Some Remarks on Logic and Topology Richard Moot
 Richard.Moot@labri.fr

Why Topology?

- Topology seems to be at the right level of abstraction (eg. when compared to geometry).
- Basically, we have regions, their complements (intended to model "outside"), their interiors (intended to model "inside") and frontiers.
- Rich and well-developed field of mathematics

Why Topology?

- It allows us to model statements like:
- "the frontier between France and Spain runs through the Pyrénées"
- "France is the union of Continental France and Corsica, yet Continental France and Corsica are disconnected"

Some Potential Problems

- Topology, being very general and very abstract, makes more distinctions than are useful when reasoning about real regions in space.
- Reasoning about topological spaces can be very complex.

Goalls

- Find some nice, well-behaved regions in topological space.
- Find a language which is expressive enough to make topologically interesting statements, yet has reasonable computational complexity.

Reminder Basic Definitions

- A topology is a set X (the universe) and a collection τ of subsets of X (the open sets) such that:
- τ contains X and \varnothing
- The union of any collectio elements of τ is in τ
- The intersection of any fir of elements of τ is in τ

Sometimes it is useful to permit infinite intersections as well: in this case we will talk about an Alexandrov space or Alexandrov topology. An Alexandrov topology is isomorphic to specialization preorder on a set X, that is x < $=y$ if and only if all open sets which contain x contain y as well.
This make the link between preorders (reflexive and transitive relations) and $\$ 4$ (with a
reflexive and transitive accessibility relation R).

Reminder Basic Definitions

- The complement of a subset A of X, which we will note by A^{\prime} is defined as $X \backslash A$.
- The complement of an open se closed.

Some people write A^{c} for the complement of a set. In order to avoid confusion with the closure of a set, I will write A' for the
complement and A^{-}for
the closure.

Reminder Basic Definitions

- A set can be both closed and oper (specifically, both X and \varnothing are bo closed and open in any topology)

Some people like the
word "clopen" for a set
which is both closed and open. I don't. It is very widely used, though.

- a set can also be neither closed nor open.

Reminder

(Very) Basic Properties

- $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
- $X \backslash(A \cup B)=X \backslash A \cap X \backslash B$
- $\forall \mathrm{XX} \in \mathrm{X} \wedge \mathrm{x} \notin(\mathrm{A} \cup B) \leftrightarrow$ $x \in X \wedge X \notin A \wedge X \notin B$
de Morgan law for union
and complement

Reminder

(Very) Basic Properties

- $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
- $X \backslash(A \cup B)=X \backslash A \cap X \backslash B$
- $\forall \mathrm{XX} \in \mathrm{X} \wedge \neg(\mathrm{x} \in(\mathrm{A} \cup \mathrm{B})) \leftrightarrow$ $x \in X \wedge X \notin A \wedge X \notin B$

Reminder

(Very) Basic Properties

- $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
- $X \backslash(A \cup B)=X \backslash A \cap X \backslash B$
- $\forall X X \in X \wedge \neg(x \in A \vee X \in B)) \leftrightarrow$ $x \in X \wedge X \notin A \wedge X \notin B$

Reminder

(Very) Basic Properties

- $(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$
- $X \backslash(A \cup B)=X \backslash A \cap X \backslash B$
- $\forall X X \in X \wedge \neg(X \in A) \wedge \neg(x \in B)) \leftrightarrow$ $X \in X \wedge X \notin A \wedge X \notin B$

Reminder

(Very) Basic Properties

- $(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
- $\mathrm{A}^{\prime \prime}=\mathrm{A}$

All of this is basic set
theory
We have, in essence, a boolean algebra.

Reminder Basic Definitions

- Given a set A, the interior A° of A is the union of all open sets O such that O $\subseteq A$.
- Given a set A, the closure A^{-}of A is the intersection of all closed sets C such that $A \subseteq C$.
- Evidently, we have $\mathrm{A}^{\circ} \subseteq \mathrm{A} \subseteq \mathrm{A}^{-}$

Reminder Basic Definitions

- Đvidently, we have $\mathrm{A}^{\circ} \subseteq \mathrm{A} \subseteq \mathrm{A}^{-}$
- if A is open then $A^{\circ}=A$
- if A is closed then $\mathrm{A}^{-}=\mathrm{A}$
- The boundary of $A, \delta A$ is defined as $A^{-} \backslash A^{0}$

Open and Closed Sets

General	A°	\subseteq	A	\subseteq	A^{-}
Open	A°	$=$	A	\subseteq	A^{-}
Closed	A°	\subseteq	A	$=$	A^{-}
"Clopen"	A°	$=$	A	$=$	A^{-}

Reminder Example 0

Classically, first examples in topology are about intervals on the real line...

$$
\begin{aligned}
& A=[0,1\rangle \\
& A^{0}=\langle 0,1\rangle \\
& A^{-}=[0,1] \\
& \delta A=\{0,1\} \\
& A^{\prime}=\langle-\infty, 1\rangle \cup[0, \infty\rangle
\end{aligned}
$$

Reminder Example 1

$$
\begin{aligned}
& X=\{a, b, c, d, e\} \\
& \tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\} \quad \text { Open sets } \\
& \tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\} \quad \text { Closed sets }
\end{aligned}
$$

$$
A=\{a, b\}
$$

Reminder Example 1

$$
\begin{aligned}
& X=\{a, b, c, d, e\} \\
& \tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\} \quad \text { Open sets } \\
& \tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\} \quad \text { Closed sets }
\end{aligned}
$$

$$
A=\{a, b\}
$$

$$
A^{0}=\{a\} \cup \varnothing=\{a\}
$$

Reminder Example 1

$$
\begin{aligned}
& X=\{a, b, c, d, e\} \\
& \tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\} \quad \text { Open sets } \\
& \tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\} \quad \text { Closed sets }
\end{aligned}
$$

$$
\mathrm{A}=\{\mathrm{a}, \mathrm{~b}\}
$$

$$
A^{0}=\{a\} \cup \varnothing=\{a\}
$$

$$
A^{-}=X \cap\{a, b, e\}=\{a, b, e\}
$$

Reminder Example 1

$X=\{a, b, c, d, e\}$
$\tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\}$
Open sets
$\tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\}$
Closed sets
$A=\{a, b\}$
$A^{0}=\{a\} \cup \varnothing=\{a\}$
$A^{-}=X \cap\{a, b, e\}=\{a, b, e\}$
$\delta A=\{a, b, e\} \backslash\{a\}=\{b, e\}$
$\square \delta \mathrm{A}$

Reminder Example 2

$$
\begin{aligned}
& X=\{a, b, c, d, e\} \\
& \tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\} \\
& \tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\}
\end{aligned}
$$

$$
A=\{c, d\}
$$

Reminder Example 2

$$
\begin{aligned}
& X=\{a, b, c, d, e\} \\
& \tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\} \\
& \tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\}
\end{aligned}
$$

$$
A=\{c, d\}
$$

$$
\mathrm{A}^{\mathrm{o}}=\{\mathrm{c}, \mathrm{~d}\} \cup \varnothing=\{\mathrm{c}, \mathrm{~d}\}
$$

Reminder Example 2

$$
\begin{aligned}
& X=\{a, b, c, d, e\} \\
& \tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\} \\
& \tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\}
\end{aligned}
$$

$$
A=\{c, d\}
$$

$$
A^{0}=\{c, d\} \cup \varnothing=\{c, d\}
$$

$$
A^{-}=X \cap\{b, c, d, e\}=\{b, c, d, e\}
$$

Reminder Example 2

$$
\begin{aligned}
& X=\{a, b, c, d, e\} \\
& \tau=\{\varnothing, X,\{a\},\{c, d\},\{a, c, d\},\{b, c, d, e\}\} \\
& \tau^{\prime}=\{\varnothing, X,\{b, c, d, e\},\{a, b, e\},\{b, e\},\{a\}\}
\end{aligned}
$$

$$
A=\{c, d\}
$$

$$
A^{0}=\{c, d\} \cup \varnothing=\{c, d\}
$$

$$
A^{-}=X \cap\{b, c, d, e\}=\{b, c, d, e\}
$$

$$
\delta A=\{b, c, d, e\} \backslash\{c, d\}=\{b, e\}
$$

Reminder
 Example 3

$X=\mathbb{R}^{\text { }}$
$\tau=\left\{\varnothing, \mathbb{R}^{2},<0,0>-<1,2>,<0,2>-<3-3>,<1,1>-<2,2>, \ldots\right\}$

- Open rectangles generate one of the standard topologies on \mathbb{R}^{2}
- As an example, the following open rectangles are part of this standard topology.

Reminder Example 3

$$
X=\mathbb{R}^{2}
$$

$$
\tau=\left\{\varnothing, \mathbb{R}^{2},<A, B>-<C, D>\right\}
$$

$$
\mathrm{A}<\mathrm{C}, \mathrm{~B}<\mathrm{D}
$$

- Open rectangles generate one of the standard topologies on \mathbb{R}^{2}
- However, even the general definition of open sets listed above does not form a topology (why?)

Reminder Example 3

$$
X=\mathbb{R}^{2}
$$

$$
\tau=\left\{\varnothing, \mathbb{R}^{2},<A, B>-<C, D>\right\}
$$

$$
\mathrm{A}<\mathrm{B}, \mathrm{C}<\mathrm{D}
$$

- When we have two open rectangles, their intersection is aithar on oppen

So while the purple part of
the figure to the right is a part of the defined topology the union (that is, the union of the blue, purple and red part) is not a rectangle and therefore not a part of the topology as defined above.

or empty.

heir
pt an open

Reminder Example 3

$X=\mathbb{R}^{2}$
$\mathrm{B}=\left\{\varnothing, \mathbb{R}^{2},\langle\mathrm{~A}, \mathrm{~B}\rangle-\langle\mathrm{C}, \mathrm{D}\rangle\right\}$
$\mathrm{A}<\mathrm{B}, \mathrm{C}<\mathrm{D}$

- We say a collection of open sets B is a base (basis) for a topology if any element of τ is the union of elements of B

Reminder Bases

- Bases allow us to give a compact way to describe topologies.
- Some topological properties can also be verified directly on the base elements.

Regular Closed Sets

Regular closed

A

Not reg. closed

- A is regular closed iff $A=A^{0-}$
- roughly speaking, this means no "loose points" and no "hanging lines"

Regular Closed Sets

Regular closed
A^{0}

Not reg. closed

- A is regular closed iff $A=A^{0-}$
- roughly speaking, this means no "loose points" and no "hanging lines"

Regular Closed Sets

$$
\begin{aligned}
& \mathrm{A}^{\mathrm{o}} \\
& =\mathrm{A}
\end{aligned}
$$

Not reg. closed

- A is regular closed iff $A=A^{0-}$
- roughly speaking, this means no "loose points" and no "hanging lines"

Note, this does not show that A0is necessarily regular closed, I will come to that in a few slides.

Regular Open Sets

Regular open

A

Not reg. open

- A is regular open iff $\mathrm{A}=\mathrm{A}^{-0}$
- roughly speaking, this means no "holes" and no "cracks"

Regular Open Sets

Regular open

A^{-}

Not reg. open

- A is regular open iff $A=A^{-0}$
- roughly speaking, this means no "holes" and no "cracks"

Regular Open Sets

Regular open

Not reg. open

- A is regular open iff $A=A^{-0}$
- roughly speaking, this means no "holes" and no "cracks"

$$
\begin{array}{ll}
\mathrm{A}^{-0} & \mathrm{~B}^{-0} \\
=\mathrm{A} & \neq \mathrm{B}
\end{array}
$$

Again, this does not suffice to show that A-o is regular open.

Regular Sets

- Suppose A is a regular open set, that is $\mathrm{A}=\mathrm{A}^{-0}$.
- Thus we have, for its complement A' that $A^{\prime}=A^{-0^{\prime}}=A^{-\prime-}=A^{\prime-}$
- In addition, we have $\mathrm{A}^{-}=\mathrm{A}^{-0-}$
- In other words, both A^{\prime} and A regular closed.

Similar remarks hold
for regular closed sets. Given a regular closed set A, both its complement and its interior are regular open.

Combinations

- Given a region variable A, how many (potentially) different regions can we construct using the closure, interior and complement relations?
- Our possibilities are limited by the fact that a double complement is the identity function and that the closure and interior operations are idempotent.

Combinations

- Equivalences
- $\mathrm{A}^{\prime \prime}=\mathrm{A}$
- $\mathrm{A}^{00}=\mathrm{A}^{0}$
- $\mathrm{A}^{--}=\mathrm{A}^{-}$
- $\mathrm{A}^{0-0-}=\mathrm{A}^{0-}$
- $\mathrm{A}^{-0-0}=\mathrm{A}^{-0}$
- Non-equivalent
- A
- $\mathrm{A}^{-}, \mathrm{A}^{0}$
- $\mathrm{A}^{-0}, \mathrm{~A}^{\mathrm{o-}}$
- $\mathrm{A}^{-0-}, \mathrm{A}^{0-0}$
- and their negations

Combinations

Note: there are examples where all these 14 regions are different.

0 : interior

- : closure
' : complement

Combinations

Combinations

0 : interior

- : closure
' : complement

Combinations

Combinations

Combinations

0 : interior

- : closure
' : complement

Regular closed regions

A regular closed $=$ def
$\mathrm{A}=\mathrm{A}^{\mathrm{O}^{-}}$

- : closure

0 : interior
' : complement

Regular open regions

Combinations

- We have seen that the regular closed and regular open sets reduce the combinatorics of the closure, interior and complement relations on a single region.
- What we have not looked at yet is how the regular closed and open sets combine with unions and intersections.

Intersection

- A is the union of the closed rectangles [0,0]-[1-2] and [0-1][1-2]
- B is the union of the closed rectangles [0-0]-[1-1] and [0-1]-[2-2]

Intersection

- A is the union of the closed rectangles [0,0]-[1-2] and [0-1][1-2]
- B is the union of the closed rectangles [0-0]-[1-1] and [0-1]-[2-2]

Intersection

$A \cap B$

- The intersection of two regular closed sets (though closed) is not necessarily regular closed.
- Therefore we define the intersection of two regular closed sets as $(A \cap B)^{0^{-}}$

Intersection

$A \cap B^{0}$

- The intersection of two regular closed sets (though closed) is not necessarily regular closed.
- Therefore we define the intersection of two regular closed sets as $(A \cap B)^{0^{-}}$

Intersection

$A \cap B^{0-}$

- The intersection of two regular closed sets (though closed) is not necessarily regular closed.
- Therefore we define the intersection of two regular closed sets as $(A \cap B)^{0^{-}}$

Union

$A \cup B$

$$
\begin{aligned}
\mathrm{A} \cup \mathrm{~B}= & <0,0>-<1,2>\cup \\
& <1,0>-<2, \mathrm{R}>
\end{aligned}
$$

- Likewise, the union of two regular open sets (though open) is not necessarily regular open.
- Therefore we define the union of two regular open sets as $(A \cup B)^{-0}$

Union

$(A \cup B)^{-}$

$(A \cup B)^{-}=[0,0]-[2,2]$

- Likewise, the union of two regular open sets (though open) is not necessarily regular open.
- Therefore we define the union of two regular open sets as $(A \cup B)^{-0}$

Union

$(A \cup B)^{-0}$

- Likewise, the union of two regular open sets (though open) is not necessarily regular open.
- Therefore we define the union of two regular open sets as $(A \cup B)^{-0}$

Boolean operations

Regular Open Regions
 Regular Closed Regions

- $\mathrm{RO}(\mathrm{p})=\mathrm{p}^{-0}$
- $\mathrm{RO}(\neg \mathrm{A})=\mathrm{X} \backslash \mathrm{RO}(\mathrm{A})^{-}$
- $\mathrm{RO}(\mathrm{A} \wedge \mathrm{B})=$ $\mathrm{RO}(\mathrm{A}) \cap \mathrm{RO}(\mathrm{B})$
- $\mathrm{RO}(\mathrm{A} \vee B)=$ $(\mathrm{RO}(\mathrm{A}) \cup \mathrm{RO}(\mathrm{B}))^{-0}$
- $\mathrm{RC}(\mathrm{p})=\mathrm{p}^{0-}$
- $\operatorname{RC}(\neg \mathrm{A})=\mathrm{X} \backslash \mathrm{RC}(\mathrm{A})^{0}$
- $\operatorname{RC}(A \wedge B)=$ $(\mathrm{RC}(\mathrm{A}) \cap \mathrm{RC}(\mathrm{B}))^{0-}$
- $\mathrm{RC}(\mathrm{A} \vee \mathrm{B})=$ $R C(A) \cup R C(B)$

Kuratowski Axioms

Interior

- $\mathrm{A}^{0} \leq \mathrm{A}$
- $\mathrm{A}^{0}=\mathrm{A}^{00}$
- $T=T^{0}$
- $\mathrm{A}^{0} \cap \mathrm{~B}^{\mathrm{O}}=(\mathrm{A} \cap \mathrm{B})^{0}$

Closure

- $\mathrm{A} \leq \mathrm{A}^{-}$
- $\mathrm{A}^{--}=\mathrm{A}^{-}$
- $\perp^{-}=\perp$
- $(A \cup B)^{-}=A^{-} \cup B^{-}$

Kuratowski Axioms

Interior

- $A^{0} \leq A$
- $A^{0}=A^{00}$
- $T=T^{0}$
- $\mathrm{A}^{\mathrm{O}} \cap \mathrm{B}^{\mathrm{O}}=(\mathrm{A} \cap \mathrm{B})^{\mathrm{O}}$

S4

- $\square \mathrm{A} \vdash \mathrm{A}$
- $\square \mathrm{A} \vdash \square \square \mathrm{A}$
- \quad • \square T
- $\square \mathrm{A} \wedge \square \mathrm{B} \vdash \square(\mathrm{A} \wedge \mathrm{B})$
- $\square(\mathrm{A} \wedge \mathrm{B}) \vdash \square \mathrm{A} \wedge \square \mathrm{B}$

Kuratowski Axioms

Closure

S4

- $\mathrm{A} \leq \mathrm{A}^{-}$
- $\mathrm{A}^{--}=\mathrm{A}^{-}$
- $\perp^{-}=\perp$
- $(A \cup B)^{-}=A^{-} \cup B^{-}$
- $\mathrm{A} \vdash \bigcirc \mathrm{A}$
- $\bigcirc>\mathrm{A} \vdash \bigcirc \mathrm{A}$
- $\bigcirc \perp \vdash \perp$
- $\diamond(\mathrm{A} \vee \mathrm{B}) \vdash \diamond \mathrm{A} \vee \diamond \mathrm{B}$
- $\vee \mathrm{A} \vee \vee \mathrm{B} \vdash>(\mathrm{A} \vee \mathrm{B})$

Kuratowski Axioms

Interior

- $\mathrm{A}^{0} \leq \mathrm{A}$
- $A^{0}=A^{00}$
- $T=T^{0}$
- $\mathrm{A}^{\mathrm{O}} \cap \mathrm{B}^{\mathrm{O}}=(\mathrm{A} \cap \mathrm{B})^{0}$

Of course, the logical
rules for the
exponentials of linear
logic are just the rules
for $\$ 4$ as well!

Logic and Topology

- The relation between S4 and topology was first noted by Tarski (1938) McKinsey \& Tarski (1944)
- However, its application to spatial reasoning is fairly new (see references: the earliest I found are from the mid 90s)

Modeling

- Let's turn to some possible applications.
- How would we model a statement like "the interior of region A and the interior of region B have a non-empty intersection"?
- First try: $\neg(\square \mathrm{A} \wedge \square \mathrm{B} \leftrightarrow \perp)$

Modeling

- First try: $\neg(\square \mathrm{A} \wedge \square \mathrm{B} \leftrightarrow \perp)$
- This formula is equivalent to $\square \mathrm{A} \wedge \square \mathrm{B}$
- Let's construct a model of this formula.

> Of course this will fail, but it will be instructive to see why land to see what form the models of these kinds of formulas take)

A model of $A^{0} \wedge B^{\circ}$

Of course, this is just one of many possible models! In particular, this is a model where A union B is not equal to the universe

Reminder: A- means there is an arrow to a state where A holds.
A0 means all arrows lead to a state where A holds.

Remark: none of

The model seems very
simple. This is no
accident, we can always
construct a model with
depth 1 and at most
two arrows leaving any
point. sared

Question: can we add arrow from 1 to 2?
Answer: No! If we add an arrow from 1 to 2, transitivity would force us to add an arrow from 1 to 7 as well and then A would no longer hold at all states accessible from 1.

A model of $A^{0} \wedge B^{0}$

Now, in order for the formula $\mathrm{A}^{0} \wedge \mathrm{~B}^{0}$ to hold, it has to be true at every point.

This means that for every point and every point we can reach from this point by following an arrow both A and B must hold.

Let's look at point 7 .

A model of $A^{0} \wedge B^{0}$

The only point we can reach from point 7 is point 7 itself.

Neither A nor B holds at point 7 .

Therefore, this model is a countermodel to $\mathrm{A}^{0} \wedge \mathrm{~B}^{\circ}$

What went wrong?

A model of $\mathrm{A}^{\circ} \wedge \mathrm{B}^{\circ}$

We want to state that $A^{\circ} \wedge B^{\circ}$ is true at at least one point in the model.

This would
correctly model the fact that this intersection is not empty

A model of $A^{0} \wedge B^{0}$

A solution is to add a universal modality to S4, giving the system S4u

A formula $\forall F$ is true if for all points in the model the formula F is true.

S4u

So we have "true everywhere" for the universal quantifier and "true somewhere" for the existential quantifier. Their negations are "false somewhere" (not foralll and "false everywhere" (not exists)

- In other words, $\forall \mathrm{F}$ will mean $|F|=X$ and $\exists \mathrm{F}$ will mean $|\mathrm{F}| \neq \varnothing$
- The negated forms are interpreted as expected: $\neg \forall F$ will mean $|F| \neq X$ and $\neg \exists \mathrm{F}$ will mean $|\mathrm{F}|=\varnothing$
- In the following, I will often use formulas containing " $\mathrm{F} \neq \varnothing$ ", " $\mathrm{F} \neq$ "F = $\varnothing ", " F=X "$.

This is a slight abuse of notation, but, in my opinion, it makes the formulas a lot easier to read!

S4u - Language

- We can restrict ourselves without loss of generality to formulas without nested occurrences of the universal/existential modality (see eg. Aiello \&e van Benthem).
- This is because a formula $\exists \mathrm{F}$ or $\forall \mathrm{F}$ is true globally.
- That is to say, we can replace a formula F[JG] by the equivalent formula $(\exists G \wedge F[\top]) \vee \neg(\exists G \wedge F[\perp])$

S4u - Language

- In other words, we can say that the formulas of $\mathrm{S4} 4$ are of the following form:

$$
\begin{gathered}
F=F \wedge F \\
\mid F \vee F \\
\mid \neg F \\
\mid \forall S \\
\mid \exists S \\
\mid S
\end{gathered}
$$

- Where S is a "normal" S4 formula.

S4u - Examples

- ヨa
- $\quad \square$ a
- $\exists(\neg \square a \wedge>a)$
- $\neg \forall a$
- a is not empty
- a has a non-empty interior
- the frontier of a is not
empty
- a is not the universe (there is a point ouside of al

S4u expressivity

- Define $A \subseteq B$ as $\forall(\neg A \vee B)$ or $\neg A \vee B=X$ or $A \rightarrow B=X$
- Define A $\nsubseteq \mathrm{B}$ as $\neg \forall(\neg A \vee B)$ or $\neg A \vee B \neq X$ or $A \rightarrow B \neq X$
- Define $A \subset B$ as $A \subseteq B \wedge B \nsubseteq A$

S4u expressivity

- The subset relation gives us a fairly crude way of partitioning the different possible relations between a region A and a region B

1. $\mathrm{A} \subseteq \mathrm{B} \wedge \mathrm{B} \subseteq \mathrm{A}$
2. $A \subseteq B \wedge B \nsubseteq A$

These are the
distinctions we can make in mereology. By adding some topologically interesting information, we obtain a system of mereotopology.
3. $\mathrm{A} \nsubseteq \mathrm{B} \wedge \mathrm{B} \subseteq \mathrm{A}$
4. $\mathrm{A} \nsubseteq \mathrm{B} \wedge \mathrm{B} \nsubseteq \mathrm{A}$

S4u expressivity

$$
\mathrm{A}=\mathrm{a}^{0-} \text { and } \mathrm{B}=\mathrm{b}^{0-}
$$

- Define DC(A,B)

$$
\mathrm{A} \wedge \mathrm{~B}=\varnothing
$$

$$
\mathrm{A}^{\mathrm{o}} \wedge \mathrm{~B}^{\mathrm{O}}=\varnothing \wedge \mathrm{A} \wedge \mathrm{~B} \neq \varnothing
$$

Note that this definition presupposes that A and B are closed: given that we are working we regular closed regions only, this conditions is satisfied by construction.

Exercise: give the correct definitions of the RCC8 relations for regular open sets. as \neg ($\mathrm{A} \wedge \mathrm{B}$), which is equivalent to $A \wedge B=\varnothing$

- Define $\mathbb{E C}(\mathrm{A}, \mathrm{B})$ as $\neg \exists\left(A^{0} \wedge B^{0}\right) \wedge$ $\exists(A \wedge B)$, or
$A^{0} \wedge B^{0}=\varnothing \wedge$
$\mathrm{A} \wedge \mathrm{B} \neq \varnothing$

S4u expressivity

$$
\mathrm{A}=\mathrm{a}^{0-} \text { and } \mathrm{B}=\mathrm{b}^{0-}
$$

The interiors share a
point but neither $A-B$ not $B>A$
$A^{0} \wedge B^{0} \neq \varnothing \wedge A \rightarrow B \neq X \wedge B \rightarrow A \neq X$

$$
\mathrm{A}^{0} \wedge \mathrm{~B}^{0} \neq \varnothing \wedge \mathrm{A} \nsubseteq \mathrm{~B} \wedge \mathrm{~B} \nsubseteq \mathrm{~A}
$$

Both $A>B$ and $B \rightarrow>A$. The
remaining cases are
therefore $A-B$ and not $B \rightarrow A(-B / A A)$ and $B \rightarrow A$ and not $A \rightarrow B(-A / \triangle B)$

A B

$\mathrm{A} \leftrightarrow \mathrm{B}=\mathrm{X}$
$A \subseteq B \wedge B \subseteq A$

- Define PO(A,B) as $\exists\left(A^{0} \wedge B^{0}\right) \wedge$ $\neg(A \subseteq B) \wedge \neg(B$
$\subseteq A$) or $\mathrm{A}^{0} \wedge \mathrm{~B}^{0} \neq$ $\varnothing \wedge \neg(A \subseteq B) \wedge$ $\neg(B \subseteq A)$
- Define $\mathrm{EQ}(\mathrm{A}, \mathrm{B})$ as $A \subseteq B \wedge B \subseteq$ A.

S4u expressivity

$$
\mathrm{A}=\mathrm{a}^{0^{-}} \text {and } \mathrm{B}=\mathrm{b}^{0-}
$$

B

A

$$
\neg A \vee B^{0}=X \wedge \neg A \wedge B \neq \varnothing
$$

B
A

$$
\neg \mathrm{A} \vee \mathrm{~B}=\mathrm{X} \wedge \neg \mathrm{~A} \wedge \mathrm{~B} \neq \varnothing \wedge \mathrm{A} \wedge \neg\left(\mathrm{~B}^{0}\right) \neq \varnothing
$$

$$
\mathrm{A} \subseteq \mathrm{~B} \wedge \mathrm{~A} \nsubseteq \mathrm{~B}^{\circ} \wedge \mathrm{B} \nsubseteq \mathrm{~A}
$$

- Define $\operatorname{NTPP}(A, B)$ as $\neg A \vee B^{0}=X \wedge$ $\neg \mathrm{A} \wedge \mathrm{B} \neq \varnothing$
- Define $\operatorname{TPP}(\mathrm{A}, \mathrm{B})$ as $\neg A \vee B=X \wedge$ $\mathrm{A} \wedge \neg\left(\mathrm{B}^{0}\right) \neq \varnothing \wedge$ $\neg A \wedge B \neq \varnothing$

S4u expressivity

$$
\mathrm{A}=\mathrm{a}^{0-} \text { and } \mathrm{B}=\mathrm{b}^{0-}
$$

A
 B

$\neg \mathrm{B}^{\circ} \mathrm{AA}^{\mathrm{O}}=\mathrm{X} \wedge \neg \mathrm{B} \wedge \mathrm{A} \neq \varnothing$
$\mathrm{B} \subseteq \mathrm{A}^{0} \wedge \mathrm{~A} \nsubseteq \mathrm{~B}$
A

- Define $\operatorname{NTPP}^{-1}(\mathrm{~A}, \mathrm{~B})$ as $\operatorname{NTPP}(\mathrm{B}, \mathrm{A})$
- Define $\operatorname{TPP}^{-1}(\mathrm{~A}, \mathrm{~B})$ as $\operatorname{TPP}(\mathrm{B}, \mathrm{A})$
$\neg B \vee A=X \wedge \neg B \wedge A \neq \varnothing \wedge B \wedge \neg\left(A^{0}\right) \neq \varnothing$
$\mathrm{B} \subset \mathrm{A} \wedge \mathrm{B} \nsubseteq \mathrm{A}^{\circ}$

S4u expressivity

- We have shown that there are formulas defining the RCC8 relations in S4u
- A natural question is: are there any useful things we can express in S4u which are not expressible in RCC8?

S4u expressivity

- In RCC8, we apply the 8 relations only to region variables, which we assume to be regular closed, ie. $\mathrm{A}=a^{0-}$ and $\mathrm{B}=$ b^{0-} for a and b atomic.
- If instead we allow regular closed formulas, which use boolean combinations of regions, then we can express more.
- The resulting calculus is sometimes called BRCC8 (B for Boolean)

S4u expressivity

- EQ(Union※uropéene, PaysBaysvBelgiquevFrancev...)
- \#Q(Aquitaine,

We can use equality statements to specify that a region is exactly the union of a number of other regions. In RCC8 we can only specify that each of the different regions is a part of (tangential or not) a superregion but not the inverse. Dordogne v Gironde v Landes v Lot®tGaronne v PyrénéesAtlantiques)

- TPP(Pyrénées, Francev WspagnevA

These two statements capture the fact that France and Spain are

- EC(France^Pyrénées,Bspagne^Pyr

S4u expressivity

- EC(Andorre,France^Pyrénées)
- \#C(Andorre,\#spagne^Pyrénées)
- NTPP(Andorre,Pyrénées)
- \#Q(France, FranceContinentalvCorse)
- DC(FranceContinental,Corse)

S4u expressivity

- Besides BRCC8, there is another way to model regions and their interactions in S 4 u.
- To see how, remember that the formula $\neg \square \mathrm{A} \wedge \bigcirc \mathrm{A}$ denotes the frontier of $\mathrm{A}, \square \mathrm{A}$ denotes the interior of A and $\neg \triangle A$ denotes the exterior of A (that is, the complement of the closure)

S4u expressivity

- To see how, remember that the formula $\neg \square \mathrm{A} \wedge \bigcirc \mathrm{A}$ denotes the frontier of $\mathrm{A}, \square \mathrm{A}$ denotes the interior of A and $\neg \Delta A$ denotes the exterior of A (that is, the complement of the closure)
- In addition \neg EA means region A is empty, whereas ヨA means it is not empty.

S4u expressivity

- Egenhofer and colleagues, have created a taxonomy of topological possibilities (under certain hypotheses about the regions under consideration) specifying whether each of the 3 divisions of the topological space (interior, frontier, exterior) introduced by two different regions is empty or not.
- In the case of regions "without holes" this gives the same 8 relations as RCC8; without this restriction, the 9-intersection model makes more distinctions.

S4u expressivity

	A°	δA	A^{\prime}
B°	$\neg \varnothing$	$\neg \varnothing$	$\neg \varnothing$
δB	\varnothing	\varnothing	$\neg \varnothing$
B^{\prime}	\varnothing	\varnothing	$\neg \varnothing$

The NTPP relation (non-
tangential proper part) of RCC8 shown as a 9-

The same matrix
translated into a 540 formula, which is slightly big!

S4u expressivity

	$\square \mathrm{A}$	$\neg \square \mathrm{A} \wedge \diamond \mathrm{A}$	$\neg \diamond \mathrm{A}$
$\square \mathrm{B}$	$\neg \varnothing$	$\neg \varnothing$	$\neg \varnothing$
$\neg \square \mathrm{B} \wedge \diamond \mathrm{B}$	\varnothing	\varnothing	$\neg \varnothing$
$\neg \diamond \mathrm{B}$	\varnothing	\varnothing	$\neg \varnothing$

$\exists(\square \mathrm{A} \wedge \square \mathrm{B}) \wedge \exists(\neg \square \mathrm{A} \wedge \diamond \mathrm{A} \wedge \square \mathrm{B}) \wedge \exists(\neg \diamond \mathrm{A} \wedge \square \mathrm{B}) \wedge$ $\neg \exists(\square \mathrm{A} \wedge \neg \square \mathrm{B} \wedge \diamond \mathrm{B}) \wedge \neg \exists(\neg \square \mathrm{A} \wedge \diamond \mathrm{A} \wedge \neg \square \mathrm{B} \wedge \diamond \mathrm{B}) \wedge \exists(\neg \diamond \mathrm{A} \wedge \neg \square \mathrm{B} \wedge \diamond \mathrm{B}) \wedge$ $\neg \exists(\square \mathrm{A} \wedge \neg \vee \mathrm{B}) \wedge \neg \exists(\neg \square \mathrm{A} \wedge \diamond \mathrm{A} \wedge \neg \bigcirc \mathrm{B}) \wedge \exists(\neg \diamond \mathrm{A} \wedge \neg \vee \mathrm{B})$

S4u expressivity

The partial overlap relation (PO) from
RCC8

	$\square \mathrm{A}$	$\neg \mathrm{A} \wedge \diamond \mathrm{A}$	$\neg \diamond \mathrm{A}$
$\square \mathrm{B}$	$\neg \varnothing$	$\neg \varnothing$	$\neg \varnothing$
$\neg \square \mathrm{B} \wedge \diamond \mathrm{B}$	$\neg \varnothing$	$\neg \varnothing$	$\neg \varnothing$
$\neg \diamond \mathrm{B}$	$\neg \varnothing$	$\neg \varnothing$	$\neg \varnothing$

$\exists(\square \mathrm{A} \wedge \square \mathrm{B}) \wedge \exists(\neg \mathrm{A} \wedge \diamond \mathrm{A} \wedge \square \mathrm{B}) \wedge \exists(\neg \diamond \mathrm{A} \wedge \square \mathrm{B}) \wedge$ $\exists(\square \mathrm{A} \wedge \neg \square \mathrm{B} \wedge \diamond \mathrm{B}) \wedge \exists(\neg \square \mathrm{A} \wedge \diamond \mathrm{A} \wedge \neg \square \mathrm{B} \wedge \diamond \mathrm{B}) \wedge \exists(\neg \diamond \mathrm{A} \wedge \neg \square \mathrm{B} \wedge \diamond \mathrm{B}) \wedge$ $\exists(\square A \wedge \neg \bigcirc B) \wedge \exists(\neg \square A \wedge \diamond A \wedge \neg \diamond B) \wedge \exists(\neg \diamond A \wedge \neg>B)$

S4u expressivity

- $\forall(($ NorthKorea \wedge SouthKorea) \rightarrow DemilitarizedZone)
- $\exists \mathrm{p} \wedge \forall(\mathrm{p} \rightarrow \diamond \neg \mathrm{p}) \wedge \forall(\neg \mathrm{p} \rightarrow \diamond \mathrm{p})$

A tiny model for the above formule

We can state the following fact: the border between North and South Korea is a subset of the Demilitarized Zone.

The second is very strange: p is not empty and all points of p are boundary points.

Note however, that p is not regular closed (p's interior

$$
\neg \mathrm{p} \leftrightarrows \mathrm{p}
$$

> Note how the second conjunct makes it impossible for p to hold in a point from which only states where "p" holds are accessible: all world where "p" holds have an accessible world where "not p" holds. The third conjunct expresses the same for "not p"

S4u complexity

- The complexity of S 4 u is the same as the complexity of S4: it is PSPAC® complete.
- Many interesting fragments (all have have seen: RCC8, BRCC8 and 9-I, at least for atomic formulas) have simpler models than S4 and are NP complete (see eg. Gabelaia e.a.).

Going Further

- It seems natural to interpret our regions in an Euclidian space: this would give us a natural distance metric.
- Convex hulls seem useful for many purposes.
- Integration with temporal logic has been investigated (but there is surely more to be done!)
- Is there a good way to strike a balance between expressivity and computational complexity?

Bibliography

- M. Aiello \&e J. van Benthem (1999) "Logical Patterns in Space", ILLC Technical Rapport.
- B. Bennett (1996) "Modal Logics for Qualitative Spatial Reasoning", Bulletin of the IGPL 4, 23-45.
- J. van Benthem \&e G. Bezhanishvili (2007) "Modal Logics of Space", in Handbook of Spatial Logics.
- D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, M. Zakharyaschev (2005) "Combining Spatial and Temporal Logics: Expressivity vs. Complexity", Journal of Artificial Intelligence Research 23, 167-243.

