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Why Topology?

• Topology seems to be at the right level 
of abstraction (eg. when compared to 
geometry).

• Basically, we have regions, their 
complements (intended to model 
“outside”), their interiors (intended to 
model “inside”) and frontiers.

• Rich and well-developed field of 
mathematics



Why Topology?

• It allows us to model statements like:

 “the frontier between France and 
Spain runs through the Pyrénées”

“France is the union of Continental 
France and Corsica, yet Continental 
France and Corsica are 
disconnected”



Some Potential Problems

• Topology, being very general and very 
abstract, makes more distinctions 
than are useful when reasoning about 
real regions in space.

• Reasoning about topological spaces 
can be very complex.



Goals

• Find some nice, well-behaved regions 
in topological space.

• Find a language which is expressive 
enough to make topologically 
interesting statements, yet has 
reasonable computational complexity.



Reminder
Basic Definitions

• A topology is a set X (the universe) 

and a collection ! of subsets of X (the 
open sets) such that:

• ! contains X and !

• The union of any collection of 
elements of ! is in !

• The intersection of any finite number 
of elements of ! is in !

Sometimes it is useful to permit infinite 
intersections as well: in this case we will talk 
about an Alexandrov space or Alexandrov 
topology. An Alexandrov topology is isomorphic 
to specialization preorder on a set X, that is x 
<= y if and only if all open sets which contain x 
contain y as well.
This make the link between preorders (reflexive 
and transitive relations) and S4 (with a 
reflexive and transitive accessibility relation R).



Reminder
Basic Definitions

• The complement of a subset A of X, 
which we will note by A" is defined as  
X \ A.

• The complement of an open set is 
closed.

Some people write Ac for 
the complement of a set. 
In order to avoid 
confusion with the 
closure of a set, I will 
write A’ for the 
complement and A- for 
the closure.



Reminder
Basic Definitions

• A set can be both closed and open 
(specifically, both X and ! are both 
closed and open in any topology)

• a set can also be neither closed nor 
open.

Some people like the 
word “clopen” for a set 
which is both closed 
and open. I don’t. It is 
very widely used, 
though.



Reminder
(Very) Basic Properties

• (A # B)" = A" $ B"

• X \ (A # B) = X \ A $ X \ B

• %x x & X ' x ( (A # B) )                                  

x & X ' x ( A ' x ( B de Morgan law for union 
and complement
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Reminder
(Very) Basic Properties

• (A # B)" = A" $ B"

• X \ (A # B) = X \ A $ X \ B

• %x x & X ' ¬(x & A) ' ¬(x & B)) )                                  

x & X ' x ( A ' x ( B



Reminder
(Very) Basic Properties

• (A $ B)" = A" # B"

• A"" = A
All of this is basic set 
theory
We have, in essence, a 
boolean algebra.



Reminder
Basic Definitions

• Given a set A, the interior Ao of A is 
the union of all open sets O such that O 
* A.  

• Given a set A, the closure A! of A is the 
intersection of all closed sets C such 
that A * C.

• Evidently, we have Ao  * A * A!



Reminder
Basic Definitions

• Evidently, we have Ao  * A * A!

• if A is open then Ao  = A

• if A is closed then A!  = A

• The boundary of A, "A is defined as   
A! \ Ao



Open and Closed Sets

General

Open

Closed

“Clopen”

Ao * A * A!

Ao = A * A!

Ao * A = A!

Ao = A = A!



Reminder
Example 0

A = [0,1>

Ao = <0,1>

A! = [0,1]

A" = <-",1>#[0,">

"A = {0,1}

Classically, first examples in topology are
about intervals on the real line... 



Reminder
Example 1

X = {a,b,c,d,e}

! = {!,X,{a},{c,d},{a,c,d},{b,c,d,e}}

!" = {!,X,{b,c,d,e},{a,b,e},{b,e},{a}}

A = {a,b}

Ao = {a} # ! = {a}

A! = X $ {a,b,e} = {a,b,e}

"A = {a,b,e} \ {a} = {b,e}

a b

c

d

e

A

Open sets

Closed sets



Reminder
Example 1

X = {a,b,c,d,e}

! = {!,X,{a},{c,d},{a,c,d},{b,c,d,e}}
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A = {a,b}

Ao = {a} # ! = {a}
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"A = {a,b,e} \ {a} = {b,e}

a b

c

d

e

Ao
A

Open sets

Closed sets
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Example 1

X = {a,b,c,d,e}
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d

e

Ao
A

A!

Open sets

Closed sets



Reminder
Example 1

X = {a,b,c,d,e}

! = {!,X,{a},{c,d},{a,c,d},{b,c,d,e}}

!" = {!,X,{b,c,d,e},{a,b,e},{b,e},{a}}

A = {a,b}

Ao = {a} # ! = {a}

A! = X $ {a,b,e} = {a,b,e}

"A = {a,b,e} \ {a} = {b,e}

a

c

d

Ao

Open sets

Closed sets

b

e
A!

A

"A



Reminder
Example 2

X = {a,b,c,d,e}

! = {!,X,{a},{c,d},{a,c,d},{b,c,d,e}}

!" = {!,X,{b,c,d,e},{a,b,e},{b,e},{a}}

A = {c,d}

Ao = {c,d} # ! = {c,d}

A! = X $ {b,c,d,e} = {b,c,d,e}

"A = {b,c,d,e} \ {c,d} = {b,e}

a b

c

d

eA



Reminder
Example 2

X = {a,b,c,d,e}

! = {!,X,{a},{c,d},{a,c,d},{b,c,d,e}}

!" = {!,X,{b,c,d,e},{a,b,e},{b,e},{a}}

A = {c,d}

Ao = {c,d} # ! = {c,d}

A! = X $ {b,c,d,e} = {b,c,d,e}

"A = {b,c,d,e} \ {c,d} = {b,e}

a b

c

d

e
Ao

A



Reminder
Example 2

X = {a,b,c,d,e}

! = {!,X,{a},{c,d},{a,c,d},{b,c,d,e}}

!" = {!,X,{b,c,d,e},{a,b,e},{b,e},{a}}

A = {c,d}

Ao = {c,d} # ! = {c,d}

A! = X $ {b,c,d,e} = {b,c,d,e}

"A = {b,c,d,e} \ {c,d} = {b,e}

a b

c

d

e
Ao

A

A!



Reminder
Example 2

X = {a,b,c,d,e}

! = {!,X,{a},{c,d},{a,c,d},{b,c,d,e}}

!" = {!,X,{b,c,d,e},{a,b,e},{b,e},{a}}

A = {c,d}

Ao = {c,d} # ! = {c,d}

A! = X $ {b,c,d,e} = {b,c,d,e}

"A = {b,c,d,e} \ {c,d} = {b,e}

a

c

d

b

e

"A

Ao

A

A!



Reminder
Example 3

• Open rectangles 
generate one of the 
standard topologies 

on !2 

• As an example, the 
following open 
rectangles are part 
of this standard 
topology.

X = !2

! = {!, !2,<0,0>-<1,2>,<0,2>-<3-3>,<1,1>-<2,2>,...}

X

Y



Reminder
Example 3

• Open rectangles 
generate one of the 
standard topologies 

on !2 

• However, even the 
general definition of 
open sets listed 
above does not form 
a topology (why?)

X = !2

! = {!, !2 , <A,B>-<C,D>}

A B

A < C, B < D

C

D

Y

X



Reminder
Example 3

• When we have two 
open rectangles, 
their intersection is 
either an open 
rectangle or empty.

• However, their 
union is not an open 
rectangle.

X = !2

! = {!, !2 , <A,B>-<C,D>}

A B

A < B, C < D

C

D

E F

H

G

Y

X

So while the purple part of 
the figure to the right is a 
part of the defined topology, 
the union (that is, the union 
of the blue, purple and red 
part) is not a rectangle and 
therefore not a part of the 
topology as defined above.



Reminder
Example 3

• We say a collection 
of open sets B is a 
base (basis) for a 
topology if any 
element of ! is the 
union of elements of 
B 

X = !2

B = {!, !2 , <A,B>-<C,D>}

A B

A < B, C < D

C

D

E F

H

G

Y

X



Reminder
Bases

• Bases allow us to give a compact way 
to describe topologies.

• Some topological properties can also 
be verified directly on the base 
elements.



Regular Closed Sets

Regular closed Not reg. closed

A B

• A is regular closed 

iff A = Ao!

• roughly speaking, 
this means no 
“loose points” and 
no “hanging lines”



Regular Closed Sets

Regular closed Not reg. closed

Ao Bo

• A is regular closed 

iff A = Ao!

• roughly speaking, 
this means no 
“loose points” and 
no “hanging lines”



Regular Closed Sets

Regular closed Not reg. closed

Ao! Bo!

• A is regular closed 

iff A = Ao!

• roughly speaking, 
this means no 
“loose points” and 
no “hanging lines”

=A #B
Note, this does not show that Ao- 
is necessarily regular closed, I will 
come to that in a few slides.



Regular Open Sets

Regular open Not reg. open

• A is regular open 

iff A = A!o

• roughly speaking, 
this means no 
“holes” and no 
“cracks”

A B



Regular Open Sets

Regular open Not reg. open

• A is regular open 

iff A = A!o
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Regular Open Sets

Regular open Not reg. open

• A is regular open 

iff A = A!o

• roughly speaking, 
this means no 
“holes” and no 
“cracks”

A!o B!o

=A #B
Again, this does not suffice to 
show that A-o is regular open.



Regular Sets

• Suppose A is a regular open set, that 
is A = A!o.

• Thus we have, for its complement A" 
that A" = A!o" = A!"! = A"o!

• In addition, we have A! = A!o!

• In other words, both A" and A! are 
regular closed.

Similar remarks hold 
for regular closed sets. 
Given a regular closed 
set A, both its 
complement and its 
interior are regular 
open.



Combinations

• Given a region variable A, how many 
(potentially) different regions can we 
construct using the closure, interior 
and complement relations?

• Our possibilities are limited by the fact 
that a double complement is the 
identity function and that the closure 
and interior operations are 
idempotent.



Combinations

•Equivalences

•A"" = A

•Aoo = Ao

•A!! = A!

•Ao!o! = Ao!

•A!o!o = A!o

•Non-equivalent 

•A

•A!, Ao

•A!o, Ao!

•A!o!, Ao!o

•and their 
negations



Combinations

A A"

A!

Ao

A"o A"o!

A!o!A!o

A"o!o

A"!

Ao! Ao!o

A"!o A"!o!

"

! !

!

"""

" " "

!

o

!

o

!

o

!

o

!

o !

o

!

o

o

!

o

o o

!

!

!

!

o

o o

! : closure

" : complement

o : interior

Note: there are examples 
where all these 14 regions 
are different.



Combinations

A A"
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Regular Closed

! : closure

" : complement

o : interior



Combinations
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Combinations
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Combinations
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Combinations
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Regular closed regions

A regular closed =def 

A = Ao!

! : closure

o : interior

" : complement

A Ao

A" A"!

o

!

o

!

"" ""

! o

o !



Regular open regions

A A!

A" A"o

o

!

o

!

"" ""

o !

o!

A regular open =def  

A = A!o

! : closure

o : interior

" : complement



Combinations

• We have seen that the regular closed 
and regular open sets reduce the 
combinatorics of the closure, interior 
and complement relations on a single 
region.

• What we have not looked at yet is how 
the regular closed and open sets 
combine with unions and 
intersections.



Intersection

• A is the union of 
the closed 
rectangles 
[0,0]-[1-2] and 
[0-1][1-2]

• B is the union of 
the closed 
rectangles 
[0-0]-[1-1] and 
[0-1]-[2-2]

B

A



Intersection

• A is the union of 
the closed 
rectangles 
[0,0]-[1-2] and 
[0-1][1-2]

• B is the union of 
the closed 
rectangles 
[0-0]-[1-1] and 
[0-1]-[2-2]

A,B

A,B A

A,B B

A,B A



Intersection

• The intersection of 
two regular closed 
sets (though 
closed) is not 
necessarily regular 
closed.

• Therefore we define 
the intersection of 
two regular closed 

sets as (A$B)o!

A$B



Intersection

• The intersection of 
two regular closed 
sets (though 
closed) is not 
necessarily regular 
closed.

• Therefore we define 
the intersection of 
two regular closed 

sets as (A$B)o!

A$B o



Intersection

• The intersection of 
two regular closed 
sets (though 
closed) is not 
necessarily regular 
closed.

• Therefore we define 
the intersection of 
two regular closed 

sets as (A$B)o!

A$B o!



Union

• Likewise, the union 
of two regular open 
sets (though open) 
is not necessarily 
regular open.

• Therefore we define 
the union of two 
regular open sets as 

(A#B)!o

A#B 

A#B = <0,0>-<1,2> #

 <1,0>-<2,2>



Union

• Likewise, the union 
of two regular open 
sets (though open) 
is not necessarily 
regular open.

• Therefore we define 
the union of two 
regular open sets as 

(A#B)!o

(A#B)! 

(A#B)!  = [0,0]-[2,2]



Union

• Likewise, the union 
of two regular open 
sets (though open) 
is not necessarily 
regular open.

• Therefore we define 
the union of two 
regular open sets as 

(A#B)!o

(A#B)! o

(A#B)!o  = <0,0>-<2,2>



Boolean operations

• RO(p) = p!o

• RO(¬A) = X\RO(A)!

• RO(A'B) = 
RO(A)$RO(B)

• RO(A+B) = 

(RO(A)#RO(B))!o

• RC(p) = po!

• RC(¬A) = X\RC(A)o

• RC(A'B) = 

(RC(A)$RC(B))o!

• RC(A+B) = 
RC(A)#RC(B)

Regular Open Regions Regular Closed Regions

The combinations listed here give us a way to produce boolean combination of regular closed regions. They are in fact a 
sublanguage of S4u describing regions terms. This will be useful later, when we will use it to move from RCC8 to BRCC8 by 
changing from regular close atoms to formulas of RC.



Kuratowski Axioms

• Ao $ A

• Ao = Aoo

• " = "o

• Ao$Bo = (A$B)o

• A  $ A! 

• A!! = A!

• ,! = ,

• (A#B)! = A!#B!

Interior Closure
These rules should 
remind us of something...



Kuratowski Axioms

• Ao $ A

• Ao = Aoo

• " = "o

• Ao$Bo = (A$B)o

• !A  #A

• !A 
#

 !!A

• " # !"

• !A$!B # !(A$B)

• !(A$B) # !A$!B

Interior S4
You will note in the 
following that I sometimes 
switch rather freely from 
the “modal logic” notation 
with diamonds and boxes to 
the “topology notation” 
with interiors and closures. 
I trust this will not lead to 
confusion.



Kuratowski Axioms

• A  $ A!

• A!! = A!

• ,! = ,

• (A#B)! = A!#B!

• A  #!A

• !!A  #!A

• !, #,

• !(A!B) # !A!!B 

• !A!!B # !(A!B)

Closure S4



Kuratowski Axioms

• Ao $ A

• Ao = Aoo

• " = "o

• Ao$Bo = (A$B)o

• !A  #A

• !A 
#

 !!A

• " # !"

• !A$!B # !(A$B)

• !(A$B) # !A$!B

Interior S4

Of course, the logical 
rules for the 
exponentials of linear 
logic are just the rules 
for S4 as well!



Logic and Topology

• The relation between S4 and topology 
was first noted by Tarski (1938) 
McKinsey & Tarski (1944)

• However, its application to spatial 
reasoning is fairly new (see 
references: the earliest I found are 
from the mid 90s) 



Modeling

• Let’s turn to some possible 
applications.

• How would we model a statement like 
“the interior of region A and the 
interior of region B have a non-empty 
intersection”?

• First try: ¬(!A$!B ) ,) 



Modeling

• First try: ¬(!A$!B ) ,) 

• This formula is equivalent to !A$!B

• Let’s construct a model of this 
formula.

Of course this will fail, 
but it will be instructive 
to see why (and to see 
what form the models of 
these kinds of formulas 
take)



1

2

3

4

5

6

7

{Ao,A} {Bo,B}

{A", B"}

{Ao,A,Bo,B}

{A!,A,A"!} {B!,B,B"!}{A!,A,A"!,
B!,B,B"!}

A B
1 3

2 4

5

6

7

Remark: none of the reflexive 
arrows are displayed!

Of course, this is just one 
of many possible models!
In particular, this is a 
model where A union B is 
not equal to the universe

Reminder: A- means there 
is an arrow to a state 
where A holds.
Ao means all arrows lead 
to a state where A holds.

A model of Ao$Bo

Question: can we add arrow from 1 
to 2?
Answer: No! If we add an arrow 
from 1 to 2, transitivity would 
force us to add an arrow from 1 to 7 
as well and then A would no longer 
hold at all states accessible from 1.

The model seems very 
simple. This is no 
accident, we can always 
construct a model with 
depth 1 and at most 
two arrows leaving any 
point .



A model of Ao$Bo

1

2

3

4

5

6

7

{Ao,A} {Bo,B}

{A", B"}

{Ao,A,Bo,B}

{A!,A,A"!} {B!,B,B"!}{A!,A,A"!,
B!,B,B"!}

This means that 
for every point 
and every point 
we can reach from 
this point by 
following an 
arrow both A and 
B must hold.

Now, in order for the formula Ao$Bo to hold, 
it has to be true at every point.

Let’s look at 
point 7.



A model of Ao$Bo

1

2

3

4

5

6

7

{Ao,A} {Bo,B}

{A", B"}

{Ao,A,Bo,B}

{A!,A,A"!} {B!,B,B"!}{A!,A,A"!,
B!,B,B"!}

Neither A nor B 
holds at point 7.

The only point we can reach from point 7 is 
point 7 itself.

Therefore, this 
model is a 
countermodel 
to Ao$Bo

What went 
wrong?



A model of Ao$Bo

1

2

3

4

5

6

7

{Ao,A} {Bo,B}

{A", B"}

{Ao,A,Bo,B}

{A!,A,A"!} {B!,B,B"!}{A!,A,A"!,
B!,B,B"!}

This would 
correctly model 
the fact that this 
intersection is not 
empty

We want to state that Ao$Bo is true at at 
least one point in the model.

However, in 
standard S4 we 
cannot express 
this.

At least not if we want to 
keep the current 
interpretation of the 
connectives, with its 
advantage of being very close 
to the topological operators. 
We want to preserve this and 
add as little as possible.



A model of Ao$Bo

1

2

3

4

5

6

7

{Ao,A} {Bo,B}

{A", B"}

{Ao,A,Bo,B}

{A!,A,A"!} {B!,B,B"!}{A!,A,A"!,
B!,B,B"!}

A formula %F is 
true if for all 
points in the 
model the formula 
F is true.

A solution is to add a universal modality to 
S4, giving the system S4u

A formula -F is 
true is F holds at 
at least one point.

One way to see the system 
S4u is that it is a 
multimodal system with 
one S4 modality (with a 
transitive and reflexive 
accessibility relation) and 
a second modality which 
has and accessibility 
relation linking all worlds.



S4u

• In other words, %F will mean |F| = X 
and -F will mean |F| # !

• The negated forms are interpreted as 
expected: ¬%F will mean |F| # X and 

¬-F will mean |F|= !

• In the following, I will often use 
formulas containing “F # !”, “F # X”, 
“F = !”, “F = X”.

This is a slight abuse of 
notation, but, in my 
opinion, it makes the 
formulas a lot easier to 
read!

So we have “true everywhere” for the universal 
quantifier and “true somewhere” for the 
existential quantifier.
Their negations are “false somewhere” (not 
forall) and “false everywhere” (not exists)



S4u - Language

• We can restrict ourselves without loss of 
generality to formulas without nested 
occurrences of the universal/existential 
modality (see eg. Aiello & van 
Benthem).

• This is because a formula -F or %F is 
true globally.

• That is to say, we can replace a formula 
F[-G] by the equivalent formula           

(-G $ F["]) ! ¬(-G $ F[,])



S4u - Language

• In other words, we can say that the 
formulas of S4u are of the following 
form:

• Where S is a “normal” S4 formula.

| F ! F
F = F $ F

| %S

| -S

| S

| ¬F



S4u - Examples

• -a

• -!a

•-(¬!a $ !a)

• ¬%a

- a is not empty
- a has a non-empty interior
- the frontier of a is not 
empty
- a is not the universe (there is 
a point ouside of a)



S4u expressivity

• Define A * B as 

%(¬A+B) or       
¬A+B = X or 
A.B = X

• Define A % B as 

¬%(¬A+B) or        

¬A+B # X or 
A.B # X

• Define A / B as 
A * B ' B % A

B

A



S4u expressivity

• The subset relation gives 
us a fairly crude way of 
partitioning the different 
possible relations 
between a region A and a 
region B

1. A * B ' B * A

2. A * B ' B % A

3. A % B ' B * A

4. A % B ' B % A

B

A

These are the 
distinctions we can 
make in mereology. By 
adding some topologically 
interesting information, 
we obtain a system of 
mereotopology.



S4u expressivity

• Define DC(A,B) 

as ¬-(A$B), 

which is 
equivalent to 

A$B = !

• Define EC(A,B) 

as ¬-(Ao$Bo) $ 
-(A$B), or 

Ao$Bo = ! $ 

A$B # !

A B

A B

A$B = !

Ao$Bo = ! $ A$B # !

A ->B   B->A
   0          0    DC,EC,PO
   0          1    TPP-1 NTPP-1

   1          0    TPP    NTPP
   1           1   EQ

Note that this definition 
presupposes that A and B 
are closed: given that we are 
working we regular closed 
regions only, this conditions 
is satisfied by construction.

Exercise: give the correct 
definitions of the RCC8 
relations for regular open 
sets.

A = ao! and B = bo!



S4u expressivity

• Define PO(A,B) 

as -(Ao$Bo) $ 

¬(A * B) $ ¬(B 

* A) or Ao$Bo # 

! $ ¬(A * B) $ 
¬(B * A)

• Define EQ(A,B) 

as  A * B $ B * 

A.

A B

A B

A)B = X

The interiors share a 
point but neither A->B 
not B->A

Both A ->B and B->A. The 
remaining cases are 
therefore A->B and not 
B->A (-B/\A) and B->A 
and not A->B (-A/\B)

Ao$Bo # ! $ A.B # X $ B.A # X

Ao$Bo # ! $ A % B $ B % A

A * B $ B * A

A = ao! and B = bo!



S4u expressivity

• Define 
NTPP(A,B) as 

¬A+Bo = X $ 

¬A$B # ! 

• Define TPP(A,B) 

as ¬A+B = X $ 

A$¬(Bo) # ! $ 
¬A$B # !

B

A

B

A

¬A+B = X $ ¬A$B # ! $ A$¬(Bo) # !

¬A+Bo = X $ ¬A$B # !

A ->B and ¬(B->A) and 
¬(A->Bo)

A * Bo $ B % A

A * B $ A % Bo $ B % A

A = ao! and B = bo!



S4u expressivity

• Define 
NTPP-1(A,B) as 
NTPP(B,A)

• Define 
TPP-1(A,B) as 
TPP(B,A)

A

B

A

B

¬B+Ao = X $ ¬B$A # !

¬B+A = X $ ¬B$A # ! $ B$¬(Ao) # !

B * Ao$ A % B

B / A $ B % Ao

A = ao! and B = bo!



• We have shown that there are 
formulas defining the RCC8 relations 
in S4u

• A natural question is: are there any 
useful things we can express in S4u 
which are not expressible in RCC8?

S4u expressivity



• In RCC8, we apply the 8 relations only 
to region variables, which we assume 
to be regular closed, ie. A = ao! and B = 
bo! for a and b atomic.

• If instead we allow regular closed 
formulas, which use boolean 
combinations of regions, then we can 
express more.

• The resulting calculus is sometimes 
called BRCC8 (B for Boolean)

S4u expressivity



S4u expressivity

• EQ(UnionEuropéene,                                     
PaysBays+Belgique+France+...)

• EQ(Aquitaine,                                        
Dordogne + Gironde + Landes + 
LotEtGaronne + PyrénéesAtlantiques)

• TPP(Pyrénées, France+Espagne+Andorre)

• EC(France'Pyrénées,Espagne'Pyrénées)

These two statements 
capture the fact that 
France and Spain are 
connected by means of the 
Pyrénées. This a stronger 
than the RCC8 statements 
PO(France,Pyrénées) 
PO(Espagne,Pyrénées) 
EC(France, Espagne)

We can use equality statements to 
specify that a region is exactly the 
union of a number of other regions. 
In RCC8 we can only specify that 
each of the different regions is a 
part of (tangential or not) a super-
region but not the inverse.



S4u expressivity

• EC(Andorre,France'Pyrénées)

• EC(Andorre,Espagne'Pyrénées)

• NTPP(Andorre,Pyrénées) 

• EQ(France, FranceContinental+Corse)

• DC(FranceContinental,Corse)
We can state that a region 
denoted by a certain 
variable is discontinuous.
This is impossible in RCC8



• Besides BRCC8, there is another way 
to model regions and their 
interactions in S4u.

• To see how, remember that the 
formula ¬!A $ !A denotes the 

frontier of A, !A denotes the interior 
of A and ¬!A denotes the exterior of 
A (that is, the complement of the 
closure)

S4u expressivity



• To see how, remember that the 
formula ¬!A $ !A denotes the 

frontier of A, !A denotes the interior 
of A and ¬!A denotes the exterior of 
A (that is, the complement of the 
closure)

• In addition ¬-A means region A is 
empty, whereas -A means it is not 
empty.

S4u expressivity



• Egenhofer and colleagues, have created a 
taxonomy of topological possibilities 
(under certain hypotheses about the 
regions under consideration) specifying 
whether each of the 3 divisions of the 
topological space (interior, frontier, 
exterior) introduced by two different 
regions is empty or not.

• In the case of regions “without holes” this 
gives the same 8 relations as RCC8; 
without this restriction, the 9-intersection 
model makes more distinctions.

S4u expressivity



S4u expressivity

Ao !A A"

 Bo

 "B

 B"

¬! ¬! ¬!

! ! ¬!

! ! ¬!

B

A

The NTPP relation (non-
tangential proper part) 
of RCC8 shown as a 9-



S4u expressivity

!A ¬!A $ !A ¬!A

 !B

 ¬!B $ !B

 ¬!B

¬! ¬! ¬!

! ! ¬!

! ! ¬!

-(!A $ !B) $ -(¬!A $ !A $ !B) $ -(¬!A $ !B) $

¬-(!A $ ¬!B $ !B) $ ¬-(¬!A $ !A $ ¬!B $ !B) $ -(¬!A $ ¬!B $ !B) $

¬-(!A $ ¬!B) $ ¬-(¬!A $ !A $ ¬!B) $ -(¬!A $ ¬!B)

The same matrix 
translated into a S4u 
formula, which is 
slightly big!



S4u expressivity

!A ¬!A $ !A ¬!A

 !B

 ¬!B $ !B

 ¬!B

¬! ¬! ¬!

¬! ¬! ¬!

¬! ¬! ¬!

-(!A $ !B) $ -(¬!A $ !A $ !B) $ -(¬!A $ !B) $

-(!A $ ¬!B $ !B) $ -(¬!A $ !A $ ¬!B $ !B) $ -(¬!A $ ¬!B $ !B) $

-(!A $ ¬!B) $ -(¬!A $ !A $ ¬!B) $ -(¬!A $ ¬!B)

The partial overlap 
relation (PO) from 
RCC8



S4u expressivity

• %((NorthKorea $ SouthKorea) . 

DemilitarizedZone)

• -p $ %(p . !¬p) $ %(¬p . !p)
We can state the following 
fact: the border between 
North and South Korea is a 
subset of the Demilitarized 
Zone.

The second is very strange: 
p is not empty and all 
points of p are boundary 
points. 

Note however, that p is not 
regular closed (p’s interior 
is the empty set)

p¬p

A tiny model for the above formula

Note how the second conjunct makes it impossible for p to hold in a point from which only 
states where “p” holds are accessible: all world where “p” holds have an accessible world where 
“not p” holds. The third conjunct expresses the same for “not p”



S4u complexity

• The complexity of S4u is the same as the 
complexity of S4: it is PSPACE complete.

• Many interesting fragments (all have 
have seen: RCC8, BRCC8 and 9-I, at least 
for atomic formulas) have simpler models 
than S4 and are NP complete (see eg. 
Gabelaia e.a.).



Going Further

• It seems natural to interpret our regions in an 
Euclidian space: this would give us a natural 
distance metric.

• Convex hulls seem useful for many purposes.

• Integration with temporal logic has been 
investigated (but there is surely more to be 
done!)

• Is there a good way to strike a balance 
between expressivity and computational 
complexity?
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