
Filtering Axiom Links for Proof Nets

Richard Moot
LaBRI (CNRS), INRIA Bordeaux SW, University of Bordeaux

Draft

September 3, 2008

Contents

1 Introduction 1

2 Proof nets 3
2.1 Decomposition . 3
2.2 Axioms . 4
2.3 Contractions and Structural Rules 5
2.4 Essential Nets . 7
2.5 Basic Properties . 9

2.5.1 Axiom Links . 9
2.5.2 Graph Size . 10

3 Filtering Axiom Links 11
3.1 Acyclicity and Connectedness . 11
3.2 First-order Approximation and Word Order 13
3.3 Context-Free Grammars . 15

3.3.1 The Unary Connectives 15
3.3.2 Adding the binary connectives 18
3.3.3 Adding structural rules 20

3.4 Régin’s Algorithm . 20

4 Evaluation 23
4.1 Random Sequents . 23
4.2 Extracted sequents . 23

5 Conclusions and Future Work 27

Bibliography 29

ii Contents

abstract

An important problem for proving statements in multimodal categorial grammar
is that even when using proof nets — which improve upon proof search in
natural deduction and sequent calculus by identifying all equivalent proofs —
the number of possible axiom links to consider is still enormous. We will propose
several efficient strategies to reduce the number of axiom links and will evaluate
the resulting combined strategy against a large number of statements in both
multimodal and Lambek categorial grammars and find that we eliminate a very
large number of the axiom links which do not correspond to any proof net.

Chapter 1

Introduction

The multimodal Lambek calculus (Moortgat, 1997) is a powerful and flexible
grammar framework. Unfortunately, it has some sublogics — like the associa-
tive Lambek calculus L or the associative, commutative Lambek-Van Benthem
calculus LP — which are known to be NP complete (Pentus, 2006, Kanovich,
1991).

In this article we look at proof nets for the multimodal Lambek calculus and
investigate ways to reduce the number of axiom links we need to perform in
order to decide whether a statement Γ ⊢ C is derivable or not.

We then evaluate the effect of these reductions on a large number of randomly
generated Lambek calculus sequents as well as on a large number of sequents
which have been extracted from a corpus and find that the combined filtering
strategies filter our the large majority of the incorrect axiom links, that is,
those axiom links which are not part of any proof net, showing that — in spite
of the theoretical complexity — in practice we can parse Lambek grammar while
making just a small percentage of incorrect axiom links.

The rest of this report is structured as follows.

Chapter 2 gives a short introduction to parsing statements of the multimodal
Lambek calculus using proof nets. It discusses proof nets for NL3R, which is
the non-associative Lambek calculus NL extended with unary operators and a
set of structural rules R. Several instances of these structural rules as well as
their applications are shown. The chapter concludes with an overview of some
of the combinatorics of proof nets.

Chapter 3 discusses four strategies for reducing the total number of axioms
links. The first two: acyclicity and connectedness (Section 3.1) and first-order
approximation (Section 3.2) are fairly well-known and I touch upon them only
briefly. The final two strategies are new. We show how to compute the relations
between pairs of unary connectives as well as verify the possibility of binary and
unary contractions in the presence of some frequently used sets of structural

2 Introduction

rules using a context-free grammar in Section 3.3 and how to eliminate axiom
links which cannot be part of a total linking using methods from constraint logic
programming in Section 3.4.

Chapter 4 evaluates the combined algorithm against two sets of derivable
sequents. The first set is a set of randomly generated derivable sequents in
the Lambek calculus L. The second set is a set of multimodal sequents which
has been automatically extracted from a corpus. In both cases, the algorithms
proposed will filter out a very important number of underivable sequents.

The final chapter concludes and gives some possiblities for future research.

Chapter 2

Proof nets

We follow Moot and Puite (2002) for our presentation of proof nets in this
section.

Constructing a proof structure for a statement in the multimodal Lambek
calculus is done in three phases:

1. decompose the lexical formulas as well as the goal formula,

2. connect positive and negative atomic formulas,

3. decide whether the resulting proof structure is a proof net, using a cor-
rectness criterion.

We look at each of the three phases in turn.

2.1 Decomposition

Decomposing the lexical formulas is deterministic and linear in the number of
connectives in the statement. Depending on whether a complex formula is a
hypothesis (antecedent formula) or a conclusion (succedent formula), only one
link can apply: a left link for a hypothesis and a right link for a conclusion. We
can simply descend the formula tree until we reach the leaves, which are the
atomic formulas.

The full set of links is shown in Table 2.1. There are two links for every
connective: a left link for when it occurs as a hypothesis (portrayed at the
bottom; antecedents formulas start their unfolding here) and a right link for
when it occurs as a conclusion (portrayed at the top; the goal formula starts its
unfolding here).

The left link for B\iA is simply the modus ponens rule, saying it combines
with a B on its left to form an A. The right link — for B\iA as a conclusion

4 Proof nets

[R/i] [R•i] [R\i] [R3j] [R2
↓
j]

I
i

�

A

A/iB
�

B
�

A•iB
�

�

A

�

B

i
�

i

�

A

B
�

B\iA
�

3jA
�

�

A

j
6
j

�

A

2
↓

j
A

�

A
�

�

A/iB

�

B

i

?
i

�

A•iB

A
�

B
�

A
�

�

B

�

B\iA

i

?
j

�

3jA

A
�

A
�

�

2
↓

j
A

j

[L/i] [L•i] [L\i] [L3j] [L2
↓
j]

Table 2.1: Logical links for the multimodal Lambek calculus

— is its exact opposite: it allows us to use a B hypothesis to prove an A. Of
course, we’ll need to check that the B occurs as the leftmost sister of the A
node and this is where the contractions will come in later.

Figure 2.1 shows an example unfolding of the sequent

np, (np\s)/np, ((np\s)/np)\(np\s) ⊢ s

which would be a lexical lookup for a sentence like ‘Robin wet himself’. The
numbers on the atomic formulas are not a part of the proof structure, they serve
only to help us refer to the different formulas later.

This is a slightly simplified version of the abstract proof structures of Moot
and Puite (2002). We have suppressed as much information as possible: the
information on the internal nodes, the lexical formula (both of them can be
uniquely reconstructed from the unfolding) and the premiss/conclusion distinc-
tion of the individual nodes in Figure 2.1 as well (since we need it only when
there is just a single antecedent formula).

2.2 Axioms

The second stage of constructing a proof net consists of identifying the axiomatic
formulas: we select a positive and a negative atomic formula of the same type
and identify their vertices, thereby connecting different parts of the graph. For
this second step, there are potentially many solutions and the main part of this
paper focusses on strategies for reducing these possibilities as much as possible.

Figure 2.1 shows the possibilities for the axioms links by portraying them in
a grid: every row represents the axiom link possibilities for a negative formula,

2.3 Contractions and Structural Rules 5

I
0

np3

�
0

s3

np2

himself

0

s2

np6

0

np1

Robin wet np5

0

s1

np4

0

Goal

s4

np1 np2 np3

np4

np5

np6

s1 s2

s3

s4

Figure 2.1: Formula unfolding and axiom link possibilities for
np, (np\s)/np, ((np\s)/np)\(np\s) ⊢ s

whereas every column represents the axiom link possibilities for a positive for-
mula. A full axiom linking corresponds to putting exactly one mark in every
row and column. In graph theory, this is usually called a perfect matching.

Since there are n! different perfect matchings possible, the goal of this paper
is to exclude the maximum number of these connections when they cannot be
part of a proof net.

2.3 Contractions and Structural Rules

The final step is checking if the resulting graph is a proof net, by contracting
all par links, drawn with the black center, as shown in Table 2.2. When all par
links have been contracted, the result will be a tree — a tensor tree — with the
lexical entries used as its leaves.

In case it is impossible to contract a par link, the proof structure we are
dealing with is not a proof net and therefore, we know there is no proof of the
corresponding sequent.

A typical multimodal categorial grammar has a set of structural rules R in
addition to these contractions. Structural rules allow us the replace a substruc-
ture of an abstract proof structure which is a tensor tree t1 by another tensor
tree t2. Since we operate in a fragment of multiplicative linear logic, we require
that t1 and t2 share the same leaves. In other words, deletion and copying
of subtrees isn’t allowed, though we can change the order of the different sub-
trees. It is this reordering which permits us to push the languages generated by
multimodal categorial grammars beyond the context-free languages.

Table 2.3 and 2.4 show the frequently used structural rules of mixed asso-

6 Proof nets

i

?
i

τ2

τ1

→
τ2

τ1
�

i

i

τ2

τ1

→
τ2

τ1

Table 2.2: Graph contractions

z

0

x y

1

→MAl

←
MA

−1

l

y z

0
x

1

←MCl

→
MC

−1

l

y

0

x z

1

Table 2.3: Mixed associativity and commutativity — left branch

ciativity and mixed commutativity of modes 0 and 1. Observe that in Table 2.3
the leaf x always stays on the left branch of a mode 1 structure, whereas in
Table 2.4 the leaf z always stays on the right branch of a mode 1 structure.
Moortgat and Oehrle (1994) use the [MAl] and [MCl] rules to give an account
of word order in Dutch embedded clauses.

A variation of these rules is shown in Table 2.5 and 2.6. In these cases,
there is only a single unary mode 0 but a unary branch 0 indicates that an x
leaf can move from one left branch to another (as in Table 2.5) or that a z leaf
can move from one right branch to another (as in Table 2.6). Moortgat (1999)
shows how the right branch extraction rules [MA3r] and [MC3r] of Table 2.6
give an account of English relativization, whereas the left branch extraction

x

0

y z

1

→MAr

←
MA

−1

r

x y

0
z

1

←MCr

→
MC

−1

r

y

0

x z

1

Table 2.4: Mixed associativity and commutativity — right branch

2.3 Contractions and Structural Rules 7

z

0

y

0

x

0

→MA3l

←
MA3

−1

l

y z

0

0

x

0

←MC3l

→
MC3

−1

l

y

0

z

0

x

0

Table 2.5: Mixed associativity and commutativity — left branch with unary
control

x

0

y

0

z

0

→MA3r

←
MA3

−1

r

x y

0

0

z

0

←MC3r

→
MC3

−1

r

y

0

x

0

z

0

Table 2.6: Mixed associativity and commutativity — right branch with unary
control

rules [MA3l] and [MC3l] of Table 2.5 can be used to give an account of Dutch
relativization.

A final set of structural rules involves the communication between binary
and unary modes.

x

0

y

0

→K1

←−1
K1

x y

0

0 ←K2

→−1
K2

y

0

x

0

0

x

0

y

0

↑−1
K ↓K

Table 2.7: Communication between unary and binary modes - K, K1 and K2

8 Proof nets

[R/i] [R•i] [R\i] [R3j] [R2
↓
j]

A/iB B

A

]

A B

A •i B

]�

B B\iA

A

�

A

3jA

6

A

2
↓
jA

6

A/iB B

A

]�

A B

A•iB

�]

B B\iA

A

]�

3jA

A

6

2
↓
jA

A

6

[L/i] [L•i] [L\i] [L3j] [L2
↓
j]

Table 2.8: Logical links for essential nets

2.4 Essential Nets

For the acyclicity and connectedness criterion discussed in Section 3.1 as well
as for the context-free grammar criterion of Section 3.3, we are interested in an
alternative correctness criterion proposed by Lamarche (1994). This criterion
is based on a different way of decomposing a sequent, this time into a directed
graph, with conditions on the paths performing the role of a correctness crite-
rion. A net like this is called an essential net. The links for essential nets are
shown in Table 2.8, though we follow de Groote (1999) in reversing the arrows
of Lamarche (1994).

In addition — to keep the essential nets as close to the abstract proof struc-
tures of before — there are no axiom links and cut links and the main formula
of a link can be its hypothesis as well as its conclusion.

As a consequence of this change of perspective, all edges point upwards.

Definition 2.1 Given an essential net E its conclusion is called the output of

the essential net and the hypotheses, as well as the B premisses of any [R/i]
or [R\i] link, are called its inputs. When we need to distinguish between these

two types of inputs, we will call the hypotheses the lexical inputs and the B
premisses of the [R/i] and [R\i] the auxiliary inputs.

Definition 2.2 An essential net is correct iff the following properties hold.

1. it is acyclic,

2. every path from the B premiss of a [R/i] or [R\i] link passes through the

complex premiss of this link,

2.5 Basic Properties 9

np3

]
np2

s3

�

himself

]�
np6

s2

]�

np1

Robin wet np5

]�
np4

s1

]�

Goal

s4

np1 np2 np3

np4

np5

np6

s1 s2

s3

s4

Figure 2.2: The essential net corresponding to Figure 2.1

3. every path from the inputs of the graph ends at the output of the graph.

Condition (1) reflects the acyclicity condition on proof nets, whereas condi-
tions (2) and (3) reflect the connectedness condition. The formulation of ‘every
path’ exists only to ensure correctness of the negative • link; in all other cases
there is at most one path between two points in a correct essential net.

Theorem 2.3 (Lamarche (1994)) A sequent Γ ⊢ C is provable in MILL iff

its essential net is correct.

To give an idea of why these three properties need to hold, given that we need
to contract to a tensor tree with the hypotheses as its leaves and the conclusion
as its root, we remark the following:

2.5 Basic Properties

In order to better analyze the properties of the algorithms we propose, we will
first take a look at some basic properties of proof nets.

2.5.1 Axiom Links

Since we will be concerned with finding an axiom linking for an abstract proof
structure A which will allow a contraction of A into a tensor tree, we first
given some bounds on the number of proof structures we will have to consider.
Given that the problem we are trying to solve is NP complete, even in the
non-commutative case, it is not surprising that these bounds are quite high.

10 Proof nets

Proposition 2.4 Let P be a proof net and f an atomic formula, then the num-

ber of positive occurrences of f is equal to the number of negative occurrences

of f .

This proposition follows immediately from the fact that every atomic formula
has one occurrence as a negative hypothesis (either of the proof net or of a link)
and one occurrence as a positive conclusion (again, either of the proof net or of
a link).

Proposition 2.5 Every formula unfolding F has O(a!) possible identifications

of atomic formulas which produce a proof structure, where a is the maximum

number of positive and negative occurrences of an atomic formula in F .

If we have a positive atomic formulas, we have a possibilities for the first
one, since all negative formulas may be selected, followed by a−1 for the second
etc. giving us a! possibilities.

Proposition 2.6 Every formula unfolding F has O(4a) planar axiom linkings

which produce a proof structure, where a is the maximum number of positive

and negative occurrences of an atomic formula in F .

This follows from the fact that a planar axiom linking is simply a binary
bracketing of the atomic formulas and the fact that there are Ca−1 such brack-
etings, where Ck, the kth Catalan number, approaches 4k/

√
πk3/2.

Proposition 2.7 For every partial proof structure with a atomic formulas which

are not yet identified with an atomic formula of opposite polarity there are O(a2)
possible axiom links.

Given that every positive atomic formula can be linked to every negative
atomic formula of the same atomic type this gives us a2 pairs.

2.5.2 Graph Size

Proposition 2.8 For every proof structure S with h hypotheses, 1 conclusion,

p binary par links and t binary tensor links, the following equation holds.

p + h = t + 1 = a

Given Proposition 2.4, the number of positive and negative atomic formulas
is both a. Suppose we want to construct a proof structure S with h negative
conclusions and 1 positive conclusion from these atomic formulas. When we
look at the links in Table 2.1 we see that all par links reduce the number of
hypotheses by 1 and all tensor links reduce the number of conclusions by 1.

Proposition 2.9 Every essential net E has v = h+1+2(p+ t) = O(a) vertices

and 2t + p ≤ e ≤ 2(t + p) + a = O(a) edges.

2.5 Basic Properties 11

This follows immediately from inspection of the links: all h hypotheses and
the single conclusion of the essential net start out as a single vertex and every
link adds two new vertices. For the edges: the minimum number is obtained
when we have no axiom links and all par links are positive links for \ or / which
introduce one edge, the maximum number includes a axiom links and par links
which are all negative links for •.

Chapter 3

Filtering Axiom Links

Simple combinatorics shows that there are n! possible axiom linkings for 2n
atomic formulas (Proposition 2.5). In Figure 2.1, there are therefore 2 possibil-
ities for s and 6 possibilities for np. This makes exhaustive search prohibitive
for all but the most trivial statements.

However, there are several possibilities to rule out axiom links which can
never contribute to a contractible proof structure. We discuss some known and
some new strategies in the following sections.

3.1 Acyclicity and Connectedness

Danos and Regnier (1989) introduce the acyclicity and connectedness criterion
for proof nets of multiplicative linear logic. Give that the categorial logics we
work with are all sublogics of multiplicative linear logic (in the sense that any
derivable sequent in multimodal categorial grammar has a derivable image in
multiplicative linear logic) we can use the fact that anything underivable in
MLL is underivable in categorial grammar as well.

Moot (2004) shows how an adaptation of the Floyd-Warshall algorithm can
be used to select from the total set of possible axiom links those that produce
acyclic and connected proof structures.

The Floyd-Warshall algorithm computes the transitive closure of a graph by
successively eliminating the intermediate vertices c from every path from a to
b. Given a vertex c and the paths a → c → b for all a and b we create a direct
path a → b if it didn’t exist before. That is to say, there is a path from a to b
if either there is a path from a to c and from c to b or if there is a path from a
to b which we already knew about (Figure 3.1 on the following page).

path(a, b) := path(a, b) ∨ (path(a, c) ∧ path(c, b)) (3.1)

14 Filtering Axiom Links

a

b

c

Figure 3.1: Eliminating node c from the path from a to b

After eliminating c, for every path in the original graph which passed through
c there is now a shortcut which bypasses c. After we have created such shortcuts
for all vertices in the graph it is clear that the resulting graph has an edge a→ b
iff there is a path from a to b in the original graph.

The acyclicity condition, condition (1) from Definition 2.2, is easily verified.
Verifying conditions (2) and (3) from Definition 2.2 is a bit harder. The

question we want to ask about each link is: does this link contribute to a
connected proof structure? Or, inversely, does excluding the other possibilities
for the two atomic formulas we connect mean a connected proof structure is still
possible.

To check the conditions we need to verify the following:

1. for every negative input of the net we verify there exists a path to the
positive conclusion,

2. for every negative • link we verify that both paths leaving from it reach
their destination,

3. for every positive / or \ link we check the existence of a path from its nega-
tive premiss to its positive conclusion continuing to the positive conclusion
of the essential net.

Given that we are already computing the transitive closure of the graph
for verifying acyclicity, we can exploit this by adding additional information to
the matrix we use for the transitive closure. There are many ways of storing
this extra information, the simplest being in the form of an ordered list of pairs.
Given that, for a atomic formulas, each possible connection allows (a−1)2 other
connections (ie. it is agnostic about all possibilities not contradicting this one)
but excludes 2(a − 1) possibilities. It is therefore more economic to store the
connections which are excluded. For example, the ordered set associated to the
edge from 1 to 4 will be {1 − 5, 1 − 6, 2 − 4, 3− 4}, meaning “there is an edge
from 1 to 4 but not to anywhere else and the only edge arriving at 4 comes from
1”.

Note that in the description of the Floyd-Warshall algorithm, we made use
only of the logical ‘and’ and ‘or’ operators. For ordered sets, the corresponding

3.2 First-order Approximation and Word Order 15

I
0

np3

�
0

s3

np2

himself

0

s2

np6

0

np1

Robin wet np5

0

s1

np4

0

Goal

s4

np1 np2 np3

np4

np5

np6

0,1 c,W 2,d

X,1

2,Y

V,W

X,Y V,3

c,d

0,3

s1 s2

s3

s4

First-order constraint

Acyclicity and connectedness

Both

Figure 3.2: Links excluded by the acyclicity and connectedness condition

operations are set union and set intersection. For eliminating vertex c from a
path from a to b, we first take the union of the ordered set representing the
links which are not in a path from a to c with that representing the links not
in a path from c to b (any vertex in either set couldn’t be in a path from a via
c to b). Then, we take the intersection of this set with the old set associated to
the path from a to b.

path(a, b) := path(a, b) ∩ (path(a, c) ∪ path(c, b)) (3.2)

Note that Equation 3.2 is simply Equation 3.1 with both sides negated, the
negations moved inward and set union and intersection in the place of the logical
‘or’ and ‘and’ operators.

Given that we can implement the union and intersection operations in linear
time with respect to the size of the input sets, the total complexity of our
algorithm becomes O(v32(a− 1)) = O(a4).

Figure 3.2 shows, in dark gray and black, the links which are excluded when
we use this condition. We remark that this leaves just one possibility for linking
the s formulas.

3.2 First-order Approximation and Word Order

Even though the acyclicity and connectedness check is an effective test, it is
based on the ‘worst case’ scenario of a fully associative and commutative logic.
A second strategy for removing axiom links which cannot contribute to con-
structing a proof net is to use first-order approximation to take constraints on
word order into account. This has been used at least since LLoré and Morrill
(1995) (though in a slightly different context).

16 Filtering Axiom Links

[R/a] [R•a] [R\a] [R30] [R2
↓
0]

I
a

A

A/aB B

X − c

X − Y Y − c

A •a B

A B

a

X − Z Z − Y

X − Y

�
a

A

B B\iA

c− Y

c−X X − Y

A

30A

0

X − Y

X − Y

6
0

A

2
↓
0A

X − Y

X − Y

A

A/iB B

a

X − Y Y − Z

X − Z

?
a

A•iB

A B

X − Y

X − c c− Y

A

B B\iA

a

Z −X X − Y

Z − Y

?
0

30A

A

X − Y

X − Y

2
↓
0A

A

0

X − Y

X − Y

[L/a] [L•a] [L\a] [L30] [L2
↓
0]

Table 3.1: First-order labelling for Lambek calculus formulas

Moot and Piazza (2001) propose an embedding of the Lambek calculus using
first-order quantifiers. Each formula is assigned a pair of string positions which
correspond to the left and right frontier of the string to which the formula
corresponds. Lexical formulas are assigned successive string positions: 0 − 1
for the first word, 1 − 2 for the second up until (n − 1) − n for the last word
of a sequence of n. The goal formula is assigned 0 − n. Table 3.1 shows the
propagation of first-order variables to the other formulas. In every case a c
corresponds to a fresh constant and a Z to a fresh variable.

Figure 3.2 shows how we can use these propagation rules to compute the
first-order labels assigned to the atomic formulas of our example sequent and
— in light grey and black — the axiom links which are excluded using the first
order constraints for L, which is justified given that we have a sequent which
is derivable even in the non-associative Lambek calculus. In the figure, the
numbers 0, 1, . . . correspond to constants referring to string positions, lower-
case letters c, d, . . . to constants introduced by the par links and upper-case
letters X, Y, . . . correspond to variables.

As long as we make sure that the structural rules permit a subset of the word
order possibilities allowed by the first order variables, this strategy is correct.
Given that the sequent is derivable in NL, we are justified in using the L first-
order labelling.

In addition to embedding the Lambek calculus, Moot and Piazza (2001)
show how several linguistic phenomena like quantifier scope ambiguities, wh

3.3 Context-Free Grammars 17

I

s

np

which

n

n

X, Y

X, 1

2, Y

Z, Z

Figure 3.3: First order variables for ‘which’

extraction and island constraints — for which there is no satisfactory treatment
in the Lambek calculus — can be analysed using first-order quantifiers as well.

By assigning slightly more subtle first-order variables and constants, we can
incorporate these analyses into our labels. An example for the treatment of
extraction is shown in Figure 3.3. Here, we simply use the solution of Moot and
Piazza (2001) for wh words. The first-order variables indicate that the word
‘which’, when it occurs between string positions 1 and 2, is looking for an n
starting at some position X directly to its left and an s ending at position Y
directly to its right. Inside this s we can use an np which can take up any
position. The final result will then be an n between X (the leftmost position of
the n argument) and Y (the rightmost position of the s argument). Note that
we still need to add the appropriate structural rules to our grammar in order
to derive medial extraction cases (see Moortgat, 1997, for a solution).

Given that we can check the first order constraints simply by unification of
variables and constants, meaning O(1) per cell in the axiom matrix, the total
complexity of the first-order constraints is O(n2) for 2n atomic formulas.

3.3 Context-Free Grammars

3.3.1 The Unary Connectives

The unary connectives are a powerful addition to the multimodal Lambek cal-
culus. They can be used to license structural rules but the relations between the
logical formulas they induce can be used to encode linguistic features, as done,
for example by Heylen (1999), or to restrict scope possibilities, as done, for
example by Bernardi and Moot (2003) for the interaction between generalised
quantifiers and negation in English, by Moot and Retoré (2006) for generalised
object clitics in French and by Bernardi and Szabolsci (2007) for operators in
Hungarian.

In certain cases, we use the unary modalities just for the derivability rela-
tions between the different types. Figure 3.4 summarizes the different relations
between unary prefixes of up to four. Note that 3232A and 2323A are not

18 Filtering Axiom Links

⊢ ⊢

⊢

⊢ ⊢

⊢

⊢ ⊢3322A 32A

3223A

A

2332A

23A 2233A

Figure 3.4: Derivability relations using the unary logical rules

displayed, given that they are equivalent to 32A and 23A respectively1.
By extending the unary prefixes further we can generate an intricate hi-

erarchy of formulas, but for many applications the seven formula recipes in
Figure 3.4 suffice. However, even for the formulas we’ve shown here it’s not
directly clear which pairs of them are derivable.

Fortunately, there is a simply way to check the contractibility of a sequence
of unary formulas. First, we convert this sequence to a string as follows (with ǫ
being the empty string and . the concatenation operation)

Definition 3.1 Let A and B be two formulas which are the identical up to their

unary prefixes. σ(A ⊢ B), the string corresponding to A ⊢ B, is defined as

‖A‖−.‖B‖+, where the positive and negative formula are translated as follows.

‖3B‖+ = ‖B‖+.m ‖3A‖− = l.‖A‖−
‖2B‖+ = ‖B‖+.r ‖2A‖− = m.‖A‖−
‖B‖+ = ǫ otherwise ‖A‖− = ǫ otherwise

The easiest way to see the correspondence between a sequence of unary
modes and a string is by turning a page with a formula unfolding 90 degrees to
the right and realizing that every arrow pointing left will produce an l, while
every arrow pointing right will produce an r.

Now, given that we have produced a string corresponding to the two se-
quences of unary connectives, we can check contractibility of these unary modes
using the following context free grammar.

S→ ǫ (1)
| l S m S (2)
| m S r S (3)

Rule (1) corresponds to the fact that it is possible not to have any unary
connectives in front of a formula at all. Rule (2) corresponds to the 3 contraction
and rule (3) to the 2 contraction.

1Technically the graph of Figure 3.4 is the transitive reduction of the derivability relation
where all equivalent formulas (which would correspond to cycles in the unreduced graph) have
been replaced by their smallest element.

3.3 Context-Free Grammars 19

Proposition 3.2 A ⊢ B contracts to a single vertex using the unary contrac-

tions iff S → σ(A ⊢ B).

Proof (sketch) ⇒ Induction on the number of contractions c. If c = 0 we use
rule (1). If c > 0 there we look at the point where the first link is contracted.
In order for this contraction to be valid the links between the two contracted
links need to contract to a single node and in order for the entire sequence to
contract everything after the second link needs to contract to a single node as
well. Induction hypothesis allows us to combine these smaller proof nets using
either rule (2) or (3).

⇐ Induction on the length of the CFG derivation. 2

To give an illustration of how to use the context free grammar, we show
how the derivable sequent 3223A ⊢ 23A translates to lmmlmr, which we can
derive as shown below.

S→ l S m S
→ l m S
→ l m m S r S
→ l m m S r
→ l m m l S m S r
→ l m m l m S r
→ l m m l m r

We can show the inverse statement 23A ⊢ 3223A which would correspond
to mlmrrm is underivable simply because we cannot match the final m: there
is no r to its right and if we would match it to the single l we would need to
derive mrr, the symbols in between, but this is impossible given that it has an
odd number of symbols.

The context free grammar is easily extended to the multimodal case, simply
by adding different symbols li, mi and ri to the grammar and adding two new
grammar rules for each of the new symbols.

There are limitations to using this system, however. First of all, it requires
us to remove all unary branches from the final tree, though we could overcome
this limitation in the same way we do for the binary connectives in the next
section, though this means adding extra rules and non-terminal symbols to our
grammar.

Secondly, we cannot use this strategy if some of the structural rules for the
unary modes we’re interested in are incompatible with the formula to string
translation. Examples would be any inclusion rules between unary modes
(though adding grammar rules would again be an option here) or structural
rules which move unary modes up or down the tree, like the K, K1 and K2
structural rules of Moortgat (1997), showing in Figure2.7, which would require
changing the translation function. However, as we will explore in Secion 3.3.3,
there are cases in which it is possible to incorporate the K1 and K2 postulates
into the context-free rules for a combined unary-binary CFG.

Given that parsing a context free grammar is O(n3) and we would have to
perform this calculation for all n2 possible axiom links, the total O(n5) com-

20 Filtering Axiom Links

[R/i] [R•i] [R\i] [R3j] [R2
↓
j]

A/iB B

A

]r1

l′2

A B

A •i B

]�m1 m2

B B\iA

A

�

l′1

r2

A

3jA

6m

A

2
↓
jA

6r

A/iB B

A

]�m1 m2

A B

A•iB

�]l1 l2

B B\iA

A

]�m1 m2

3jA

A

6l

2
↓
jA

A

6m

[L/i] [L•i] [L\i] [L3j] [L2
↓
j]

Table 3.2: Calculating the strings corresponding to paths in the essential nets

plexity is somewhat high. So for grammars which use the unary connectives
extensively, it can be beneficial to pre-compute the relations between all se-
quences of unary connectives occurring in the grammar, after which we can do
a simple table lookup to see if contraction is possible. This would reduce the
total complexity to O(n2).

3.3.2 Adding the binary connectives

The strategy for the unary connectives extends easily to the binary case. This
requires us to look at all paths in the graph. It is most easily seen using the
essential nets of Section 2.4. Table 3.2 shows how to calculate the string corre-
sponding to a path in an essential net. The treatment of the unary connectives
is unchanged, the only additions are the symbols for the binary connectives.
Remark that the paths starting at the B premisses of the [R/i] and [R\i] links
start with a symbol which does not correspond to an edge in the directed graph,
but that otherwise every symbol corresponds to an edge.

Definition 3.3 Let E be an essential net which is correct in the sense of Defi-

nition 2.2. The set of paths P of E is the smallest set satisfying.

• if i is a lexical input of E and p is a directed path from i to the output o
then p ∈ P .

• if i is an auxiliary input of E and p is a directed path from i to the con-

clusion of the corresponding link then p ∈ P .

3.3 Context-Free Grammars 21

The only subtlety in the definition of paths in essential nets is the case for
the auxiliary inputs: we want this path to start at the B formula of the [R/i]
and [R\i] and end at the A formulas. Case 2 of Definition 2.2 guarantees there
is a path from B to the complex formula. Given the orientation of the arrows,
this path must pass through the A formula as well.

The number of different paths of an essential net E is h + p, where h is the
number of hypotheses (lexical inputs) in the essential net and p the number of
binary par links: the right rules for the implication each add a path because
of Definition 3.3 and the left rule for product adds a path by splitting a single
path into two.

Definition 3.4 Let p be a path in a correct essential net E the string σ(p)
corresponding to p is obtained by traversing the path p from start to finish writing

down each symbol corresponding the auxiliary input and each edge we pass.

The grammar rules extend straightforwardly. Because for the binary modes
we don’t generally require the antecedent to be a single formula and new cate-
gory V (for ‘vertex’ since strings of category V contract to a single fortex) has
been introduced which corresponds to the category S in the previous section.
The category S in the grammar below permits us to pass the m1 and m2 letters
when necessary.

S → ǫ (0)
| V S (1) [Contract]
| m1 S (2) [Left]
| m2 S (3) [Right]

V→ ǫ (4)
| l V m V (5) [L3]
| m V r V (6) [R2

↓]
| l1 V m1 V (7) [L•]
| l2 V m2 V (8) [L•]
| m1 V r1 V (9) [R/]
| l′2 V m2 V (10) [R/]
| l′1 V m1 V (11) [R\]
| m2 V r2 V (12) [R\]

Lemma 3.5 A ⊢ B contracts to a single vertex using the contractions iff for

every path p in the corresponding essential net V → σ(p).

Lemma 3.6 Γ ⊢ C contracts to a tensor tree using the contractions iff

• for every path p starting at a lexical hypothesis in the corresponding es-

sential net S → σ(p).

• for every path p starting at an auxiliary hypothesis in the corresponding

essential net V → σ(p).

22 Filtering Axiom Links

3.3.3 Adding structural rules

In some cases, we can go even further and include the structural rules in the
context-free grammar.

If we calculate the path starting at x in the K1 rule on both the left hand
side and the right hand side of the rule, we see it corresponds to replacing mm1

by m1m. This is a context-sensitive rule, however, and we would like to keep our
filtering strategies polynomial. A typical use of the unary modes in combination
with the K1 and K2 postulates is in the context of feature checking. In this
case we know that the feature needs to be checked by a [R2

↓] rule later. If this
is the case, we can — depending on which of the structural rules are available,
K1, K2 or both — add one of the following rules to our context-free grammar.

S→m V (m1)
∗ V r S (6a) [R2

↓ + K1]
S→m V (m2)

∗ V r S (6b) [R2
↓ + K2]

S→m V (m1|m2)
∗ V r S (6c) [R2

↓ + K1 + K2]

Technically speaking, it is an abuse of notation to use the regular expression
operators ∗ and | in the context-free grammar. It would be more proper to add
the regular language rules to the context-free grammar. I have chosen to use
regular expression to give the most compact account possible of the generalised
contractions as possible. For example, the rule [R2

↓ +K1] says that in order to
perform an [R2

↓] contraction, an arbitrary number of left braches can intervene
between the unary tensor and the corresponding par.

A similar strategy is possible for the left and right extraction structural
rules ([MA3l] and MC3l] of Table 2.5, and [MA3r] and MC3r] of Table 2.6
respectively) provided they only occur in the context of positive A/32

↓B or
32

↓B\A occurrences. Rules (5a) and (5b) below show the two cases.

V→ l′1 l m m1 V (m1|m2)
∗ V (5a) [R\+ L3 + MA3l + MC3l]

V→ l′2 l m m2 V (m1|m2)
∗ V (5b) [R/ + L3 + MA3r + MC3r]

A limitation of the use of context-free grammars is that it can only be used
with structural rules where a single path in the abstract proof structure can be
used to decide if the structural rules have been applied correctly. For example,
it can’t be used to check the correct application of the K postulate given that
we’d have to verify both branches to see if there is a unary branch below it.

3.4 Régin’s Algorithm

Even with all the previous constraints on axiom links in place, we sometimes
fail to exclude some axiom links which cannot belong to a total matching. This
is in part because an axiom link is regarded more or less in isolation, meaning
that we don’t exploit the fact the we need to find a total matching.

Régin (1994) proposes an algorithm for the slightly more general problem of
finding solutions for ‘all different’ constraints in constraint logic programming.
His algorithm separates the possible axiom links (in our case) into three cate-

3.4 Régin’s Algorithm 23

2 4 7 8

x2

x3

x4

x1

2 4 7 8

x2

x3

x4

x1

M in red I in blue strong components eliminated edges

x4 x3 x2 x1

7

4

2

8
x1, 8, x4, 2

x2, 7, x3, 4

Figure 3.5: An illustration of Régin’s algorithm

gories: those which must be a part of any linking, those who are only part of
some linkings and those which do not belong to any linking.

Régin’s algorithm works as follows:

1. find a total matching M of the graph, fail if none exists.

2. using the total matching M , compute the inverse I of the links outside of
the matching E −M .

3. using edges which are alternatively in M and in I, compute the strong
components.

4. when an edge E connectes two different strong components, do the fol-
lowing.

• if E ∈ M , then E is part of every total linking and all alternatives
for both vertices are deleted.

• if E /∈ M , then remove E from the graph, it cannot be part of any
linking.

Régin’s formulation includes an ‘augmenting path’ case to extend the match-
ing, after which we repeat from step 2 with the new matching. However, we
don’t need this since we are guaranteed that if a matching exists it is necessarily
total.

Figure 3.5 shows how Régin’s algorithm operates. In the constraint problem,
we have four variables x1 to x4 which can take four values 2, 4, 7 and 8. The
squares marked in black on the left side of the picture are excluded because of the
other constraints, whereas the red square are the total matching M computed in
step 1 of the algorithm. In the middle, the inverse I of the edges outside of M —
computed for step 2 of the algorithm — are shown in blue. Remark that these
are just the white squares of the figure on the left mirrored at the diagonal. For
step 3, we compute the strong components of the graph by alternating between
red and blue edges. We have two strong components: x2, 7, x3, 4 and x1, 8, x4, 2.
This means that the only values possible for x2 and x3 are 4 and 7, so we delete
the edges between x2 and 8, between x3 and 2 and between x3 and 8. The
newly exlcuded edges are indicated in gray on the right of Figure 3.5.

24 Filtering Axiom Links

Even though a smart axiom linking strategy (like always linking the atomic
formula with the least possibilities first) would not benefit a lot from the reduc-
tion in this example, there are cases where it will exploit information like the
absence of a total matching to fail directly.

The total complexity for Régin’s algorithm is dominated by the cost of the
total matching, which we can do at least in O(n2.5) (Hopcroft and Karp, 1973).
This makes the total cost of all filtering strategies O(n4) if the context-free
grammars are precompiled and O(n5) if they are not.

Chapter 4

Evaluation

4.1 Random Sequents

In order to evaluate the combined filtering strategies, we have tested the axiom
constraints on randomly generated derivable statements of the Lambek calculus.
These statements have been generated using the inductive definition of Lambek
calculus proof nets where all duplicate statements have been removed. To make
the task as difficult as possible, only a single atomic formula a without unary
prefixes has been used. Unfortunately, underivable statements don’t have such
an easy inductive characterization.

Figure 4.1 shows the amount of statements by the number of atomic formulas
per sequent in the sample set, as well as the number of sequents by the number
of connectives.

Out of 15.946 possible planar axiom links and 61.524 total possible axiom
links, 2.546 correspond to different proofs. Therefore, there are 13.400 planar
axioms links and 58.978 total axiom links which do not belong to any proof. Of
these, the combined filtering algorithm excludes all but 279, for a total of 2.825
axiom links performed.

This means we eliminated 97.92% of the incorrect planar axiom links and
99.53% of the total number of incorrect axiom links. From the perspective of
the correct axiom links, we perform only 10.96% more links than a ‘perfect’
linking strategy — which through some unknown method would only find links
corresponding to proofs in an NP complete logic.

4.2 Extracted sequents

For the second evaluation we look at a subset of 5.454 sentences which have been
extracted from the Spoken Dutch Corpus (see Moot, 2007, for details of the

26 Evaluation

4 6 8 10 12

20

40

60

80

100

120

140

160

Atomic Formulas

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10

Connectives

Figure 4.1: The distribution of the total number of atomic formulas and the
total number of connectives in the randomly generated derivable statements

Figure 4.2: The distribution of the number of atomic formulas and the number
of connectives of the extracted sequents

extraction procedure). Unlike the Lambek calculus sequents from before, there
are discontinuous constituents as well as wh extractions present in this database.
In addition, the sequents tend to have significantly more atomic formulas than
the previous experiment: we have a total of 69.810 atomic formulas and 33.383
connectives (divided into 5.355 discontinuous connectives and 28.028 continuous
connectives). Figure 4.2 shows the distribution. The median number of atoms
is 12 whereas the mean is 12,80. The maximum number of atoms for a sequent
in our set is 44. For the connectives, the median is 5, the mean 6,12 and the
maximum number of connectives is 23.

For this experiment Grail performs a total of 136.070 axioms out of a total

4.2 Extracted sequents 27

Plot of performed axioms against optimal axioms

Performed Axioms

O
p
ti
m
a
l
A
x
io
m
s

50

100

150

100 200 300

5

10

15

20

25

30

35

40

45

Plot of performed axioms against optimal axioms

Performed Axioms
O
p
ti
m
a
l
A
x
io
m
s

50

100

150

100 200 300

0

2

4

6

8

10

Figure 4.3: Evaluation of the performed versus the minimum number of axiom
links

of over 7, 9762 � 1054.1 Even though this is still more than double the optimal
61.487 axioms, it is a reduction from a truly astronomic number of potential
axioms to something computationally feasible. The median number of axioms
performed is 7, which is the median of the optimal number of axioms as well.
The mean number of axioms performed is 24,95 (as opposed to 11,27 for the
optimal number of axioms) and the maximum number of axioms performed is
388 (as opposed to 159 optimal). For a total of 3.388 sentences (62,12% of the
total) the exact optimal number of axiom links is performed.

Figure 4.3 plots the total number of axiom links performed against the min-
imum number of axiom links required in order to obtain all semantic readings.
The figure on the left uses colors to show degradation of performance as the
number of atomic formulas increases, whereas the figure on the right shows
the degradation of performance as the number of discontinuous connectives in-
creases — deep purple indicating a low number of total axioms or discontinuous
connectives and cyan indicating a very high number of them.

1To give an impression of how enormous this number is, this is a lot more than the number
of atoms on Earth, which is 8, 87 �1048 and a bit less than the volume of a small dwarf galaxy
like NGC 1705, which has a volume of around 1055

m
3

Chapter 5

Conclusions and Future Work

We have seen that in spite of the computational complexity of computing all
axiom links for a given statement, a combination of constraints on the possible
axiom links can reduce the total number of axiom links to just a bit over the
optimal number of axiom links to be performed.

Some important questions remain unresolved. For example, are there condi-
tions where the filtered axiom links correspond exactly to the axiom links which
belong to a proof net? This would mean that after the filtering algorithm has
done its job, the resulting axiom matrix would contain all and only those links
which would be used for a proof net. In that case, the axiom possibilities would
form a sort of shared representation of all proofs for a statement and moreover,
it would be computed in O(n4) time. However, analyzing the incorrect axiom
links of our experiment doesn’t seem to give an easily identifiable handle on the
subclasses of multimodal categorial grammar which would have this property.

The results on context-free grammars in Section 3.3 seem to provide an inter-
esting possibility of obtaining polynomial parsing results. It has been observed
by Schabes and Vijay-Shanker (1990) that every path in a derived tree for a tree
adjoining grammar is described by a context-free grammar. This would open
up the possibility to give an implementation of (fragments of) NL3R using
Embedded Pushdown Automata.

Bibliography

Raffaella Bernardi and Richard Moot. Generalized quantifiers in declarative
and interrogative sentences. Logic Journal of the IGPL, 11(4):419–434, 2003.

Raffaella Bernardi and Anna Szabolsci. Partially ordered categories: Optional-
ity, scope and licensing. Technical report, Faculty of Computer Science, Free
University of Bolzano and Department of Linguistics, New York University,
2007. Submitted to the Journal of Logic, Language and Computation.

Vincent Danos and Laurent Regnier. The structure of multiplicatives. Archive

for Mathematical Logic, 28:181–203, 1989.

Philippe de Groote. An algebraic correctness criterion for intuitionistic multi-
plicative proof-nets. Theoretical Computer Science, 224(1–2):115–134, 1999.

Dirk Heylen. Types and Sorts: Resource Logic for Feature Checking. PhD thesis,
Utrecht Institute of Linguistics OTS, Utrecht University, 1999.

John Hopcroft and Richard Karp. A n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

Max Kanovich. The multiplicative fragment of linear logic is NP-complete.
Technical report, University of Amsterdam, 1991. ITLI Prepublication Series
X-91-13.

François Lamarche. Proof nets for intuitionistic linear logic I: Essential nets.
Technical report, Imperial College, 1994.

F. Xavier LLoré and Glyn Morrill. Difference lists and difference bags for logic
programming of categorial deduction. In Proceedings of SEPLN XI, Deusto,
1995.

Michael Moortgat. Categorial type logics. In Johan van Benthem and Alice ter
Meulen, editors, Handbook of Logic and Language, chapter 2, pages 93–177.
Elsevier/MIT Press, 1997.

32 Bibliography

Michael Moortgat. Constants of grammatical reasoning. In Gosse Bouma, Er-
hard Hinrichs, Geert-Jan Kruijff, and Richard T. Oehrle, editors, Constraints

and Resources in Natural Language Syntax and Semantics, pages 195–219.
CSLI, Stanford, 1999.

Michael Moortgat and Richard T. Oehrle. Adjacency, dependency and order.
In Proceedings 9th Amsterdam Colloquium, pages 447–466, 1994.

Richard Moot. Automated extraction of type-logical supertags from the Spoken
Dutch Corpus. In Srinivas Bangalore and Aravind Joshi, editors, Complexity

of Lexical Descriptions and its Relevance to Natural Language Processing: A

Supertagging Approach. MIT Press, 2007. to appear.

Richard Moot. Graph algorithms for improving type-logical proof search. In
Proceedings Categorial Grammars 2004: an Efficient Tool for Natural Lan-

guage Processing. Elsevier, 2004.

Richard Moot and Mario Piazza. Linguistic applications of first order multi-
plicative linear logic. Journal of Logic, Language and Information, 10(2):
211–232, 2001.

Richard Moot and Quintijn Puite. Proof nets for the multimodal Lambek cal-
culus. Studia Logica, 71(3):415–442, 2002.

Richard Moot and Christian Retoré. Les indices pronominaux du français
dans les grammaires catégorielles. Lingvisticae Investigationes, 29(1):137–
146, 2006.

Mati Pentus. Lambek calculus is NP-complete. Theoretical Computer Science,
357(1–3):186–201, 2006.

Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs.
In Proceedings of the Twelfth National Conference on Artificial Intelligence,
pages 362–367, Seattle, 1994. AAAI.

Yves Schabes and K. Vijay-Shanker. Deterministic left to right parsing of tree
adjoining languages. In Proceedings of the 28th Annual Meeting of the Associ-

ation of Computational Linguistics, pages 276–283, Pittsburgh, Pennsylvania,
1990. ACL.

