. (1996), Grammatical Composition: Modes, Models, Modal-
ities, PhD thesis, Research Institute for Language and Speech, Utrecht
University.

Vijay-Shanker, K. & Joshi, A. (1985), Some computational properties of tree
adjoining grammars, in ‘23th Meeting of the Association for Computa-
tional Linguistics’, ACL, pp. 82–93.

Weir, D. (1988), Characterizing Mildly Context Sensitive Grammar For-
malisms, PhD thesis, University of Pennsylvania.



INDEX

Symbols
(.)⊥ . . . . . . . . . . . see negation, linear
? . . . . . . . . . . . . . . . . . . . . . see why not
& . . . . . . . . . . . . . . . . . . . . . . . . see with
! . . . . . . . . . . . . . . . . . . . . . . . . . see bang
−◦ . . . . . . . . . .see implication, linear
⊕ . . . . . . . . . . . . . . . . . . . . . . . . see plus
⊗ . . . . . . . . . . . . . . . . . . . . . . see tensor&

. . . . . . . . . . . . . . . . . . . . . . . . . see par

A
AB . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
abstract proof structure. .see proof

structure, abstract
additives . . . . . . . . . . . . . . . . . . . . 8–10

linguistic applications . 21–23
sequent rules . . . . . . . . . . . . . . . 9

adjunction. . . . . . . . . . . . . . . . . . . .175
null . . . . . . . . . . . . . . . . . 193, 195
obligatory . . . . . . . . . . . 193–194
selective . . . . . . . . . . . . .193–195

ambiguity
derivational . . . . . . . . . . . . . . . 50
lexical . . . . . . . . . . . . . . . . . . . . 21
spurious . . . . . . . . . . . . . . . . . . 50

aps . . . see proof structure, abstract
associativity . . see structural rules,

associativity
automated deduction 89, 133–151,

203
automated theorem proving . . . see

automated deduction

B
bang . . . . . . . . . . . . . . . . . . . . . . . . . . 10
block . . . . . . . . . . . . . . . . . . . . 121–122
bottom up . . . . . . . . . . . . . . . . . . . . 166

C
comb . . . . . . . . . . . . . . . . . . . . . . . . . 126
commutativitysee structural rules,

commutativity
compilation . . . . . . . . . . . . . . . . . . 135
completeness . . . . . . . . . . . . . . . . 1, 46
complexity

linear logic . . . . . . . . . . . . 28–29
multimodal Lambek calculus

153–172
component . . . . . 119–121, 141–145

active . . . . . . . . . . . . . . . . . . . . 141
completed . . . . . . . . . . . . . . . 143
waiting . . . . . . . . . . . . . . . . . . 141

conclusion . . . . . . . . . . . . . . . . 53, 107
confluence . . . . . . . . . . . . . . . . . . . . .62
consistency . . . . . . . 1, 11–13, 20, 32
constraint programming . . . . . . 136
contraction . . . see structural rules,

contraction
graph . . . . . . . . . 61–63, 111, 201

conversion . . . . . . . . . . . . . . . . . . . . 19
graph. . . . . . . . . . . . . . . .111–112
structural . . . . . . . . . . . . 111–112

correction graph . . . . . . 53, 127, 138
first order multiplicative linear

logic . . . . . . . . . . . . . . 72–73



248 Index

count check . . . . . . . . . . . . . . . . . . 136
Curry-Howard homomorphism43
Curry-Howard isomorphism . 17–

20, 26–27
cut elimination 8, 11–13, 32, 58–61,

71, 119–122

D
de Morgan laws 8, 14, 66, 100–101
definite clause . . . . . . . . . . . . . . . . . 74
definite clause grammar . . . . 2, 172
derivation

TAG . . . . . . . . . . . . . . . . . . . . . 176
difference list . . . . . . . . . . . . . . . . . . 74
discourse representation theory26
divide and conquer . . . . . . . . . . . 136

E
early failure. . . . .136, 139, 143, 236
ellipsis . . . . . . . . . . . . . . . . . . . . . . . . 25
essential net . . . see graph,dynamic
eta expanded . . . . . . . . . . . . . 58, 133
evaluation

eager . . . . . . . . . . . . . . . . 143, 146
lazy . . . . . . . . . . . . . . . . . 143, 237

exponentials . . . . . . . . . . . . . . . 10–11
linguistic applications . 23–24
sequent rules. . . . . . . . . . . . . .10

EXPSPACE . . . . . . . . . . . . . . . . . . . . 28

F
features . . . . . . . . . . . . . . . . .22–24, 40
focusing . . . . . . . . . . . . . . . . . 144–145
foot . . . . . . . . . . . . . . . . . . . . . . . . . . 174
formula

axiomatic . . . . . . . . . . . . . . . . 108
cut . . . . . . . . . . . . . . . . . . . . . . . 108
flow . . . . . . . . . . . . . . . . . 108, 181
multimodal . . . . . . . . . . . . 35, 39
tensor only . . . . . . . . . . . . . . 178

G
grail . . . . . . . . . . . . . . . . . . . . . 203–238

download . . . . . . . . . . . . . . . 204
lexicon . . . . . 204–210, 229–233
license . . . . . . . . . . . . . . . . . . . 204
postulates . . 217–221, 233–236

reference guide . . . . . . 221–238
tutorial . . . . . . . . . . . . . . 204–221

grammar
context free . . . . . . . . . .154, 174
context sensitive . . . . . . . . . 156
lexicalized . . . . . . . . . . . . . . . 157
type 0 . . . . . . . . . . . . . . . 166–172

ε free . . . . . . . . . . . . . . . . . . 167
type 1 . . see grammar, context

sensitive
graph

dynamic . . . . . . . . . . . . . . . 94–97
correct . . . . . . . . . . . . . . . . . . 94

graph contraction . see contraction,
graph

H
HPSG . . . . . . . . . . . . . . . . . . . . . . . . 172
hypothesis . . . . . . . . . . . . . . . . 57, 107
hypothesis comb . . . . 127–128, 145
hypothesis tree . . . . . . . . . . . 110–111

I
implication

linear . . . . . . 9, 20, 21, 101–102
index . . . . . . . . . . . . . . . . . . . see mode

K
Kripke frame. . . . . . . . . . . . . .45, 149

L
L see Lambek calculus, associative
label conversion

logical . . . . . . . . . . . . . . . . . . . . 97
structural . . . . . . . . . . . . . . . . . 96

labeled deduction . . . . . 89–98, 201
Lambek calculus . . . . . . . . . . . 31–46

associative . . . . . 31–33, 73–76,
124–128

multimodal . . . . . . . . . . . . 35–46
non-associative . 33–34, 77–79
non-associative with permuta-

tion . . . . . . . . . . . . . . . . . . 34,
79

with empty antecedent . . . . 66
with permutation . . . . . 26, 34,

76–77



Index 249

lexical rules . . . . . . . . . . . . . . . . . . . . . 2
LFG . . . . . . . . . . . . . . . . . . . . . . . . . . 172
linear logic . . . . . . . . see logic,linear
link . . . . . . . . . . . . . . . . . . . . . . . . . . 107

definition . . . . . . . . . . . . . . . . 107
Lambek calculus . . . . . . . . . . 67
MILL . . . . . . . . . . . . . . . . . . . . . 65
MILL1 . . . . . . . . . . . . . . . . . . . . 71
MLL . . . . . . . . . . . . . . . . . . . . . . 52
NL3R . . . . . . . . . . . . . . . . . . . 108
par

active . . . . . . . . . . . . . . . . . .141
consecutive . . . . . . . . . . . . 144
waiting . . . . . . . . . . . . . . . . 141

link graph . . . . . . . . . . . . . . . . . . . . 129
literal selection . . . . . . . . . . . . . . . 141
locality constraints . . . . . . . . . . . . 86
logic

classical . . . . . . . . . . . . . . . . . . . . 7
intensional . . . . . . . . . . . . . . . . 26
intuitionistic . . . . . . . . . . . 15, 17
linear . . . . . . . . . . . . . . . . . . . 7–29

complexity . see complexity,
linear logic

cyclic . . . . . . . . . . . . . . 65, 166
fragments . . . . . . . . . . . 13–14
intuitionistic . . . . . . . . 14–20
linguistic applications . 20–

27
non-commutative . . . . . . . 65

modal . . . . . . . . . . . . . . 38, 39, 45
S4 . . . . . . . . . . . . . . . . . . . 10, 38

long distance dependencies . . . . 21

M
mode . . . . . . . . . . . . . . . . . . . . . . . . . . 35

continuous . . . . . . . . . . 145, 237
external . . . . . . . . .134, 184, 236
internal . . . . . . . . . . . . . 134, 236
transparent . . . . . . . . . . . . . . 237

model theory . . . . . . . . . . 45–46, 149
module . . . . . . . . . . . . . . . . . . 180, 182
multiplicatives . . . . . . . . . . . . . . . 8–9

linguistic applications . 20–21
sequent rules . . . . . . . . . . . . . . . 9

N
natural deduction

Lambek calculus . . . . . . .42–45
linear logic . . . . . . . . . . . . 15–20

negation
linear . . . . . . . . . . 8, 66, 100–101

NEXPTIME. . . . . . . . . . . . . . . . . . . .28
NL . . . . . . . . . . . . . . . . . . . see Lambek

calculus,non-associative
NL3R . . . . . . see Lambek calculus,

multimodal
NL3R+ . . . . . . . . . . . . . . . . . . . . . . 166
NL3R− . . . . . . . . . . . . . . . . . . 155–166
NLR . . . . . . . . see Lambek calculus,

multimodal
normal form . . . . . . . . . . . . . . . . . . . 20
NP . . . . . . . . . . . . 28, 69, 71, 154, 197

P
par . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 21
parallel computation . . . . . . . . . 136
parasitic gapping. . . . . . . . . . .25, 28
parsing as deduction. . . . . . . . . . . .2
partial execution . . . . . . . . . . . . . 135
Petri nets . . . . . . . . . . . . . . . . . . . . . . 28
pied piping . . . . . . . . . . . . . . . . . . . . 85
plus. . . . . . . . . . . . . . . . . . . . . . .8, 9, 22
polymorphism . . . . . . . . . . . . . 24, 28
pro drop. . . . . . . . . . . . . . . . . . . . . . .23
processing. . . . . . . . . . . . . . . . . . . .141
Prolog . . . . . . . . . . . . . . . . . . . . . 2, 203
proof net . . . . . . . . . . . . . . . . . . 49–199

first order multiplicative linear
logic . . . . . . . . . . . . . . 69–87

inductive definition . . . . . . . 50
multiplicative intuitionistic li-

near logic . . . . . . . . . 63–65
multiplicative linear logic 49–

68
non-commutative . . . . . .65–68
two sided . . . . . . . . . . . . 99–129

proof structure . . . . . . . . . . . . . . . . 52
abstract . . . . . . . . . . . . . 109–112

auxiliary. . . . . . . . . . . . . . .185
initial . . . . . . . . . . . . . . . . . .185
saturated . . . . . . . . . . . . . . 185
unsaturated . . . . . . . . . . . 185



250 Index

first order multiplicative linear
logic . . . . . . . . . . . . . . 71–72

two sided . . . . . . . . . . . 107–109
proof tree

partial . . . . . . . . . . . . . . . . . . . 173
PSPACE . . . . . . . . . . . . . . 28, 155, 166
psycholinguistics . . . . . . . . . . . . . 141

Q
quantifiers . . . . . . . . . . . . . . . . . . . . . 11

first order
sequent rules . . . . . . . . . . . 11

generalized . . . 26, 81–83, 208,
210

linguistic applications . 24–25,
80–86

second order
sequent rules . . . . . . . . . . . 11

R
reduction . . . . . . . . . . . . . . . . . . . . . . 19
resolution . . . . . . . . . . . . . . . . . . . . 141

S
S4 . . . . . . . . . . . . . see logic,modal,S4
semantics

model theoretic . . . . see model
theory

natural language26–27, 42–45
shortest move . . . . . . . . . . . . . . . . 135
soundness . . . . . . . . . . . . . . . . . . .1, 46
spine . . . . . . . . . . . . . . . . . . . . . . . . . 174
structural label . . . . 91, 93, 122–124

normal . . . . . . . . . . . . . . . . . . . .97
reducible. . . . . . . . . . . . . . . . . .97

structural rules
associativity . . . . . . . . . . . . . . 26
classical logic . . . . . . . . . . . . . . 7
commutativity . . . . . . . . . . . . 25
contraction . . . . . . . . . . . . . 7, 25
linear . . . . . . . . . . . . . . . . . . . . . 35
linear logic . . . . . . . . . . . . . . . . 10

linguistic applications . 25–
26

multimodal Lambek calculus
35–37

non-expanding . . . . . . . . . . 155

weak Sahlqvist . . . . . . . . 45–46
weakening . . . . . . . . . . . . . . . . . 7

structural variable . . . . . . . . . .90, 93
subformula property. . . .13, 20, 32
subject extraction . . . . . . . . . . . . . . 23
substitution . . . . . . . . . . . . . . . . . . 175
switching . . . . . . . . 53, 127, 138, 201
syntax-semantics interfacesee Cur-

ry-Howard isomorphism

T
TclTk . . . . . . . . . . . . . . . . . . . . . . . . . 203
tensor . . . . . . . . . . . . . . . . . . . 8, 13, 21
top down. . . . . . . . . . . . . . . . . . . . .166
tree

auxiliary . . . . . . . . . . . . . . . . . 174
derived . . . . . . . . . . . . . . . . . . 174
elementary . . . . . . . . . . . . . . 174
initial . . . . . . . . . . . . . . . . . . . . 174

tree adjoining grammars . 173–199
adjoining constraints 193–195
definition . . . . . . . . . . . . . . . . 174
lexicalized. . . . . . . . . . .173–199
multi component . . . . 196–199
simultaneous . . . . . . . . . . . . 196

U
units

additive
sequent rules . . . . . . . . . . . . 9

linguistic applications . . . . . 23
multiplicative

sequent rules . . . . . . . . . . . . 9

V
verb raising . . . . . . . . . . . . . . . . 37, 41

W
weakening. . . .see structural rules,

weakening
wh extraction . . . . . . . . . . . . 104–106
why not . . . . . . . . . . . . . . . . . . . . . . . 10
with . . . . . . . . . . . . . . . . . . . . . 9, 17, 22



SAMENVATTING IN HET NEDERLANDS

I N deze dissertatie worden verschillende taalkundige toepassingen van
bewijsnetten onderzocht. Bewijsnetten zijn geı̈ntroduceerd voor lineaire

logica door Girard (1987). In tegenstelling tot andere bewijssystemen, zoals
natuurlijke deductie en sequentencalculus, hebben ze het voordeel dat ze vrij
zijn van redundantie, met andere woorden, bewijsnetten abstraheren over de
volgorde van regelapplicaties waar deze irrelevant zijn. Behalve dat dit con-
ceptueel aantrekkelijk is, geeft dit ook computationele voordelen aangezien
we de verschillende bewijzen voor een stelling elk maar één keer vinden.

Hoewel bewijsnetten voor lineaire logica al een tijd bestaan, was er voor
de multimodale Lambek calculus NL3R van Moortgat (1997) nog geen be-
wijsnetcalculus die bewijsbaar correct en volledig was. In hoofstuk 7 van
dit proefschrift geven we een correcte en volledige bewijsnet calculus voor
NL3R en onderzoeken we de practische en computationele implicaties van
deze calculus.

Dit proefschrift is opgedeeld in drie delen.
Het eerste deel van dit boek bestaat uit een inleiding in lineaire logica en

Lambek calculi en geeft de lezer een beknopt overzicht van deze logica’s en
hun gebruik voor natuurlijke taalanalyse.

Het tweede deel behandelt de taalkundige toepassingen van bewijsnetten
voor verschillende logica’s.

Allereerst introduceren we bewijsnetten voor MLL, het multiplicatieve
fragment van lineaire logica in hoofdstuk 4, en schetsen we het bewijs van
correctheid voor dit systeem. We laten ook zien hoe we het intuı̈tionistis-
che en het noncommutatieve fragment verkrijgen door een restrictie op de
vorm van de formules en door een restrictie tot planaire verbindingen re-
spectievelijk.

In hoofdstuk 5 geven we taalkundige toepassingen van bewijsnetten voor
het eerste orde multiplicatieve fragment van lineaire logica (Girard 1991),



252 Samenvatting in het Nederlands

allereerst door een inbeddingsstelling van de Lambek calculus te bewijzen
en in de tweede plaats door aan te tonen hoe verschijnselen die problema-
tisch zijn voor de standaard Lambek calculus eenvoudig behandeld kunnen
worden in het eerste orde fragment.

Hoofdstuk 6 laat zien hoe labeling, zoals geı̈ntroduceerd door Moortgat
(1997), ons een methode geeft om de bewijsnetten voor lineaire logica van
term labels te voorzien en zo, via condities op die term labels, een bewijsnet-
calculus voor de multimodale Lambek calculus te krijgen. Nadeel van deze
methode is echter het ontbreken van een correct- en volledigheidsstelling.

In hoofdstuk 7 gebruiken passen we de twee-zijdige bewijsnetcalculus
van Puite (1998) aan om zo een twee-zijdige bewijsnetcalculus voor de mul-
timodale Lambek calculus te formuleren, met een correctie criterium in de
stijl van Danos’s (1990) contractie criterium. We bewijzen correctheid en
volledigheid van deze calculus met betrekken tot de sequenten formulering,
geven een bewijs van snede eliminatie voor deze bewijsnetten en wijzen op
de relatie met de gelabelde calculus uit hoofdstuk 6.

In het derde deel onderzoeken we computationele aspecten van de be-
wijsnetten voor NL3R, zoals geı̈ntroduceerd in hoofstuk 7, en relateren we
deze bewijsnetten aan andere formele grammatica’s.

Hoofdstuk 8 geeft een algoritme voor automatische deductie dat gebruik
maakt van bewijsnetten en suggereert verschillende strategieën om de ef-
ficiëntie van dit algoritme te verbeteren. Veel van deze verbeteringen wor-
den ook in de in de appendix beschreven stellingsbewijzer toegepast.

Hoodstuk 9 geeft een complexiteitsanalyse van het zoekprobleem naar
bewijsnetten voor een gegeven stelling in NL3R en laat zien dat dit prob-
leem equivalent is aan het beslissingsprobleem voor context gevoelige gram-
matica’s, om daarmee een PSPACE complexiteitsresultaat te geven.

In hoodstuk 10 laten we zien hoe de bewijsnetten uit hoofdstuk 7 gere-
lateerd zijn aan LTAGs, een grammaticaformalisme geı̈ntroduced door Joshi
et al. (1975), door een fragment van NL3R te geven dat equivalent is aan een
LTAG grammatica. Een interessant gevolg van deze vertaalslag is dat dit ons
een fragment van NL3R geeft dat in polynomiale tijd beslisbaar is.

De appendix, tenslotte, introduceert de Grail automatische stellingsbewi-
jzer, een practische applicatie voor het ontwikkelen van grammatica’s voor
NL3R die als onderdeel van dit onderzoek geschreven is.



CURRICULUM VITAE

I was born on Christmas Eve of 1972 in Alkmaar, the Netherlands.
From 1985 to 1991 I studied VWO at the ‘Bonhoeffer College’ in Cas-

tricum.
Starting in 1991, I studied Cognitive Science and Artificial Intelligence

at Utrecht University, specializing in Computational Linguistics and Logic,
graduating on 27 September 1996 and writing a master’s thesis ‘Proof Nets
and Labeling for Categorial Grammar Logics’ under supervision of Michael
Moortgat.

From 1997 to 2001, I was a PhD student at the Utrecht Intitute of Linguis-
tics OTS, researching the linguistic and computational applications of proof
nets for Lambek calculi, again under the supervision of Michael Moortgat,
resulting in this PhD thesis.

In addition to my work as a PhD student, I was editor of the Colibri elec-
tronic newsletter, junior lecturer teaching the course ‘Logic Programming
and Natural Language Analysis’ and researcher working on annotation tools
for the syntactic annotation part of the ‘Corpus Gesproken Nederlands’, a 10
million word corpus of spoken Dutch funded by NWO and Nederlandse
Taalunie.


