
Proof Nets for Display Logic

Richard Moot

July 6, 2007

1 Introduction

Moot & Puite (2002) have introduced proof nets for the multimodal Lambek
calculus NL3R. Since then, numerous other connectives have been proposed
to deal with different linguistic phenomena, a par — or co-tensor, as some au-
thors prefer to call it — together with the corresponding co-implication (Lambek
1993, Moortgat 2007, Bernardi & Moortgat 2007), Galois and dual-Galois con-
nectives (Areces, Bernardi & Moortgat 2001).

We can incorporate these extensions (as well as a few others) into the proof
net calculus by simply dropping the restriction that sequents are trees with a
unique root node and obtain what are, in effect, proof nets for display logic
(Goré 1998). The notion of contraction generalizes to these new connectives
without complications.

Like for the Lambek calculus, proof nets for display logic have the advan-
tage of collapsing proofs which differ only for trivial reasons. The display rules
in particular are compiled away in the proof net representation.

2 Proof Nets

Proof nets are an optimal representation for proofs of linear logic introduced
by Girard (1987).

2.1 Links and Proof Structures

Definition 1 A link, as defined by Moot & Puite (2002)1, is a tuple 〈τ, P, Q, m〉
where

• τ , the type of the link, is either ⊗ or

&

,

• P is a list of premisses A1, . . . , An,

1Some of the details are slightly different: the rule name ν has been suppressed since we need
only the mode part of it and the subsequences p and q have been replaced by the main formula
argument m

1

• Q is a list of conclusions B1, . . . , Bm,

• m, the main formula of the link, is either ǫ or a member of P ∪Q.

If m = ǫ then we will call the link neutral, if it is a member of P we will call the
link a left link and if it is a member of Q we will call it a right link.

We draw links as shown below, with the premisses from left to right above
the link and the conclusions below it.

B1 Bm

A1 An

· · ·

· · ·

Visually, we distinguish between tensor links — which we draw with a
white circle at the interior — and par links — which are drawn with a black
circle. Finally, unless m = ǫ we denote the main formula of the link by drawing
an arrow from the center of the link to this formula. In this case, we will refer
to the other formulas as the active formulas of the link.

This definition of link allows us to create quite a number of links in addition
to the ones given in that article. The links there were all possible unary and
binary links given the assumption of a unique conclusion for every tensor link.
Once we drop this constraint, different types of link become possible.

Figure 1 gives an overview of the 9 different forms of tensor links of arity
2 or less (2 nullary, 3 unary and 4 binary), together wit the logical connectives
associated with their different ports for a total of 2 nullary, 6 unary and 12
binary connectives.

Note that — as displayed in the figure — none of the tensor links have
a main formula according to Definition 1. However, in case we need to find
the main and active formulas of a link, we can do so by simply inspecting the
formulas assigned to the different ports.

Corresponding to each tensor link is one par link which is a ‘mirror image’
of the corresponding tensor link as shown in Figure 2

If we want to make more distinctions, we can use modes — as is usual
in multimodel categorial grammar (Moortgat 1997) — as we did in (Moot &
Puite 2002) for NL3R and write the mode in the circle of the link. To somewhat
reduce the (already extensive) vocabulary, we will not talk about modes in this
article, but the current approach can be extended to incorporate them without
problems. Adding them would just amount to inserting mode information in
all tensor and par links and demanding identity between the two modes to
allow a contraction.

Definition 2 A proof structure 〈S,L〉 is a finite set of formulas S together with a
set of links L as shown in Figures 1 and 2 such that.

• every formula of S is at most once the premiss of a link.

2

Binary

B ց C CB A BA ↓ B A Aւ CC

A B

A⊗B

C◦−B B

C

A A−◦C

C

A B

A

&

B

C " B B

C

A A # C

C

B ր C CB A BA ↑ B A Aտ CC

Unary

2A

A

A

3A

⊥A A A A⊥

1A A A A1

Nullary

⊥

1

Figure 1: All tensor links of arity 2 or less

• every formula of S is at most once the conclusion of a link.

Formulas which are not the conclusion of any link are the hypotheses H of the
proof structures, whereas the formulas which are not the premiss of any link are the it
conclusions C.

Readers familiar with proof nets from linear logic will note the absence or
cut and axiom links. We have axiom and cut formulas instead.

Definition 3 An axiom formula is a formula which is not the main formula of any
link. A cut formula is a formula which is the main formula of two links.

Figure 3 shows the proof structure for (⊥ ◦−A)−◦ ⊥⊢ A on the left. The A
formula is the only axiom in the structure.

There are some differences in the notation of other authors. It is closest
to display logic, with

&

taking the place of ⊕ and ⊥ taking the place of 0,
much in the spirit of the connectives from linear logic. The symbols for the two
implications " and # have been chosen to remind us they are the residuals of&

. Table 7 gives an overview of the logical symbols used and the corresponding
logical symbols in various other logics.

2.2 Abstract Proof Structures

From a proof structure we obtain an abstract proof structure simply by erasing
all formulas on the internal nodes. We only keep the formulas on the premisses

3

Binary

B ր C CB A CA ↑ B A Aտ CC

A B

A⊗B

C◦−B B

C

A A−◦C

C

A B

A

&

B

C " B B

C

A A # C

C

B ց C CB A BA ↓ B A Aւ CC

Unary

A

2A

3A

A

1A A A A1

⊥A A A A⊥

Nullary

⊥

1

Figure 2: All par links of arity 2 or less

⊥ ◦−A A

⊥

(⊥ ◦−A)−◦ ⊥

⊥

�

� �

A

�

�
(⊥◦−A)−◦⊥

�

Figure 3: Proof structure and abstract proof structure

and conlusions of the proof structure, ie. just the leaves.

Definition 4 An abstract proof structure is a tuple 〈V,L, p, q〉 such that.

V is a finite set of vertices,

L is a set of links such that

4

• every vertex of V is at most once the premiss of a link,

• every vertex of V is at most once the conclusion of a link

p is a labelling function assigning a formula to the hypotheses of the abstract proof
structure, that is, to those formulas which are not the conclusion of any link,

q is a labelling function assigning a formula to the conclusions of the abstract proof
structure, that is, to those formulas which are not the premiss of any link.

We will draw the nodes of abstract proof structures as shown below

�
H

C

where H is the hypothesis assigned to this node and C is the conclusion as-
signed to it. Both H and C can be empty.

Figure 3 shows the abstract proof structure corresponding to the proof struc-
ture of (⊥ ◦−A)−◦ ⊥⊢ A on the right.

Definition 5 A tensor tree is an acyclic connected abstract proof structure contain-
ing only tensor links.

We say a tensor tree with hypotheses A1, . . . , An and conclusions B1, . . . , Bm

corresponds to A1, . . . , An ⊢ B1, . . . , Bm. However, in order to determine the
structure of the sequent to which a tensor tree corresponds, we first have to do
a bit of work.

2.3 Sequents and Tensor Trees

An advantage of the formulation of Moot & Puite (2002) was that, because of
the shape of the two tensor links we considered and because of the conditions
on proof structures, a tensor tree was a rooted tree. The new types of tensor
links do not preserve this property. Figure 4 shows an example.

Here, we have three premisses (A, B and C) and two conclusions (D and
E) but they are grouped in such a way that we cannot turn them into a sequent
A, B, C ⊢ D, E straightforwardly.

To solve this problem, we abolish the notion that the premisses of a sequent
are on the left hand side of the turnstile and the conclusions on the right hand
side. We simply split the tensor tree at an abritrary point and translate the two
trees we obtain into sequents in such a way that we can recover the original
tensor tree.

Figure 5 lists the structural connectives we need: 1 nullary, 3 unary and 6
binary. The structural connectives are essentially borrowed from display logic.

Definition 6 Let T be a tensor tree and x be a node on this tensor tree, the sequent
T (x) is defined as follows. We split T at x to obtain a tree T x

h which has x as a
hypothesis and a tree T x

c which has x as a conclusion. Without changing the shape of

5

�
A

�

�

E

� �

D

�

�
B

�
C

�

Figure 4: A tensor tree which is not rooted

Binary

A B

A ◦B

C < B A > C

C

A B

A ◦B

C < B A > C

C

� �♦

� �♦

Unary

〈B〉

〈A〉

B

A

⌊A⌋ ⌈B⌉

B A

⌊A⌋ ⌈B⌉

B A

Nullary

ǫ

ǫ

Figure 5: Information Flow

6

�
A

A > E

�

E

(B ◦ C) < D �

D

�
B

�
C

B ◦ C

Figure 6: Computing the flow

⌈Γ⌉ ⊢ ∆

⌊∆⌋ ⊢ Γ
[dgc]

Γ ⊢ ⌊∆⌋

∆ ⊢ ⌊Γ⌋
[gc]

〈Γ〉 ⊢ ∆

Γ ⊢ 〈∆〉
[rc]

Γ1 ⊢ ∆ < Γ2

Γ1 ◦ Γ2 ⊢ ∆
[rc]

Γ2 ⊢ Γ1 > ∆
[rc]

Γ < ∆2 ⊢ ∆1

Γ ⊢ ∆1 ◦ ∆2

[drc]

∆1 > Γ ⊢ ∆2

[drc]

∆ ⊲ Γ2 ⊢ Γ1

Γ1♦Γ2 ⊢ ∆
[dgc]

Γ1 ⊲ ∆ ⊢ Γ2

[dgc]

∆1 ⊢ Γ ⊳ ∆2

Γ ⊢ ∆1♦∆2

[gc]

∆2 ⊢ ∆1 ⊲ Γ
[gc]

Table 1: Sequent Rules — Display Rules

either of the trees, we will consider the two instances x as the root of their respective
trees and all other hypotheses and conclusions as its leaves. Moving from these leaves
towards x we use the flow of Figure 5 to compute a term Sc for T x

c and a term Sh for
T x

h . The final sequent T (x) is Sc ⊢ Sh.

Note that the tree upwards of the split point becomes the antecedent, while
the tree down from it becomes the succedent. Figure 6 shows an example of
computing the flow corresponding a split vertex.

We see that, depending on our choice of the ‘split point’ of the tensor tree,
Figure 4 corresponds to one of the following sequents, of which we computed
the second in Figure 6.

7

A ⊢ E < ((B ◦ C) < D)
(B ◦ C) < D ⊢ A > E
A ◦ ((B ◦ C) < D) ⊢ E
B ◦ C ⊢ (A > E) ◦D

B ⊢ ((A > E) ◦D) < C
C ⊢ B > ((A > E) ◦D)
(A > E) > (B ◦ C) ⊢ D

There is exactly one possible sequent for each vertex in the graph; this is no
coincidence as it corresponds to a ‘display property’ for each vertex. Note that
all of these sequents are interderivable thanks to the display rules of Table 1.
In the following, to make it easier to refer to each of the display rules, we will
write the two structural connectives between parentheses. For example, we
will write rc(<; >) for a replacement (from top to bottom) for a < structural
connective by a > structural connective.

Lemma 7 Let T be a tensor tree and x and y two nodes on this tree. Take s = T (x)
and s′ = T (y). s and s′ are equivalent up to the display rules.

Proof Induction on the length l of the unique path between x and y. In case
l = 0 then s and s′ are identical.

Suppose l > 0, induction hypothesis ... we essentially replace one structural
connective by another corresponding to either [rc], [drc], [gc] or [rc] ... 2

Lemma 8 If T is a tensor tree containing one or more links, then at least one of the
leaves of the corresponding proof structure (hypotheses and conclusions) is the main
formula of its link.

Proof Follow the arrows: start at an arbitrary link, if the main formula of this
link is not a leaf, then it must be the active formula of another link (if it would
be the main formula of another link, this other link is a par link, contradicting
that T is a tensor tree), etc. 2

2.4 Sequent Rules

In addition to the display rules, which allow us to turn any formula in the
sequent to either the complete left hand side or the complete right hand side of
a sequent, we have a left and right rule for each of the connectives.

Given this propery we can always assume — as shown by the rules in Ta-
bles 2 to 5 — that the context is on the other side of the sequent as the logical
connective we would want to treat. Apart from the binary galois and dual ga-
lois connectives, which I haven’t seen elsewhere, these rules are the same up to
notational choices as those of display logic.

8

ǫ ⊢ ∆
1 ⊢ ∆

[L1]
ǫ ⊢ 1

[R1]

⊥⊢ ǫ
[L ⊥] Γ ⊢ ǫ

Γ ⊢⊥
[R ⊥]

Table 2: Sequent Rules — Nullary Connectives

∆ ⊢ A

A⊥ ⊢ ⌈∆⌉
[L.⊥]

Γ ⊢ ⌈A⌉

Γ ⊢ A⊥
[R.⊥]

∆ ⊢ A
⊥A ⊢ ⌊∆⌋

[L⊥.]
Γ ⊢ ⌊A⌋

Γ ⊢ ⊥A
[R⊥.]

⌈A⌉ ⊢ ∆

A1 ⊢ ∆
[L.1]

A ⊢ Γ

⌈Γ⌉ ⊢ A1
[R.1]

⌊A⌋ ⊢ ∆
1A ⊢ ∆

[L1.]
A ⊢ Γ

⌊Γ⌋ ⊢ 1A
[R1.]

〈A〉 ⊢ ∆

3A ⊢ ∆
[L3]

Γ ⊢ A
〈Γ〉 ⊢ 3A

[R3]

A ⊢ ∆
2A ⊢ 〈∆〉

[L2]
Γ ⊢ 〈A〉

Γ ⊢ 2A
[R2]

Table 3: Sequent Rules — Unary Connectives

2.5 Contractions

A tensor and a par link contract when the tensor link is connected — respecting
up/down and left/right — to the par link at all its ports except the single main
port of the par link and the corresponding port of the tensor link. Note that the
nullary connectives satisfy this demand trivially.

The redex for all contraction is a single node as follows.

�
H

C

Both links and the internal nodes will be remove from the resulting graph
and the two exterior nodes will be merge, inheriting the hypothesis and con-
clusion label of the nodes in case either node is a hypothesis or conclusion of
the abstract proof structure.

Figure 7 shows the contractions for the binary residuated connectives−◦,⊗
and ◦−. These are extactly the contractions proposed for NL.

Figure 8 shows their duals: the contractions for #,

&

and ".
Figures 9 and 10 show the unary contractions for the Galois, residuated and

dual Galois connectives.

9

A ◦B ⊢ ∆
A⊗B ⊢ ∆

[L⊗]
Γ1 ⊢ A Γ2 ⊢ B

Γ1 ◦ Γ2 ⊢ A⊗B
[R⊗]

Γ ⊢ A B ⊢ ∆
A−◦B ⊢ Γ > ∆

[L−◦]
Γ ⊢ A > B
Γ ⊢ A−◦B

[R−◦]

A ⊢ ∆ Γ ⊢ B
A◦−B ⊢ ∆ < Γ

[L◦−]
Γ ⊢ A < B
Γ ⊢ A◦−B

[R◦−]

A ⊢ ∆1 B ⊢ ∆2

A

&

B ⊢ ∆1 ◦∆2
[L

&

] Γ ⊢ A ◦B
Γ ⊢ A

&

B
[R

&

]

A > B ⊢ ∆
A # B ⊢ ∆

[L #] A ⊢ ∆ Γ ⊢ B
∆ > Γ ⊢ A # B

[R #]

A < B ⊢ ∆
A " B ⊢ ∆

[L "] Γ ⊢ A B ⊢ ∆
Γ < ∆ ⊢ A " B

[R "]

Table 4: Sequent Rules — Binary Connectives

Γ1 ⊢ A Γ2 ⊢ B

A ↓ B ⊢ Γ1♦Γ2
[L ↓]

Γ ⊢ A♦B
Γ ⊢ A ↓ B

[R ↓]

Γ1 ⊢ A Γ2 ⊢ B

Aւ B ⊢ Γ1 ⊳ Γ2
[Lւ] Γ ⊢ A ⊳ B

Γ ⊢ Aւ B
[Rւ]

Γ1 ⊢ A Γ2 ⊢ B

Aց B ⊢ Γ1 ⊲ Γ2
[Lց] Γ ⊢ A ⊲ B

Γ ⊢ Aց B
[Rց]

A♦B ⊢ ∆
A ↑ B ⊢ ∆

[L ↑]
A ⊢ ∆1 B ⊢ ∆2

∆1♦∆2 ⊢ A ↑ B
[R ↑]

A ⊳ B ⊢ ∆
Aտ B ⊢ ∆

[Lտ]
A ⊢ ∆1 B ⊢ ∆2

∆1 ⊳ ∆2 ⊢ Aտ B
[Rտ]

A ⊲ B ⊢ ∆
Aր B ⊢ ∆

[Lր]
A ⊢ ∆1 B ⊢ ∆2

∆1 ⊲ ∆2 ⊢ Aտ B
[Rր]

Table 5: Sequent Rules — Binary Connectives (continued)

�

C

� �
H

�

�

C

� �

�
H

�

C

�
H

�

�

[R−◦] [L⊗] [R◦−]

Figure 7: Contractions: binary residuated

10

�
H

�

� �

C

� �

�
H

�

�

C

�
H

�

C

�

�

[L "] [R

&

] [L #]

Figure 8: Contractions: binary dual residuated

�

C

� �
H

�

C

�
H

�

�

C

�
H

�

[R.⊥] [L2] [R⊥.]

Figure 9: Contractions: unary 1

2.6 Structural Rules

We can extend the proof net as well as the sequent calculus with an arbitrary
number of structural conversions. A structural conversion in the proof net cal-

�
H

� �

C

�
H

�

�

C

�
H

�

C

�

[L.1] [R3] [L1.]

Figure 10: Contractions: unary 2

11

x1 . . . xn

y1 . . . ym

→Ξ Ξ′

xπ1
. . . xπn

yπ′

1
. . . yπ′

m

Figure 11: Schematic Form of a Structural Conversion

�

Y

�
X

� �

Y

�
X

��
X

Y

!Idr⊗ǫ !Idl⊗ǫ

�
X

�

Y

� �
X

�

Y

��
X

Y

!Idr

&

ǫ !Idl

&

ǫ

Figure 12: Identity rules for tensor and par

culus is simply a rewrite of one tensor tree into another in such a way that the
both trees have the same hypotheses and the same conclusions, though we are
allowed to change their order. Figure 11 shows the schematic form of a struc-
tural conversion. The x vertices are the n hypotheses of the conversion, the y
vertices the m conclusions and π (resp. π′) is a permutation of the hypotheses
(resp. the conclusions).

This restriction means the contraction and weakening rules are not allowed:
we operate essentially in a fragment of multiplicative linear logic (Girard 1987).

Figures 12 and 13 shows some well-known examples of valid structural
rules which don’t change the order of the hypotheses and premisses.

The structural rules of Figure 13 play a role similar to the mixed associativ-
ity rules in multimodal system. The corresponding mixed commutativity rules
are shown in Figure 14.

Given a structural conversion, what is the sequent rule which corresponds
to it? As shown by the following lemma, there are multiple equivalent possi-
bilities, depending on which of the leaves is displayed.

12

�

X

�

�
V

�
W

�

Y

→Gr1’

←Gr1

�

X

�

Y

�
V

�
W

�

→Gr3

←Gr3’

� �

Y

�
W

�
V

�

X

Figure 13: Grishin Rules: Mixed Associativity

�

X

�
W

�
V

�

Y

�

→Gr2’

←Gr2

�

X

�

Y

�
V

�
W

�

→Gr4

←Gr4’

�

Y

�
V

�
W

�

X

�

Figure 14: Grishin Rules: Mixed Commutativity

Definition 9 Let s be a structural conversion and l one of its leaves. s(l) will denote
the structural rule obtained by computing the flow according to Definition 6 with the
exception that every hypothesis leaf xi will correspond to a structural variable Γi and
every conclusion leaf yi to a structural variable ∆i.

For example, depending on whether we use hypothesis X or conclusion Y
to obtain a corresponding structural rule, we obtain either rule [Idr⊗ ǫ1] or rule
[Idr⊗ ǫ2].

Γ ◦ ǫ ⊢ ∆
Γ ⊢ ∆

[Idr⊗ ǫ1]
Γ ⊢ ∆ < ǫ

Γ ⊢ ∆
[Idr⊗ ǫ2]

Note that the two rules are equivalent.

Γ ⊢ ∆ < ǫ
Γ ◦ ǫ ⊢ ∆

[rc◦ <]

Γ ⊢ ∆
[Idr⊗ ǫ1]

Γ ◦ ǫ ⊢ ∆
Γ ⊢ ∆ < ǫ

[rc < ◦]

Γ ⊢ ∆
[Idr⊗ ǫ2]

Lemma 10 Let l1 and l2 be two distinct leaves of a structural conversion s. Then the
structural rules s(l1) and s(l2) are interderivable using only the other rule and the
display rules.

13

�

� �

�

�
(⊥◦−A)−◦⊥

�

�

A

�

�

�

�

�

�
(⊥◦−A)−◦⊥

�

�

A

�

Figure 15: Right identity for ⊗, followed by the ⊥ contraction

Proof Similar to the proof of Lemma 7 we follow the unique path from l1 to
l2 applying a display rule at each step to derive s(l2) from s(l1). Given that all
the display rules are reversible we can derive s(l1) from s(l2) using the inverse
rules. 2

Example 11 Using Gr1’, Gr1 and the right identity for tensor and left identity for
par, we can derive (⊥ ◦−A)−◦ ⊥⊢ A. Figures 15 to 18 show how the abstract proof
structure of Figure 3 can be contracted.

3 Correctness

We are now in a position to prove the main theorem: that derivability in the
sequent calculus and contractability in the proof net calculus coincide.

Theorem 12 A proof structure S is correct (ie. corresponds to a sequent proof of Γ ⊢
∆) if and only if its abstract proof structure A converts to a tensor tree of Γ ⊢ ∆.

⇒ Suppose π is a sequent calculus proof of Γ ⊢ ∆. We construct a proof
structure together with a reduction sequence ρ reducing it to tensor tree Γ ⊢ ∆
by induction on the depth d of π.

14

�

�

�
(⊥◦−A)−◦⊥

�

�

A

� �

�

�

�

�
(⊥◦−A)−◦⊥

�

�

A

� �

�

�

Figure 16: Left identity for par followed by grishinb

�

A

� �
(⊥◦−A)−◦⊥

�

�

��

A

� �
(⊥◦−A)−◦⊥

�

�

Figure 17: The ◦− contraction followed by grishina

��

A

�
(⊥◦−A)−◦⊥

�
(⊥◦−A)−◦⊥

A

Figure 18: Left identity for par and right identity for tensor

15

If d = 1 then π is one of the axioms. We conside each case separately.
If the conclusion of the sequent is ⊥⊢ ǫ then the corresponding proof struc-

ture and abstract proof structure look as shown below.

⊥ →
�
⊥

Note how this is a proof net of ⊥⊢ ǫ as required.
Similarly, if the conclusion of the axiom is ǫ ⊢ 1 then the corresponding

proof structure and abstract proof structure form a proof net of this sequent as
shown below.

1

→

�

1

Finally, if the conclusion of the axiom is A ⊢ A for some formula A then we
are in the following situation

A → �
A

A

which is a proof net of A ⊢ A.
If d > 1 then we look at the last rule in the proof. Suppose it is a L

&

rule.

.... π1

A ⊢ ∆1

.... π2

B ⊢ ∆2

A

&

B ⊢ ∆1 ◦∆2
[L

&

]

Given that both π1 and π2 have a depth smaller than d, we can apply to in-
duction hypothesis to obtain a proof structure S1 with hypothesis A which re-
duces to a tensor tree of A ⊢ ∆1 by reduction sequence ρ1 and a proof structure
S2 with hypothesis B which reduces to a tensor tree of B ⊢ ∆2 by reduction
sequence ρ2.

We can combine these two proof nets as shown below.

A B

A

&

B

S1 S2

։ρ1

։ρ2

� �

�
A

&

B

∆1 ∆2

16

Note that, since ρ1 and ρ2 operate on different parts of the resulting abstract
proof structure, any interleaving of ρ1 and ρ2 will provide a valid reduction
sequence ρ producing a proof net of A

&

B ⊢ ∆1 ◦∆2.
Suppose the last rule is a R

&

rule.

.... π1

Γ ⊢ A ◦B
Γ ⊢ A

&

B
[R

&

]

Given that π1 has a depth of d− 1 we can apply the induction hypotesis to
give us a proof structure with conclusions A and B which converts to a tensor
tree of Γ ⊢ A

&

B by a conversion sequence ρ1.

S

A B

�

A

�

B

�

Γ
։ρ1

We can add the par link for A

&

B to the proof structure above after which
the reduction sequent ρ1 produces a redex for the [R

&

] contraction. We append
this contraction at the end of ρ1 to produce the final contraction sequence ρ,
producing a proof net of Γ ⊢ A

&
B as required.

A B

A

&

B

S

�

A

&

B

� �

�

Γ

�

A

&

B

Γ→

&

։ρ1

The other logical rules are similar and easily verified.

⇐ Suppose A corresponding to S converts to a tensor tree T by means of
a conversion sequence s. We proceeding by induction on the length l of s to
constuct a sequent proof of T .

If l = 0 then A = T . We proceed by induction on the number of connectors
c in T .

17

If c = 0 then S and T are of the form

A → �
A

A

which corresponds to the sequent proof

A ⊢ A
[Ax]

If c > 0 then by Lemma 8, we know that S has a formula which is the main
leaf of its link, call it D. We proceed by case analysis. If D is of the form
A

&

B, then we are in the following situation.

A B

A

&

B

S1 S2

Because the proof structure is a tree, the par link separates the structure
into two parts: S1 with hypothesis A and S2 with hypothesis B. By in-
duction hypothesis, there are derivations d1 of A ⊢ ∆1 and d2 of B ⊢ ∆2,
which we can combine as follows.

A ⊢ ∆1 B ⊢ ∆2

A

&

B ⊢ ∆1 ◦∆2
[L

&

]

The other cases are similar.

Suppose now l > 0. We look at the last conversion.
Suppose the last conversion is a structural conversion, then we are schemat-

ically in the following situation.

Γ1 · · · Γn

� � � � �

S։R Ξ[. . .]
[P]
→R

� � � � �

∆1 · · · ∆n

Γπ1
· · · Γπn

� � � � �

Ξ′[. . .]

� � � � �

∆π′

1
· · · ∆π′

n

18

Given that we have a structural conversion [P] we know there is at least one
structural rule which corresponds to it, where one of the leaves of both Ξ and
Ξ′ is displayed. In case this leaf is a hypothesis of Ξ (assume it’s Γi), induction
hypothesis gives us a proof d which we can extend as follows.

.... d

Γi ⊢ Ξ

Γi ⊢ Ξ′
[P]

In case the leaf is a conclusion ∆i we operate symmetrically, obtaining.

.... d

Ξ ⊢ ∆i

Ξ′ ⊢ ∆i

[P]

Suppose the last conversion is a contraction. We proceed by case analysis.

[R.⊥] In case the last conversion is a .⊥ contraction we are schematically in the
following situation.

A A⊥

S1 S2

�

� �

Γ

∆

�

Γ

∆

→.⊥։ρ

Looking backwards from the endsequent, the par link forms a barrier:
every structural rewrite has to be performed either fully in Γ — where it
will finally end up producing S1 — or fully in ∆ — where it will finally
end up producing S2. From this perspective, every contraction simply
expands a single node and is therefore performed in just one of the two
substructures as well. Therefore, we can separate the conversions of ρ
into those which are fully in S1 reducing it to Γ ⊢ ⌈A⌉ and those which
are fully in S2 reducing it to A⊥ ⊢ ∆. We will call these two reduction
sequences ρ1 and ρ2 respectively.

Removing the par link from the figure above gives us the following two
proof structures with their corresponding reduction sequences.

19

S1

S2

A

A⊥

�
A⊥

�
A

�

Γ

∆

։ρ1

։ρ2

Since the length of ρ1 + ρ2 is less than the length of ρ — the final contrac-
tion being removed — we can apply the induction hypothesis to give us
a proof d1 of Γ ⊢ ⌈A⌉ and a proof d2 of A⊥ ⊢ ∆. We can combine these
two proofs into a proof of Γ ⊢ ∆ as follows.

.... d1

Γ ⊢ ⌈A⌉

Γ ⊢ A⊥ R.⊥

.... d2

A⊥ ⊢ ∆
Γ ⊢ ∆

Cut

[R⊥.] Symmetric.

[L⊗] In case the last contraction is a ⊗ contraction, the proof structure and the
conversion sequence for the corresponding abstract proof structure look
as shown below.

A B

A⊗B

S1

S2

�

� �

�

Γ

∆

�

Γ

∆

→⊗։ρ

We again eliminate the par link and its contraction and partition the re-
maining conversions over two disjoint sequences as shown below.

20

S1

A B

A⊗B

S2

�
A

�
B

�

�

A⊗B

Γ

∆

։ρ1

։ρ2

Now the induction hypothesis gives us a derivation d1 of Γ ⊢ A⊗B and
a derivation d2 of A ◦B ⊢ ∆.

.... d1

Γ ⊢ A⊗B

.... d2

A ◦B ⊢ ∆
A⊗B ⊢ ∆

L⊗

Γ ⊢ ∆
Cut

[R−◦] If the last contraction is a −◦ contraction, the proof structure and reduc-
tion sequence look as follows.

A−◦B

B

S1

S2

A

�

� �

�

Γ

∆

�

Γ

∆

→−◦։ρ

As before we remove the par link and its contraction and separate the
conversion sequences which are in Γ and ∆. The result is shown below.

21

S1

S2

A

B

A−◦B

�
A

�

�

B

Γ

∆

�
A−◦B

։ρ1

։ρ2

Induction hypothesis now gives us a derivation d1 from S1 to Γ ⊢ A > B
and a derivation d2 from S2 to A−◦B ⊢ ∆. We can combine these proofs
in the following way.

.... d1

Γ ⊢ A > B
Γ ⊢ A−◦B

R−◦

.... d2

A−◦B ⊢ ∆
Γ ⊢ ∆

Cut

[R◦−] Symmetric.

[R

&

] If the last contraction is a

&

contraction, the proof structure and reduction
sequence look as follows.

A B

A

&

B

S1

S2

�

� �

�

Γ

∆

�

Γ

∆

→

&

։ρ

Removing the par link and splitting the remaining conversions over the
two substructures will give us the situation shown below.

22

S1

A B

S2

A

&

B

�

A

�

B

�

Γ

∆

�
A

&

B

։ρ1

։ρ2

We apply the induction hypothesis to obtain a sequent proof d1 of Γ ⊢
A ◦B and a sequent proof d2 of A

&

B ⊢ ∆ and combine these two proofs
as follows.

.... d1

Γ ⊢ A ◦B
Γ ⊢ A

&

B
R

&

.... d2

A

&

B ⊢ ∆
Γ ⊢ ∆

Cut

4 Complexity

In this section I will discuss the computational complexity of the contraction
criterion for several different fragments of the proof net calculus.

4.1 Binary Without Structural Conversions

A first case is to decide the contractibility of a proof structure containing only
binary links and without any structural conversions. When we look at the re-
dexes of the different contractions, we see that there is no possibility of overlap:
a link with three ports cannot be linked at two of its ports by two different links
while having each of its nodes be at most once a conclusion and at most once a
premiss of its link, as required by our definition of proof nets.

So even a naive contraction strategy which traverses the graph in search of
contractible par links and contracts them as soon as they are found then makes
another pass untill it either fails to contract any par links — in which case the
proof structure is not a proof net — or until there are no par links left — in
which case we do have a proof net. This gives us an O(n2) algorithm, where n
is the number of links in the graph. Without too much effort, we can improve
this to O(p2) where p is the number of par links in the graph.

23

�
H

�

� �

C

�

1|2

3’.2|4’.1

�

� �

�
H

� �

�

C

3’|4’ 1’|2’

�
H

�

�

C

�

�

3|4

1’.4|2’.3

�

Figure 19: Contractions: binary dual residuated with Grishin

4.2 Binary Grishin

A more complex case uses only the binary connectives but adds the Grishin
rules of Figures 13 and 14. Figures 19 and 20 shows the schematic contractions
for the binary residuated and dual residuated onnectives in this situation, with
A|B indicating that either Grishin rule A or Grishin rule B applies, depending
on the structure the tensor link finds itself in, and with A.B indicating the we
apply Grishin rule A followed by Grishin rule B. We remark that this sequenc-
ing operation means moving links first up then towards the C formula in the
structure.

A second important point to note is that these operations are nondeterminis-
tic. For example if both

5 Definability

Defining connectives by using combinations of other connectives. Eg.
A⊥ ≡ A−◦ ⊥ ⊥A ≡⊥ ◦−A
A1 ≡ A # 1

1A ≡ 1 " A
3A ≡ A⊗ 1 2A ≡ A◦−1

NB these are behavioral equivalences, there is no interderivability between
any of the proposed formulas in a translation.

24

�

C

�

� �
H

�

2|3

1’.2|4’.3

�

� �

�
H

� �

�

C

1’|4’ 2’|3’

�

C

�

�
H

�

�

1|4

2’.1|3’.4

�

Figure 20: Contractions: binary residuated with Grishin

6 Fragments

TLG (unary/binary residuals)
TLG+Galois (unary/binary residuals+unary Galois)
Lambek Galois (Galois only, implicit associative product)
Bilinear Lambek Calculus (binary res+dual)
Display Logic (all except binary gc/dgc)
Abrusci/Ruet (binary res+dual, negation defined or tensor-only)

7 Conclusions

A Translation Key

References

Areces, C., Bernardi, R. & Moortgat, M. (2001), Galois connections in categorial
type logic, in G.-J. Kruijff, L. Moss & R. T. Oehrle, eds, ‘Proceedings of
FGMOL 2001’, Vol. 53 of Electronic Notes in Theoretical Computer Science,
Elsevier, pp. 3–20.

Bernardi, R. & Moortgat, M. (2007), Continuation semantics for symmetric cat-
egorial grammar, in Springer, ed., ‘Proceedings of WoLLIC 2007’, Vol. 4567
of LNCS, pp. 53–71.

25

Here LL DL TLG BLL
Structural — Nullary

ǫ Φ 1
Structural — Unary

〈.〉 ◦ 〈.〉
⌊.⌋ ♭ ♭
⌈.⌉ ♯ ♯

Structural — Binary
◦ , ; ◦
< <
> >
♦

⊳
⊲

Table 6: Translation Key — Structural Connectives

Girard, J.-Y. (1987), ‘Linear logic’, Theoretical Computer Science 50, 1–102.

Goré, R. (1998), ‘Substructural logics on display’, Logic Journal of the IGPL
6(3), 451–504.

Lambek, J. (1993), From categorial grammar to bilinear logic, in K. Došen &
P. Schröder-Heister, eds, ‘Substructural Logics’, Oxford University Press,
Oxford, pp. 207–237.

Moortgat, M. (1997), Categorial type logics, in J. van Benthem & A. ter Meulen,
eds, ‘Handbook of Logic and Language’, Elsevier/MIT Press, chapter 2,
pp. 93–177.

Moortgat, M. (2007), Symmetries in natural language syntax and semantics:
the Lambek-Grishin calculus, in ‘Proceedings of WoLLIC 2007’, Vol. 4567
of LNCS, Springer, pp. 264–284.

Moot, R. & Puite, Q. (2002), ‘Proof nets for the multimodal Lambek calculus’,
Studia Logica 71(3), 415–442.

26

Here LL DL TLG BLL
Logical — Nullary

1 1 1 1

⊥ ⊥ 0 0

Logical — Unary
3 3 3

2 2 2
↓

.1 .1 .1 .l
1. 1. 1. .r

.⊥ .⊥ .0 .0
⊥. 0. 0.

Logical — Binary
⊗ ⊗ ⊗ • ⊗
−◦ −◦ → \ \
◦− ← / /& &

⊕ ⊕
>−
" −<
↓
ւ
ց
↑
տ
ր

Table 7: Translation Key — Logical Connectives

27

